
Optimistically Compressed Hash Tables & Strings in the
USSR

Tim Gubner
CWI

tim.gubner@cwi.nl

Viktor Leis
FSU Jena

viktor.leis@uni-jena.de

Peter Boncz
CWI

boncz@cwi.nl

ABSTRACT
Modern query engines rely heavily on hash tables for query
processing. Overall query performance and memory foot-
print is often determined by how hash tables and the tuples
within them are represented. In this work, we propose three
complementary techniques to improve this representation:
Domain-Guided Prefix Suppression bit-packs keys and val-
ues tightly to reduce hash table record width. Optimistic
Splitting decomposes values (and operations on them) into
(operations on) frequently- and infrequently-accessed value
slices. By removing the infrequently-accessed value slices
from the hash table record, it improves cache locality. The
Unique Strings Self-aligned Region (USSR) accelerates han-
dling frequently occurring strings, which are widespread in
real-world data sets, by creating an on-the-fly dictionary of
the most frequent strings. This allows executing many string
operations with integer logic and reduces memory pressure.

We integrated these techniques into Vectorwise. On the
TPC-H benchmark, our approach reduces peak memory con-
sumption by 2–4× and improves performance by up to 1.5×.
On a real-world BI workload, we measured a 2× improve-
ment in performance and in micro-benchmarks we observed
speedups of up to 25×.

1. INTRODUCTION
In modern query engines, many important operators like

join and group-by are based on in-memory hash tables. Hash
joins, for example, are usually implemented by material-
izing the whole inner (build) relation into a hash table.
Hash tables are therefore often large and determine the peak
memory consumption of a query. Since hash table sizes of-
ten exceed the capacity of the CPU cache, memory latency
or bandwidth become the performance bottleneck in query
processing. Due to the complex cache-hierarchy of modern
CPUs, the access time to a random tuple varies by orders of
magnitude depending on the size of the working set. This

©IEEE 2020. This is a minor revision of the paper entitled
“Efficient Query Processing with Optimistically Compressed
Hash Tables & Strings in the USSR” published in the Pro-
ceedings of the 2020 ICDE Conference, 2375-026X/20.
DOI: 10.1109/ICDE48307.2020.00033

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

Cold AreaHot Area

Hash Table

24 byte 8 byte 8 byte

Speculate &

Compress

Optimistically Compressed Hash Table

Figure 1: Optimistically Compressed Hash Table, which is
split into a thin hot area and a cold area for exceptions

means that shrinking hash tables does not only reduce mem-
ory consumption but also has the potential of improving
query performance through better cache utilization [4,5,21].

To decrease a hash table’s hunger for memory and, con-
sequently, increase cache efficiency, one can combine two or-
thogonal approaches: to increase the fill factor and to reduce
the bucket/row size. Several hash table designs like Robin
Hood Hashing [9], Cuckoo Hashing [19], and the Concise
Hash Table [5] have been proposed for achieving high fill fac-
tors, while still providing good lookup performance. Here,
we investigate how the size of each row can be reduced—a
topic that, despite its obvious importance for query process-
ing, has not received as much attention.

While heavyweight compression schemes tend to result in
larger space savings, they also have a high CPU overhead,
which often cannot be amortized by improved cache locality.
Therefore, we propose a lightweight compression technique
called Domain-Guided Prefix Suppression. It saves space by
using domain information to re-pack multiple columns in-
flight in the query pipeline into much fewer machine words.
For each attribute, this requires only a handful of simple
bit-wise operations, which are easily expressible in SIMD in-
structions, resulting in an extremely low per-tuple cost (sub-
cycle) for packing and subsequent unpacking operations.

Rather than saving space, the second technique, called
Optimistic Splitting, aims at improving cache locality. As
Figure 1 illustrates, it splits the hash table into a hot (fre-
quently accessed) and a cold (infrequently accessed) area
containing exceptions. These exceptions may, for example,
be overflow bits in aggregations, or pointers to string data.
By separating hot from cold information, Optimistic Split-
ting improves cache utilization even further.

An often ignored, yet costly part of query processing is
string handling. String data is very common in many real-
world applications [18, 24]. In comparison with integers,
strings occupy more space, are much slower to process, and
are less amenable to acceleration using SIMD. To speed up

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/429553823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

string processing, we therefore propose the Unique Strings
Self-aligned Region (USSR), an efficient dynamic string dic-
tionary for frequently occurring strings. In contrast to con-
ventional per-column dictionaries used in storage, the USSR
is created anew for each query by inserting frequently occur-
ring strings at query runtime. The USSR, which has a fixed
size of 768 kB (ensuring its cache residency), speeds up com-
mon string operations like hashing and equality checks.

While each of the proposed techniques may appear simple
in isolation, they are highly complementary. For example,
using all three techniques, strings from a low-cardinality do-
main (few distinct strings) can be represented using only a
small number of bits. Furthermore, our techniques remap
operations on wide columns into operations on multiple thin
columns using a few extra primitive functions (such as pack
and unpack). As such, they can easily be integrated into ex-
isting systems and do not require extensive modifications of
query processing algorithms or hash table implementations.

Rather than merely implementing our approach as a pro-
totype, we fully integrated it into Vectorwise which origi-
nated from the MonetDB/X100 project [8]. Describing how
to integrate the three techniques into industrial-strength
database systems is a key contribution of the paper.

Based on Vectorwise, we performed an extensive exper-
imental evaluation using TPC-H, micro-benchmarks, and
real-world workloads. On TPC-H, we reduce peak memory
consumption by 2–4× and improve performance by up to
1.5×. On a string-heavy real-world BI workload, we mea-
sured a 2.2× improvement in performance, and in micro-
benchmarks we even observed speedups of up to 25×.

