
Vrije Universiteit Amsterdam

Master’s thesis

Submitted in partial fulfillment of the requirements for
the degree of Master of Science in

Parallel and Distributed Computer Systems.

Safety and Performance in
Generated Coordination Code

Christopher Esterhuyse
(ID: 2553295)

supervisors

Vrije Universiteit Amsterdam Centrum Wiskunde & Informatica
dr. J. Endrullis prof. dr. F. Arbab

August 23, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/429553819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Reo is able to act as a domain specific language by compiling a high-level
protocol specification to coordination glue code in a target general purpose
language. In the case of Java, these generated programs take advantage of opti-
mization opportunities, but struggle to preserve Reo’s semantics. In this work,
we extend the Reo compiler to support the Rust language. We show that the re-
sulting programs implement several existing and novel performance optimiza-
tions, whilst relying on Rust’s expressive type system to preserve meaningful
safety and liveness properties at compile time. Our data-oriented design facil-
itates flexibility, such as protocol reconfiguration at runtime, but still achieves
performance in the order of handcrafted programs for non-trivial protocols.

Acknowledgments

I would like to express my gratitude to everyone at the CWI in the Formal
Methods group. I am particularly grateful to Hans-Dieter Hiep, Sung-Shik
Jongmans, and Roy Overbeek, with whom I worked the most. Everyone was
incredibly generous with their time, and very willing to share their insights.
I’m grateful to both of my supervisors, Farhad Arbab and Joerg Endrullis, who
have made my thesis project as pleasant as possible by being agreeable, helpful
and making themselves available to the best of their abilities. I am thankful for
the university friends I saw regularly, who also tended to be my collaborators;
Zakarias Nordfält-Laws, Dalia Papuc and various other members of the PDCS
track were ever-involved in my projects. I’d also like to thank the lecturers in
the theoretical computer science department at the VU, whose courses were
enjoyable and informative without exception. Special thanks to course coordi-
nator Wan Fokkink for continuously helping me with administrative troubles,
and being an excellent teacher to boot. Old friends Peter Atkinson, Berend
Baas, and Henry Ehlers have contributed in some way or another with their
input and support. Many thanks to my family, with particular emphasis on
my parents, aunts, uncles, cousins, and grandmothers, who have continuously
checked in on my well-being and supported me financially from across the
world for all these years. Lastly, special thanks to my girlfriend, Ronja Duwe,
for being my most continuous and immediate supporter in all things.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Reo . 3

2.1.1 Motivation and Purpose . 3
2.1.2 Language . 5
2.1.3 Semantic Models . 6
2.1.4 The Reo Compiler . 11

2.2 Target Languages . 13
2.2.1 Affine Type Systems . 14
2.2.2 The Rust Language . 15
2.2.3 The Type-State Pattern . 21
2.2.4 Proof-of-Work Pattern . 23

3 Protocol Translation 25
3.1 Structuring the Translation Process . 25

3.1.1 Translation Subtasks . 26
3.1.2 Pipelining Subtasks . 29
3.1.3 Enabling Future Expansion. 31

3.2 Imperative Form . 32
3.2.1 Concept . 32
3.2.2 Definition . 33

3.3 Translation Pipeline . 35
3.3.1 At Reo Compile-time . 36
3.3.2 At Rust Compile-time . 39
3.3.3 At Application Runtime . 39

4 Protocol Runtime 45
4.1 Examining the Java Implementation . 46

4.1.1 Architecture . 46
4.1.2 Behavior . 47
4.1.3 Observations . 47

4.2 Requirements and Guidelines Defined . 52
4.3 Protocol Objects . 53

iii

4.3.1 Application User Interface. 53
4.3.2 Design Process . 57
4.3.3 Architecture . 60
4.3.4 Behavior . 62

4.4 Requirements and Guidelines Evaluated . 72

5 Benchmarking 76
5.1 Experimental Setup . 76
5.2 Reo-rs in Context . 77

5.2.1 Versus the Java Implementation . 77
5.2.2 Versus Handcrafted Programs . 80

5.3 Overhead Examined . 83
5.3.1 Parallelism Between Interactions . 83
5.3.2 Time Inside the Critical Region . 84
5.3.3 Parallelism Within Interactions . 87
5.3.4 Reference-Passing Optimization . 90

6 Generating Static Governors 92
6.1 Governor Defined . 93
6.2 The Problem: Unintended Constraints . 94
6.3 Solution: Static Governance with Types. 95
6.4 Making it Functional . 96

6.4.1 Encoding CA and RBA as Type-State Automata. 96
6.4.2 Rule Consensus. 97
6.4.3 Governed Environment . 100

6.5 Making it Practical . 101
6.5.1 Approximating the RBA . 101
6.5.2 User-Defined Protocol Simplification . 107
6.5.3 Match Syntax Sugar . 110

7 Discussion 112
7.1 Future Work . 112

7.1.1 Imperative Form Compiler . 112
7.1.2 Distributed Components . 113
7.1.3 Optimize Rule Branching . 113
7.1.4 Runtime Governors . 114
7.1.5 Further Runtime Optimization . 114
7.1.6 Avoid Lock Re-Entry . 116
7.1.7 Runtime Reconfiguration . 116

7.2 Conclusion . 117

Appendices 122

iv

LIST OF FIGURES

List of Figures

2.1 Graphical and textual specification example. 6
2.2 CA for fifo1 connector. 8
2.3 CA with memory for fifo1 connector. 9
2.4 CA with memory for fifo2 connector. 10
2.5 RBA for fifo1 connector. 11
2.6 RBA for fifo2 connector. 12

3.1 Reo to Rust code generation pipeline. 31

5.1 Java vs. Rust interaction time for small values. 78
5.2 Java vs. Rust interaction time for large values. 79
5.3 Performance of fifo1 connector vs. handcrafted Rust code. 81
5.4 Handcrafted vs. Reo-generated alternator. 82
5.5 Overhead of evaluating unsatisfied rules. 85
5.6 Bit vector speedup over hashset. 86
5.7 Interaction duration with parallel getters. 88
5.8 Interaction duration in proportion to the 2-getter case. 89
5.9 RTT for fifoN connector with 213 byte values. 91

6.1 RBAs in lockstep with and without normalization. 106
6.2 Configuration space of the a7b1 connector. 109
6.3 Configuration traversal for a7b1 connector using weakening. 110

v

Chapter 1
Introduction

Traditional, sequential programming has been changing for decades. Over
time, languages acquired more and more tools to manage the level of ab-
straction, such that programs were of higher quality, and with a lower cost
to develop [Sha84]. This trend continues to this day. For example, convention-
ally imperative languages such as Java and C++ have since added functional
features, such as closures, to capitalize on their brevity and lack of side effects.
Concurrent programming has undergone a similar process. Various paradigms
have emerged to offer their own solutions to managing abstraction. Coordina-
tion languages attempt to reduce the coupling between the logical coordination
of a program, and its implementation. They work by isolating that which
makes concurrency distinct from sequential programming: the coordination of
actions into interactions. The means by which this is achieved varies. Linda
is a well-known example of a coordination language which abstracts away the
implementation of coordination actions. Programs are written in terms of read
and write operations over a global namespace of tuple variables. In this man-
ner, coordination actions occupy a higher level of abstraction, and are thus
more terse, simple and reusable [Gel85].

Reo is a coordination language developed at the CWI in Amsterdam. As
with Linda, Reo is able to augment another general-purpose programming lan-
guage by allowing a more abstract expression of coordination. Unlike Linda,
Reo facilitates the ‘extraction’ of a program’s coordination logic to a self-contained
protocol specification. Reo does away with action-centricism; protocols constrain
the ways in which data is permitted to flow through a system of graphical
nodes, i.e., protocols define their permitted interactions [Arb05]. The specifi-
cation is translated by the Reo compiler to a the target language. The result is
a protocol object, a data structure which acts as a coordination medium for the
system’s actors. At runtime, components send and receive data through ports

1

managed by the protocol. Components can rely on the protocol to coordinate
their actions such that the system at large behaves as specified.

In this work, we aim to extend the Reo compiler and its related tooling such
that it can be integrated into the development pipelines of programs in systems
languages such as C, C++ and Rust. Chapter 3 details the development of a
Rust language target for the Reo compiler, whose outputs are interoperable
with these languages. We discuss the various representation changes that a
Reo protocol specification must undergo before valid Rust can be emitted.

Reo has intuitive value-passing semantics, such that data moving through
ports is transferred in its entirety, without interference from the actions of
other ports. In the realm of shared memory, this has an undesirable naïve
implementation which must move the contents of large values repeatedly. Reo-
generated Java code makes use of an optimization whereby values are kept in
place, and their references are moved through ports instead. Currently, these
Java programs are circumstantially subject to data races as a result of apply-
ing this optimization. This violates Reo’s semantics; actors cannot be certain
that a value acquired through a local port is not being accessed by someone
else concurrently. Chapter 4 explains how our Reo-generated Rust combines
the language’s systems-level memory management with the explicit protocol
descriptions of Reo to perform reference-passing such that Reo’s semantics are
preserved. Other optimizations are also explored. Chapter 5 provides an eval-
uation of our implementation at runtime, comparing it to Reo-generated Java,
handcrafted Rust, and breaking down its performance in response to properties
of the input Reo specification.

Reo’s protocols specify which behaviors systems are and are not permit-
ted to exhibit. At runtime, protocol objects organize actions on their boundary
ports into permitted interactions. Actions do not succeed until they are permit-
ted. In this manner, port actions at the wrong time will not cause the program
to deviate from the protocol, but may cause a loss of program liveness if the
operation blocks, waiting for an interaction that never comes. For such cases,
Chapter 6 explores the design of governors, structures which allow the program-
mer to statically verify that local actions will not impede program liveness.

2

Chapter 2
Background

To begin, we introduce some terminology and background information to be
used in the chapters to follow.

2.1 Reo

Reo is a high-level language for specifying protocols. In this section, we touch
on the motivation behind Reo’s development, and explain how it is used. The
language has applicability whenever there is a benefit in being able to formalize
a communication protocol. However, this work primarily focuses on Reo’s
role in automatic generation of glue-code for coordinating interactions within
executable programs.

2.1.1 Motivation and Purpose

Traditionally, coordination programming is approached much like sequential
programming, by laying out program logic as sequences of actions, tracing
the path of one control-flow at a time. In such programs, concurrency and
parallelism are emergent properties; interactions are not represented explic-
itly, instead they must be derived from actions sprinkled throughout the pro-
gram [Arb11]. The more complex the program, the more difficult it is for pro-
grammers to make sense of this coordination; actions that contribute to interac-
tions become entangled with local computation. Depending on the language,
there may also be a large conceptual gap between the coordination’s under-
lying concept and the granular operations the program uses to implement it.
The larger the gap, the more tightly-integrated they become, obfuscating the
concept within implementation specifics and making it difficult to change one
without changing the other.

