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ABSTRACT 

 

 

 

Rice husk ash (RHA) and palm oil fuel ash (POFA) have a great potential to replace 

the quartz element in porcelain composition. RHA and POFA were mostly used by 

construction industries, and only a few researchers studied its applications in 

ceramics industries. It is due to the mechanical properties of porcelain are strongly 

affected by the generated thermal stress during processing because of the deleterious 

effects of quartz. In this work, the quartz is being replaced by RHA, POFA and the 

combination of RHA and POFA. The sample's composition was mixed for 90 

minutes and pressed at different mold pressures (31, 61, 91 and 121 MPa) and then 

sintered at the sintering temperatures ranging from 1000 to 1300 
ο
C at different 

soaking times ranging from 1 to 3 hours respectively. The samples were measured 

the physical and mechanical properties and then the microstructure observation. It 

was found that the RHA, POFA and the combination of RHA and POFA have 

tremendous effects on the properties of porcelain tiles. For the RHA, the highest bulk 

density (2.42 g/cm
3
) and compressive strength (44 MPa) were recorded on 20 wt% of 

RHA at the sintering temperature of 1200
 ο
C and the soaking time of 2 hours. For the 

POFA, the highest bulk density (2.45 g/cm
3
) and compressive strength (46 MPa) 

were achieved on 15 wt% of POFA at the sintering temperature of 1100
 ο

C and the 

soaking time of 2 hours. For the combination of RHA and POFA,  the highest bulk 

density (2.43 g/cm
3
) and compressive strength (45 MPa) were recorded on 20 wt% of 

RHA and POFA at the sintering temperature of 1200
 ο

C and the soaking time of 2 

hours. It was observed that the microstructure was enhanced by increasing the 

sintering temperature, mould pressure and soaking time. It can be concluded that 

samples containing POFA attained vitrification stage at lower temperature and 

exhibited higher mechanical properties. Thermal expansion and thermal conductivity 

measurement are some of the areas that could be explored for further research. 
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ABSTRAK 

 

 

 

Abu sekam padi (ASP) dan abu bakar kelapa sawit (ABKS) mempunyai potensi yang 

besar untuk menggantikan kuartza dalam kompossisi porselin. KebanyakanASP dan 

ABKS digunakan oleh industri pembinaan, kecuali hanya beberapa penyelidik sahaja 

yang mengkaji penggunaannya dalam industri seramik. Ini adalah disebabkan oleh 

sifat mekanik porselin yang amat dipengaruhi oleh tekanan terma yang terhasil 

semasa pemprosesan kerana wujud kesan yang merosakkan kuartza. Dalam kajian 

ini, kuartza digantikan dengan ASP, ABKS dan kombinasi ASP dan ABKS. 

Komposisi sampel dicampurkan selama 90 minit dan ditekan pada tekanan acuan 

yang berbeza (31, 61, 91 dan 121 MPa) dan disinter pada suhu di antara 1000 
o
C 

hingga 1300 
o
C pada masa rendaman yang berbeza, masing-masing antara 1 hingga 3 

jam. Sampel itu diukur sifat fizikal dan mekanikal dan kemudiannya dibuat 

pemerhatian mikrostruktur. Hasil kajian menunjukkan bahawa ASP, ABKS dan 

kombinasi ASP dan ABKS mempunyai kesan yang sangat baik pada sifat-sifat 

porselin. Untuk ASP, ketumpatan pukal (2.42 g/cm
3
) dan kekuatan mampatan(44 

MPa) tertinggi dicatatkan pada 20 % berat ASP pada suhu sinter 1200 
o
C dan pada 

masa rendaman 2 jam. Untuk ABKS, ketumpatan pukal (2.45 g/cm
3
) dan kekuatan 

mampatan (46 MPa) tertinggi telah dicapai pada 15% berat ABKS pada suhu sinter 

1100 
o
C dan masa rendaman 2 jam. Untuk kombinasi ASP dan POFA, ketumpatan 

pukal (2.43 g/cm
3
) dan kekuatan mampatan (45 MPa) dicatatkan pada 20% berat 

ASP dan ABKS pada suhu sinter 1200 
o
C dan pada masa rendaman 2 jam. Ini dapat 

diperhatikan bahawa peningkatan dalam suhu sinter, tekanan acuan dan merendam 

masa meningkatkan mikrostruktur. Kesimpulannya, sampel yang mengandungi 

ABKS mencapai peringkat pengkacaan pada suhu yang lebih rendah dan 

mempamerkan sifat mekanikal yang lebih tinggi. Pengukuran pengembangan dan 

kekonduksian terma adalah beberapa bidang yang boleh diterokai untuk penyelidikan 

selanjutnya. 
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CHAPTER 1 In

troduction 

CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 

Ceramic tile is a product that stands out for its low water absorption and high 

mechanical strength. The properties of the product result from its low porosity due to 

the processing conditions (high degree milling of raw materials, high force 

compaction and sintering temperature), and the potential of the raw materials to form 

liquid phases during sintering (high desiccation). However, in the case of polished 

ceramic, the sealed pores remaining after the manufacturing process may impair 

some of its technical properties, such as its stain resistance. Porcelain tile is a type of 

the ceramic materials which have the vitreous characteristics. Vitrification indicates a 

high degree of melting on firing which confer how (often< 0.5%) porosity and high 

(> 40%) glass content on fired porcelain (Perez et al., 2013). As the of ceramic 

material, the porcelains have high hardness, low electrical and thermal 

conductivities, and brittle fracture (Callister, 2008). Porcelains consists of 

approximately 50% kaolin [Al2Si2O5 (OH)4] , 25% silica (SiO2), and 25% feldspar  

[(K,Na)2O. Al2O3. 6H2O]. The kaolin provides the plasticity during firing, the 

feldspar assists in the liquid formation and reduces the porosity, the quartz serves as 

a binder.  This composition makes a material body plasticity and a wide firing 

temperature range at a relatively low cost (Buchanan 1991 and Olupot, 2006). 

Porcelain is a type of ceramic highly valued for it beauty and strength. Whiteness, a 

delicate appearance, and translucence characterize it. It is known primarily material 

as for high-quality vases, table ware, figures and decorative objects. 

Porcelain tiles were introduced at the end of 1980s by Fiandre, one of the 

leading Italian porcelain tile manufacturers. Among the various types of ceramic 
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floor and wall tile, porcelain tile is the product which in recent years has shown the 

greatest rate of increase (on a percent basis) in the amount produced, amount sold, 

and obviously amount used (Abadir et al., 2002). The American National standard 

Specifictions for Ceramic Tile defines porcelain tiles as: dense, smooth, impervious 

(with water absorption of 0.5 percent or less), and stain resistant (Ece and Nakagawa, 

2002). Their peculiar characteristics put them at the top of a class of available 

commercial products that can be used for both indoor and outdoor building 

applications. Since they achieve a very high level of combination between 

physicomechanical properties and decorative quality, they are expected to replace the 

traditional ceramic floor tiles completely in the next few years. 