2. DOMAIN-GUIDED PREFIX
SUPPRESSION

Domain-Guided Prefix Suppression reduces memory con-
sumption by eliminating the unnecessary prefix bits of each
attribute. This enables us to cheaply compress rows without
affecting the implementation of the hash table itself, which
makes it easy to integrate our technique into existing data-
base systems. In particular, while our system (Vectorwise)
uses a single-table hash join, Domain-Guided Prefix Sup-
pression would also be applicable (and highly beneficial) for
systems that use partitioning joins [4, 22]. Domain-Guided
Prefix Suppression also allows comparisons of compressed
values without requiring decompression.

2.1 Domain Derivation
A column in-flight in a query plan can originate directly

from a table scan or from a computation. If a value origi-
nates from a table scan, we determine its domain based on
the scanned blocks. For each block we utilize per-column
minimum and maximum information (called ZoneMaps or
Min/Max indices). This information is typically not stored
inside the block itself as this would require scanning the
block (potentially fetching it from disk) before this infor-
mation can be extracted. Instead, the meta-data is stored
“out-of-band” (e.g. in a row-group header, file footer or in-
side the catalog). By knowing the range of blocks that will
be scanned, the domain can be calculated by computing the
total minimum/maximum over the range.

On the other hand, if a value stems from a computation,
the domain minimum and maximum can be derived bot-
tom up according to the functions used, based on the mini-

mum/maximum bounds on its inputs under the assumption
of the worst case. Consider, for example, the addition of
two integers a ∈ [amin, amax] and b ∈ [bmin, bmax] resulting
in r ∈ [rmin, rmax]. To calculate rmin and rmax we have to
assume the worst-case that means the smallest (rmin), re-
spective highest (rmax), the result of the addition. In case
of an addition this boils down to rmin = amin + bmin and
rmax = amax + bmax.

Depending on these domain bounds, an addition of two
32-bit integer expressions could still fit in a 32-bit result, or
less likely, would have to be extended to 64-bit. This analysis
of minimum/maximum bounds often can allow implementa-
tions to ignore overflow handling, as the choice of data types
prevents overflow, rather than having to check for it. For ag-
gregation functions such as SUM, overflow avoidance is more
challenging. In Section 3, we discuss Optimistic Splitting,
which allows to do most calculations on small data types,
also reducing the cache footprint of aggregates.

2.2 Prefix Suppression
Using the derived domain bounds, we can represent values

compactly without losing any information by dropping the
common prefix bits. To further reduce the number of bits
and enable the compression of negative values, we first sub-
tract the domain minimum from each value. Consequently,
each bit-packed value is a positive offset to the domain mini-
mum. We also pack multiple columns together such that the
packed result fits a machine word. This is done by concate-
nating all compressed bit-strings and (if necessary) chunk
the result into multiple machine words. Each chunk of the
result constitutes a compressed column which can be stored
just like a regular uncompressed column.

2.3 Compression and Decompression
Like many modern column-oriented systems, Vectorwise

is based on vectorized primitives that process cache-resident
vectors (=arrays of single column values). These primitives
process items from multiple inputs in a data-parallel (SIMD-
friendly) fashion in a tight loop. Consequently, modern com-
pilers automatically translate such code into SIMD instruc-
tions for the specified target architecture (e.g. AVX-512).
In our vectorized hash table implementation, pack primitives
compress and“glue”multiple inputs together to produce one
intermediate result. Later, this intermediate result is then
stored inside the hash table. With all the inputs and the one
output being cache-resident vectors, the compression itself
happens in-cache. For bit-packing, our pack primitives look
similar to the following pseudo-code:

void pack2_i32_i16_to_i32(i32* res, int n,
i32* col1, i32 b1, int ishl1, int oshr1, i32 m1,
i16* col2, i16 b2, int ishl2, int oshr2, i32 m2) {

for (int i=0; i<n; i++) {
// Select portion of input and cast to result's type
i32 c1 = ((col1[i] - b1) >> ishl1) & m1;
i32 c2 = ((col2[i] - b2) >> ishl2) & m2;
// Move to output positions
res[i] = (c1 << oshr1) | (c2 << oshr2);

} }

After bit-packing, we scatter the intermediate results into
its final positions in the hash table. For improved cache lo-
cality, the hash table is stored in row-wise layout (NSM) [27].

When decompressing values, we fetch up to 4 columns
from the hash table and directly decompress them. For de-
compressing a vector of n packed 16-bit integers from 32-bit

and 16-bit integers at positions idx in the hash table, this
leads to the following pseudocode (2-column example):

void unpack2_i32_i16_to_i16(i16* res, int n, int* idx, i16 b,
i32* col1, int ishr1, int oshl1, i16 m1, int s1,
i16* col2, int ishr2, int oshl2, i16 m2, int s2) {

for (int i=0; i<n; i++) {
// DSM (columnar) position -> NSM (row) position
int idx1 = idx[i] * s1;
int idx2 = idx[i] * s2;
// Extract relevant bits from NSM record
i16 c1 = (col1[idx1] >> ishr1) & m1;
i16 c2 = (col2[idx2] >> ishr2) & m2;
// Stitch back together
res[i] = (c1 << oshl1) | (c2 << oshl2) + b;

} }

Notably compression and decompression operate in a non-
intuitive fashion: Both process m inputs and produce one
output. This particular approach has two advantages: (a) In
contrast to approaches with multiple outputs, it allows de-
compressing specific columns without enforcing decompres-
sion of neighboring cells. This allows an efficient mix of key
checks on compressed data together with key checks on bit-
packed non-integer data, most notably strings. (b) We con-
catenate bit-strings directly in registers, as opposed to ap-
proaches that partially compress/decompress which require
multiple rounds of reading/writing from/to output vectors
to concatenate partial output vectors into the final output.