3

2.1. REO

Over time, various tools and languages have emerged, each with their own
way to raise the level of abstraction. For example, various process calculi can
represent coordination actions symbolically, such that it is more easily under-
stood and manipulated by humans and machines alike [Arb11]. Chapel is an
example of a general-purpose programming language with a focus on paral-
lelism, offering a (more traditional) ‘local view’ mode for concurrent proce-
dures, but also a ‘global view’ mode for data-parallelism that reads much like
a sequential program [CCZ07]. Coordination languages are primarily oriented
toward expressing the means by which concurrent systems coordinate the ac-
tions of individual actors into interactions. Their domain-specific nature often
makes them suitable for augmenting other general-purpose languages by in-
creasing their expressive power. Linda is said to be the first of its kind [Wel05].
In Linda, communication between actors takes the form of simple manipula-
tions of tuples in a global value store it calls the tuple space. Programmers can
thereby separate their concerns of what coordination logic is implemented from
how it is implemented [GC92].

Reo is a coordination language founded by the Formal Methods group at
the CWI in Amsterdam. It has much in common with Linda, but attempts
to do away with what it considers to be a vestige of the world of sequen-
tial programming: action-centricism, making explicit only individual actions,
relegating interactions to a derived concept. Reo represents a program’s coor-
dination logic in terms of interactions between participants explicitly; actions
of participants can be derived later [Arb11]. As with Linda, Reo is a domain-
specific language, able to take over only the coordination work of a program
written in another language. Where Linda embeds tuple operations into its
host language, Reo embeds ports; program logic is interspersed with (logical)
message-passing port operations. Unlike their Linda equivalents, ports are lo-
cal structures which are entirely oblivious to their environment, exchanging
data with an unknown peer in an unknown system context. Actions serve
only to drive local computation tasks. Building a complex system is a matter
of composing these modular components by interfacing their ports. Reo’s main
purpose is to provide an interaction-centric, declarative language for the spec-
ification of a protocol component which acts as an intermediary between other
components in the system. The Reo compiler sees to the translation from the Reo
specification to the equivalent executable code in the target language [Arb11].

Reo’s approach to programming comes with two advantages: (1) Program-
mers may view and manipulate the coordination logic of their program via
the Reo specification, whose nature is well suited for tasks such as verifica-
tion, and (2) protocol and compute components are loosely coupled to their
environment, making it possible to reuse them in different programs, and to
understand or alter their behavior in isolation.

4

2.1. REO

2.1.2 Language

Reo is a graphical language which represents a protocol as a connector, a hyper-
graph which defines the relationships between its nodes [Arb11]. Nodes repre-
sent logical ‘locations’ which may observe a single datum at a time. Ultimately,
a connector’s relations boil down to Reo’s underlying semantics, of which there
are several to choose from (explained in Section 2.1.3 to follow). They have in
common that they constrain the synchronous observations of data at nodes.
For example, a connector may enforce that nodes A and B always observe the
same data element. This is known as the sync channel, a primitive sufficiently
ubiquitous to be represented simply as an arrow (−→) in Reo’s graphical syn-
tax. In this fashion, a connector specifies the ways in which data is permitted to
synchronously ‘flow’ through its nodes. The literature often uses terms such as
‘circuit’ to evoke appropriate metaphors. As with electricity or fluid pressure,
flow propagates forwards, and blockages propagate backwards.

A tenet of Reo’s design philosophy is compositionality (and consequently,
modularity). Rather than defining each and every connector anew in terms of
the underlying semantics, all but the simplest primitive connectors are built
from the composition of others [Arb11]. At each level of this hierarchy, the
connector exposes a subset of its nodes to the connector above, wherein they
are called ports. The set of a connector’s ports is called its interface, beyond
which is its environment. A connector with complex semantics emerges when
the ports of its constituent connectors are linked together.

As Reo’s various metaphors suggest, we usually think of data as flowing
in a particular direction. To this end, ports are usually defined along with an
annotation of their orientation: input ports accept data from the environment
(moving downward in the connector hierarchry), and output ports are the re-
verse. With these orientations, port interactions orient the direction of their
flow from source nodes to sinks. Connectors can define internal nodes of mixed
orientation by sources to sinks in various configurations. In this way, connec-
tors can specify complex relationships in their hidden (internal) nodes.

Some Reo primitives (and consequently, some connectors that incorporate
them) define relationships in terms of variables whose states can persist into
the future. In this way, Reo can model asynchronous data flow also, breaking
up contiguous networks of synchrony, and constraining future observations
in terms of its changing state. The primitive fifo1 connector is canonical for
this purpose; in observing some datum X on its single input port, an empty
connector becomes full, whereafter the next observation on its single output
port must be X, making it empty once again. Despite its simplicity, fifo1 is
sufficient for the expression of arbitrary asynchronous events and for encoding

5

2.1. REO

the persistence of any state.1 These memory variables are explored further in
Section 2.1.3 to follow.

Conventionally, Reo is expressed using graphical syntax, representing nodes
as one would expect. Building a connector graphically involves drawing con-
nections between nodes as edges for the usual binary primitives (sync, fifo1,
etc.), or as ‘black boxes’, exposing ports at their boundaries. In this work, we
focus on Reo’s textual syntax [DA18b] instead, as it makes for a more practical
interface between human and compiler. In this context, the language is fun-
damentally the same, but relies on textual identifiers for nodes and connectors
as is typical for general-purpose programming languages. Listing 2.1 demon-
strates both methods using a canonical example connector: alternator2.

More complete descriptions of how Reo works, how its nodes behave un-
der composition and details about the canonical Reo primitive connectors are
available elsewhere [ABRS04, Arb05, Arb11].

1 alternator2(A?, B?, C!){

2 syncdrain(A, B)

3 fifo1(A, C)

4 sync(B, C)

5 }

Figure 2.1: Reo specification of the alternator2 connector with input
ports {A,B}, and output port C using graphical and textual syntax. Data
flows to C from A and B in an alternating fashion. Connector is distinct
from a sequencer by B’s transmission being synchronous with all three
ports. Figure is taken from [ZHLS19].

2.1.3 Semantic Models

Reo took a number of years to take its present shape. It is recognizable as early
as 2001, but was presented as a concept before it was formalized, leaving it
as a task for future work [JA12]. Later, several different approaches to formal
semantics were developed. For our purposes, it suffices to concentrate only
on the small subset of the semantics to follow. For additional information, the
work of Jongmans et al. in particular serves as a good entry point [JA12].

Starting with the fundamentals, a stream specifies the value of a variable
from data domain D changing over the course of a sequence of events. Usu-
ally streams are considered infinite, and so it is practical to define them as a
function N 7→ D. A timed data stream (TDS) takes this notion a step further,

1The initially-full variant of fifo1 allows Reo to express connectors initialized with any imag-
inable initial state.

6

2.1. REO

R A B
0.0 0 *
0.1 * 0
0.2 * *
0.3 1 *
0.4 * 1

Table 2.1: Trace table comprised of TDS’s for variables A and B. This
trace represents behavior that adheres to the fifo1 protocol with input
and output ports A and B respectively.

annotating each event in the sequence with an increasing time stamp. A TDS is
defined by some tuple (N 7→ R, N 7→ D), or equivalently, N 7→ (R,D), with
the requirement that time stamps must increase toward infinity [ABRS04]. By
associating one TDS with each named variable of a program, one can represent
a trace of its execution. TDS events with the same time stamp are considered
simultaneous, allowing reasoning about snapshots of the program’s state over
its run time. These traces can be practically visualized as trace tables, with
variables for columns and time stamps for rows by representing the absence of
data observations using a special ‘silent’ symbol *, referring to silent behavior. In
this work, we introduce trace tables as a term for both the tabular visualization,
and to a program trace as a set of named TDS’s. The runs of finite programs
can be simulated either by bounding the tables (constraining the TDS domain
to be finite), or by simulating finite behavior as infinite by extending the ‘end’
forevermore with silent behavior. Table 2.1 gives an example of a trace table
for some program with two named variables.

One of it’s earlier coalegebraic models represented Reo connectors as stream
constraints (SC) over such TDS tables in which variables are ports [Arb04].
Here, constraints are usually defined in first-order temporal logic, which al-
lows the discrimination of streams according to their values both now and
arbitrarily far into the future.2 This model is well suited for translating from
the kinds of safety properties that are typically desired in practice. Statements
such as ‘A never receives a message before B has communicated with C’ have
clear mappings to temporal logic, as often it is intuitive to reason about safety
by reasoning about future events. Table 2.1 above shows the trace of a pro-
gram that adheres the fifo1 protocol with ports A and B as input and output
respectively.

2Not all variants of temporal logic are equally (succinctly) expressive. It requires a notion of
‘bounded lookahead’ to express a notion such as ‘P holds for the next 3 states’ as something like
�1−3P rather than the verbose (�P∧��P∧���P).

7

2.1. REO

SC are unwieldy in the context of code generation. In reality, it is easier
to predicate one’s next actions as a function of the past rather than the future.
Accordingly, constraint automata (CA) was one of the operational models for
modeling Reo connectors that has a clearer correspondence to stateful com-
putation. Where a finite automaton accepts finite strings, a CA accepts trace
tables. Thus, each CA represents some protocol. Programs are adherent to the
protocol if and only if it always generates only accepted trace tables. From
an implementation perspective, CA can be thought to enumerate precisely the
actions which are allowed at ports given the correct states, and prohibiting ev-
erything else by default. A CA is defined with a state set and initial state as
usual, but each transition is given constraints that prevent their firing unless
satisfied; each transition has both (a) the synchronization constraint, the set of
ports which perform actions, and (b) a data constraint predicate over the values
of ports in the firing set at the ‘current’ time step. For example, Listing 2.1
above is accepted by the CA of the fifo1 connector with all ports of binary data
type {0, 1}, shown in Figure 2.2. Observe that here the automaton discriminates
the previously-buffered value (‘remembering’ what A stored) by distinguish-
ing the options with states qf0 and qf1. As a consequence, it is not possible to
represent a fifo1 protocol for an infinite data domain without requiring infinite
states.

qeqf0 qf1

{A}

dA=0

{B}

dB=0

{A}

dA=1

{B}

dB=1

Figure 2.2: CA for the fifo1 protocol with ports A and B sharing data
domain {0, 1}.