The physical and mechanical properties of porcelain bodies have been studied 

extensively for almost a century. During this period three theories have been 

presented to explain the strength of porcelains. These are the ‗‗Mullite 

hypothesis‘‘(Carty and Senapati, 1998), the ‗‗dispersion strengthening hypothesis‘‘ 

and the ‗‗Matrix reinforcement hypothesis‘‘. The mullite hypothesis suggests that the 

physical and mechanical properties of porcelain ceramic solely depends on the felt-

like interlocking of fine mullite needles. Specifically, the higher the mullite content 

and the higher the interlocking of the mullite needles, the higher is the mechanical 

properties (Ece and Nakagawa, 2002). Hence, the mechanical properties of porcelain 

depends on the factors that affect the amount and size of mullite needles like the 

firing temperature (Branga and Bargmann, 2003). 

  On the other hand, the dispersion strengthening hypothesis  states that 

dispersed particles in the vitreous phase of a porcelain body, such as quartz and 

mullite crystals, in the glassy phase of a porcelain body limit the size of Griffith 

flaws resulting in increased strength. The concept of the matrix reinforcement 

hypothesis concerns with the development of compressive stresses in the vitreous 

phase as a result of the different thermal expansion coefficients of dispersed particles 

or crystalline phases (usually quartz) and the surrounding vitreous phase. The larger 

these stresses are, the higher is the strength of the porcelain bodies. The phenomenon 

is known as the pre-stressing effect.  

Although, it is suggested that a universal theory of strength in porcelain 

ceramic should account for all the above mechanisms of strengthening, there is 

abundant experimental evidence that residual quartz has deleterious effect on the 

physical and mechanical properties of porcelain ceramic specifically, mostly reports 
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that support the mullite hypothesis or the dispersion strengthening hypothesis claim 

that the presence of residual quartz in fired bodies is harmful to the porcelain strength 

due to the α-β transformation of quartz crystals during cooling (Stathis, 2008). 

Additionally, higher strength can be obtained by the replacement of quartz by 

sillimanite sand, alumina (Das and Dana, 2003), kyanite or mullite, rice husk ash, 

sericitic pyrophyllite or low expansion porcelain powder. The use of combination of 

RHA and POFA to substitute quartz has not been reported. Using RHA and POFA 

for the fabrication of porcelain is expected to improve some of the mechanical 

properties of porcelain ceramic tiles and reduce some of the problems they cause to 

the environment. Moreover, the use of RHA and POFA to replace quartz is expected 

to have effects on sintering temperature, mould pressure and soaking time. 

A simultaneous investigation of parameters such as optimum composition of  

RHA and POFA content, optimum sintering temperature, optimum mould pressure, 

and optimum soaking time would help in the direction of understanding the 

mechanisms controlling porcelain‘s strength and improving its mechanical 

properties.  

1.2 Problem statement  

Quartz grains embedded in the porcelain glassy matrix have a deleterious effect on 

the mechanical strength mainly because of its transformation during cooling (Maity 

and Sarkar, 1996) which results in the development of stresses which initiate fracture 

(Carty and Senapati, 1998). The thermo-mechanical properties of whiteware bodies 

change greatly during the reconstructive and the displacive transformation of free 

silica due to change in volume (Prasad et al., 2001). 

Several researchers tried to improve the mechanical properties of porcelain 

ceramics by replacing quartz with other materials viz; sericitic pyrophyllite, kyanite, 

bauxite, sillimanite sand, alumina, RHA, silica fume and fly ash. Although the 

alumina in different forms has a favourable influence on the mechanical properties of 

white-ware due to the formation of primary mullite, it lowers the recrystallization of 

secondary mullite due to an increase in the viscosity of the glassy phase. On the other 

hand, Schuller (1964), showed that silica-rich glass favours recrystallization of 

mullite at low temperature and its dissolution at high temperature. Some 

improvements in the mechanical properties were also observed by several authors 
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(Kingery, 1986; Maity and Sarkar et al., 1996), through the reduction of the particle 

size of quartz and non-plastic materials. Tomizaki (1995) reported that dissolved 

quartz in the glassy phase and cristobalite phase precipitation has a deleterious effect 

on the mechanical properties of porcelain ceramic. The use of RHA and POFA 

simultaneously to replace quartz in porcelain ceramic has not been presented. 

Additionally, replacing quartz with RHA and POFA is expected to have impact on 

the parameters such sintering temperature, mould pressure and soaking time. 

Moreover, determining the parameters such as optimum composition of  RHA and 

POFA content, optimum sintering temperature, optimum mould pressure, and 

optimum soaking time would help in the direction of understanding the mechanisms 

controlling porcelain‘s strength and improving its mechanical properties.  

Rice Husk (RH) is an agricultural residue abundantly available in rice 

producing countries. Globally, approximately 690 million tons of RH is produced 

each year. Therefore, total global ash production could be as high as 134 million tons 

per year. In Malaysia, the RH produced annually amounts to more than 2.5 million 

tons. In Brazil, for example, 2.5 million tons of RH is generated each year. In 

Thailand more than 500 thousand tonnes per year of RH is produced. Rice husk ash 

(RHA) is produced as a result of burning of RH by plants to generate electricity. 

POFA is a by-product from biomass thermal power plants where palm oil residues 

are burned to generate electricity. Malaysia is one of the largest producer of palm oil 

with around 41% of the total world supply in years 2009– 2010. Since palm oil is one 

of the major raw materials used to produce bio-diesel, it is likely that the production 

of POFA will increase every year. an extensive search of the literature high-lighted 

many uses of RHA. Two main industrial uses were identified: as an insulator in the 

steel industry and as a pozzolanic material in the cement industry.  

Even though these are being used by steel and cement industries, very little of 

these ashes produced is actually used. While some of it serves as low-value material 

for backfill or fertilizers, most of the RHA and POFA are posed as waste in landfills, 

causing environmental and other problems. Within recent decades, the emission of 

these into the ecosystem has attracted huge criticisms and complaints, mainly 

associated with its persistent, carcinogenic and bio-accumulative effects, resulting in 

silicosis syndrome, fatigue, shortness of breath, loss of appetite (respiratory failure) 

and even death. Another alternative means to contribute towards solving the problem 

has to be looked upon. Therefore, these ashes (RHA and POFA) can be used to 
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substitute quartz in the production of porcelain ceramic tiles. The porcelain industries 

make use of natural resources for their production. Increasing world population and 

life demand are continuously raising the price of raw materials and reducing the 

natural resources; for these reasons this study is concentrated to use agric-waste 

materials as potential alternative in the porcelain industry. An investigation into the 

parameters such as temperature, mould pressure and soaking time would help 

towards the understanding of mechanical properties of porcelain ceramic tile. 

Therefore, the present study wishes to study the mechanical properties of 

ceramics tiles by replacement of quartz by RHA and POFA in order to help towards 

sustaining the natural resources, reduce the environmental hazards caused by the 

ashes and to possibly add value to some of the properties of porcelain ceramic tiles. 