2.4 Operating on Compressed Keys
Domain-Guided Prefix Suppression also allows compar-

ing compressed values themselves (without having to de-
compress). Assume key value A is stored in the hash table
and probe key B is compared to A. Normally one would just
fetch the key A from the table and then compare it to B.
In combination with compression, fetching A also requires
decompressing A. We argue it is better to first bring B into
the same representation as A, i.e., compressing B, and then
directly compare the compressed values. This is especially
true if keys A and B consist of multiple columns. For in-
stance, a group-by on two columns can often be mapped into
single-integer compressed key, reducing computational work
(e.g. perform a single comparison, using fewer branches).

3. OPTIMISTIC SPLITTING
The goal of Optimistic Splitting is to exploit skewed access

frequencies by separating the common case from exceptional
situations. We physically split the hash table into two areas:
The frequently-accessed hot area and the cold area, which
is accessed rarely. This approach does not necessarily save
space. However it shrinks the active working set, leading to
lower memory access cost. Also, it converts operations on
the final, widest, data type into operations on a potentially
smaller data type. Specifically, if 128-bit operations become
64-bit or 32-bit; this can speed up computation noticeably.
As we show in the following, Optimistic Splitting is espe-
cially important for data that is hard to compress such as
aggregates and strings.

Aggregates are hard to compress with Domain-Guided Prefix
Suppression as it is not possible to obtain tight bounds for
aggregation results (for example SUMs). The reason is that
one has to be pessimistic when deriving domain bounds to
prevent integer overflows: Assuming a SUM of at most 248

integers from, say, a 18-bit domain, would overflow 64-bit
and thus need a 128-bit aggregate. If this type is used for

Table 1: Optimistic Aggregates

Aggregate Common case Exception
SUM Small integer Overflow counter
MIN Small upper bound Minimum
MAX Small lower bound Maximum
COUNT Similar to SUM

AVG Rewritten into SUM
COUNT

the aggregate, on each addition in the sum this large 128-bit
integer will be read, updated, and written back.

Using a 64-bit integer for the aggregate, on the other hand,
would (a) reduce reads and writes by a factor 2 and (b) pro-
vide faster updates. Without sacrificing correctness, Opti-
mistic Splitting allows one to do just that in the common
case (i.e., when no overflow occurs): The 128-bit aggregate
result is split into a frequently-accessed 64-bit sum and an-
other, rarely-accessed 64-bit overflow/carry field, which is
stored separately. In pseudocode, this looks as follows:

void opsum(u64* common, u64* except, int group, i32 value) {
common[group] += value; // 64-bit unsigned addition
// Overflow check
bool overflow = common[group] < (u64)value;
bool positive = value >= 0;
if (!(overflow ^ positive)) { // Rare: handle overflow

if (positive) except[group]++;
else except[group]--;

} }

Note that this is a generic implementation that handles
positive as well as negative values. In combination with do-
main bounds (Min/Max information) it is possible to prove
the absence of negative or positive values which leads to
simplified logic and improved performance.

Similarly, it is possible to shrink the working set of other
aggregates. Table 1 illustrates how to exploit Optimistic
Splitting for these. We use the associativity of aggregates
to provide a fast path for large aggregates and a smaller
working set. MIN can be implemented using an upper bound
(s) inside the hash table and storing the full minimum e as an
exception (s ≥ e). When calculating the aggregate, we first
check against s and discard values that cannot become the
new minimum. For the remaining values, we check against
the full minimum and potentially update the full minimum e
as well as the upper bound s. Similar is the implementation
of MAX whereas the other aggregate functions, COUNT and AVG,
can be implemented similar to SUM. However, in case of COUNT
we can more aggressively reduce the common case to a 16-bit
integer and after 216 − 1 iterations update both, the small
optimistic counter as well as the exception.

Other Applications. Optimistic Splitting is a very general
idea that we believe can be applied in many different use
cases. It only requires that the entries of a hash table have
different access patterns, and can be decomposed.

4. USSR: A DYNAMIC DICTIONARY
Strings are prevalent in many real-world data sets [13,18,

24] and present additional challenges for query performance.
In contrast to integers, any individual string generally does
not fit into a single CPU register and requires multiple in-
structions for each primitive operation (e.g. comparison).
Strings are also often larger than integers, which negatively
affects memory footprint and cache locality. Furthermore,
neither Domain-Guided Prefix Suppression nor Optimistic
Splitting can directly be applied to strings. This section
presents a dynamic data structure called Unique Strings

Self-aligned Region, which saves memory and enables pro-
cessing strings at almost the same speed as integers.

4.1 The Problems with Global Dictionaries
To improve the performance of strings, some main-memory

database systems—most notably SAP HANA [11]—represent
strings using per-column dictionaries where codes respect
the value order. Using these dictionaries, string compar-
isons and hashing operations can be directly performed on
the dictionary keys, which are fixed-size integers, rather than
variable-length strings. Unfortunately, global dictionaries
have significant downsides, which have precluded their gen-
eral adoption. First, because random access to the dictio-
naries is common, the dictionaries must fully reside in main
memory. For systems that must manage data sets larger
than main memory (e.g. analytical column stores), this is
a major problem. Also, systems that support parallel and
distributed execution, including those designed or optimized
for the cloud, face the problem that bulk loading or updating
tables in parallel would require continuous synchronization
in order to maintain a consistent global dictionary. Another
downside is that dictionaries incur significant overhead for
inserts, updates, and deletes—in effect they are a mandatory
secondary index on every string column. If, for instance,
new values appear, extending the dictionary such that one
additional bit is needed to represent a code, updates will no
longer fit in previously encoded data. Deletes of no longer
used strings leave holes in the code space that need to be
garbage collected and inserts in sorted dictionaries often re-
quire re-coding (periodically rewriting all encoded columns).

