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ABSTRACT 

 
 
 
 
Modelling and forecasting fish catch has been undertaken for a long time over the 

world. However, From time to time, researchers are always looking for a new model 

that can predict more accurately the number of fish catch. The objective of this study 

is to propose the Error Trend and Seasonal (ETS) state space approach.In this study, 

two techniques of time series analysis were used to forecast fish catch of three 

commercial fish species found in the Malaysian waters. One of such techniques is the 

Box-Jenkins method which concerns the building of linear and stochastic dynamic 

models with minimum data requirements. The second technique is the Error Trend 

and Seasonal (ETS) state space exponential method which requires no assumptions 

about the correlations between successive values of the time series. The two class 

models were used to model and forecast two years monthly catches of the three fish 

species based on the collected data for the period 2007 – 2011. The 

SARIMA(1,1,1)(0,0,1)[12], SARIMA(1,1,4)(0,0,1)[12], SARIMA(2,1,1)(0,0,1)[12] 

and ETS (M, A, M), ETS (M, N, M), ETS (M, A, M) for Dussumiera acuta (tamban 

buloh), Rastrelliger kanagurta (kembong) and Thunnus tonggol (Tongkol hitam) 

were proposed respectively. The diagnostic checking for all the fitted models 

confirmed the adequacy of the models. Results based on the root mean square error 

(RMSE) and mean absolute error (MAE) demonstrated that the ETS models per-

formed better for Thunnus tonggol and Rastrelliger kanagurta, while SARIMA 

model performed better for Dussumiera acuta. This shows that ETS model which has 

so far not been used in fisheries in Malaysia is our main contribution in this research. 

Nevertheless, both models have proven successful in describing and forecasting the 

monthly fishery dynamics. These  forecasts proves helpful in formulating the needed 

strategies for sustainable management and conservation of the stocks, and can also 

help the decision makers to establish priorities in terms of fisheries management. 

.   



vi 
 

 
 
 
 

ABSTRAK 

 
 
 
 
Permodelan dan ramalan tangkapan ikan telah dijalankan untuk masa yang lama di 

seluruh dunia. Namun, terdapat masalah dalam mencari model yang sesuai yang 

boleh memperoleh dinamik data tang sebagai atribut kepada data tangkapan ikan. 

Dari masa ke semasa, penyelidik sentiasa mencari model baru yang boleh meramal 

lebih tepat lagi beberapa tangkapan ikan. Dalam kajian ini, dua teknik analisis siri 

masa telah digunakan untuk meramal hasil tangkapan ikan daripada tiga spesies ikan 

komersial yang terdapat di perairan Malaysia. Salah satu teknik itu adalah kaedah 

Box-Jenkins yang berkaitan dengan pembinaan model dinamik linear dan stokastik 

dengan keperluan data minimum. Teknik yang kedua ialah ETS keadaan ruang 

kaedah eksponen yang tidak memerlukan andaian tentang hubungan antara nilai-nilai 

berturut-turut siri masa. Kedua-dua kelas model digunakan untuk dimodelkan dan 

meramal dua tahun tangkapan bulanan daripada tiga spesies ikan berdasarkan data 

yang dikumpul bagi tempoh 2007 - 2011. SARIMA (1,1,1) (0,0,1)[12], SARIMA 

(1,1,4) (0,0,1)[12], SARIMA (2,1,1) (0,0,1)[12] dan ETS (M, A, M), ETS (M, N, M) 

, ETS (M, A, M) untuk Dussumiera acuta (tamban Buloh), Rastrelliger kanagurta 

(Kembong) dan Thunnus tonggol (Tongkol hitam), telah dibangunkan. Semakan 

diagnostik untuk semua model dipasang mengesahkan kecukupan model. Keputusan 

berdasarkan punca min ralat kuasa dua (RMSE) dan bermakna ralat mutlak (MAE) 

menunjukkan prestasi model ETS lebih baik untuk Thunnus tonggol dan Rastrelliger 

kanagurta, manakala prestasi model SARIMA lebih baik untuk Dussumiera 

acuta.Ini menunjukkan model ETS yang belum pernah digunakan di perikanan 

Malaysia ialah penyumbang utama dalam kajian ini. Walau bagaimanapun, kedua-

dua model telah terbukti berjaya dalam menerangkan dan meramal dinamik peri-

kanan bulanan. Ramalan boleh membantu dalam merangka strategi yang diperlukan 

untuk pengurusan dan pemuliharaan stok yang berterusan, malah membantu pembuat 

keputusan untuk menubuhkan keutamaan dari segi pengurusan perikanan. 
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CHAPTER 1 

 
 
 
 
 

INTRODUCTION 

 
 
 
 
 
1.0 Introduction 

 
 
Fisheries management appeals on fisheries science in order to find ways to protect 

fishery resources for a possible sustainable exploitation. Modern fisheries 

management often referred to as a governmental system of appropriate management 

rules based on defined objectives and a mix of management means to implement the 

rules, which are to put in place by a system of monitoring, control and surveillance. 