Later, CA were extended to include memory cells (or memory variables) which
act as value stores whose contents persist into the future. Data constraints are
provided the ability to assign to their next value, typically using syntax from
temporal logic (eg: m ′ is the value of m at the next time stamp) [ABdBR07].
Figure 2.3 revisits the fifo1 protocol from before. With this extension, the
task of persistently storing the value of A in the buffer can be relegated to m,
simplifying the state space significantly. This change also makes it possible to
represent connectors for arbitrary data domains, finite or otherwise.

For the purposes of Reo, we are interested in being able to compute the
composition of CAs to acquire a model for the compositions of protocols. Fig-

8

2.1. REO

qe qf

{A}

dA = m ′

{B}

dB = m

Figure 2.3: CA with memory cell m for Reo connector fifo1 with arbi-
trary data domain D common to ports A and B. Two states are used to
track to enforce alternation between filling and emptying m.

ure 2.4 shows an example of such a composition, producing fifo2 by compos-
ing fifo1 with itself (by connecting A of one to B of the other). This new proto-
col indeed exhibits the desired behavior; the memory cells are able to store up
to two elements at a time, and B is guaranteed to consume values in the order
that A produced them. Even at this small scale, we see how the composition of
such CA have a tendency to result in an explosion if state and transition spaces.
When seen at larger scales, a fifoN buffer consists of 2N states. The problem is
the inability for a CA to perform any meaningful abstraction; here, it manifests
as the automaton having to express its transition system verbosely. Intuitively,
the contents of m0 are irrelevant when m1 is drained by B, but the CA requires
two transitions to cover the possible cases in which this action is available. In
the context of accepting existing trace tables, data constraints are evaluated by
checking the contents of the table.

CA transitions have another interpretation in a context where the present
is decided, but the future is not. If we have influence over the future values
of memory cells, we are able to influence the walks through the automaton.
We are able to treat the data constraint instead as a pair of (a) the guard which
enables the transition as a function of the present time stamp, and (b) the
assignment, which we ensure is satisfied. As an example, consider a transition
with data constraint m = dA ∧m ′ = dB; as long as m = dA holds now, we are
able to take the transition and assign dB to m afterward. Figure 2.4 and others
to follow formulate their data constraints such that the guard and assignment
parts are identifiable wherever it is practical to do so.

Evidently, memory cells provide a new means of enforcing how data per-
sists over time. In many cases, it can be seen that the same connectors can be
represented differently by moving this responsibility between state and data
domains. Rule-based automata (RBA) are the cases of CA for which this idea
is taken to an extreme by relying only on memory cells entirely; RBAs have
only one state [DA18a]. Figure 2.5 models the fifo1 connector once again, this

9

2.1. REO

qee qfe

qffqef

{A}

m ′0 = dA

{}

m ′1 = m0

{B}

dB = m1

{A}

m ′0 = dA

{B}

dB = m1

Figure 2.4: CA with memory cells m0 and m1 for the fifo2 connector
with an arbitrary data domain for ports A and B. Transitions are spread
over the state space such that the automaton’s structure results in the
‘first-in, first-out’ behavior of the memory cells in series.

time as an RBA. Aside from the added expressiveness, RBAs benefit from be-
ing cheaper to compose. As the state space is degenerate, RBAs may be easily
reinterpreted into forms more easy to work with. Rule-based form (RBF) em-
braces the statelessness of an RBA as a single formula, the disjunction of its
constraints. In this view, Dokter et al. define their composition of connectors
such that, instead of exploding, the composed connector has transitions and
memory cells that are the sum of its constituent connectors.

RBAs have a structure more conducive to simplification of the transition
space, such that one RBA transition may represent several transitions in a CA.
Figure 2.6 shows how how this occurs for the fifo2 connector. Where the CA
in Figure 2.4 must distinguish the cases where A fills m0 as two separate tran-
sitions, the RBA is able to use just one; likewise for the transitions representing
cases where B is able to drain m1. This ‘coalescing’ of transitions in RBAs is
possible owing to the collapsing of their state space. Even without an intuitive
understanding of why such transitions can be collapsed, such cases may often
be identified only by inspecting the syntax of the data constraints. For another
example of CA, a naïve translation to RBA may produce two transitions with
data constraints m = ∗∧ X and m 6= ∗∧ X for some X, which are both covered
by a single data constraint X. As both RBA and RBF share this property, we
usually refer to RBA transitions and RBF disjuncts as rules, giving these models
their name. By distinguishing CA transitions from RBA rules in terminology,
we are perhaps more cognizant of the latter’s increased ability to abstract away
needless data constraints.

10

2.1. REO

{A}

m = ∗
∧ m ′ = dA

{B}

m 6= ∗
∧ dB = m ∧ m ′ = ∗

Figure 2.5: RBA of the fifo1 connector for an arbitrary data domain
common to ports A and B. Memory cell m is used both to buffer A’s
value, and as part of the data constraint on both transitions for emptying
and filling the cell to ensure these interactions are always interleaved.
Data constraints are formulated for readability such that the ‘guard’ and
‘assignment’ conjuncts are line-separated.

Typically, Reo has used the data domains in both CA and RBA as parallels
to the data types of the ports. In most of the languages in which Reo proto-
cols are implemented, the discriminants of such types are not distinguished
statically. For example, the C language lacks a way to statically enforce a that
function void foo(int x) is only invoked when x is prime. Instead, checks at
runtime are used to specialize behavior. On the other hand, the state space is
simple enough to afford a practical translation into the structure of the pro-
gram itself, requiring no checking at runtime. For example, Listing 1 shows an
intuitive representation of a connector that alternates between states A and B,
getting data x from its environment in A, and emitting x when x = 3. Observe
that there is no need to protect operations by which state the corresponding
CA is in at runtime. This observation has implications for the behavior of im-
plementations of RBAs, as they ‘cannot remember’ which state they are in and
must thus perform more checking. In practice, the overhead of this checking
is manageable, and does not explode under composition as the state space of
CAs tend to do. The representation of automata in programming languages is
explored in more detail in Section 2.2.3.

2.1.4 The Reo Compiler

An ecosystem of tooling has emerged around the Reo language, each exploiting
Reo’s explicit connector specifications for some purpose or another, ranging

11

2.1. REO

{A}

m0 = ∗
∧ m ′0 = dA

{}

m0 6= ∗ ∧ m1 = ∗
∧ m ′1 = m0 ∧ m ′0 = ∗

{B}

m1 6= ∗
∧ dB = m1 ∧ m ′1 = ∗

Figure 2.6: RBA of the fifo2 connector for an arbitrary data domain
common to ports A and B. Memory cells m0 and m1 are drained by
B in the order they are filled by A, and have a capacity of 2 elements.
Data constraints are formulated for readability such that the ‘guard’ and
‘assignment’ conjuncts are line-separated.

from verification to code generation. An overview of these tools can be seen on
Reo’s website3. In this work, we are particularly interested in the Reo compiler.
Previously, code generation was a feature of Reo’s Extensible Coordination Tools
platform plugins for the Eclipse IDE. Since then, the compiler has become a
standalone program, and has added several compilation targets as the result of
ongoing research and development [JSS+12, JSA15, DA18a].

Given a textual Reo specification, the Reo compiler generates and emits a
protocol object with runtime behavior corresponding with the input specifica-
tion. The output is in a target language selected by the user. At time of writing,
languages Java, Promela and Maude are supported. C11 is available also, but
has been deprecated. Once parsed, the compiler translates the Reo-language
representation into that of Rule-based form, involving operations hiding, pro-
jection, merging and so on. For our purposes, it suffices to trust that the com-
piler performs this transformation to our satisfaction, resulting in a represen-
tation with the intended semantics. Detailed information about this process
is available in the literature [Arb04, Arb05, DA18a]. Accordingly, the textual
Reo language has support for the definition of primitives in such models di-
rectly [DA18b]. Listing 2 demonstrates this with the primitive fifo1 connector.

In this work, we concentrate on Reo’s use for the generation of glue code
between components in a target language, such that the program adheres to
the associated Reo specification at runtime. The Reo compiler is responsible

3http://reo.project.cwi.nl

12

http://reo.project.cwi.nl

2.2. TARGET LANGUAGES

1 void stateA() {

2 this.value = get();

3 if (this.value == 3) {

4 stateB();

5 } else {

6 stateA();

7 }

8 }

9 void stateB() {

10 put(this.value);

11 stateA();

12 }

Listing 1: An example of a program which implements a two-state au-
tomaton in the Java programming language. Observe that the behavior
of states A and B are encoded implicitly in the structure of the pro-
gram, while determining which of the two in A are available A requires
a check ar runtime.

1 fifo1(a?, b!) {

2 #RBA

3 {a, ~b} $m = null, $m' = a

4 {~a, b} $m != null, b = $m, $m' = null

5 }

Listing 2: Textual Reo specification of the fifo1 connector using RBA
semantics. Data is asynchronously forwarded from input A to output B
by being buffered in between in memory cell m.

for this translation quickly and reliably. Programmers are able to exploit the
correspondence between program and specification by using the representa-
tion that best fits the task at hand; it runs with all the characteristics of the
target language, but programmers may manipulate or verify its coordination
properties via its specification.

2.2 Target Languages

In this section we introduce terminology relevant to the languages targeted for
code generation by the Reo compiler. We identify patterns and properties that
are relied upon in later chapters.

13

2.2. TARGET LANGUAGES

2.2.1 Affine Type Systems

In a nutshell, affine types are characterized by modeling values as finite re-
sources, operations on which consume them. This notion of ‘affinity’ has its
roots in logic. In a type-theoretic proof system, one can attempt to derive some
judgment Γ ` t : τ with statements assigning types to terms; here term t is stated
to have type τ under context Γ . A context is simply a list of statements, which
can be thought to correspond with assumptions, or the premise [NG14]. The
judgement holds if once can complete a proof by selecting and applying rules
to arrive at the judgements. In practice, this is often done backwards: starting
with the judgment, the proof is completed by applying rules until no ‘dangling’
judgments remain. Different systems can prove different judgements, as they
may differ in the rules they permit. Consequently, rules characterize the sys-
tem. As an example, simply-typed lambda calculus has a type derivation rule
for abstraction, substitution and application. Depending on the type system,
structural rules may additionally be provided for manipulating (‘massaging’)
the context such that other rules may be applied. Consider the following struc-
tural rules:

(var) :
t : τ ` t : τ

(weaken) :
Γ ` Σ
Γ ,A ` Σ

(contract) :
Γ ,A,A ` Σ
Γ ,A ` Σ

In order of their appearance, var terminates proof branches by identifying
tautologies: statements appearing directly in the context. weaken allows us to
arbitrarily grow our context, weakening the strength of the formula as a whole
by adding to our assumptions. contraction allows us to treat statements as if
they are idempotent; we are allowed to discard duplicate statements at will.