Given these problems with global dictionaries, most data-
base systems therefore limit themselves to per-block dictio-
naries (e.g. one dictionary for every 10,000 strings). With
this approach, dictionaries are a local feature, mainly used
for compression rather than a global data structure. Per-
block dictionaries are often almost as space-effective as per-
column dictionaries without sharing their in-memory limita-
tions and update overheads. For query processing, however,
the advantage of per-block dictionaries is limited. While
some systems evaluate pushed-down selections directly on
the dictionary [14], all other operations require decompres-
sion and therefore do not benefit from the dictionary. The
reason is that the dictionary is only available to the table
scan operators. Materializing operators like hash join and
group-by, therefore, typically allocate heap memory on the
heap for every string. Needless to say, this is very inefficient,
yet dealing with strings is only a sparsely researched topic.

4.2 Unique Strings Self-aligned Region (USSR)
The USSR is a query-wide data structure that contains

the common strings of a particular query. In contrast to the
heap, all strings within the USSR are known to be unique,
which enables fast operations on these strings. To make it
cache resident and efficient, the USSR has a limited size.
Once it is full, strings need to be allocated on the heap as
usual. By removing duplicates in this opportunistic fash-
ion, the USSR reduces the number of heap allocations and
therefore minimizes peak memory consumption.

By default both, heap-backed and USSR-backed, strings
are represented as normal pointers, which means that query
engine operators can treat all strings uniformly without any
code modifications. This allows to retro-fit this idea eas-
ily into already existing engines. However, by exploiting

Data Region

Linear Hash Table

Unique Strings Self-aligned Region

DEADBEEF Hello BAADF00D Test 01010101

Hello Wo rld

64-bit Chunks

insert(Hello)
Hello

16-bit Hash 16-bit Index into
Data Region

...

...

512 kB

256 kB

Figure 2: USSR data structure details

the dictionary-like nature and artful implementation of the
USSR, the following additional optimizations become pos-
sible for USSR-based strings: (a) String comparisons are
almost as fast as integer comparisons. (b) Hashes are pre-
calculated and stored within the USSR, speeding up hash-
based operators like join and group-by. (c) Since the size
of the USSR is limited, frequent strings can also be repre-
sented using small integer offsets, which can be exploited
e.g. in Optimistic Splitting.

To summarize, the USSR is a lightweight, dynamic, and
opportunistic string dictionary. It does not require changes
to the storage level, but is implemented in the query pro-
cessor, and speeds up queries with low to medium string
cardinalities, which is where global string dictionaries excel.

4.3 Data Structure Details
Our USSR implementation limits its capacity to 768 kB: it

consists of a hash table (256 kB) and a data region (512 kB).
Figure 2 serves as an illustration of the USSR.

The 512 kB data region starts at a self-aligned memory
address (i.e., the pointer has 0s in its lowest 19 bits). If one
allocates 1 MB of data, there is always a self-aligned address
in its first half for the data region; and there is always either
256 kB space before or after the data region for the hash
table. The self-aligned memory address guarantees that all
pointers inside the data region start with the same 45-bit
prefix. This allows to very efficiently test whether a string
pointer points inside the USSR (by applying a mask).

The data region stores the string data and materializes
the string’s hash value just before it. These numbers are
stored aligned, so the data region effectively consists of 64k
slots of 8 bytes where a string can start. Given that each
string takes at least two slots (one for the hash and one for
the string) the USSR can contain maximally 32k strings.

When inserting a string, the USSR needs to check whether
that string is already stored, and if so, return its address
rather than insert a new string. To do this in low O(1),
there is a fast linear probing hash table, consisting of 64k 4-
byte buckets. Each bucket consists of a 16-bit hash extract
and a 16-bit slot number that points into the data region to
the start of the string. The lowest 16-bits of the string hash
are used for locating the bucket, and the next 16-bits are the
extract used to quickly identify collisions. The load factor
is always below 50% (64k buckets for at most 32k strings).

4.4 Insertion
The purpose of the USSR is to accelerate operations on

frequent strings. In the extreme, all strings could be part of
the USSR. However, due to its limited size, the USSR can
only fit a sample. The sampling happens during insertion
into the data structure. Failure during insertion might hap-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query

0

1

2

3

4

S
hr
in
ki
ng

F
ac
to
r

14kB 24MB 69MB 64kB 465MB

no HT

39MB 97MB 230MB 658MB 139MB 80kB 655MB 362MB 31MB 586MB 2MB 458kB 7MB 63MB 474MB 117MB

CHT alone CHT + Optimistic (hot area)

Figure 3: Reduction in hash table memory footprint over TPC-H with baseline hash table memory footprint (below the bar)

pen because (a) the string is rejected based on our sampling
strategy or (b) a probing sequence of longer than 3 in the
linear hash table is detected (due to the low load factor, this
is highly infrequent, yet keeps negative lookups fast).

Our sampling strategy gives priority to string constants
that occur in the query text; these are inserted first. Af-
ter that, scans will insert strings until the USSR is full.
We argue that the fact that a string column is dictionary-
compressed, indicates that strings stem from a domain with
a small cardinality. Therefore, these strings are good candi-
dates for insertion into the USSR.

Vectorwise stores and buffers data in compressed form and
decompresses column slices on the fly in the table scan oper-
ator. When reading a new dictionary-compressed block, the
scan needs to set up an in-memory array with string point-
ers. Strings are represented as pointers in-flight in a query
and decompression means looking up dictionary codes into
this array. Rather than pointing into the dictionary inside
the buffered block, when setting up this array, the scan in-
serts all dictionary strings into the USSR, so (most of) these
pointers will point into the USSR instead. Insertion may fail,
in which case the pointers still point into the block.

The sampling strategy further tries to optimize usage of
the limited data region, by failing inserts of long strings that
occupy > min(F,max(2, b F

64
c)) 8-byte slots, where F is the

free space in the data region (in slots). The idea is that it is
better to accept more small strings than a few large strings,
in case space fills up.