The integrated process of information gathering, analysis, planning, consultation, 

decision making, and allocation of resources, formulation and implementation, with 

enforcement is necessary as regulations or rules which govern fisheries activities in 

order to ensure the continued productivity of the resources are among other fisheries 

objectives. 

Effective management is essential if marine resources are to be utilized in a 

sustainable and a responsible manner. Sustainable and responsible fisheries 

management is of a fundamental importance as fisheries are one of the main pillars 

of the Malaysian economy. Given this fact, this work studied the fisheries dynamics 

of some selected fishes commonly found in Malaysian waters using two time series 

analysis techniques. Time series analysis is an economical method for forecasting 

fish catches which are essential for fisheries management. It describes the time 

structure of the catch data (Noble and Sathianandan, 1991). Many fields like 

agriculture, environmental, economics, tourism, meteorology and fisheries have been 
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forecasted using time series models (Mahendran et al., 2008). This study evaluated, 

modeled and forecasted the Malaysian fish catches for some selected fish species 

using  SARIMA and ETS state space approach. SARIMA is a common model used 

by many researchers e.g, Hae-hoon park (1998), Geogakarakos et al. (2012) whereas 

ETS state space approach has never been used in fisheries research in Malaysia 

 
 
1.1 Background of the study 

 
 
The fisheries sector plays an important role in the Malaysian national economy. It 

contributes to the national Gross Domestic Product (GDP), it is also a source of 

employment, foreign exchange and source of chief protein supply for the urban and 

rural population in the country. Fish constitutes 60-70% of the national animal 

protein intake, with per capita consumption of 47.8 kg per year (Che Ayub, 2012). 

The rate of demand for fish as the main source of protein is expected to 

increase from the current population of 26,330 000 with a per capita consumption of 

60 kg/year. In 1997, the fisheries sector contributed 1.57% to GDP, and it provides 

employment for more than 79,000 fishermen and 20,000 fish farmers. In 2003, the 

total fish production amounts to 1,483,958 tons valued at RM5.22 billion (US$ 1.36 

billion). This contributed to about 1.37% of Gross Domestic Product (GDP) and 

provided direct employment to 89,433 fishers and 21,114 fish aqua culturists 

(Annual Fisheries Statistic, 2003), and also production of 1.71 million tons valued at 

RM 8.546 billion in 2009 (Che Ayub, 2012). 

Malaysia has one of the highest intakes of fish in the world with estimated 

consumption in excess of 50kg per person, per year and accounting for 

approximately 60% of total animal protein intake (Azam-Ali et al. 

2012).Approximately 75% of the fish harvested in Malaysia are wild, and caught 

from the marine environment. The Malaysian fisheries sector is divided into two: the 

capture fisheries (marine and inland) and the aquaculture. The marine capture 

fisheries cover a total area of 547,200 km2 and categorized into coastal fisheries and 

deep-sea fisheries. In 2003, the coastal fisheries and deep-sea fisheries contributed 

about 1,084,802 tons (73.1%) and 198,453 tons (13.4%) respectively, to the total 

marine landings. There are more than 100 commercial fish species found in the 

Malaysian waters. The Malacca Straits and the South China Sea are the two main 
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fishing areas which contribute most to Malaysian marine fishery and the rest  are 

Sulu and Sulawesi seas in the east coast of Sabah. 

Pelagic fishes are among the important contributor of deep sea catch. Pelagic 

fish refers to those fish that spend most of their life swimming in the water column 

(seas, oceans or open waters which associated with the surface or middle depths of a 

water body) with little contact with or dependency on the bottom of the sea floor. 

Many pelagic fish feed on plankton. The important pelagic fishes found in Malaysian 

waters include mackerel, tuna and sardines. Since fisheries resources are renewable, 

proper management issues should be taken to manage these fisheries resources. One 

of the issues is to forecast the upcoming fish catch. Fish forecasting is a very 

important tool for fisheries managers and scientists to enable them to decide on 

sustainable management issues.  

 
 
1.2 Common fish species found in Malaysian waters 
 
 
Tuna, mackerel, and sardines are some of the common fish species distributed over 

warmer oceans in the world (Campbell, 2008), and they are found to be common in 

Malaysian waters (Table 1.1; Noraish and Raja 2009; Samsudin 2012). 

 
 
1.2.1 The Tuna Fish 

 
 
The tuna fish are fast growing species with a catch size ranging from 1.8kg - 684kg 

depending on the type of species. Tuna spawn once a year and they are broadcast 

spawners, that is, they scatter their eggs into open water and fertilize externally. Tuna 

are known to make seasonal excursions to higher latitudes as water temperatures 

increase with season. A spawning female may release as many as 100,000 eggs per 

2.2 pounds (1 kg) of body weight. The age of tuna at sexual maturity ranges from 

three to five years, depending on the species. Several popular species of tuna are 

being over fished, while others are sustainable. Other species are either already 

endangered or may soon become so (Langley et al. 2002). The majority of tuna are 

caught using one of the following methods; hook and line, purse seine, or gill net. 