Depending on the proof system, such structural rules may be necessary
to make a formula provable [NG14]. For example, weaken rule is required
to prove A, t : τ ` t : τ. var cannot be directly applied, because A is ‘in
the way’. Substructural rules also help to characterize systems. For example,
the ability to arbitrarily replicate, discard and rearrange context expressions
characterizes a type system whose context is ‘set-like’; in such a system, the
order of statements in the context has no impact on whether a formula can be
proven.

Affine type systems are characterized by the absence of contraction rule.
Proofs cannot replicate statements at will, and thus they are a finite resource in
the proof, consumed by use in rules [Wal05]. As type systems do in general,
type affinity excludes some programs from being expressed. In the context of
programming languages, why would we want this? Of course, conventional
computer hardware has no problem replicating the bytes representing some
integer. Why then do we limit ourselves? This argument can be made for type

14

2.2. TARGET LANGUAGES

systems in general; the machine likewise has no problem reinterpreting the
bytes storing a string as an integer. This limitation is a feature in and of itself
as long as the programs lost are usually somehow ‘undesirable’. For example,
it is exceedingly common practice to dedicate a memory region to one type
for the duration of the program, making a case for the feasibility of statically-
typed local variables. These limitations are primarily for programmers and not
for the program; they facilitate strictly enforcing on one another (or oneself)
what would otherwise only be good programming practices.

2.2.2 The Rust Language

Rust is an imperative, general-purpose, systems programming language most
similar to C++, even (mostly) sharing its C-style syntax. What sets it apart is its
memory model. Rust is not a memory-managed language, and has no runtime
whatsoever. Instead, the language relies on its ownership system to predictably
insert deallocations (called drop in Rust) at the right moment such that it runs
much as C++ would without exposing these details to the programmer. To
make this possible, the Rust compiler keeps track of the variable binding which
owns a value at all times. Owned values are affine, and associating them with
new variable bindings invalidates their previous binding. In Rust, this is called
moving, and doubles (at least conceptually) with the relocation of a value in
memory. Listing 3 illustrates how this appears to a programmer; In main, the
variable x is moved into the scope of func. The subsequent access of x on line 8
is invalid, preventing this program from compiling. Once an owned value goes
out of scope, it is no longer accessible, and the type’s drop function is invoked to
destroy it. Along with the RAII (‘resource acquisition is initialization’) pattern
popularized by C++, programmers can rest assured that their resources are
created and destroyed implicitly, at predictable moments.

1 struct Foo { val: u32 };

2 fn func(y: Foo) { // this function moves its parameter into its scope (by value).

3 } // `y` goes out of scope and is (trivially) dropped.

4 fn main(){

5 let x = Foo { val: 5 };

6 func(x); // Ok. `x` is moved into `func`.

7 func(x); // Error! x is used after move.

8 }

Listing 3: Type Foo is affine. On line 6, x is consumed by being moved
into function func, transferring ownership to the binding y. Afterward,
access of x is invalid, and so line 7 raises an error.

15

2.2. TARGET LANGUAGES

Borrowing

On its own, movement is incredibly restrictive; there is no apparent way to use
any resource without destroying it. To reclaim some vital functionality, Rust
has the borrow system to facilitate the creation and management of types whose
ownership is dependent on others. Similar to those in C++, programmers are
able to create references (also called borrows) to values, which are indistinguish-
able from pointers at runtime, but have special static semantics. These refer-
ences are new objects, not representing a transference of ownership as moves
do. Listing 4 demonstrates the example from before, but now passing x by
reference (as &x) into func such that x is not invalidated. The Rust compiler’s
borrow checker relies on variable scoping to keep track of these borrows to en-
sure they do not outlive their referent, as these would manifest at runtime as
dangling pointers. This relationship between value and reference is referred to
in Rust as the reference’s lifetime. Rust performs this static analysis at a per-
function basis. As such, it is necessary for programmers to fully annotate the
input and output types of functions, but they can usually be inferred within
function bodies. This has an important consequence; the compiler does cross
the boundaries between functions to interpret their relationship.

1 struct Foo { val: u32 };

2 fn func(y: &Foo) { // this function borrows some `Foo` structure by reference.

3 } // dropping returns the `borrowed' ownership to the caller.

4 fn main(){

5 let x = Foo { val: 5 };

6 func(&x); // &x is created in-line. x remains in place.

7 func(&x); // another &x is created. x remains in place.

8 }

Listing 4: Foo is an affine resource. New references to x are created
and sent into func, temporarily lending ownership to the function, but
retrieving it after it returns. Rust’s borrow checker ensures that a borrow
does not outlive its owner.

For some types there is no practical reason to enforce affinity. This is usually
the case for primitives such as integers. Such types must be explicitly marked
by implementing the (trivial) Copy trait, communicating to the compiler that
this type can be copied in circumstances where affine types are moved, creating
a new independently-owned value. Copy-types behave in ways familiar to C
and C++ programmers. For example, Listing 3 from before would compile if
Foo was marked with Copy.

C and C++ have no inherent support for preventing data races. The pro-
grammer is in full control of their resources. It is all too easy to create data

16

2.2. TARGET LANGUAGES

races to C by unintentionally accessing the same resource in parallel. One of
the tenets of Rust’s design is to use its ownership system to prohibit these data
races at compile time. For this reason, Rust has an orthogonal system for muta-
bility. References come in two kinds: mutable and immutable. The distinction
is made explicit in syntax with the mut keyword. Rust relies on a simple ob-
servation of the common ingredient for all data races: mutable aliasing; only
changes to the aliased (one resource accessible by multiple bindings) resource
manifest as data races. Rust’s approach is thus simply to prohibit mutable
aliasing by preventing these conditions from coexisting. Mutable references
must be unique (prohibiting aliasing) and immutable references do not allow
for any operations that would mutate their referent (prohibiting mutability).
This is the same thinking behind the readers-writer pattern for the eponymous
lock: there is no race condition if only sreaders coexist, but if one writer exists,
it must have exclusive access.

Traits and Generics

The primary means of polymorphism in Rust is through generic types with
trait bounds, also called ‘type parameters’. Traits are most similar to interfaces
in Java, categorizing a group of instantiable types by defining abstract function
declarations for implementors to define. Unlike Java, Rust traits say nothing
about fields and data, thus describing only their behavior. Effectively, they play
the role of Java’s interfaces, and also C’s header files.

In Rust, structures and functions may be defined in terms of generic types
(also called type parameters) similarly to those in C++. In a generic context, only
operations that may be applied to any suitable type may be applied. For ex-
ample any generic type T may be borrowed or moved. Move behavior becomes
available if one constrains the generic type by expressing a requirement that im-
plements some trait. For example, Rust can be certain that some generic T im-
plements the method clone by constraining it with the requirement: T: Clone.
Unlike Java interfaces, it is common to constrain a generic type with multiple
traits; as they define only behavior, their trait implementations are orthogo-
nal. In this manner, generic code can be written such that it can be applied to
exactly the types which possess the required functionality. Listing 5 gives an
example of how traits are defined, and used.

Above, we see how a function can be defined such that it operates on a
generic type. However, the function cannot be used until the type is chosen
concretely for a particular instance. This choice is called dispatch, and Rust of-
fers two options: static and dynamic. Static dispatch (also called ‘early binding’)
is used when the called function can be informed which concrete type has been
chosen statically, as the caller knows it at the call-site. During compilation, the
generic function is monomorphized for the type chosen in this manner on a case-

17

2.2. TARGET LANGUAGES

1 pub fn something<T>(val: &T) where T: PrintsBool {

2 val.greet()

3 }

4 trait Greets {

5 fn greet(&self);

6 }

7 impl Greets for String {

8 fn greet(&self) {

9 println!("hello!")

10 } }

Listing 5: Definition of the Greet trait, whose implementation re-
quires that greet be defined to match the specified declaration. Func-
tion something can invoke this function, dispite not knowing concretely
which type is chosen for generic type T.

by-case basis, generating binary specialized for that type as if there were no
generic at all. Static dispatch is used in C++ templates, and opted-out with the
keyword virtual. This is Rust’s second option: dynamic dispatch (also called
virtual functions or late binding) where the generic function exists as only one
instance, and all of the specialized operations on the generic type are resolved
to concrete functions at runtime by traversing a layer of indirection: functions
are ‘looked up’ in a virtual function table (vtable). Java uses such virtualization
extensively, which allows a lot of flexibility such as allowing functions to be
overridden by downstream inheritants. Precisely how a language represents
virtual functions and lays out the data in memory varies from language to
language. Rust uses the fat pointer representation for these dynamic objects.
Concretely, some generic object which is known only to implement trait Trait
is represented as a pair of pointers; the first pointing to the actual object’ data,
and the second pointing to a dense structure of meta-data and function point-
ers for the methods of Trait, usually embedded into the text section of the
binary by the Rust compiler itself. Both methods of dispatch are exemplified
in Listing 6, demonstrating how static dispatch must propagate generics to the
caller for resolution to concrete types at compile time, while one function us-
ing dynamic dispatch is able to handle any virtualized types by resolving their
methods at runtime.

Rust uses traits for just about everything. Some traits are defined in the
standard library, and have a degree of ‘first class’ status by having special
meaning when used in combination with the language’s syntax. For exam-
ple, Not is a trait that defines a single function, not, which is invoked when
the type is negated using the usual exclamation syntax, i.e., !true. Some traits
have no associated functions, instead exist for the purpose of communicating

18

2.2. TARGET LANGUAGES

1 trait Emits {

2 fn emit(&self) -> usize;

3 }

4 impl Emits for String {

5 fn emit(&self) -> usize {

6 self.len()

7 }

8 }

9 fn func_static<T: Emits>(x: &T) -> bool {

10 x.emit() > 10

11 }

12 fn func_dynamic(x: &dyn Emits) -> bool {

13 x.emit() > 10

14 }

15 fn main() {

16 let value = String::from("Hello!");

17 func_static::<String>(&value);

18 func_dynamic(&value as &dyn Emits);

19 }

Listing 6: Static and dynamic dispatch in Rust exemplified. func_static
shows the former, propagating the type parameter to the caller.
func_dynamic shows the latter, relying on a virtual function table to re-
solve the concrete function at runtime. Function main shows how both
appear at the call site.

information to the compiler. Seen before, Copy is a trait which disables the Rust
compiler’s checks of a value’s affinity. As another example, Drop allows the
programmer to specify any additional behavior when an instance of the type
is dropped, allowing one to implement arbitrary destructors similar to those of
C++. Several standard traits exist for behaviors which are frequently useful. As
a result, it is common to encounter unfamiliar types which implement familiar
traits. For example, it is considered good practice to implement (or derive the
implementation of) the Debug trait, which allow your type to be printed with
the standard format strings.