1.3 Objectives of the study 

The aim of the research is to study the effects of the replacement of RHA and POFA 

on properties of porcelain ceramics. In order to achieve that, four objectives were 

designed which are as follows: 

(i) To determine the effects of the replacement of quartz by RHA, POFA and 

the combination of RHA and POFA on the mechanical and physicaln 

properties of porcelain ceramics. Such as following:  

(a) Mechanical properties which include, Vickers hardness, bending 

strength and compressive strength. 

(b) Physical properties, which include volume shrinkage, percentage of 

porosity, bulk density and microstructure. 

(ii)  To determine the optimum paramaters such as sintering temperature, 

mould pressure, soaking time with respect to the physical and 

mmechanical properties. 

1.4 Scope of the study 

In order to realise the objectives of the study to be successfully and reasonably 

implemented, the following scope of works have been derived. 
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(i) Standard porcelain ceramic composition was adopted: Kaolin 50 wt%, 

feldspar 25  wt%, quartz 25 wt%  (quartz was progressively replaced by 

RHA and POFA). 

(ii)  In order to determine the optimum temperature, the temperature was 

varied withing this range: 1000 
ο
C, 1100

 ο
C, 1200

 ο
C and 1300 

ο
C. 

(iii)  The samples were produced at different mould pressures: 31 MPa, 61 

MPa, 91 MPa and 121 MPa. 

(iv) The soaking time was varied from 1 hour, 2 hours and 3 hours in order to 

establish in order to determine the best soaking time. 

(v) Conducting the experiment to investigate and evaluate the following 

responses; 

a. Volume shrinkage using (Vanier  Calliper) 

b. Percentage of porosity using (Mettler Teldo) (XS-64) 

c. Bulk density using (Mettler Teldo) (XS-64) 

d. Vickers hardness using (Shimadzu) (HVM-2TE) 

e. Bending strength using (Shimadzu Autograph) (SPL-10KN) 

f. Compressive strength using (Shimadzu Autograph) (SPL-10KN) 
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CHAPTER 2 Li

terature 

Review 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction on porcelain ceramic tile 

Porcelain ceramic tile is a highly vitrified ceramic material produced from a body 

formulated by mixtures of kaolin, quartz and feldspar. The kaolin [Al2Si2O5 (OH)4], 

gives plasticity to the ceramic mixture; flint or quartz (SiO2), maintains the shape of 

the formed article during sintering; and feldspar [(K,Na)2O. Al2O3. 6H2O], serves as 

flux. These three constituents place porcelain in the phase system [(K, Na)2O-Al2O3-

SiO2)] in terms of oxide constituents, hence the term triaxial porcelain ceramic tiles 

(Buchanan 1991 and Olupot, 2006). The main phase composition of a porcelain body 

is constituted by a heterogeneous glassy matrix and needle shaped mullite crystals 

together with some quartz grains and closed irregular shaped pores. Mullite crystals, 

which are derived from the solid-state decomposition of the clay reacting with 

feldspar, are endowed with excellent mechanical, creep, thermal and chemical 

properties. Because of the complex interplay between raw materials, processing 

routes and the kinetics of the firing process, porcelains represent some of the most 

complicated ceramic systems (Lopez, 2011). 

2.1.1 Raw materials of porcelain 

The basic raw materials for porcelains are kaolin (50%), feldspar (25%) and quartz 

(25%). The kaolin fraction helps in forming, providing plasticity and dry mechanical 

strength during processing and forming mullite and vitreous phase during firing. The 

feldspars develop a liquid phase at low temperatures and assist the sintering process, 

allowing a virtually zero (<0.5%) open porosity and a low level of closed porosity 
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(<10%). The quartz promotes thermal and dimensional stability (De Noni et al., 

2010). These materials are also used in the production of various whiteware products. 

The distinguishing factor in the properties of different porcelain products are brought 

about by variations in the proportion of these materials, the processing and the firing 

schedule adopted. For porcelain, the quest over the period of time has been to 

increase mechanical strength, and to reduce the production costs. In most efforts to 

increase strength, emphasis has been placed on minimization of quartz in the 

porcelain formula because of the β to α phase inversion of quartz which occurs at 

573 
ο
C during cooling. The inversion results into decrease of quartz particle volume 

and may lead to cracks in the body. So far, there are reports of improvements in the 

mechanical properties by reducing the use of quartz. These include replacements of 

quartz with kyanite (Schroeder, 1978), Al2O3 (Kobayashi et al., 1987 and Das and 

Dana 2003), RHA (Prasad et al., 2001, Kurama 2008; Haslinawati et al., 2009), 

sillimanite sand (Maity and Sarkar, 1996), fly ash (Dana et al., 2004), partial 

replacement of feldspar and quartz by fly ash and blast furnace slag (Dana et al., 

2005), silica fume (Prasad et al., 2002), with a mixture of RHA and silica fume 

(Prasad et al., 2003). In this context, it can also be mentioned that an attempt to 

substitute part of quartz with fired porcelain by Stathis et al., (2004) did not result in 

a positive effect on the bending strength. 

Other modifications on the triaxial porcelain system, which have proven 

successful include, replacement of clay with aluminous cement (Tai et al., 2002), 

substitution of feldspar with nepheline syenite (Esposito et al., 2005), use of soda 

feldspar in preference to potash feldspar (Das and Dana, 2003), partial substitution of 

feldspar by blast furnace slag (Dana and Das, 2004), use of recycled glass powder to 

replace feldspar to reduce firing temperature (Bragança and Bergmann, 2004), the 

use of RHA to replace quartz (Prasad et al., 2001, Kurama 2008; Haslinawati et al., 

2009). On the other hand, there is evidence that under optimized conditions of firing 

and for a particle size of 10-30 μm (Norton, 1970; Ece and Nakagawa, 2002; 

Bragança and Bergmann, 2003), quartz has a beneficial effect on the strength of 

porcelain, in conformity with the pre-stressing theory. However, the α → β phase 

transformation of quartz crystals takes place at ∼573 ºC during the heating-cooling 

process and to the relaxation of micro-stresses originated between quartz grains and 

the surrounding glassy phase by the differences in their thermal expansion 

coefficients (Singer and Singer, 1971).  Similarly,     cristobalite inversion occurs 
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at a temperature of 225 
ο
C - 250 

ο
C similar to the quartz inversion, but produces 

larger volumetric change of approximately 5% (Lundin, 1964). For small particle 

sizes, the dissolution is more rapid leaving less quartz crystals in the glass and hence 

yielding a low pre-stress and low strength of the material. For large particle sizes an 

interconnected matrix with favorable crack path is formed leading to low strength 

(Carty and Senapati, 1998). Hence, quartz grain size affects bending strength in two 

ways, that is, directly through the induction of compressive stresses to the vitreous 

phase and indirectly through the development of a favourable microstructure (Stathis 

et al., 2004).  