Table 1.1 gives the most common tuna species found in Malaysian waters (Samsudin 

et al. 2012).  
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Table 1.1: Tuna fish species found in Malaysian waters 

 

Fish Scientific Name English Name Local Name Plate 

 

Tuna

Thunnus tonggol Longtail tuna Tongkol hitam 1.1 

Thunnus albacores Frigate tuna Tongkol selasih 1.2 

 

 

 

 
 

Plate 1.1: Thunnus tonggol (Bleeker, 1851) or commonly called tongkol hitam 

 

 
Plate 1.2: Thunnus albacores (Bonnaterre, 1788) or commonly called tongkol selasih  
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1.2.2 The Mackerel 

 
 

Similar to the tuna family, mackerels share a family with the many species of tuna. 

Like tuna, they live in saltwater environments, usually in warm or temperate regions. 

Mackerel are typically an open ocean fish with greedy feeding habits, and may grow 

as large as 7.5 lb with maximum age of 20 years depending on the species; most 

species reach maturity at the age of two (Shuman, 2013). Although over fishing has 

started to be a problem it is expected that mackerel stock remain stable for few more 

year. Mackerel spawn near the surface and the eggs float in the water. Some methods 

used in catching mackerel are: spinning, floating, hook and line. Some mackerel 

species found Malaysian in waters (Samsudin et al. 2012) are displayed in table 1.2. 

 
 

Table 1.2: Mackerel fish species found in Malaysian waters 

 

Fish Scientific Name English Name Local Name Plate

 

Mackerel 

Rastrelliger kanagurta Indian mackerel Kembong 1.3 

Rastrelliger brachysoma Short mackerel Pelaling 1.4 

Scrobemorus gattatus King mackerel Tenggiri papan 1.5 

Scrobemorus commerson Spanish mackerel Tenggiri batan 1.6 
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Plate 1.3: Rastrelliger kanagurta (Cuvier, 1817) or commonly called Kembong 

 

 

 

 
 

Plate1.4: Rastrelliger brachysoma (Bleeker, 1851) or commonly called pelaling 
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Plate1.5: Scombemorus gattatus (Bloch & Schneider, 1801) or commonly called 

tenggiri papan 

 

 

 
 

Plate1.6: Scrobemorus commerson (Lacepede, 1800) or commonly called tenggiri 

batan 

 
 
1.2.3 The Sardines 

 
 
Sardines are also among the most abundant and commercially important fish species 

in many countries around the world and are soft-boned fish that travel in schools. 

This fish range from 2.5 - 8.5 inches and weigh less than 1.0 lb. The sardine is a 

batch spawner and water temperature is very important environmental factor for their 

spawning dynamics (Ana et al. 2010).  Some methods of catching sardine include; 

purse seine, hook and line. Sardine species found Malaysian in waters (Samsudin et 

al. 2012) are given in Table 1.3. 



8 
 

Table 1.3: Sardine fish species found in Malaysian waters 

 

Fish Scientific Name English Name Local Name Plate

 

Sardine 

Sardinella fimbriata Fringe Scale Tamban Sisek 1.7 

Dussumiera acuta Rainbow Sardine Tamban buloh 1.8 

Amblygaster leiogaster Smoothbelly Sardine Tamban Beluru 1.9 

 

 

 
 

Plate1.7: Sardinella fimbriata (Valenciennes, 1847) or commonly called tamban 

sisek 

 

 

 
Plate1.8: Dussumiera acuta (Valaenciennes, 1847), or commonly called Tamban 

buloh 
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Plate1.9: Amblygaster leiogaster (Valenciennes, 1847) or commonly called tamban 

beluru  

 
 
1.3 Fishing Methods 

 
 
In Malaysia; different fishing methods are practiced which include spinning, floating 

purse seining, gill netting, and hook and line. However, among all these methods, 

only purse seine, gill net and hook and line are the most commonly used. Samsudin 

et al. (2012) says Malaysian fishery are of multi-species and multi-gears fishery and 

the catches are dominated by two commercial fishing gears namely trawlers (Gill-

netting) and purse seines. The trawlers and purse seines contribute more than 75% of 

total marine catch and the rest of the catches are from traditional gears. For example, 

in tuna fishery, the purse seines and trawlers catches 95% of neritic tuna and the rest 

by traditional gears such as trolling, hook and lines.  