Enums and Error Handling

As in C, Rust usually relies on struct for defining its types. Each is defined
as the list of its constituent fields. Creation of these structures necessitates
building all of their constituents, and all fields exist at once. By contrast, sum
types have variants only one of which may be occupied by data at a time. Ar-
guably, the duck-typing of Python and flexible polymorphism of Java do the
work of these sum types; a variable can be bound to anything and then its ‘vari-

19

2.2. TARGET LANGUAGES

ant’ can be reflected at runtime using some explicit operations (ininstance and
instanceof respectively). C takes the approach fitting the language’s philoso-
phy; union types represent any one of its constituents but the program is at the
mercy of the programmer to interact with it as the correct variant as they see
fit. Rust’s solution is similar to C’s unions, but its focus on safety required the
use of tags; this makes explicit which variant is currently in use. At runtime,
an enum’s variant can be discriminated by explicitly pattern-matching. Matches
are most similar to switch statements in Java or C, but the arms are guarded by
patterns, enabling the conditional de-structuring of enums and so on.

Unlike Java and Python, Rust has no mechanism for throwables which over-
ride the default control flow, usually for the purposes of ergonomically han-
dling errors. Instead, Rust represents all recoverable errors in the data domain
as enums. The standard library defines Option and Result enums, which are
monadic in that they wrap the ‘useful’ data as fields of one the variants, but
represent the possibility for other variants also. They differ in that Option::None
carries no data, and thus Option is generic only over one type, the contents of
the Some variant. Result, on the other hand, has two generic types, one for
its ‘successful’ Result::Ok variant, and one for its ‘unsuccessful’ Result::Err
variant. Listing 7 gives an example of typical error-handling in Rust; here,
divide_by relies on Result to propagate the error for the caller to handle. In
circumstances where the error is unrecoverable, Rust uses a thread panic, which
unrolls the control flow (printing debugging information if an environment
variable is set). This is similar to Java’s Error.

1 struct DivZeroError; // contains no data

2

3 fn divide_by(numerator: f32, divisor: f32) -> Result<f32, DivZeroError> {

4 if divisor == 0. {

5 Result::Err(DivZeroError)

6 } else {

7 Result::Ok(numerator / divisor)

8 } }

9

10 fn main(input: f32) {

11 match divide_by(4.5, input) {

12 Ok(x) => print!("Success! computed:{}.", x),

13 Err(_) => print!("Something went wrong!"),

14 } }

Listing 7: Demonstrating the Rust idiom of using a Result in return
position to propagate exceptions to the caller for handling. Here, main
must match the return value to acquire the result contained within the
Result::Ok variant.

20

2.2. TARGET LANGUAGES

2.2.3 The Type-State Pattern

The state machine pattern refers to the practice of explicitly checking for or
distinguishing transitions between and requirements of states in a stateful ob-
ject.4 Usually, these states are distinguished in the data domain of one or more
types. Even Rust’s lowly Option type can be viewed as a small state machine
as soon as some condition statement specializes operations performed with it.
Although its uses are ubiquitous in application development in general, this
pattern is particularly useful for those for which the added ability to manage
complexity is necessary: video games, for example [Nys14].

As the name suggests, the type state pattern is an instance of the state pat-
tern, characterized by encoding states as types in particular. Usually, the em-
bedding in types in particular differs only in that, unlike two values of the
same type, two distinct types are checked equality (or otherwise related mean-
ingfully) at compile time. A common approach is to instantiate one of the state
types at a time. We primarily concentrate on state types which do not contain
any data (i.e, they have a trivial data domain). We refer to these objects as
tokens, evoking a comparison with coins to suggest their small size and role as
a sort of ‘currency’; their role is to facilitate other things.

Type state automata are useful for encoding stateful control flow in a form
the compiler will be able to understand and enforce. Consider the scenario
where a program wants to facilitate alternation between invoking some func-
tions one and two which repeatedly mutate some integer n. Listing 8 gives an
example of what this might look like as a type-state automaton in the C lan-
guage. In this rendering, the expression two(one(START)).n evaluates to the
expected result of (0 + 1) · 2 = 2. Even for this simple example, the encoding
of states as types in particular has its benefits; the expression one(two(START))

may appear sensible at first glance, but the compiler is quick to identify the
type mismatch on the argument to one, making clear that the expression does
not correspond to a path through the automaton:

note: expected 'DoTwo' but argument is of type 'DoOne'

The example above demonstrates some utility, but a language such as C has
no fundamental way to prevent the programmer from reusing values, including
state tokens. If the programmer misbehaves, they can retain their previous
states when given new ones, and then invoke the transition operations as they
please. It’s not much of a state machine if all states coexist, is it? This is not
always a problem in examples such as the previous. Here, the types prevent the
construction of malformed expressions, and perhaps this is enough. However,

4Usually, we ignore program termination. Equivalently, this pattern only allows one to de-
scribe automata in which every ‘useful’ state reaches some final ‘terminated’ state.

21

2.2. TARGET LANGUAGES

we cannot so easily protect a resource from any side effects of one or two;
imagine the chaos that would result from these functions writing to a persistent
file descriptor.

1 typedef struct DoOne { int n; } DoOne;

2 typedef struct DoTwo { int n; } DoTwo;

3 const DoOne START = { .n = 0 };

4

5 DoTwo one(DoOne d1) {

6 DoTwo d2 = { .n = d1.n + 1};

7 return d2;

8 }

9 DoOne two(DoTwo d2) {

10 DoOne d1 = { .n = d2.n * 2};

11 return d1;

12 }

Listing 8: An example of the type-state pattern in the C language. The
alternating invocation of one and two is translated to type checking the
compiler can guarantee. This example guarantees that well-formed ex-
pressions can be interpreted as valid paths in some corresponding au-
tomaton, as the types must match.

1 fn main(d1: DoOne) {

2 let d2 = two(d1);

3 let d1 = one(d2);

4 let d2 = two(d1);

5 let d2_again = two(d1); // Error! `d1` has been moved.

6 }

Listing 9: A demonstration of how the type-state encoding shown in
Listing 8 can leverage affine types to ensure that not only expressions,
but a trace through execution can be interpreted as valid paths through
some corresponding automaton. The compiler correctly rejects this ex-
ample, which corresponds with attempting to take transition two twice
in a row.

An affine type system overcomes the shortcoming illustrated above. By
treating instances of these types as affine resources, the programmer cannot
retain old states without violating the affinity of the types. The example looks
very similar when translated to Rust, but now a case such as that shown in
Listing 9 will result in the compiler preventing the retention of the variable of

22

2.2. TARGET LANGUAGES

type DoOne. In this way, it is possible to ensure that the program’s control flow
corresponds with a walk through the automaton.

2.2.4 Proof-of-Work Pattern

Section 2.2.3 demonstrates how the type-state pattern can be used as a tool
to constrain actions the compiler will permit the program to do. Indeed, this
is a natural parallel to the affinity of the type system, which guarantees that
no resource is consumed repeatedly. The counterpart to affine types is relevant
types, which defines correctness as each resource being consumed at least once.
Type systems that are both relevant and affine are linear, such that all objects
are consumed exactly once.

There is no way to create true relevance or linearity in user space of an
arbitrary affine type system; any program which preserves affinity is able to
exit at any time without losing affinity. How are we able to enforce a behavior
if it is correct to exit at any time? Proof-of-work is a special case of the type-state
pattern which allows the expression of a relevant type under the assumption
that the program continues its normal flow; i.e., system exits are still permitted.
The trick to enforcing the use of some object T is to specify that a type is a
function which must return some type R, and to ensure that R can only be
instantiated by consuming T. Clearly, we cannot prevent T from being destroyed
in some other way, but we are able to prevent R from being created any other
way. Effectively, we use a return type to model relevance.

Realistic languages have many tools for constraining what users may access,
such as Java’s visibility keywords. Rust has orphan rules to prevent imported
traits from being implemented for imported types. Languages without any
such features won’t be able to prevent users from creating the return type R

without consuming T. In these cases, another option is generative types which,
among other things, allow us to further distinguish types with different origins.
Here, generative types may be used to ensure not just any R is returned, but
a particular R within our control. As this work uses the Rust language for
concrete implementations, we will rely on its ability to prohibit the user from
creating R by using types with user-inaccessible fields. This prevents the user
from creating instances of the type themselves, forcing them to acquire them
by means we dictate. We are able to prevent anyone from creating instances of
a type by using empty enums, which have no safe means of instantiation [Gor].

Consider the following illustrative scenario: We wish to yield control flow
to a user-provided function. Within, the user is allowed to do whatever they
wish, but we require them to invoke fulfill exactly once (which corresponds
to ‘consuming R’). How can we express this in terms the compiler will enforce?
Listing 10 demonstrates a possible implementation (omitting all but the essence
of ‘our’ side of the implementation). The user’s code would then be permitted

23

2.2. TARGET LANGUAGES

to invoke main with their own choice of callback function pointer. Our means of
control is the interplay between dictating both (a) the signature of the callback
function and (b) prohibiting the user from constructing or replicating Promise

or Fulfill objects in their own code.

1 struct Promise;

2 struct Fulfilled;

3

4 fn fulfill(p: Promise) -> Fulfilled {

5 // invoked once per `main`

6 return Fulfilled::new();

7 }

8

9 fn main(callback: fn(Promise)->Fulfilled) {

10 // ...

11 let _ = callback(Promise::new()); // `Fulfilled` discarded.

12 // ...

13 }

Listing 10: A demonstration of proof-of-work pattern. Here, the user is
able to execute main with any function as argument, but it must certainly
invoke fulfill exactly once.

24

Chapter 3
Protocol Translation

The task of the Reo compiler is to translate a Reo protocol specification into
the target language. The resulting code must interface with other components
written in the language such that, at runtime, the resulting system behaves
as specified. In this chapter, we explain how we extend the Reo compiler to
support the Rust language target.

Section 3.1 examines the task of the backend, the translation from the Reo
compiler’s internal representation (‘RIR’) to an executable protocol object in
the target language. This task is broken down into smaller, more specialized
subtasks. Section 3.1.2 organizes these subtasks into a pipeline that sees the
translation through from Reo specification to executable Rust protocol object.
To bridge the gap between Reo and Rust compilers, Section 3.2 defines imper-
ative form (‘IF’) as a novel representation of a protocol’s behavior in a manner
conducive to imperative languages, but not yet fine-grained or inherently cou-
pled to one language in particular. Section 3.3 goes into detail about the imple-
mentation of the translation pipeline by explaining how the previously-defined
subtasks are completed in stages. This includes an example of the output of the
Reo compiler: Rust source code whose contents are primarily a Rust-embedded
representation of IF.