4.5 Accelerating Hashing & Comparisons
The USSR can be used to speed up hash computations.

After testing whether a given string resides in the USSR us-
ing a bit-wise and operation, one can directly access the pre-
computed hash value, which physically precedes the string:

inline uint64_t hash(char* s) {
if (((uintptr_t)s & USSR_MASK) != ussr_prefix)
return strhash(s); // compute hash

return ((uint64_t*) (s))[-1]; // exploit pre-computed hash
}

The USSR also speeds up string comparisons when both
compared strings reside in it. We exploit the fact that all
strings within the USSR are unique. Hence, if the pointers
are equal, the strings themselves are:

inline bool equal(char* s, char* t) {
if ((((uintptr_t)s & USSR_MASK) != ussr_prefix) |

(((uintptr_t)t & USSR_MASK) != ussr_prefix))
return strcmp(s, t)==0; // regular string comparison

return s==t; // in the USSR pointer equality is enough
}

4.6 Optimistic Splitting & the USSR
Optimistic Splitting and the USSR are complementary.

The idea is to store USSR-backed strings, as small integers,
compactly in the hot area and heap-backed strings in the
cold area. Specifically, rather than storing string pointers in
the hot area, we store slot numbers, pointing into the USSR.
As mentioned earlier, these slot numbers are limited to 216,
so they can be represented as unsigned 16-bit integers.

During packing, we represent exceptions using the invalid
slot number 0 in the hot area of the hash table, and store the
full 64-bit pointer in the exception area. Whenever a string
needs to be unpacked, we first access the hot area and un-
pack the slot number. For non-zero slot numbers we can
directly reconstruct the pointer of the string (base address

of USSR data region + slot*8). However, we can further ac-
celerate equality comparisons on strings by first comparing
the slot numbers and, only if they are 0, comparing the full
strings. A USSR encoded string p can be translated into a
slot number quickly using (p >> 3) & 65535.

5. EXPERIMENTAL EVALUATION
In this section, we provide an experimental evaluation of

our contributions to show that our techniques improve per-
formance as well as memory footprint.

For this evaluation, we integrated Domain-Guided Prefix
Suppression, Optimistic Splitting, and the USSR into Vec-
torwise. Besides generating all necessary function kernels,
we had to extend the domain derivation mechanism and im-
plement our greedy packing algorithm. In addition, we mod-
ified the existing hash table implementation, extended the
hash join operator to take advantage of compressed key and
payload columns, as well as the hash aggregation (group-by)
operator to support Optimistic Aggregates.

We first evaluate the end-to-end performance on the TPC-
H benchmark. We then present a high-level comparison on a
real BI workload Afterwards we move to micro-benchmarks,
analyze and discuss the impact of the USSR on string-intensive
queries. Then we evaluate the hash probe performance over
varying hash table sizes and the influence of different do-
mains on hash table performance.

All experiments were performed on a dual-socket Intel
Xeon Gold 6126 with 12 physical cores, 19.25 MB L3 cache
each and is equipped with 384 GB of main memory. All
results stem from hot runs using single-threaded execution.

5.1 TPC-H Benchmark
We evaluated the impact of Domain-Guided Prefix Sup-

pression, Optimistic Splitting and the USSR on the widely
used TPC-H benchmark with scale factor 100. We executed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query

−10

0

10

20

30

40

50

Im
pr
ov
em

en
t
(%

)

10.3s

0.6s

0.7s 0.3s 5.1s 0.6s 3.5s 3.7s 26.1s 3.5s 1.4s 1.2s 13.3s 2.9s 0.7s 4.1s 6.9s 9.1s 10.1s 4.6s 18.1s 5.8s

USSR alone

CHT alone

CHT + Optimistic + USSR

Figure 4: Improvement over TPC-H power run with baseline times (under the bar)

all 22 queries on our modified Vectorwise with and without
our optimizations. We measured hash table memory foot-
print, as well as query response time.

Memory Footprint: In Vectorwise the memory consumption
of many queries, particularly the TPC-H queries, is dom-
inated by the size of hash tables. Therefore, during the
TPC-H power run, we measured hash table sizes. Figure 3
shows the compression ratios we measured.

Domain-Guided Prefix Suppression (CHT alone), without
Optimistic Splitting and USSR, was able to reduce hash ta-
ble size by up to 4×. However, due to certain hurdles the
compression ratio is often limited to 2×:

(a) Aggregates are not compressible without Optimistic
Splitting. (b) Without the USSR, each string has to be a
64-bit pointer into a string heap. On recent hardware, this
requires storing at least 48 bits with Domain-Guided Prefix
Suppression. (c) As CHT does not make sense for CPU
cache-resident hash tables, we do not enable it if the hash
table is small, based on optimizer estimates. The impact of
(a) and (b) on the active working set will be reduced using
Optimistic Splitting and the USSR.

Optimistic Splitting aims at improving performance through
more efficient cache utilization by separating the hash table
into a thin frequently-accessed table (hot area) and a rarely
accessed table (cold area). In combination with the USSR
we measured a 2–4× smaller hot area (CHT + Optimistic
(hot area)) in many TPC-H queries.

However, Optimistic Splitting in fact increases (rather
than reduces) the memory consumption as it introduces ad-
ditional data. For example, splitting a 128-bit SUM aggregate
will introduce an additional aggregate with a smaller size
but the full 128-bit aggregate will still reside in cold area.

Query Performance: To demonstrate the performance ben-
efits of the USSR, Domain-Guided Prefix Suppression and
Optimistic Splitting, we visualize the query response times
of all 22 TPC-H queries in Figure 4. We split our analysis
into three stages. First, we evaluate the impact achieved by
only using the USSR. Then we discuss the effects of only us-
ing Domain-Guided Prefix Suppression. Finally, we discuss
the influence of the combination of all three techniques.

The idea of the USSR is to boost operations on frequent
strings. However, TPC-H is not an extremely string-intensive
benchmark. Nonetheless, by using the Unique Strings Self-
aligned Region (USSR alone) three queries (Q4, Q12 and
Q16) showed significant performance gains. All three bene-
fit from faster string hashing and equality comparisons pro-
vided by the USSR and improve by up to 45%.