 
 
1.3.1 Purse seining method 

 
 
Schools of fish are caught by means of a large net which surrounds the school. The 

net is then ‘pursed’ when the purse line closes the bottom of the net, after which the 

net is gradually brought aboard. The fish are then lifted out of the net using 

mechanical grabs, the purse seine fisheries use drifting Fish Aggregation Devices 

(FADs). Typically these are bamboo rafts of about 3.0 x 1.5m under where the fish 

tend to congregate; and they may be monitored remotely from the fishing vessel 

(Plate1.10), the purse seine is shot around the FAD, which increases capture. Fish 
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including skipjack tuna, and other species, may congregate under the FAD. Dolphins 

are not usually found in association with FADs, but catches of undersize tuna and 

other pelagic can be higher using FADs. The purse-seine method is used primarily to 

catch fish for processing that is canning process (Aherne, 2011).  

 

 

 
 

                                    Plate 1.10: Purse seining method  

 
 
1.3.2 Gill-netting 

 
 
Gill-netting is a common fishing method used by commercial and artisanal fishermen 

of all the oceans and in some freshwater and estuary areas. Gill nets are vertical 

panels of netting normally set in a straight line (Plate 1.11). Fish may be caught by 

gill nets in 3 ways: (1) wedged – held by the mesh around the body (2) gilled– held 

by mesh slipping behind the opercula, and (3) tangled – held by teeth, spines, 

maxillaries, or other protrusions without the body penetrating the mesh. In most 

cases fish caught by gilled as can be seen in Plate 1.11. Where the fish swims into a 

net and passes only part way through the mesh, when it struggles to free itself, the 

twine slips behind the gill cover and prevents escape (Murphy and Willis, 1996). 

Gillnets are so effective that their use is closely monitored and regulated by fisheries 

management and enforcement agencies. Mesh size, twine strength, as well as net 

length and depth are all closely regulated to reduce by catch of non-target species. 

Gillnets have a high degree of size selectivity. This method in particular has an 

extremely low incidence of catching non-target species.  



11 
 

 
 

                                      Plate 1.11: Gill-netting method  

 
 
1.3.3 Hook and Line 

 
 
A fishing line is a cord used or made for angling (method of fishing by means of an 

"angle" or fish hook). The hook is usually attached to a fishing line and the line is 

often attached to a fishing rod as shown in Plate1.12. Fishing rods are usually fitted 

with a fishing reel that functions as a mechanism for storing, retrieving and paying 

out the line. The hook itself can be dressed with bait which is designed to attract 

fish’s attention; a bite indicator such as a float is sometimes used. Angling is the 

principal method of sport fishing, but commercial fisheries also use angling methods. 

In many parts of the world, size limit apply to certain species, meaning fish below or 

above a certain size must, by law, be released. Important parameters of a fishing line 

are its length, material, and weight (thicker lines are more visible to fish). Some 

important factors that may determine what line an angler chooses for a given fishing 

environment include breaking strength, knot strength, UV resistance, cast ability, 

limpness, stretch, abrasion resistance, and visibility. Fish are caught with a fishing 

line by encouraging a fish to bite on a fish hook. A fish hook will pierce the 

mouthparts of a fish and is normally barbed to make escape less likely. 
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Plate 1.12: Hook and line method 

 
 
1.4 Fishing seasons in Malaysia 

 
 
The two main monsoon seasons in Malaysia are the Northeast Monsoon and the 

Southwest Monsoon Season. The monsoon that affects the living of the Peninsular 

Malaysia east coast, particularly those in the fishing industry is mainly the Northeast 

Monsoon which brings strong wind and rainfall from November to January. The 

northeast monsoon season is characterized by constant winds that blow from the 

northeast. It is associated with the development of the Siberian High which is a 

massive collection of cold dry air on the Eurasian terrain and the movement of the 

heating maxima from the Northern Hemisphere to the Southern Hemisphere. 

Northeasterly winds flow down Southeast Asia with wind speeds reaching as high as 

30 to 40 km/hr. During the season, the states on the east coast of Peninsular 

Malaysia, coastal areas of Sarawak and Sabah will experience episodes of continuous 

heavy rain normally for a total of two to three days due to monsoon surge. In the case 

of extreme weather, the whole episode of heavy rain can last for three to eight days, 

and may cause flooding. There are some days that strong wind and thunderstorm will 

disrupt the fishing routine but the fishermen can still be able to fish during that 

season. 
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The monsoon seasons affects the species of fish caught by the fishermen on 

the east coast. During the beginning of the season, fish species from the mackerel and 

threadfin family will be abundant.  

(https://sites.google.com/site/southeastasiafish/fishing-weather). 

Policy makers establish goals and objectives to forecast uncontrollable 

events, then select appropriate actions which hopefully will result to the realization of 

the goals and objectives. Forecasting is very important because it plays a central role 

in management; it precedes planning which in turn precedes decision making 

(Makridakis et al. 2000). 

 
 
1.5 Status of Pelagic fisheries 

 
 
Although the fish catch of Tuna, Sardines and Mackerel are still sustainable, over 

fishing might still be an upcoming problem that is why since fisheries resources are 

renewable, proper management issues should be taken to manage these fisheries 

resources. Fish forecasting is a very important tool for managers and scientist to 

enable them to decide on sustainable management issues. Statistical modelling 

fundamentally consists of developing a model to sufficiently represent the relevant 

features of the problem under study. Subsequently, it is used to forecast future values 

of the underlying phenomenon which may be for example, commercial landings of 

some important fish species.  