3.1 Structuring the Translation Process

In this section, we explore the nature of the task which characterizes the Rust
backend for the Reo compiler. Section 3.1.1 breaks the problem down into
simpler subtasks, and explains their relationship to one another and how they
apply in the case of a different target language. Section 3.1.2 explains how

25

3.1. STRUCTURING THE TRANSLATION PROCESS

these tasks are organized by defining their place within a translation pipeline.
The implementation of the pipeline itself is given in Section 3.3.

3.1.1 Translation Subtasks

The Reo compiler’s frontend parses its input in the Reo language with textual
syntax. It performs significant transformations on its internal representation
before arriving at what we call RIR. Everything that follows is the task of the
backend, transforming it further until code in the target language can be emit-
ted. Reo and Rust differ significantly in how they represent work. Accordingly,
a protocol expressed in the former must be transformed significantly before it
can be expressed in the latter. In this section, this task is decomposed into
subtasks which serve a dual purpose (1) smaller tasks are more easily under-
stood, and help to characterize Reo and Rust by identifying their differences,
and (2) only isolated subtasks can be separated, allowing the entire task to
be performed in stages, as the pipeline. Here, we explain how the pipeline is
structured; the implementation of the subtasks is left to Section 3.3.

Input Representation

RIR embodies the completion of several of the operations on Reo connectors
described in the literature [BSAR06, DA18a]; namely, composition, merging, hid-
ing, and so on. For our purposes, it suffices to say that RIR is presented in a
form corresponding closely to an RBA, one of the semantic models described in
Section 2.1.3. RIR is self-contained, and defines a list of rules which correspond
1-to-1 to interactions between the protocol’s ports. It captures the intuition of
an RBA as they are usually understood in an imperative context; rules are sub-
divided into parts guard and assignment. Helpfully, RIR presents the latter not
as a monolithic formula, but rather as a mapping from identifier to Term objects.
In our imperative context, terms can be understood as expressions to be eval-
uated at runtime. For example, True is a boolean type term, while Port("A")

may be understood as the value put by port A.

Subtasks Involving Actions and Data Types

Reo specifications represent connectors declaratively as relations between ports.
They are thus well suited to reasoning about the protocol’s properties. In con-
trast, our target imperative languages such as Java and Rust represent com-
putation such that it corresponds more closely to machine instructions; they
are imperative, laying out sequences of actions which together emerge as inter-
action at runtime. Where interactions in the former can be oriented around
the synchronous observations of port values, interactions of the latter must be

26

3.1. STRUCTURING THE TRANSLATION PROCESS

expressed as sequences of actions, laid out over time. RIR is somewhere in
between. Per RIR rule, the guard is distinguished from the assignment, sug-
gesting a coarse-grained ordering of operations: the guard is evaluated before
values are assigned. This is a step in the right direction, but requires further
transformation before it can correspond to executable Rust. For example, RIR
is able to disambiguate the order in which memory cells are read and written
to by implying an ordering by annotating their identifiers with qualifiers com-
parable to those in temporal logic (in both syntax and semantics). For example,
the assignment corresponding to m = A∧m ′ = B does not explicitly express
an ordering, but nevertheless implies it by annotating m with a qualifier to
represent its ‘next’ value. Rust’s imperative nature requires that operations on
values occur in the order of their appearance in the program’s control flow,
as this determines the order in which they will be executed (Rust compiler
optimizations aside).

Java, Rust and Reo have in common that they are strongly-typed languages.
In the broader sense, ‘type’ describes the classification of just about everything
in Reo, including connectors and primitives. The Reo compiler’s internals per-
form transformations that handle the majority of what could be considered
‘type checking’. The only exceptions are (1) the data types of each port, de-
termining the types of values they transmit, and (2) the types of functions
applied to values within the channel, which are expressed as relations between
an identifier and a list of arguments (each expressed as Term). For the sake of
programmer ergonomics, Reo permits the data types of ports to be omitted,
such that they can later be derived in context. As this task is not performed
by the Reo compiler’s frontend, it becomes the responsibility of the backend
to resolve these types. In compiling to Rust, the backend must take care that
these types adhere to Rust’s rules for types as well as Reo’s. For imperative
languages without types, it suffices to represent them with a universal type,
e.g., Object in Java.

Subtasks for Abstract and Concrete Targets

Regardless of any intermediate representation, protocols must ultimately be
emitted in the target language at the required level of specificity. Imperative
languages place the burden of defining how their work is performed squarely
on the shoulders on the programmer. For example, where a declarative lan-
guage might not distinguish merge sort from bubble sort, Rust certainly does; a
Rust program’s operations on variables correspond (relatively) closely to ma-
chine instructions as they will be executed at runtime. This is also true in the
case of our problem; what is implied in Reo must be made explicit in Rust.
This includes the initialization of system resources, operations on concurrency

27

3.1. STRUCTURING THE TRANSLATION PROCESS

primitives, and all the minutia necessary to implement the optimizations de-
scribed in Section 4.3.4.

We observe that one can perform meaningful protocol translation work,
resulting in its expression in imperative manner without committing to a par-
ticular language’s minutia. On the other hand, an abstract specification may
be made concrete by translating it into a particular language. We distinguish
these notions by differentiating between specification and implementation.1

It is beneficial to recognize that a significant portion of the translation from
Reo to Rust would be shared by the same procedure to a similar language; the
more similar the language, the more we can expect their respective transfor-
mations to have in common. For example, despite their significant differences,
Rust and Java are more similar to each other than they are to Reo. We attempt
to generalize Rust, Java and languages like them in accordance with common
terminology. We characterize imperative languages by a need to make explicit
their control flow by imposing a total order on their actions. Recall the example
of a memory cell, for which both a read and a write are expressed as part of
an interaction m = A∧m ′ = B. An imperative language would require that
these two distinct actions be laid out in a sequence: namely, [m = A,m = B].
Observe that with the order made explicit, the temporal (‘next’) qualifier can
be discarded without introducing ambiguity.

Toward compilation to Rust, we are forced to resolve the data types of
ports and functions. This resolution is a property of Reo itself, which has its
own notion of port data types. For this reason, we are able to reason about
the properties that characterize a port type, insofaras the releation is meaningful
to Reo itself (and not introduced only when implementing the protocol). For
example, we may reason that a ports type must facilitate its values being repli-
cated if an interaction exists that replicates a value of its type. However, Reo
does not prescribe what these types are called in the target language, nor does
it prescribe any additional relationships between them. For example, two types
distinguished by Reo may be unified in implementation.

In the sequel, we consider translation work abstract if is produces a repre-
sentation valuable to any imperative language, and concrete otherwise.

Translation Subtasks Defined

Ultimately, we partition the task of translating from RIR to Rust as four sub-
tasks, where those that are abstract precede those that are concrete:

1These abstract concepts tend to fall apart under scrutiny, as they depend on what is meant
by ‘computation’ at all. Nevertheless, this observation is helpful in the context of our problem,
as we prescribe the relationship between Reo and Rust by using the former to ‘model’ the latter.

28

3.1. STRUCTURING THE TRANSLATION PROCESS

Action Data Type
Abstract TAA: From each abstract in-

teraction, a sequence of im-
perative actions are laid out.

TAT : Ports are mapped to
data types characterized by
properties.

Concrete TCA: Abstract actions are rei-
fied into concrete, executable
Rust code.

TCT : Abstract data types are
resolved to satisfactory con-
crete Rust types.

3.1.2 Pipelining Subtasks

Code generation is an unusual problem, as it introduces a spectrum of possi-
bilities in response to questions that usually have trivial answers. For example,
in which language is a concept expressed? Reo specifies the coordination be-
havior of the generated Rust code, but (by design) nothing more. This freedom
makes room for questions of ‘where’ and ‘when’ the behavior that emerges at
runtime is made concrete.

Toward an answer, we begin by considering one of the possible extremes:
the Reo compiler performs as much of the work (i.e., as many of the sub-
tasks) as possible. Whatever behavior is desired in the executable program is
spelled out in detail, and reflected explicitly in the Rust code the Reo compiler
produces. This solution is arguably the most intuitive, and it has many ad-
vantages. For example, we are able to ‘front-load’ as much computation work
as possible, such that the generated Rust code can represent operations in a
preprocessed form. We are also given fine control over the behavior of the fi-
nal binary. However, this strength is what makes this approach impractical:
the Reo compiler’s ability to specify Rust’s behavior in detail also implies a
responsibility to do so. By reasoning about the Rust-compiled program di-
rectly, Reo must model Rust’s language and tooling environment. Recreating
this existing work is a poor use of the available software resources. Worse still,
it results in Reo compiler becoming tightly coupled to the Rust language, not
only syntactically, but in the fine-grained logic necessary for implementing our
desired performance optimizations in full detail. At the same time, all flexibil-
ity is taken away from the user; they have no ability to understand or influence
the concrete implementation themselves. Essentially, this approach trivializes
the contributions of Rust compiler.

As one might expect, the opposite extreme trivializes the contributions of
the Reo compiler. If hardly any transformations at all are applied before Rust
code is emitted, the representation can only be very similar to that of RIR. As
explained previously, these forms are simply too different for the Rust compiler
to use as-is. By necessity, either a new Rusty-RIR to Rust translation tool would
have to be introduced, or the translation would have to occur inside the Rust-

29

3.1. STRUCTURING THE TRANSLATION PROCESS

generated program at runtime. Either way, the work of performing our abstract
transformations is simply postponed to later stage in the pipeline.

Between these extremes there is a vast spectrum. Ultimately, we wish to
choose a balance that partitions the work between the compilers of Reo and
Rust in a manner that befits the interests of the language, minimizing the ex-
tent to which Reo models Rust or vice versa. Section 3.1.1 touched on the
observation that a portion of the work in translating from RIR to Rust is com-
mon to other imperative language targets. Our solution is for the Reo compiler
to perform only the ‘abstract’ subtasks (TAA, TAT), translating RIR to a form
for which imperative computation is natural, but is otherwise as agnostic to the
target language as possible. Reo emits abstract behavior for the Rust compiler
to make concrete. Clearly, this abstract representation must be understood by
both Reo and Rust compilers, as it crosses the boundary between their stages
in the pipeline. To follow, Section 3.2 defines this representation as imperative
form, embodying the behavior of an abstract imperative language.