2.1.2 Strength consideration 

The great interest in strength of porcelain for application and the wide research on 

the porcelain system has resulted in three major hypotheses describing the strength 

properties of porcelain formulations. These were described by Carty and Senapati, 

(1998) as the mullite hypothesis, the matrix reinforcement hypothesis and the 

dispersion strengthening hypothesis, respectively. The mullite hypothesis suggests 

that porcelain strength depends on the interlocking of fine mullite needles. 

Specifically, the higher the mullite content and the higher the interlocking of the 

mullite needles, the higher is the strength. Hence, the strength of porcelain depends 

on the factors that affect the amount and size of mullite needles, like the firing 

temperature and composition of alumina and silica in the raw materials. 

The matrix reinforcement hypothesis concerns the development of 

compressive stresses in the vitreous phase as a result of the different thermal 

expansion coefficients of dispersed particles, or crystalline phases, and the 

surrounding vitreous phase. The larger these stresses are, the higher is the strength of 

the porcelain. This phenomenon is known as the pre-stressing effect. The dispersion 

strengthening hypothesis, on the other hand, states that dispersed particles in the 

vitreous phase of a porcelain body, such as quartz and mullite crystals in the glassy 

phase, limit the size of Griffith flaws resulting in increased strength. 

There is evidence supporting each of these hypotheses (Maity and Sarkar, 

1996; Stathis et al., 2004; Islam et al., 2004). Carty and Senapati (1998) concluded 

that the typical strength controlling factors in multiphase polycrystalline ceramics are 
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thermal coefficients of the phases, elastic properties of the phases, volume fraction of 

different phases, particle size of the crystalline phases and phase transformations. 

Islam et al. (2004) concludes that the best mechanical properties can be achieved by 

high mullite and quartz content with low amount of the glassy phase and in the 

absence of micro cracks. However, a high amount of SiO2 leads to a high amount of 

the glassy phase which is detrimental to the development of high mechanical strength. 

2.1.3 Sinteing of porcelain 

During firing process, sequence of intercrystalline (regarding a single crystalline/ 

amorphous phase) and extra crystalline (interaction of a crystalline/amorphous phase 

with one another) take place. Temperature, time, and atmosphere in the furnace 

affect chemical reactions and microstructural development in the porcelain ceramic 

tiles and, consequently, are important in the fired properties of porcelain. Fast firing 

of porcelain has gained wide recognition and application in the whiteware industry 

(Manfredini and Pennisi, 1995) reducing production costs by efficient use of energy 

in the firing process. The fast firing of porcelain requires the knowledge of chemical 

reactions occurring during the process and of microstructural development.  Ignoring 

the removal of non chemically bound species, such as water and organics the basic 

reaction steps can be outlined as follows:  

(i) The loss of weight when kaolin is fired to temperatures exceeding about 450 

ο
C to 550 

ο
C under normal atmospheric conditions is commonly ascribed to 

―dehydration‖ and the water involved in the reaction is designated ―structural 

water.‖ Neither term is correct, as the crystal lattice loses hydroxyl groups. 

The process is better described as ―dehydroxylation‖ and it can be represented 

chemically by the equation.  

                                                                                          2.1 

The mechanism is most probably one of proton migration so that if two 

protons momentarily find themselves associated with the same oxygen ion, 

there is a probability that a water molecule will be formed and will detach 

itself. The temperature of occurrence and the exhibition of thermal events of 
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kaolinite generally depend upon number of variables. For example, (a) origin 

of kaolinite and its nature of crystallinity, size distribution and its impurities 

content. (b) DTA equipment and its sample holder, thermocouple, sensitivity, 

furnace and its atmosphere. (c) Operating conditions heating rate, sample 

size, packing, etc (Tarvornpanich et al., 2008). 

(ii) The α → β phase transformation of quartz crystals takes place at ∼573 ºC 

during the heating-cooling process and to the relaxation of micro-stresses 

originated between quartz grains and the surrounding glassy phase by the 

differences in their thermal expansion coefficients (α~23x10
-6

 ºC
-1

 for quartz 

and α~3x10
-6

 ºC
-1

 for the glassy phases) in the 20 ºC – 750 ºC temperature 

interval (Tarvornpanich et al., 2008).  

(iii) Sanidine, the homogeneous, high-temperature, mixed-alkali feldspar, forms 

within 700 
ο
C -1000 

ο
C (Martín-Márquez et al., 2010a). The formation 

temperature apparently is dependent on the sodium: potassium ratio. 

(iv) Metakaolin transforms to a spinel-type structure and amorphous free silica at 

-950 
ο
C -1000 

ο
C (Sonuparlak, 1987). 

(v) The amorphous silica liberated during the metakaolin decomposition is highly 

reactive, possibly assisting eutectic melt formation at 990 
ο
C, as suggested by 

Ece and Nakagawa (2002). Carty and Senapati (1998) suggests instead that 

amorphous silica transforms directly to cristoballite at 1050 
ο
C, but the 

general lack of cristoballite in modem commercial porcelain ceramics 

suggests that the former scenario is more plausible. 

(vi) Potassium feldspar melts at the temperature of 990 
ο
C but sodium feldspar 

melts at 1050 
ο
C. The lower liquid formation is beneficial to the reduction of 

the porcelain firing temperature. The presence of feldspar can reduce the 

liquid formation by as around 60 
ο
C (Pérez et al., 2012).  

(vii) Primary and secondary mullite formation takes place at a temperature of 1075 

ο
C (Carty and Senapati 1998). Some studies however, indicates that the stable 

form of aluminosilicates is formed at a higher temperature (Carty and 

Senapati, 1998). 

(viii) At a temperature of 1200 
ο
C, SiO2-quartz dissolution ends, and the melt 

becomes saturated with the silica dissolution. Quartz-to-cristoballite 

transformation begins. 
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(ix) At 1230 ºC feldspar has totally decomposed and the body is just comprised 

simply of mullite crystals, quartz grains and a glassy phase (Rincón, 1992). 

(x)  Pyroplastic deformation begins to take place as the porcelain body begins to 

cool, relaxation also starts within the glass phase to prevent the development 

of residual stresses until glass transition temperature is reached.  As the body 

cools below the glass transition temperature, residual stresses are developed 

because of thermal expansion mismatch between the glass and the included 

crystalline phases (i.e., mullite and quartz, and in some cases, alumina and 

cristoballite).   

(xi) On cooling, quartz inversion takes place at temperature of 573 
ο
C these 

results in a decrease in volume of the body by about 2 % (Carty and Senapati, 

1998). 

(xii)      cristoballite inversion occurs at a temperature of 225 
ο
C -250 

ο
C 

similar to the quartz inversion, but produces larger volumetric change of 

approximately 5 % (Carty and Senapati, 1998). 

2.1.4 Sintering stages 

Sintering is known as a process of creating objects from powders or particles. The 

basic mechanism is atomic diffusion.  Atomic diffusion occurs much faster at 

higher temperature. Few parameters are known to affect sintering such as type of 

materials, particle sizes, sintering atmosphere, temperature, time and heating rate 

(Rahaman, 2003). 