 
 
1.6 Problem Statement 

 
 
Forecasting has become increasingly useful and important in formulating educated 

estimates of things to come. As previously noted, strategists, policy makers, business 

executives, project managers, investors, and foremen resort to forecasting for help in 

strategic planning, investment, policy planning, resource procurement, scheduling, 

inventory maintenance, quality assurance, and resource mobilization in the short run. 

Nonetheless, the strategists and planners are aware that the basic and ultimate 

purpose of forecasting is to predict in the near term what will happen in order to 

avoid substantial cost or loss. 

https://sites.google.com/site/southeastasiafish/fishing-weather
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Modeling and forecasting fish catch has been undertaken in a long time over 

the globe, but the problem that exists is finding a suitable model that can capture both 

the dynamics attributed to fish catch data. From time to time, researchers are always 

looking for new models that can predict more accurately the number of fish catch. 

However, Malaysia being one of the countries with high intakes of fish in the world 

has received less concern in knowing the dynamics of future fish catches in the 

country. To the best of our knowledge only few studies concerned about modeling 

and forecasting fish catches in the Malaysian waters. 

 
 
1.7 Objective of the research  
 
 
The objectives of the research are to: 

1. Propose a suitable model for forecasting fish catches in Malaysian waters 

using ETS state space approach. 

2. Compare the forecast ability of ETS and SARIMA model using tuna, sardine, 

and mackerel fish catch data to see which model forecast better. 

 
 
1.8 Scope of the research 

 
 
In this research, the Box-Jenkins time series methodology and the ETS are used to 

analyze and forecast the monthly fish catch of Tuna, Sardines and Mackerel fishes 

based on the monthly data from 2007-2011. The data were collected mainly in 

Peninsular Malaysia. 

 
 
1.9 Significance of the Study 

 
 
The contribution of this research was in proposing the ETS model which has not 

been used in fisheries in Malaysia, and the ETS model was compared with SARIMA 

model to see which one forecast better. These then can help managers in the line of 

pelagic fish production and fisheries management in general. Another gap that was 

bridged was extending the forecasting years from 2012 - 2013. 
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The next chapters of the dissertation are organized as follows: Chapter 2 provides an 

overview of the related works. Chapter 3 discusses the statistical methods used in this 

study for modeling and forecasting fish catch. Chapter 4 presents the result and 

discussion of the study and Chapter 5 summarizes the dissertation, draws the 

appropriate conclusions, recommendations and outlines some potential directions for 

further research work. 
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CHAPTER 2 
 
 
 
 
 

LITERATURE REVIEW 
 
 
 
 
2.1 Introduction 

 
 
This chapter first glances on time series analysis. The chapter also provides through 

selective reference a clearer understanding of the contributions of Box-Jenkins 

methodology and ETS state space exponential smoothing models in time series 

modeling and forecasting. 

 
 
2.2 Time Series Analysis 
 
 
A time series is a sequence of data points measured at successive time intervals. 

Understanding the mechanism that generated a time series data or making predictions 

are among the main goals of time series analysis. The modelling of univariate time 

series is a subject of great importance in a variety of fields, e.g. astronomy, 

meteorology, hydrology, economics, and many others. It is worth emphasizing that to 

talk about the time series suggests that there is some type of randomness. A time 

series is really a stochastic procedure that describes the evolution of the random 

variable. It units of time will vary with the application. They could be years, quarters, 

months, days, hours, minutes or even microseconds, depending on the situation to be 

modelled. The unit of time is not important, what is important is that; the 

observations are equally spaced in time (Iffat, 2009). In time series studies, the 

interest is on time delay or time lag (or time step), not actual time. If the observations 

are not equally spaced, everything gets much more complicated.  The aim of time 
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series temporal analysis would be to predict future values of the given variable 

according to its past behavior. In other words, it is to develop a model that signifies 

time series after which make use of the model to forecast the near future values.  

 
 
2.3 Modelling and Forecasting Fisheries Time Series 
 
 
Time series analysis comprises methods for analysing time series data in order to 

extract meaningful statistics and other characteristics of the data.  Time series data 

have a natural temporal ordering.  This makes time series analysis different from 

other common data analysis problems, in which the ordering of the observations 

doesn’t matter. Modelling and Forecasting are one of the main aims of time series 

analysis. Different approaches may be used for modelling and forecasting time 

series. There are forecasts from exponential smoothing. There are also the X-11 (or 

X-12) forecasts, which predict fairly well over a 12-month period or so. The Box–

Jenkins methodology which is generally very good for short-term forecasting, 

regression analysis which can be used with moving average models or series with 

deterministic trends may also serve to predict over the longer run. Modeling and 

forecasting Fisheries dynamic have been undertaken for a long period of time, for 

example, Micheal (1983) applied time series methods to predict daily data of tripe 

and average catch per tripe (effort and CPUE) for anchovy and mackerel fishing in 

San Pedro, California, purse-seine fishery. The study shows that high fishing effort 

leads to a slight increase in CPUE. 