Apart from the string-specific USSR, Domain-Guided Pre-
fix Suppression aims at shrinking hash tables and providing

operations on compressed data. Domain-Guided Prefix Sup-
pression accelerates most queries (CHT alone) by up to 30%.
In most queries we noticed an improvement of at least 10%.
This is caused by the more efficient expression evaluation
that smaller data types provide and the more cache-efficient
hash table that allows equality comparisons directly on com-
pressed keys. Notably, the regression in Q2 was caused by
type casting overhead due to opportunistic shrinking of data
types. We highlight that the purpose of Domain-Guided
Prefix Suppression is mostly to reduce the memory footprint
and not necessarily to speedup query evaluation.

When combining all three techniques (Domain-Guided Pre-
fix Suppression, USSR and Optimistic Splitting) we mea-
sured gains up to 40% (CHT + Optimistic + USSR). We
measured additional improvements from 5%, in Q1, up to
10%, in Q15. Both queries benefited from the Optimistic
SUM aggregate which boosted the aggregate computation.

5.2 Public BI Benchmark
It has been noted that synthetic benchmarks like TPC-H

do not capture all relevant aspects of real workloads [7, 10].
Recently, a workload study was published [24] based on the
Tableau Public [1] Business Intelligence (BI) free cloud ser-
vice. It analyzes its workbooks (data and queries generated
by the Tableau BI tool) and specifically notes that users
make extensive use of string data types (i.e. strings are by
far the most common data type; used for 49% of all values).
Not only is text data prevalent in these workbooks, but it
is also observed that date columns, numeric and decimal
columns are often stored as strings; arguably sub-optimally,
but often this is related to data cleaning issues. Regrettably,
this study did not publish the data and queries as an open
benchmark, also upon our request to Tableau. Inspired by
this work, we manually downloaded the 48 biggest Tableau
Public workbooks (400 GB data) and extracted the SQL
statements from its query log. This workload is now avail-
able in open-source as the Public BI Benchmark [2]. As a
representative example, we focus on one of its workbooks:

CommonGovernment. We extracted all 43 queries and all 13
tables. Each table contains around 8 GiB of data in CSV
format. Unlike TPC-H, each table contains many string
columns and columns that contain NULL values are common.
We executed each query sequentially and Table 2 shows the
measured effects on the runtime.

The workbook CommonGovernment is string-intensive:
using only the USSR, we measured a speedup of up to ≈ 2×
(55% improvement). These speedups are caused by (a) many
strings residing in the USSR, because they originate from
a small domain of unique strings, and (b) many strings

Table 2: Speedup and USSR statistics for workbook CommonGovernment

Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Speedup 2.1 1.4 2.2 1.4 1.3 1.0 1.2 1.0 1.5 1.8 1.1 2.2 2.2 1.8 1.5 2.1 1.4 1.1 1.4 1.1
USSR Size (kB) 1.8 0.5 2.0 0.3 66.1 512.0 83.2 512.0 12.7 7.2 112.4 1.9 1.8 7.2 1.8 2.0 1.8 110.3 0.3 512.0

Rejection Ratio (%) 0.0 0.0 0.0 0.0 0.0 18.3 0.0 32.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.1
#Rejected 0 0 0 0 0 37627 0 30204 0 0 0 0 0 0 0 0 0 17 0 13742

#Candidates 1312 2720 1056 1504 73200 205440 77296 92208 656 6768 110704 1072 1232 6752 3792 1360 3808 99744 1728 65222
#Strings in USSR 46 16 49 11 2251 12227 2835 12218 252 165 3041 48 45 167 51 49 51 2990 11 21343

Average String Length 23 3 20 5 18 26 19 29 21 25 23 22 22 25 18 22 19 23 5 11
Baseline Runtime (s) 0.15 0.27 0.13 0.17 0.37 3.48 0.39 0.54 0.18 0.16 0.29 0.14 0.14 0.16 0.18 0.14 0.17 0.27 0.18 0.51

Baseline HT size (MB) 0.05 0.09 0.05 0.09 0.14 82.11 0.14 9.12 0.07 0.05 0.11 0.05 0.05 0.05 0.05 0.05 0.05 0.11 0.09 8.11

2 4 8 16 32 64 128 256 512
String Length

0

20

40

60

80

S
p
ee
du

p

2 2 2 3 3 44 4 4 6
1 2 1 2 2 3 5

Comparison

Hash Computation

Query

Figure 5: Group-By on string keys: Speedup vs. length

are long enough to significantly impact string operations to
cause a speedup of the whole query.

Q6, Q8 and Q20 show no significant benefits from the
USSR, mainly because the string columns have a large uni-
fied dictionary (that does not even fit fully in the USSR).
While dictionary-coded decompression in Vectorwise has a
sub-cycle per/tuple cost, the effort of setting up the dictio-
nary array when the scan moves to a new disk block in-
creases, when the per-block dictionary size increases. With
the USSR, this setting-up effort becomes significantly higher
as all dictionary strings must be looked up in the USSR lin-
ear hash table. Also, with larger dictionaries per block, each
dictionary string has a lower repetition count during execu-
tion; so the amortization of the setting-up investment by
faster hashing and comparison decreases. Still, we see that
we make a good trade-off, as queries Q8 and Q20 still get
(marginally) faster, and only Q6 is marginally slower.

In general, the Public BI workload is characterized by few
joins and many aggregations [24], where these aggregations
produce small results—few or in the thousands, but almost
never in the millions of tuples. This means that the hash
tables needed for aggregation are often CPU cache-resident.
Therefore, CHT is not triggered and that the USSR is what
most matters in this workload, so we focus only on that.