There are 3 stages during sintering; starting, intermediate and finish. Figure 

2.1 shows the respective stages. During adhesion stage the particles comes into 

contact wi th  each other but do not form any bond. At starting stage, there is a 

rapid growth of the interparticle neck between the particles. At intermediate stage 

the pore structure becomes smooth (reach equilibrium shape) and develops 

interconnected particles. The  intermediate  stage  usually  covers  the  major  part  

of  the  sintering  process. Particles start to form grain boundaries. At the final stage, 

the densification process is stopped and the pores become spherical and separated. 

Sintering occurs by diffusion of atoms through the microstructure. This 

diffusion is caused by a gradient of chemical potential-atoms that move from an 
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area of higher chemical potential to an area of lower chemical potential. The 

different paths that the atoms take to get from one spot to another are known as the 

sintering mechanisms. The six common mechanisms are: 

 

(i)       Surface diffusion – diffusion of atoms along the surface of a particle 

(ii) Vapor transport – evaporation of atoms which condense on a different surface 

(iii) Lattice diffusion from surface – atoms from surface diffuse through    lattice 

(iv) Lattice diffusion from grain boundary – atom from grain boundary diffuses 

through lattice 

(v) Grain boundary diffusion – atoms diffuse along grain boundary 

(vi) Plastic deformation – dislocation motion causes flow of matter 

 

 
Figure 2.1:     Stages of sintering (a) free particles, (b) necking between particles, (c) 

formation of grain boundary, and (d) densification process and pores elimination 

(Randal, 1991) 

 

The firing of porcelain promotes physico-chemical reactions responsible for 

the final properties of the ceramic products. In this process, it must be considered the 

kinetic limitations, the development of the phases, and the complexities of the 

microstructure. Generally, all the steps, since raw material preparation, drying 

conditions and firing cycle are going to have a strong influence in the product 

qualities. The firing cycle influence is related to the kind of furnace, firing 
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atmosphere, maximum temperature mould pressure and soaking time. All these 

parameters are related to quality and cost of the products. 

The work of Mattyasovszky-Zsonay (1957) is very conclusive with respect to 

porcelain mechanical strength. Mattyasovszky-Zsonay has recommended a particle 

diameter of quartz of 10–30 µm and shown the influence of quartz. He disregarded 

the effect of mullite and explained the prestress theory. Schuller (1979) has made an 

analogy between quartz content and particle size explaining mechanical strength as a 

consequence of radial and tangential stress. Schuller found that a variation in strength 

occurred with a variation in quartz content. He also highlighted that the best diameter 

of quartz is between 15 and 30 µm. Carty and Senapati (1998) examined three 

hypothesis: (1) mullite, (2) matrix reinforcement and (3) dispersion strengthening 

mechanism. They concluded that these three factors have an influence but the 

principal factor depends on the microstructure. The intrinsic flaw can be either a 

simple pore in a sample containing a glassy phase, or a pre existing crack in a sample 

that does not contain a glassy phase. This is due to the presence of quartz and 

cristobalite. Kobayashi et al. (1992) found a high bending strength body containing a 

large amount of porosity. This body presented small pores distributed uniformly 

within the microstructure. The apparent porosity was zero although a high relative 

density was not obtained. Bradt as reported by Kobayashi et al., (1992) based his 

explanation of the effect of quartz on the strength on Linear Fracture Mechanics. He 

found a KIC value of 1.3 MPa m 
1/2

 for a body containing 10–30 µm quartz particle 

size.  

The influence of the flux used in the fast firing of porcelain was investigated 

by Mortel and Pham-Gia (1981). The author compared the properties obtained in 

porcelains composed of K-feldspar or Na-feldspar and concluded that they are 

strongly influenced by the viscosity of the glass phase during firing. The glass phase 

depends on the kind of the flux used in the batch. Lee and Iqbal (2001) discorvered 

forms of mullite occurring in typical porcelains. According to them, they are: (1) 

Primary mullite from decomposition of pure clay. (2) Secondary mullite from 

reaction of feldspar and clay and feldpar, clay and quartz. Additionally, in aluminous 

porcelains (3) Tertiary mullite may precipitate from alumina-rich liquid obtained by 

dissolution of alumina filler. They stressed the the size and shape of mullite crystals 

is to large extent controlled by the fluidity of the local liquid matrix from which they 

precipitate, and in which they grow, which itself is a function of its temperature and 
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composition. The composition of this local liquid was determined by the extent of 

mixing of the porcelain raw materials and the role of the flux is critical. 

Braganca et al. (2004) investigated the mechanical properties of porcelain.  

They reported the optimum sintering temperature for the porcelain studied was 1340 

ο
C using a heating rate of 150 C/h and a 30 min soaking time. At this temperature the 

modulus of rupture and bulk density were at a maximum. The authors recorded the 

technical parameters are summarized such as water absorption: 0.34%, apparent 

porosity: 0.84%, bulk density: 2.48 g/cm
3
 linear shrinkage: 12.2% modulus of 

rupture: 46 MPa. Their analysis of the technical data showed that the modulus of 

rupture and the bulk density were related. The authors added that the maximum 

strength is a result of decrease in porosity and internal flaws. Samples fired at 

temperatures below the ideal (1340 
ο
C) showed open porosity. Above this, according 

to them, temperature an increasing in closed porosity occurred due to oxygen 

releasing and bloating. They further explained that two types of porosity caused a 

decrease in sample strength. For the ideal firing temperature (1340 
ο
C) they found 

out that the fracture toughness is KIC=1.6 MPa m
1/2

, the fracture energy =16.4 J/m
2
 

and crack length c=200 mm. These according the author parameters are good values 

for a fine ceramic. On the microstructural analysis Braganca et al. (2004) revealed 

that the ideal firing temperature occurs when the glassy phase covers the entire 

sample surface with sufficient time to react with crystalline phases. Higher 

temperatures were limited by the porosity increase. This porosity is a result of 

oxygen released from Fe2O3 decomposition and gas expansion in the pores.  

Stathis (2004) asserts that filler grain size has severe impact on the 

mechanical and physical properties of porcelain compared to the impact of the other 

three factors, namely quartz content in the filler, firing temperature and soaking time 

that were tested. Thus, optimization efforts should be focused on this factor. 

According to Stathis (2004), bending strength is affected by quartz grain size in two 

ways, directly through the induction of compressive stresses to the vitreous phase 

and indirectly through the development of a favorable microstructure. He stressed 

that both the parameters depend strongly on the particle distribution of quartz grains. 