Grant et al. (1988) applied Markov model to forecast total annual commercial 

harvest of brown shrimp in the northwestern Gulf of Mexico and the results showed 

good predictions can be made by June or July and some predictive capabilities 

present as early as April. 

Stretta (1991) reported that tropical tuna movement can be observed from 

space, but must be deduced by models based on tuna behavior. In finding the highest 

concentration of tunas, he found an area with a high density of tuna forage. The 

knowledge of the surface thermal signature of the fertilizing process of water masses 

is possible using satellite infrared radiometers, he estimated forage production and 

thereby predicted tuna distribution.  
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Sterigou (1991) described and forecasted the sardine- anchovy complex in the 

eastern Mediterranean Greece using the vector autoregression model. The model 

explained 93% variability of anchovy and 72% of the variability of sardine catches 

and they produced an accurate and unbiased fits and forecasts. The result showed 

model predicted persistence, a 3-year periodicity of catches, and a negative 

relationship between anchovy and sardine catches.  

Sterigiou and Christou (1996) used eight forecasting techniques to model and 

provide operational forecasts of annual landings of 16 species in the Hellenic marine 

waters. The operational forecast was based on four general categories of forecasting 

techniques which are multiple regression models using different variables, univariate 

time series models, multivariate time series techniques; and the biological 

exponential surplus-yield model. The result of their study showed that the annual 

catches of all the 16 species displayed long term trends. 

Walia and Jain (1998) used nonlinear statistical models to forecast fish 

weight at the time of harvest after 12 months of stocking fish. The results revealed 

that forecasting of fish weight can be made three months before harvest for the 

species of fish studied.  

Stroyer and Mccomish (1998) used time series analysis method to analyze the 

annual index trawl of yellow percaflavascens in the southern Lake Michigan from 

1975-1996, and the model predicted that the relative abundance of quality size 

yellow perch in the lake Michigan  remain low in 1997 and 1998. 

Venogopal and Srinath (1998) used univariate time series and multivariate time 

series modeling approaches to evaluate efficiency with a view to modelling and 

providing accurate operational forecasts of quarterly commercial landings of seven 

species of marine fishes along with the total landings for Tamil Nadu. 

Raymond et al. (1999) predicted fish yield of 59 African lakes using neural 

network. The result showed the advantages of the back propagation procedure of the 

neural network in stochastic approaches to fisheries ecology. 

Anne et al. (2000) evaluated the impact of fishing on marine communities by 

applying four multispecies models which are descriptive multispecies, dynamic 

multispecies, aggregate system, and dynamic system models they concluded that 

these models provide a basis for assessing the benefit in the marine ecosystem. 

Monterro (2002) developed a growth model for a fish population in the 

coastal ecosystem. The growth model provides the basis to build a model of the 
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movement of fish in marine environment according to their environmental 

preference. 

Borges (2003) used time series analysis to investigate the effect of wind 

condition and North Atlantic oscillation (NAO) on the sardine catches. Recruitment 

is forced to a lower level when wind exceeds a certain limit in winter and the time 

series analysis shows evidence of climatic driven regime-shift.  

Premwadee (2006) developed statistical models for forecasting the quantity 

of various types of marine fish landing at the Pattani fishery port, allowing for trend 

and seasonality. The data comprised of daily and monthly totals by weight for eight 

types of fish. The results shows that mackerels and other food fish and squid catches 

tend to decrease, whereas the catches of scads tend to increase and trash fish catches 

have no detectable trend up or down, shrimp and lobster tend to decrease 

exponentially and the trend of crab is constant.  

Leathwick et al. (2006) used two statistical techniques which are generalized 

additive models (GAM) and multivariate adaptive regression splines (MARS) to 

analyze the relationship between the distributions of 15 freshwater species and their 

environments. The result indicated little difference between the performance of 

GAM and MARS models. 

Goodwin et al. (2007) applied a new technology known as the numerical fish 

surrogate who helps in designing a fish bypass and guidance structures at hydro 

facilities by combing three types of modelling to forecast fish behavior and 

trajectories. 

Sathianandan (2007) forecasted the relationship between eight commercially 

important marine fish species in Kerala from 1960-2005 using vector autoregressive 

models. The result was the production of 16 individual models consisting of different 

landing time series and the behavior of each time series was examined.  

Guitierrez-Estrada et al. (2007) used the hybrid of computational neural 

networks (CNN) and ARIMA models to forecast one month ahead of anchovy 

catches in the north area of Chile. The results obtained from individual models shows 

strong correlation amongst models. However, the calibrated CNN+ARIMA models 

captured the general trend of the historical data. 