Clearly, the Reo compiler backend itself performs the abstract subtasks, but
what exactly performs the concrete subtasks? The Reo compiler has an exist-
ing backend for generating Java code. It works by generating Java according to
the structure of a template generator, which defines a hierarchy of string macros
for formatting RIR objects in Java’s syntax. At first glance, this backend ex-
emplifies the extreme of Reo modeling the target language, performing all of
the subtasks itself. However, the extent of the associated coupling to Java is
mitigated through the reliance on a purpose-built Java library. Within, defini-
tions are provided for objects that all Reo-generated Java programs will have in
common. For example, the library defines a Component interface, for which the
code generator produces a protocol-specific implementor class. This approach
works to minimize the ‘surface’ of the generated code, by having Reo generate
behavior at a higher level of abstraction. Reo generates Java in Java-specific
terms, but must generate less overall.

Our approach follows the precedent set by the Java backend; we introduce
Reo-rs, a purpose-built Rust library which reduces the Rust-specific surface ex-
posed to the Reo compiler. Specifically, Reo-rs defines types that ‘hide’ their
Rust-specific complexities behind an abstract API. We reduce the burden on
the Reo compiler further by reducing the granularity of the protocol represen-
tation as it appears in the Rust source code; the Reo compiler emits a single
entrypoint function, which acts as a thin wrapper around the initialization of
a ProtoDef. This structure is provided by Reo-rs, and corresponds with IF, as
it is defined in Section 3.2. By expressing the protocol’s behavior in this form,
the Reo compiler takes responsibility only of the abstract transformation steps:
TAA and TAT . Rust itself completes the translation to its language specifics,
partly at compile time and partly at run time. Figure 3.1 gives an overview

30

3.1. STRUCTURING THE TRANSLATION PROCESS

Figure 3.1: The translation pipeline from the Reo compiler’s internal
representation (‘RIR’) to the executable Rust Proto object. Translation
phases correspond to subtasks defined in Section 3.1.1. The majority
of the specification is represented in the imperative form (‘IF’), which
serves as the representation at the boundary between Reo and Rust.
The boundary between compile and run time is relative to that of the
user’s Reo-coordinated program.

of the entire process from start to finish, ultimately resulting in objects which
coordinate the components of a program written in the Rust language. Sec-
tion 3.3 explains the implementation of these stages, and their relationships in
more detail.

3.1.3 Enabling Future Expansion

Previously, we observed that the translation work from Reo to its targets can
be expected to have significant overlap. For our purposes, we characterize
imperative languages by defining IF in Section 3.2, and build our translation
pipeline around its use as an intermediate representation.

Performing the translation in clear stages is beneficial to both Reo and its
target languages. The benefits to new targets is clear; they may acquire Reo
support with less effort than otherwise. Existing target languages are able to
benefit also, as they are able to implement the same IF using different con-
crete translation procedures, i.e., they may implement TCA and TCT differently.
Regardless of concrete implementation, protocol objects stemming with an IF
specification in common are safe in the knowledge that they will agree on their
abstract action sequences, and the abstract types of their ports.

For the sake of limiting the scope of the project, we relegate IF to a tool
unique to the generation of the Rust language; as far as the user is concerned,
the Rust backend emits Rust directly, which they are able to use as part of
their Rust programs. Future work may remove this restriction by having Reo
support IF as a compilation target directly. For a more detailed discussion, see
Section 7.1.1.

31

3.2. IMPERATIVE FORM

3.2 Imperative Form

In this section, we define imperative form, a novel intermediate representation of
the behavior of Reo protocols, such that they more closely correspond to their
final representation in some imperative language. In the protocol translation
pipeline, this form is the result of completing translation subtasks TAA and
TAT , as they are defined in Section 3.1.1. At this stage, we take for granted that
ports and functions have been given abstract types by the Reo compiler.

3.2.1 Concept

RIR does not ergonomically facilitate execution, primarily because it does not
define the order in which values are accessed, created and moved. Programmers
using imperative, sequential languages are very used to thinking in terms of
procedures which manipulate the state of variables in scope with the order of
actions expressed as the control flow. Often, interpreters or compilers provide
safety properties by tracing over the control flow, and emitting errors whenever
a variable access is invalid.

IF makes explicit the ordering between symbolic actions; if executed in the
specified order, it is guaranteed that (1) variable accesses are always valid, and
(2) a rule fires unambiguously; the effects of a rules actions are only observable
if and only if the rule has fired.

Rules as Transactions

RIR partitions the work of a rule into its guard and assignments. This is al-
ready a step in the direction of imperative computation, observing that some
work (the guard) must be performed prior to deciding whether the rule fires,
in which case the assignment follows. As the protocol does not define the mo-
ments when it will evaluate the guard, it is an error to define a guard whose
evaluation ‘leaks’ meaningful behavior.

We are able to interpret a RIR rule as a two-action transaction which commits
after the first, guaranteeing the second will occur. Prior to the moment of
commitment, actions are (1) obligated to have a defined means of being reversed,
undoing their observable effects on the environment, leaving no trace of their
execution, and (2) able to initiate an abort, reversing their effects. In this view,
the guard’s evaluation instigates an abort if it evaluates to false.

IF adopts the notion of ordered actions from RIR, but generalizes it to a
sequence of any length of at least one. For our purposes, it suffices to have a
fixed moment of commitment: immediately before the last action. Accordingly,
we retain the term ‘assignment’ for this last action to mirror RIR. All other
actions are transient, and behave as described above. One final stipulation is

32

3.2. IMPERATIVE FORM

needed: after an action’s effects are reversed, its predecessor action is reversed
also (if they exist). Consequently, an abort propagates up through the transient
actions in the opposite order they were originally performed, reversing all of
their effects on the state one by one. However, once the last action is reached,
the rule’s firing has committed, and the effects of all actions will be observed.

Action Granularity

IF represents a protocol’s defined interaction as actions to be computed in the
specified sequence. At this stage, our representation is still symbolic; actions
do not necessarily correspond 1-to-1 with concrete operations in the target im-
perative language, and their representation of actions is unspecified as long as
they preserve the properties of IF. We represent actions at the coarsest granu-
larity possible to avoid overspecifying the ordering of concurrent operations by
leaving for meaningful implementation choices in subtask TCA.

The simplest IF rules can be represented with a single action; implicitly, the
rule has a trivial guard (consisting of zero actions), consisting entirely of some
guaranteed assignment. For example, a rule with a trivial data constraint may
be represented as a single, trivial action; the rule always fires to no effect.

The utility of our generalization is the ability to break up a single action
into multiple in a manner we are able to represent. For example, we are able
to reason about actions that create temporary variables, corresponding to the
creation of new values at runtime. These actions may be transient, as reversal
is easily defined: discard the value. To illustrate our ability to split actions,
we represent a protocol, expressed in RBF with data constraint X = f(X) and
synchronization constraint {X} with only input (putter) port P. This rule can be
understood as “X fires if and only if the results of function f on its put value is
equivalent to the value itself”. Here, the result of f clearly cannot be inspected
until after it is computed. We are able to represent this rule with an action
sequence of length three: (1) Create temporary value fX by executing f given
argument X. (2) Trigger an abort if fX 6= X. (3) The rule has fired; do nothing
other discarding values X and fX.

3.2.2 Definition

Here we define imperative form, and explain how its definition corresponds with
the intuition behind it. Firstly, an IF contains a structure which corresponds to
a symbol table; this does the work of assigning symbolic data types to ports and
memory cells. Ports must also be annotated with an explicit orientation (i.e.,
input or output). Other symbols are also represented here, for example, the
names and the argument types for any named functions.

33

3.2. IMPERATIVE FORM

More interesting are the imperative rules listed for an IF, corresponding to
rules of an RBA or RBF. Each rule is given by a tuple (P, I,M) where:

1. Premise P
The premise is another tuple of three identifier sets (PR,PF,PE). PR is
the synchronization constraint, i.e., the set of ports identifiers whose values
must be ‘ready’. PF and PE are the sets of memory values which must be
known to be full and empty respectively, such that it is known whether
they can be read from or written to. The rule can certainly not consider
firing unless all ports are ready and all memory cells are in the specified
states.

2. Instructions I
A list of reversible instructions which are performed in sequence. These
instructions have no immediately observable effects, such that they can
be reverted in the event of an abort. Concretely, each instruction is one of:

• check(p)
Trigger an abort if predicate p over data is satisfied.

• fillP(m,p)
Fill an empty memory variable m with the result of a predicate p
over available data. The value’s data type is implicitly boolean.

• fillF(m, f,a)
Fill an empty memory variable m with the result of invoking func-
tion f with arguments a, a list of references to value identifiers with
length matching the arity of f. It is incorrect for f to mutate the val-
ues of its arguments, as this would result in observable effects which
cannot be rolled back.

• swap(m0,m1)
Swap the values in two memory variables m0 and m1.

If an abort is triggered by check, any swapped memory cells are swapped
back, and any memory cells whose values were created by fillP or fillF
are destroyed.

3. Movements M
A mapping from identifiers of values to the identifiers of getter ports and
empty memory cells (‘destinations’). This represents the final action of
an imperative rule executed if and only if the rule fires.

An imperative rule aims to model a sequential computation from top to
bottom. Instructions are able to (non-destructively) read values, create new
variables, and swap the values of variables. Starting from the premise, one

34

3.3. TRANSLATION PIPELINE

is able to populate a set of values’ identifiers in scope, and then traverse the
instructions and rules. For this reason, it is beneficial to distinguish P from an
instruction: P also establishes the initial scope.

The IF is well-formed only if no instruction no the movement is invalid.
Here, it suffices to say that validity models the usual scoping rules in an im-
perative language. For example, one cannot read from an uninitialized value.
Other restrictions are in place to ensure that instructions are always reversible.
For example, fillF may only be used if the value it populates is previously
uninitialized. The full enumeration of constraints is available in the source
code, visible in the build function of the ProtoDef type (this is explained fur-
ther in Section 3.3.3, including a listing with some example errors).

M is defined with a representation that makes it trivial to distinguish the
cases where values are discarded (0 destinations), moved linearly (1 destina-
tion) or replicated (multiple destinations). This design is convenient for lan-
guages that require their values to be more explicitly managed. For example,
languages with affine types (e.g., Rust) must simulate the replication of values
by creating new affine resources from the original, and managing the replicas
explicitly. Relevant data types (which must be used at least once [Wal05]) must
handle empty destination sets by either emitting errors, or by simulating de-
struction.2 There are many other reasons a language may want to specialize
the way its values are used. For example, an implementation in C++ may need
to inject free calls to avoid leaking memory in cases where pointer-values are
discarded.