He recorded the optimum quartz grain size is 5–20 μm which gives the maximum 

bending strength. However, he noticed that the use of coarser grain sizes results in 

reduced bending strength due to the development of a detrimental microstructure for 

the mechanical properties.  
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The microstructure of the samples is very porous and characterized by large, 

irregular pores connected to each other. On the other hand, using finer quartz grains 

results in low bending strength due to limited pre-stressing effect. Controlling quartz 

grain size in the optimum range bending strength is increased by 20–30% compared 

to the reference porcelain. The results are consistent with the matrix reinforcement 

theory. He however, concludes that the beneficial influence of mullite content on 

bending strength is not confirmed. In addition, they concluded that replacing part of 

quartz content with fired porcelain did not result in a positive effect on bending 

strength. 

In a study carried out by Tucci et al. (2004), investigated, the possibility of 

replacing a percentage of the sodium feldspar with soda-lime scrap-glass in a 

standard porcelain ceramic stoneware tile mix. According to them the replacement of 

10 wt.% of the sodium feldspar with the same amount of soda-lime scrap-glass 

causes the following remarkable effects such as: decrease in firing temperature, an 

increase in mechanical resistance. The authors emphasized the importance of  the 

possibility of improving the characteristics of a product, and at the same time finding 

a use for a waste material, the availability of which is increasing. 

Romero et al. (2006) carried out a research on the crystallisation kinetic and 

growth mechanism of mullite crystals in a standard porcelain stoneware powder of 

composition 50% kaolinitic clay, 40% feldspar and 10% quartz for tiles production 

have been investigate by DTA method. From the experimental results, the authors 

were conclusive on the following. (1) The temperature of mullite crystallisation in 

the porcelain stoneware powder was around 985 °C. (2) The activation energies of 

mullite crystallisation in porcelain stoneware calculated by both isothermal (Ligero 

method) and non-isothermal (Kissinger method) treatments are 599 and 622 kJ mol
−1

, 

respectively. (3) The values of the growth morphology parameters n and m are found 

to be n = m ≈ 1.5 indicating that bulk nucleation is the dominant mechanism in 

mullite crystallisation and a three-dimensional growth of mullite crystals with 

polyhedron-like morphology controlled by diffusion from a constant number of 

nuclei.  

The results obtained by Tucci et al. (2007), pointed out the increase of crack 

resistance, registered for the modified body mixes, was attributed to the presence of 

the alumina particles. Since, the fracture toughness of the particles is higher than that 

of the glassy matrix, the authors stated that it is justified to believe that different 
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toughening mechanisms, deflection of the crack path and crack stopping, influenced 

crack propagation. Besides, they observed that the presence of spodumene, due to its 

capability to develop a low viscosity liquid phase, improves the sintering 

performances of the modified products, reduces porosity and favours the 

crystallisation of rather elongated needle like mullite. 

Kemseu et al. 2007 produces soft and hard porcelain with excellent technical 

characteristics from two different china clays from Cameroon and carried out an 

investigation into them. From the results obtained in their work, he concluded that 

the two China clays from Cameroon are suitable as clay for porcelain bodies. 

According to Kemseu et al. (2007), the properties of the final products show that:  

Soft porcelain with low clay content and higher proportion of fluxing agent can be 

produced in the range of temperature of 1200–1225 
ο
C with average density of 2.4 

g/cm
3
 , water absorption less than 0.1% and flexural strength of 149 MPa.  Hard 

porcelain bodies with higher clay contain and relatively low proportion of fluxing 

agent can be produced in the range of temperature of 1325 
ο
C –1350 

ο
C and flexural 

strength of 167 MPa. He added therefore, that the use of China clays with TiO2 and 

FeO2 content permits a decrease of 25 
ο
C in firing temperature. This should reduce 

production costs which makes its utilisation very attractive, especially for tiles where 

the white colour is not required. 

Ece and Nakagawa (2002) have shown that a maximum bending strength for 

a 10–30 mm quartz grain size occurs after firing at 1300–1350 
ο
C. They explained 

that fractures initiating from flaws were micro-cracks around quartz grains acting as 

links between closed pores. 

Transmission Electron Microscope (TEM) and acoustic emission were used 

by Ohya and Takahashi (1999) in order to analyze the microstructure of a porcelain 

body. They presented TEM micrographs showing peripheral cracks around quartz. 

They pointed out that these cracks are a consequence of quartz and matrix expansion 

mismatch during cooling from temperatures below 1000 
ο
C. 

Quartz grains embedded in the porcelain glassy matrix have a deleterious 

effect on the mechanical strength mainly because of its transformation during cooling 

(Schroeder, 1978; Mattyasovszky‐Zsolnay,1957; Mortel 1977) which results in the 

development of stresses which initiate fracture (Zhang, 1999). The thermo-

mechanical properties of whiteware bodies change greatly during the reconstructive 



18 
 

and the displacive transformation of free silica due to change in volume, which was 

reviewed in detail by Kingery (1960). 

Several investigators (Maity and Sarkar, 1996; Prasad et al., 2001; Prasad et 

al., 2002; Derevyagina et al., 1980, Das and Dana, 2004; kalapathy 2007; 

Haslinawati 2009) tried to improve the mechanical properties of whiteware bodies by 

replacing quartz with other materials viz; sericitic pyrophyllite, kyanite, bauxite, 

sillimanite sand alumina, fly ash and RHA. Although the alumina in different forms 

has a favourable influence on the mechanical properties  of whiteware due to the 

formation of primary mullite, it lowers the recystallisation of secondary mullite due 

to an increase in the viscosity of the glassy phase. On the other hand, only three 

researchers reported the use RHA to substitute quartz (Kalapathy 2000: Prasad et al., 

2001; Kurama 2008; Haslinawati, 2009) in the porcelain ceramic tile.  

Maity and Sarkar (1996) studied the effect of sillimanite sand as a 

replacement for quartz and alumina/cordierite glass-ceramic for feldspar was studied. 

Compositional variations were due to the gradual incorporation of alumina in place 

of cordierite glass-ceramic was observed. Increased replacement of cordierite glass-

ceramic by alumina (20%) increased the flexural strength by 100%, giving a value of 

195 MPa was noted. The authors however, discovered that elastic modulus, micro 

hardness and fracture toughness also showed sharp increases compared with values 

for conventional triaxial whiteware compositions. They concluded that improvement 

in mechanical properties was attributed to the presence of sillimanite and alumina 

particles present as fracture-resistant dispersions in a viscous glassy matrix. 

Increased fracture behaviour is due to minimization of the glassy phase and limiting 

the size of Griffith's flaws. 

In a previous study Prasad et al. (2001), studied the effects of the substitution 

of quartz by RHA in whiteware ceramic. The authors observed that the progressive 

substitution of quartz by RHA in a conventional whiteware composition resulted in 

an early vitrification of the mixes. A reduction in the maturing temperature of about 

50 °C to 100 °C was noticed in the body mixes containing RHA compared to the 

reference body. They further explained that the increase in the fired strength and the 

substantial decrease in per cent thermal expansion of the body mixes containing 

RHA are attributed to the sharp decrease in the quartz content and also to the 

increase in the content of the glassy phase. However, they reported that the content 

of mullite appeared to be unaffected due to the addition of RHA in the compositions. 
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The reduction in the vitrification temperature of the mixes also contribute 

significantly to the economical production of whitewares. 