5.3 Micro-Bench: USSR and Group-By
We now move to a number of micro-benchmarks to fo-

cus on individual performance aspects of string processing
with the USSR. We start with the performance on a SE-

LECT COUNT(*) FROM T GROUP BY s query. These strings came
from a domain of 10 unique strings, all strings had the same
length. Figure 5 shows the speedups that can be achieved
using the USSR. We profiled the time spent on string com-
parisons when checking the keys inside group by’s hash ta-
ble. This results show significant speedups reaching from
a 2× to 50× faster string comparison. Similarly, we pro-
filed the time spent on computing hash of the string keys.
This results in speedups reaching from 4× for small strings,
to 80× for large strings. Besides the significant speedup in
terms of string comparison and hash computation, we also
noticed significant speedup of the whole query up to ≈ 25×.

5.4 Micro-Bench: Join Probe Performance
We now micro-benchmark Domain-Guided Prefix Suppres-

sion, with respect to hash table lookup performance. Our
experiment consists of a simple join query where we vary the
size of the inner/build relation and the domains of the key
columns. We experimented with two and four key columns,
four payload columns with values v ∈ [0, 10].

Figure 6 visualizes the speedup, as well as, the L3/last-
level cache (LLC) misses measured. We observe an up to
2.5× faster hash probe including the tuple reconstruction
cost. The measured speedups tend to increase with hash
table size (size of inner relation). For large hash tables with
more than 106 rows, the speedups were caused by the signif-
icantly smaller and, consequently, more cache-resident hash
table. For hash tables with less than 106 rows, the perfor-
mance was mostly affected by the more efficient comparisons
directly on compressed data.

6. RELATED WORK
In this paper we aim at improving cache efficiency of hash

tables through compression. An alternative approach is to
increase the fill-rate using techniques such as Robin Hood
Hashing [9] and Cuckoo Hashing [19]. Similarly, Concise
Hash Tables [5] are optimized linear hash tables which try
to omit the storage of empty rows. A major disadvantage of
Concise Hash Tables is the restriction to linear hash tables,
whereas our techniques can be applied to linear as well as
bucket-chained hash tables. An extension of Concise Hash
Tables are Concise Array Tables [5] which avoid storing the
keys by providing a collision-free hash table. These four
techniques are orthogonal to our approach of treating the
hash table as a compressed table. We highlight that these
approaches can be applied, in addition to our techniques, to
achieve even more cache-efficient hash tables.

The use of compression is widely spread among database
systems. Commonly, analytic databases utilize lightweight
compression schemes [26] to elevate effective memory and
disk bandwidth during table scans. Although they used
similar techniques as ours, notably bit-packing, frame-of-
reference and dictionary compression, in this work, we ap-
ply compression to hash tables, data structures used during
query evaluation rather than in data storage. An application
of compression which has not received much attention.

The possibility of exploiting compressed data inside data
processing pipelines, i.e. compressed execution, is investi-
gated by Abadi et al. [3]. Evaluating predicates on com-
pressed data has been explored deeply for table scans [12,
14,17,25]. However, these works focus on scans in isolation.

Lee et al. [16] pioneered joins on data encoded using per-
column on-the-fly dictionaries. These dictionaries might
seem closely related to the USSR. However there are two
major differences: (1) The use of multiple dictionaries ne-
cessitates a translation from one encoded join column to the

104 105 106 107 108

Cardinality

0.5

1.0

1.5

2.0

2.5

3.0
P
ro
b
e
S
p
ee
du

p

Hash Probe (vanilla/compact)

106

107

108

109

#
L
L
C
m
is
s

LLC miss (compact) LLC miss (vanilla)

(a) 4 keys k1, ..., k4 ∈ [0, 1.000]
whereas schema suggests 64-bit
integers

104 105 106 107 108

Cardinality

0.5

1.0

1.5

2.0

2.5

3.0

P
ro
b
e
S
p
ee
du

p

Hash Probe (vanilla/compact)

106

107

108

109

#
L
L
C
m
is
s

LLC miss (compact) LLC miss (vanilla)

(b) 2 keys k1, k2 ∈ [0, 106]
whereas schema suggests 128-
bit integers

Figure 6: Hash probe speedup vs. build-side cardinality
using 4 payload columns p1, ..., p4 ∈ [0, 10]

encoding of the other. The USSR, being a unified query-
wide dictionary, does not require such a translation. (2) To
fit into cache the USSR has a small fixed size, as opposed to
the on-the-fly dictionaries that can grow very large.

Many database systems allow evaluating simple predicates
directly on compressed data. Notable examples are IBM
BLU [21], SQLServer [15], Quickstep [20], and HyPer [14].
But only very few systems exploit compressed data inside
query pipelines. Most notably IBM BLU [21] supports op-
erations on compressed data. It performs joins on encoded
and partitioned data similar to Lee et al. [16] and, hence,
suffers from the same disadvantages.

Shatdal et al. [23] proposed to optimize algorithms for
cache efficiency. One of their techniques, key extraction in
sorting/partitioning shares some similarity with Optimistic
Splitting. However, Optimistic Aggregates are continuously
updated, whereas extracted keys stay constant.

Encoding strings inside dictionaries has been explored by
Färber et al. [11] and Binnig et al. [6]. However, both assume
global dictionaries, which we do not require (Section 4.1). In
contrast, the USSR is a small query-wide on-the-fly dictio-
nary which only encodes frequent strings and avoids expen-
sive update and delete operations.

7. SUMMARY
Hash tables are crucial data structures for modern query

engines. However, in analytical queries, they consume a
significant amount of memory. Shrinking hash tables not
only lowers the memory footprint, but also leads to faster
access by fitting more data into faster memory. We present
three composable techniques to shrink hash tables: Domain-
Guided Prefix Suppression (extremely lightweight compres-
sion), Optimistic Splitting (decomposition into hot and cold
value slices), and the USSR (opportunistic dictionary com-
pression). We implemented these techniques in the industrial-
strength DBMS Vectorwise. In our experiments, our tech-
niques improved query performance by up to 25× in string-
intensive queries. On the synthetic TPC-H benchmark we
noticed up to 4× smaller hash tables and improved query
runtime by up to 50%. On the realistic Public BI workload
we achieved improvements of up to 2.2×.