Sarawuth and Apiradee (2008) developed a statistical model to forecast the 

quantity of fish catches in Songhla lake basin in southern Thailand. The model had 

seasonal effect and time lagged terms for the preceding two months. The result 
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showed that catches has decreased substantially in the last ten years and no long-term 

trend is evident. 

Xinjun et al. (2008) applied the catch data and satellite derived environmental 

variables to determine habitat suitability indices for Chub mackerel during July to 

September in the East China Sea. More than 90% of the total catch were found to 

come from the areas with sea surface temperature of (28.0°C- 29.4°C), sea surface 

salinity of (33.6- 34.2) psi, chlorophyll-a concentration of (0.15 - 0.50 mg/m3) and 

sea surface height anomaly of (0.1 - 1.1 m). Of the four conventional models of HSI, 

the Arithmetic Mean Model (AMM) was found to be most suitable according to 

Akaike Information Criterion. Based on the estimation of AMM in 2004, the 

monthly HSIs in the waters of 123°- 125°E and 27°30´ - 28°00´N were more than 0.6 

during July to September, which coincides with the catch distribution in the same 

time period. This implies that AMM can yield a reliable prediction of the Chub 

mackerel's habitat in the East China Sea. 

Nibaldo and Orlando (2009) forecasted a 1-month ahead monthly sardines 

catches using a multivariate polynomial model combined with multi-scale stationary 

wavelet decomposition. The observed monthly sardine catches were decomposed 

into various sub-series employing wavelet decomposition techniques and then 

appropriate sub-series were used as an inputs to the autoregressive forecasting 

model. The forecasting strategy parameters were estimated using the least squares 

method and found that the method achieves 99% of the explained variance with a 

mean absolute percentage error (MAPE) below 7.6%. They also employed a 

functional autoregressive (FAR) model combined with multi-scale stationary wavelet 

decomposition technique for one-month-ahead monthly sardine catches forecasting 

in the northern area of Chile. 

Albanez-Lucero and Arregun-Sanchez (2009) used artificial neural network 

(ANN) tools to model red grouper (Epinephelus morio) distribution. ANN was used 

to relate discrete relative abundance data to differentiate substrate within and 

between defined areas in order to provide a reliable distribution map. The result 

showed a significant relationship between the types of substrate and the three stages 

of distribution. 

Samanthan and Ghosh (2011) reported to the fishery biologists about the 

existence of a very versatile self-exciting threshold autoregressive moving average 
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(SETARMA). This model is capable of describing cyclic fluctuations in modelling 

mackerel landings in Karnataka, India. 

Sarawuth and Chamnein (2011) studied the monthly catch weight in the 

Songhkla Lake from the period Jan 2003 – Dec 2006 with a regression model 

containing three species. Catch weight was first aggregated by species and a 

combination of the bi-monthly season of the year and catching gear. The first 

component was represented by the most species of estuarine and marine vertebrates. 

The second component mainly represented freshwater fish and some marine 

invertebrates and reflected the fact that most of these species were caught by gill 

nets. The third component focused on the seasonal fluctuations in catch weight. They 

concluded that the patterns indicated increasing freshwater catch weights, while 

marine invertebrate catches decreased. 

 
 

Table 2.1: Summary on Modelling and Forecasting Fisheries Time Series 

 

S/no Names of 
authors 

Method 
employed 

Work  Conclusion 

1 Micheal 
(1983) 

Time series 
methods. 

Predicted the daily 
data of tripe and 
average catch per 
tripe (effort and 
CPUE) for anchovy 
and mackerel 
fishing. 

High fishing effort 
leads to a slight 
increase in CPUE. 

2 Grant et al. 
(1988) 

Markov model To forecast total 
annual commercial 
harvest of brown 
shrimp. 

Good predictions 
were made. 

3 Stretta 
(1991) 

Satellite infrared 
radiometers 

Finding the highest 
concentration of 
tunas. 

Predicted tuna 
distribution. 

4 Sterigou 
(1991) 

Vector 
autoregression 
model. 

Described and 
forecasted the 
sardine- anchovy. 

The model 
produced an 
accurate and 
unbiased fits and 
forecasts. 

5 Sterigiou and 
Christou 
(1996) 

Univariate time 
series models, 
multivariate  
techniques; and 
the biological 
exponential 
surplus-yield 
model. 

To model and 
provide operational 
forecasts of annual 
landings of 16 fish 
species. 

The study showed 
that the annual 
catches of all the 
16 species 
displayed long 
term trends. 
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Table 2.1: (Continued) 
 
6 Walia and 

Jain (1998) 
Nonlinear 
statistical 
models. 

To forecast fish 
weight at the time 
of harvest after 12 
months of 
stocking fish. 

Forecasting of 
fish weight can 
be made three 
months before 
harvest for the 
species of fish 
studied.  

7 Stroyer and 
Mccomish 
(1998) 

Time series 
analysis 
method. 