In a study carried out by Chen et al. (2000), demonstrates that mullite can be 

prepared by reaction sintering kaolinite and alumina. The advantage of their process 

is its economic feasibility. The disadvantage of it, was its relatively high sintering 

temperature, low density and consequently low strength. The authors observed the 

alumina particles are inert to kaolinite until 1200 °C. According to the study the 

reaction between alumina and the glass phase to form mullite starts from 1300°C. 

They stressed that the sintering temperature of the (kaolin+alumina) powder 

compacts has therefore to be higher than 1300 °C. Nevertheless, the authors pointed 

out that the disadvantage can be coped with by adding flux such as feldspar into 

kaolin. The reaction between kaolinite and alumina was accompanied with a 

shrinkage. The study also revealed the the presence of glassy phase facilitates the 

formation of large holes. Fully dense mullite specimens are thus difficult to prepare 

by using the process employed in the present study. The strength of the specimens 

was therefore low. However, the toughness of the specimen increases with the 

increase of alumina content. 

Braganc et al. (2002) produced porcelain with excellent technical 

characteristic which had similar properties to a traditional porcelain by substituting 

quartz with glass powder. From the results they obtained they concluded that the use 

of recycled soda–lime glass powder as a fluxing agent to replace feldspar in 

porcelain was viable. The appropriate firing temperature for glass powder porcelain 

was 1240 °C and for traditional porcelain was 1340 °C. Therefore they asserted, that 

the use of glass powder permitted a decrease of 100 °C in firing temperature to be 

made. The authors added that it would mean a reduction in production costs which 

will make the utilisation of glass powder porcelain very attractive. They found out 

that the firing curve (water absorption and linear shrinkage and firing temperature) 

shows that glass powder porcelain has a behaviour typical of a strong flux.  

Glass powder porcelain has an advantageously low firing temperature, but a 

shorter sintering range compared to traditional porcelain. The authors added that 

after firing at the appropriate temperature the modulus of rupture and bulk density 

were higher for traditional porcelain by. They however, noted that because of a high 

MOR (38 MPa) and low water absorption (0.39%) glass powder porcelain attained 

the technical specifications of a porcelain stoneware. Similarly, the authors 
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discovered that the microstructural analysis revealed that the ideal firing temperature 

occurred when the glassy phase covered the entire sample surface and had a 

sufficient time to react with the crystalline phases. They however stresses that at 

higher temperatures were deleterious to the properties of porcelain due to an increase 

in porosity. The porosity according to them was due to the release of oxygen from 

the decomposition of Fe2O3 and gas expansion within the pores. The higher amount 

of closed porosity in glass powder porcelain porcelain explains why this porcelain 

did not attain a higher bulk density. 

In a research conducted by Prasad et al. (2002), where they substituted quartz 

with silica fume found that the incorporation of silica fume in place of quartz in 

whiteware bodies lowers the vitrification temperature. They noticed a reduction in 

the maturing temperature of about 50–100 °C was noticed in the body mixes 

containing 5–25 wt.% of silica fume compare to that of the reference body. They also 

discovered that increase in the fired strength about 10% with 10 wt.% silica fume and 

decrease in the thermal expansion (5.95%) are attributed to the sharp decrease in the 

content of quartz and also to the increase in the content of the glassy phase. 

However, according to them the content of mullite appeared to be unaffected due to 

addition of silica fume in the compositions but with a change in the size of mullite 

crystals and its orientation as observed in the micrographs. They concluded that 

reduction in the vitrification temperature of the body mix containing 25 wt.% silica 

fume with a substantial decrease in percentage of thermal expansion (∼34%) was 

observed which would contribute significantly to the improvement of the economical 

production of whitewares. 

Das and Dana (2003) investigated the differences in densification behaviour 

of K- and Na-Feldspar-containing porcelain bodies. They reported that the sequence 

of chemical reactions during thermal heating of potash- and soda-feldspar-containing 

triaxial porcelain compositions using DTA–TGA technique. The authors observed 

that both the compositions followed similar reaction steps up to1000 °C, beyond 

which feldspar forms eutectic melt and starts reacting. The difference in their 

densification behaviour has been studied using high temperature dilatometer. The 

soda-feldspar-containing composition exhibits maximum densification rate of 1171 

°C compared to 1195 °C for the potash-feldspar-containing composition. A separate 

set of pressed samples heated in an electric furnace to temperatures of 1160–1200 °C 

showed almost similar densification behaviour. The soda-feldspar-containing 
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composition achieved higher BD (2.43 gm/cm
3
), lower %WA (0.07%) and highest 

flexural strength (53.14 MPa) at 1200 °C compared to potash-feldspar-containing 

composition. The whiteness of potash-feldspar-containing body is poorer than soda-

feldspar-containing body due to increased amount of Fe2O3 and TiO2 impurities 

present in it. 

Olgun et al. (2005) demonstrated that it is possible to utilize fly ash and tincal 

waste as alternative raw material resources for the production of the wall tile. On the 

basis of their results the authors reported that the use of tincal waste and fly ash in 

the standard wall tile composition increases the firing shrinkage. Moreover, they 

asserts that the combination of fly ash and tincal waste helps in controling firing 

shrinkage of the tile. According to Olgun et al. (2005), regardless of the replacement 

level, introduction of fly ash and tincal waste into wall tile composition increases the 

firing strength compared to that of standard wall tile. The authors noted that the 

increases in the firing strength is more pronounced as the replacement level of tincal 

waste and fly ash content was increased. Firing strength of the tiles containing tincal 

waste is higher than that of the control tile and the tile containing fly ash. The result 

shows that the firing strength is directly related to the tincal waste content in the wall 

tile, which increases as the tincal waste content of the tile compositions is increased. 

Water absorption of tile decreases as the tincal waste content of the tile is increased. 

They concluded that tiles containing up to 10 wt.% of fly ash of and 5 wt.% of tincal 

waste into wall tile body show a good mineralogical and rheological compatibility 

with the pure wall tile product. 

Dana and Das (2004)  investigated the effects of the substitution of quartz by 

fly ash in a normal porcelain ceramic body. The authors stated that results in increase 

in the linear shrinkage, bulk density and decreases the apparent porosity in the entire 

temperature range of heating (1150–1300 °C). This, according to them was be due to 

the formation of low viscosity glass which flows easily and helps in better liquid 

phase sintering. They added that the mullite content increases with the addition of fly 

ash in place of quartz and thereby improves the flexural strength significantly. They 

further explained that, residual quartz content decreases with fly ash addition. They 

also observed that the scanning electron micrographs taken on the 1300 °C heated 

samples reveal the presence of α-quartz and secondary mullite embedded in the 

glassy matrix in general. Better interlocking and uniform distribution of 
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comparatively smaller sized mullite needles in the glassy matrix explain the high 

strength achieved. 