8. REFERENCES
[1] https://public.tableau.com.

[2] https://github.com/cwida/public_bi_benchmark.

[3] D. Abadi, S. Madden, and M. Ferreira. Integrating compression
and execution in column-oriented database systems. In
SIGMOD, pages 671–682, 2006.

[4] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu.
Main-memory hash joins on multi-core CPUs: Tuning to the
underlying hardware. In ICDE, pages 362–373, 2013.

[5] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle,
G. Attaluri, N. Chainani, S. Lightstone, and D. Sharpe.
Memory-efficient hash joins. PVLDB, 8(4):353–364, 2014.

[6] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-based
order-preserving string compression for main memory column
stores. In SIGMOD, pages 283–296, 2009.

[7] P. Boncz, A.-C. Anatiotis, and S. Kläbe. JCC-H: Adding join
crossing correlations with skew to TPC-H. In TPCTC, pages
103–119, 2017.

[8] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-pipelining query execution. In CIDR, pages 225–237,
2005.

[9] P. Celis. Robin Hood Hashing. PhD thesis, University of
Waterloo, 1986.

[10] A. Crolotte and A. Ghazal. Introducing skew into the TPC-H
benchmark. In TPCTC, pages 137–145, 2012.

[11] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and
W. Lehner. SAP HANA database: Data management for
modern business applications. SIGMOD Record, pages 45–51,
2012.

[12] B. Hentschel, M. S. Kester, and S. Idreos. Column Sketches: A
scan accelerator for rapid and robust predicate evaluation. In
SIGMOD, pages 857–872, 2018.

[13] S. Jain, D. Moritz, D. Halperin, B. Howe, and E. Lazowska.
SQLShare: Results from a multi-year SQL-as-a-service
experiment. In SIGMOD, pages 281–293, 2016.

[14] H. Lang, T. Mühlbauer, F. Funke, P. Boncz, T. Neumann, and
A. Kemper. Data Blocks: Hybrid OLTP and OLAP on
compressed storage using both vectorization and compilation.
In SIGMOD, 2016.

[15] P. Larson, C. Clinciu, C. Fraser, E. N. Hanson, M. Mokhtar,
M. Nowakiewicz, V. Papadimos, S. L. Price, S. Rangarajan,
R. Rusanu, and M. Saubhasik. Enhancements to SQL server
column stores. In SIGMOD, pages 1159–1168, 2013.

[16] J.-G. Lee, G. Attaluri, R. Barber, N. Chainani, O. Draese,
F. Ho, S. Idreos, M.-S. Kim, S. Lightstone, G. Lohman,
K. Morfonios, K. Murthy, I. Pandis, L. Qiao, V. Raman, V. K.
Samy, R. Sidle, K. Stolze, and L. Zhang. Joins on encoded and
partitioned data. PVLDB, 7(13):1355–1366, 2014.

[17] Y. Li and J. Patel. BitWeaving: Fast scans for main memory
data processing. In SIGMOD, pages 289–300, 2013.

[18] I. Müller, C. Ratsch, and F. Färber. Adaptive string dictionary
compression in in-memory column-store database systems. In
EDBT, pages 283–294, 2014.

[19] R. Pagh and F. Rodler. Cuckoo hashing. J. Algorithms,
51(2):122–144, May 2004.

[20] J. Patel, H. Deshmukh, J. Zhu, N. Potti, Z. Zhang,
M. Spehlmann, H. Memisoglu, and S. Saurabh. Quickstep: A
data platform based on the scaling-up approach. PVLDB,
11(6):663–676, 2018.

[21] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk,
V. Kulandaisamy, J. Leenstra, S. Lightstone, S. Liu,
G. Lohman, T. Malkemus, R. Mueller, I. Pandis, B. Schiefer,
D. Sharpe, R. Sidle, A. Storm, and L. Zhang. DB2 with BLU
acceleration: So much more than just a column store. PVLDB,
6(11):1080–1091, 2013.

[22] S. Schuh, X. Chen, and J. Dittrich. An experimental
comparison of thirteen relational equi-joins in main memory. In
SIGMOD, pages 1961–1976, 2016.

[23] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious
algorithms for relational query processing. VLDB, pages
510–521, 1994.

[24] A. Vogelsgesang, M. Haubenschild, J. Finis, A. Kemper,
V. Leis, T. Muehlbauer, T. Neumann, and M. Then. Get real:
How benchmarks fail to represent the real world. In DBTEST,
2018.

[25] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier,
and J. Schaffner. SIMD-scan: Ultra fast in-memory table scan
using on-chip vector processing units. PVLDB, 2(1):385–394,
2009.

[26] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU cache compression. In ICDE, 2006.

[27] M. Zukowski, N. Nes, and P. Boncz. DSM vs. NSM: CPU
performance tradeoffs in block-oriented query processing. In
DaMoN, pages 47–54, 2008.

https://public.tableau.com
https://github.com/cwida/public_bi_benchmark

	Introduction
	Domain-Guided Prefix Suppression
	Domain Derivation
	Prefix Suppression
	Compression and Decompression
	Operating on Compressed Keys

	Optimistic Splitting
	USSR: A Dynamic Dictionary
	The Problems with Global Dictionaries
	Unique Strings Self-aligned Region (USSR)
	Data Structure Details
	Insertion
	Accelerating Hashing & Comparisons
	Optimistic Splitting & the USSR

	Experimental Evaluation
	TPC-H Benchmark
	Public BI Benchmark
	Micro-Bench: USSR and Group-By
	Micro-Bench: Join Probe Performance

	Related Work
	Summary
	References