To analyze the 
annual index 
trawl of yellow 
percaflavascens 

The model 
predicted that the 
relative 
abundance of 
quality size 
yellow perch in 
the lake Michigan  
remain low in 
1997 and 1998 

8 Venogopal 
and Srinath, 
(1998) 

Univariate 
time series and 
multivariate 
time series 
modeling 
approaches. 

To model and 
providing 
accurate 
operational 
forecasts of 
quarterly and the 
total landings of 
seven species of 
marine fishes. 

The models 
produced fits and 
forecasts. 

9 Raymond et 
al. (1999) 

Neural 
network. 

Predicted fish 
yield of 59 
African lakes. 

The result 
showed the 
advantages of the 
back propagation 
procedure of the 
neural network in 
stochastic 
approaches to 
fisheries ecology. 

10 Anne et al. 
(2000) 

Descriptive 
multispecies, 
dynamic 
multispecies, 
aggregate 
system and 
dynamic 
system models.

Evaluated the 
impact of fishing 
on marine 
communities. 

Concluded that 
these models 
provide a basis 
for assessing the 
benefit in the 
marine ecosystem
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Table 2.1: (Continued) 
 
11 Monterro 

(2002) 
Growth model. To study fish 

population in the 
coastal 
ecosystem. 

The growth model 
provides the basis to 
build a model of the 
movement of fish in 
marine environment 
according to their 
environmental 
preference. 

12 Borges 
(2003) 

Time series 
analysis. 

To investigate the 
effect of wind 
condition and 
North Atlantic 
oscillation on the 
sardine catches. 

The time series 
analysis shows 
evidence of climatic 
driven regime-shift. 

13 Premwadee 
(2006) 

Statistical 
models. 

Forecasting the 
quantity of 
various types of 
marine fish 
landing, allowing 
for trend and 
seasonality. 

The result shows 
that mackerel’s 
catches tend to 
decrease. 

14 Leathwick et 
al. (2006) 

Generalized 
additive models 
(GAM) and 
multivariate 
adaptive 
regression 
splines 
(MARS).  

To analyze the 
relationship 
between the 
distributions of 15 
freshwater species 
and their 
environments. 

The result indicated 
little difference 
between the 
performance of 
GAM and MARS 
models. 

15 Goodwin et 
al (2007) 

Numerical fish 
surrogate. 

Designed a fish 
bypass and 
guidance 
structures at 
hydro facilities by 
combing three 
types of 
modeling. 

Forecasted fish 
behavior and 
trajectories. 

16 Sathianandan 
(2007) 

Vector 
autoregressive 
models. 

Modelling and 
forecasting. 

Forecasted the 
relationship between 
eight commercially 
important marine 
fish species. 

17 Guitierrez-
Estrada et al. 
(2007) 

Computational 
neural networks 
and ARIMA. 

Forecast anchovy 
catches in the 
north area of 
Chile. 

Calibrated 
CNN+ARIMA 
models captured the 
general trend of the 
historical data. 
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Table 2.1 :(Continued) 
 
18 Sarawuth 

and 
Apiradee 
(2008) 

Statistical 
model 

To forecast the 
quantity of fish 
catches in 
Songhla lake 
basin in southern 
Thailand. 

The result 
showed that 
catches has 
decreased 
substantially in 
the last ten years 
and no long-term 
trend is evident. 

19 Nibaldo and 
Orlando 
(2009) 

Multivariate 
polynomial 
model 
combined with 
Multi-scale 
stationary 
wavelet 
decomposition.

Modelling and 
forecasting. 

Forecasted 1-
month ahead 
monthly sardines 
catches. 

20 Albanez-
Lucero and 
Arregun-
Sanchez 
(2009) 

Artificial 
neural network 
(ANN) tools. 

To model red 
grouper 
(Epinephelus 
morio) 
distribution. 

The result 
showed a 
significant 
relationship 
between the types 
of substrate and 
the three stages 
of distribution. 

21 Xinjun et al. 
(2008) 

Satellite 
derived 
environmental 
variables and 
Arithmetic 
Mean Model 
(AMM).  

To determine 
habitat suitability 
indices for Chub 
mackerel during 
July to September 
in the East China 
Sea. 

AMM was found 
to be most 
suitable 
according to 
Akaike 
Information 
Criterion 

22 Samanthan 
and Ghosh 
(2011) 

Self-exciting 
threshold 
autoregressive 
moving 
average 
(SETARMA). 

Modelling 
mackerel landings 
in Karnataka, 
India. 

The model is 
capable of 
describing cyclic 
fluctuations in 
modelling 
mackerel 
landings.   

23 Sarawuth 
and 
Chamnein 
(2011) 

Regression 
model. 

To model three 
monthly catch 
weight in the 
Songhkla Lake.  

They concluded 
that the patterns 
indicated 
increasing 
freshwater catch 
weights, while 
marine 
invertebrate 
catches 
decreased. 
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