Mukhopadhyay et al. (2006) discovered that the incorporation of pyrophyllite 

as a progressive replacement of quartz in a porcelain composition resulted in early 

vitrification. According this also resulted in substantial reduction in the thermal 

expansion due to development of interlocking mullite needles. In addition they 

expalined that pyrophyllite reduced fired shrinkage and improved the flexural 

strength compared to the standard body. This was primarily due to the elimination of 

stresses in the structure with decreasing quartz content as well as due to presence of 

the feltlike interlocking of fine mullite needless in higher proportions. 

Mukhopadhyay et al. (2006) stress that mullite was found even at 1150 °C and its 

amount increased up to 1250 °C before decreasing at higher temperature. Beyond 

some optimum proportion of pyrophyllite (in this study 15%) there occur a large 

volume of glass formation and large elongated pores non-uniformly distributed in the 

microstructure which resulted in deterioration of the mechanical properties. The 

amount of closed pores in the specimens with pyrophyllite content beyond 15% and 

fired at 1300 °C was found to increase very abruptly which in turn is expected to 

increase the mean free fracture path per unit volume resulting in the decrease in 

strength. 

The addition of fly ash and blast furnace slag in a traditional triaxial porcelain 

composition in the proportion of 1:1 and 1:2 has been studied by Dana and Das 

(2005). It was found to be beneficial towards improvement in mechanical strength 

and early vitrification at 1175 °C. Presence of microcrystalline components of quartz 

and mullite in fly ash and alkaline earth oxides in blast furnace slag were responsible 

to develop anorthite and mullite phases which ultimately improved the mechanical 

strength. They stressed that such type of synergistic porcelain composition may find 

potential applications to manufacture high strength ceramic floor tiles for industrial 

as well as domestic buildings. Further, part substitution of natural minerals (quartz 

and feldspar) by overburden industrial by-products (fly ash and blast furnace slag) 

reduce the cost of raw materials, thermal energy without altering the requisite 

physico-mechanical properties. 

Furlani (2008) studied synthesis and characterization of ceramics from coal 

fly ash and incinerated paper mill sludge. The authors observed that materials 

obtained from paper mill sludge alone are fractured and not suitable for production of 
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monolithic ceramics. Materials obtained from coal fly ash alone can be sintered, but 

the control of the sintering process is difficult since green bodies shrink and melt in a 

restricted range of temperatures. Intermediate compositions have a progressive 

shrinkage and fired materials are mainly polycrystalline. Their water absorption is 

low and their mechanical properties are fair. More in particular, the authors 

concluded that the composition containing 25 wt% of coal fly ash and 75 wt% of 

powders from paper mill sludge show the best overall behaviour. 

Martín-Márquez  et al. (2008) study a mixture of 50% kaolinitic clay, 40% 

feldspar and 10% quartz composition of commercial porcelain stoneware tiles 

produced by a fast-firing process.  They found out that all bodies show a good 

sintering behaviour after firing in the 1200–1300 °C range. The study revealed that 

the fired samples are homogeneous and free of defects such as holes, bubbles or 

cracks. They added that the linear shrinkage, water absorption and porosity 

determinations show that the sintering process in porcelain stoneware samples does 

not exactly proceeded by a viscous liquid phase mechanism. The authors further 

explained that close porosity starts to increase before open porosity totally 

disappears. This according to the authors behaviour is due to both mullite 

crystallization and quartz dissolution in the liquid phase, which originate an increase 

in the viscosity of liquid phase and hence, the removal of open porosity is delayed. 

The optimum firing temperature is achieved in the 1260–1280 °C range, when open 

porosity reaches a minimum value and simultaneously linear shrinkage is maximum. 

Firing above vitrification range results in a drastic fall of the physical properties due 

to forced expulsion of the entrapped gases, resulting in blisters and bloating. 

Andreola et al. (2008) carried out a research on recycling of cathode ray tube 

(CRT) panel glass as fluxing agent in the porcelain stoneware tile production. The 

authors suggested that the ceramic sector might represent a suitable alternative to 

recycle this kind of waste glass as fluxing agent in the porcelain stoneware body. 

They explain that the addition of low viscosity panel glass has shown a positive 

effect on the quartz dissolution and on the formation of liquid phase, which give the 

possibility to reduce the amount of feldspar in the mass. Used in small amounts (up 

to 5 wt.%), it can replace conventional flux agents improving the densification 

process (linear shrinkage, water absorption, apparent density) and the mechanical 

properties (Young‘ modulus). They added that during firing CRT screen glass gets 

better sintering kinetic with some positive effects: lower final open and total porosity 
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and higher apparent density. CRT glass added up to 10 wt.% does not change the 

crystalline phases present and consequently the microstructure. 

Yürüyen and Toplan (2009) studied the effect of waste glass additions on the 

sintering properties of fly ash in porcelain bodies between 1100 °C and 1200 °C in 

air. In their study, they selected a basic porcelain composition consisting of 50% 

kaolin, 30% potassium-feldspar and 25% quartz, and fly ash was used instead of 

quartz at the selected porcelain composition. This composition was very similar to 

the basic porcelain composition. The authors found out that the sintering activation 

energy value of the porcelain was 145 kJ/mol for a composition of 10 wt.% waste 

glass addition which was very close to the value of 137.618 kJ/mol as reported by 

Demirkıran et al. (2002). Replacement of potassium-feldspar with waste glass 

resulted in a reduced activation energy required to initiate sintering in porcelain 

samples. Therefore, the concluded that the densification rate could be increased. As a 

consequence of the lower activation energy, according to them it may be possible to 

produce the porcelain at 1200 °C instead of 1300–1350 °C. Moreover, they noted 

that it may be possible to use waste glass and fly ash instead of quartz and 

potassium-feldspar as raw materials in porcelain compositions. 

Mostafa et al. (2010) uses blast furnace to substitute quartz. They revealed 

that the blast furnace slag can be used alone or with combination of aluminum 

silicate minerals to produce ceramic materials using the conventional ceramic firing 

process. The sintering process in kaolin–slag mixtures proceeded by a viscous liquid 

phase mechanism at temperatures lower than 1000 °C. Liquid phase assisted 

sintering and offered rapid densification kinetics. They however, noted that ceramic 

materials can be produced from blast furnace by low cost powder sintering route with 

conventional sintering process at temperatures above softening point. The authors 

concluded that blast furnace alone or mixed with up to 50% aluminum silicate 

minerals could be successfully used for production of low cost ceramic materials. 

Low partial substitution of blast furnace slag by kaolin (10%) increased the 

densification and strength at low sintering temperature.  

Martín-Márquez et al. (2010) studied a mixture of 50% kaolinitic clay, 40% 

feldspar and 10% quartz as a representative composition of commercial porcelain 

stoneware (PSW) tiles produced via a fast-firing process. PSW samples fired in the 

500–1000 °C interval show a typical underfired ceramic microstructure comprised of 

clay agglomerates, feldspar particles, quartz grains and a fine matrix of clay, feldspar 
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