As an example to demonstrate IF, the RBA rule in the previous section with
data constraint X = f(X) and synchronization constraint {X} can be represented
in the imperative rule with:

value
premise ({X}, {}, {fX})

instructions [fillF(fX, f, [X]), check(X = fX)]
movements {X→ ∅, fX → ∅}

3.3 Translation Pipeline

This section details the implementation of the translation pipeline from RIR
of Reo protocols to executable Rust. The section is structured to describe the
translation process as a sequence of sequential stages. Unbeknownst to the
user, the pipeline extends well after the Reo compiler has emitted Rust code.

2A relevant language may simulate the destruction of a value by moving it to some Destroyed

destination with special semantics.

35

3.3. TRANSLATION PIPELINE

Subsections are titled according to when the translation takes place, and are
presented in the order they are performed.

3.3.1 At Reo Compile-time

The Reo compiler is extended with a backend for translating RIR to a Rust
source file. This translation stage is concerned with performing TAA and TAT ,
and representing them as a single rust entrypoint function in the emitted Rust
source. The user is able to import this source as a dependency into their own
project, whereby the entrypoint serves as a means for their program to construct
the executable protocol object.

Action Sequencing

TAA necessitates transforming a each of the protocol’s rules into a sequence
of symbolic actions. The most significant work occurs as a result of how dif-
ferently values are represented. RIR is declarative, representing the result of a
rule’s firing as an assignment, mapping each destination (getter port and empty
memory cell) to a Term. RIR already represents a significant transformation
from RBF in isolating these values on a per-destination basis.

To begin, we describe the naïve approach to translate RIR to IF, one rule at a
time. The translation procedure initializes all three fields {P, I,M} of an imper-
ative rule as initially empty, and populates them incrementally by recursively
traversing the RIR rule’s assignments. Each such assignment is ultimately rep-
resented in M, where terms are rather represented by identifiers. For some
terms the mapping to identifier is trivial. For example, the value put by a port
can use the identifier of the port itself. For others, it may be necessary to in-
troduce fresh identifiers, representing temporary variables to be created. In
either case, the term is traversed recursively to (1) collect these identifiers, and
to (2) populate the premise P such that the rule is fired given access to all of
the relevant memory cells and ports.

I is populated last by three kinds of actions. Firstly, the exceptional cases for
which memory variable q will be both read and written to are treated. If nec-
essary, a fresh temporary variable is introduced by appending an instruction
swap(q,qtemp) where qtemp is some fresh (uninitialized) variable; q’s previ-
ous and next values may be read and written unambiguously, distinguished by
identifiers qtemp and q respectively. Second, I is appended with fillP or fillF
instructions to create every other temporary variable in a manner befitting the
term that represented them in the RIR’s assignments, i.e., the result of invoking
a function with port values as arguments. Finally, I ends with a single check
to evaluate the rule’s guard, initiating an abort if it is evaluates to false.

36

3.3. TRANSLATION PIPELINE

As it was described thus far, our procedure is able to correctly render any
RIR rule in IF with the necessary properties. For the sake of minimization or
performance at runtime, at least three optimization opportunities may elabo-
rate on this procedure, producing semantically-equivalent results.

1. Terms that occur repeatedly within assignments throughout the same RIR
rule may have their values deduplicated by assigning them all the same
identifier. Care must be taken to ensure that the instruction to create its
value is inserted only once, sufficiently early that its creation precedes its
earliest access. Note that each original occurrence still corresponds with a
destination in the resultant M mapping. To clarify, consider the example
with getter ports A and B both assigned terms corresponding to f(C)
where f is some function and C is a putter port. Here, one temporary
variable fC to store the result of f(C) is sufficient; it is simply moved to
two distinct destinations, reflected by the mapping fC → {A,B} in M.

2. The large, monolithic check instruction that acts as a guard to the rules
firing can be fragmented into numerous guard instructions. The utility
of this is the ability to specify how its parts are ordered. For best results,
it is beneficial to move checks as early as possible, such that less work
is performed prior to an abort whenever the check fails at runtime. To
be correct, care must be taken not to move guards so early such they
precede the creation of any temporary variables their evaluation accesses.
For example, consider an RIR whose guard is A∧ B, where A and B are
subformulas that reason about subterms whose evaluation necessitates
the creation of temporary values tA and tB. By fragmenting check(A∧B)
into check(A) and check(B), we are able to move the former such that it
follows the creation of A, but not of B. Effectively, the rule is able to short
circuit its evaluation at runtime, circumstantially avoiding the creation
and destruction of the temporary value identified by tB.

3. Static analysis of values may conclude that a check instruction is a tau-
tology, making it safe to omit. Similarly, the presence of even one con-
tradictory check makes it possible to discard the rule entirely (as it will
never fire). This optimization is particularly useful in combination with
optimization (2).

Type Classification and Constraining

Our backend performs task TAT to generate the IF such that the identifier of
every port, memory cell, and temporary variable is assigned a symbolic type
annotation, such that:

37

3.3. TRANSLATION PIPELINE

1. the types of identifiers match if they exchange values or are checked for
equivalence.

2. data types are boolean if they occur in a context in which only boolean
types are permitted, i.e., as the predicate of a formula.

3. the type is constrained by properties which guarantee the type defines
operations which Reo may apply to its values.

Ultimately, ports and functions are mapped to a set of symbolic types, each
of which is annotated with properties. These properties cover the most funda-
mental ways Reo interacts with values of a data type, aside from moving them
through ports (which we assume to be inherent to all port types). Namely, the
values of a type may be constrained such that its value may be (1) replicated,
(2) checked for equality, returning a boolean value, (3) initialized from a given
string, i.e., parsed.

Our backend performs this work in tandem with the work of TAT described
in the previous section. Initially, every identifier is assigned a fresh symbolic
type with no properties, representing a data type unrelated to any other, and
having no need of any defined operations. In traversing the RIR rules, prop-
erties are collected and associated to the relevant types. In some cases, a rela-
tionship between identifiers causes their types to be unified, resulting in a new
type with the union of their properties. For example, a data movement from
putter P to getter G unifies their types. If the requirements on types are contra-
dictory, an error is emitted by the Reo compiler. For example, it is an error to
provide types A and B with different explicit data type annotations, yet have
them exchange data. Ultimately, the constructed IF associates a symbolic type
with every mapping in its symbol table.

Rust Formatting

Once all the data has been prepared, the Reo compiler emits its contents for-
matted according to Rust’s syntax. Listing 11 gives an example of the result: a
single instantiate function reflecting the cumulation of the work of this phase.
This function serves as the user’s entrypoint for creating protocol instances
with the corresponding behavior. Observe that in this example, a single sym-
bolic data type T was identified, and annotated with property FromStr (which
ensures the type can be parsed from a given string). As expected, the major-
ity of the information is contained in the ProtoDef type (beginning on line 5),
which is nothing more than a Rust-formatted rendering of the protocol’s IF
behavior specification. The sections to follow explain what happens next.

38

3.3. TRANSLATION PIPELINE

3.3.2 At Rust Compile-time

A Rust programmer makes use of the generated Rust code by importing it into
their own program as a library. To interface with its contents, they are required
to import Reo-rs as well. Section 4.3.1 explains the API this library presents to
users for acting on these protocol objects from their own code.

As the name suggests, the instantiate function serves as the user’s entry-
point for instantiating protocol objects. This function is invoked from their own
Rust code in the usual way. Previously, Section 3.3.1 explained that the output
of the Reo compiler is a Rust source file containing a single entrypoint func-
tion. Rather than implementing it ourselves, our solution is for the definition
of this function to effectively delegate subtask TCT to the Rust compiler itself.
From the user’s perspective, the entrypoint is a function like any other; at the
call-site within their own programs, they are able to specify concrete choices
for the generic types themselves (Section 2.2.2 explains how Rust dispatches
generic functions). This approach has three benefits: (1) We make use of an
existing resource, which is not only easier, but is also good practice as it avoids
the fragility that would otherwise follow from redundancy, (2) the result is id-
iomatic for the Rust language, and ergonomic for users to use in conjunction
with other generics in their own programs, and (3) once Reo has emitted the
entrypoint, a Rust programmer is able to use it to construct protocol instances
for any choice of concrete types.

Using the Rust compiler in this way is achieved by the Reo compiler craft-
ing the entrypoint such that its generic type arguments are annotated with the
appropriate Rust trait bounds. In effect, we communicate to the Rust compiler
the operations which the user’s code chosen types must support. Line 2 in List-
ing 11 gives an example of a Reo-generated entrypoint function, instantiate,
where T is expressed with a trait bound FromStr.

3.3.3 At Application Runtime

The user’s program has been compiled by the Rust compiler, the resulting
binary can be directly executed. Whenever the entrypoint function is exe-
cuted, an instance of Proto is constructed and returned, indirected behind a
ProtoHandle. These types and how they work to implement their associated
Reo protocol at runtime is explained in Section 4.3. Here, it suffices to say that
all Reo-generated entrypoints return the same Proto type, but the behavior and
interfaces of these instances vary to reflect that of their specification. The final
subtask of protocol translation, TCA, occurs at runtime, in the execution of the
entrypoint function itself. Owing to Rust’s imperative nature, what happens
next occurs a sequence of four distinct steps, resulting from the four distinct
variables initialized in the body of instantiate in Listing 11.

39

3.3. TRANSLATION PIPELINE

Type Erasure: type_info

To make it possible to represent any and all protocol objects with the single
Proto type, it is necessary to erase the types of port values and functions, rep-
resenting their types as data instead. Reflection is the counterpart to this oper-
ation, allowing the port types of Proto objects to be distinguished at runtime;
this occurs elsewhere, and is explained in Section 4.3.4 in the following Chap-
ter. As can be seen in the example, this first step is trivially represented by the
Reo compiler, relying on the definition of TypeInfo in Reo-rs.

Memory Initialization: mem_init

In the original textual Reo specification, the initial values of a protocol’s mem-
ory cells is defined by strings (as a result of the textual syntax). To afford the
user’s choice of arbitrary types, we require that the original text can be trans-
lated into a value of the correct type to initialize the protocol’s memory cells.
Rust defines the FromStr trait to characterize types which have the property
that their instances can be constructed by parsing a string at runtime. The en-
trypoint function is safely able to rely on the corresponding from_str operation
to be defined for the type, as care was taken to include FromStr as a type con-
straint. These constraints are based on Rust’s trait system (see Section 2.2.2),
and correspond with the symbolic type properties explained in Section 3.3.1.
The result is a MemInitial structure, which stores instances of initialized mem-
ory variables.

Imperative Specification: proto_def

As explained previously, the Reo backend embeds the imperative form speci-
fication in Rust’s syntax such that the result is a dependency which the Rust
compiler can understand. At runtime, this step necessitates that a ProtoDef

instance be built, only to be read on the next line and subsequently discarded.
Conceptually, this step could be performed at compiler-time by defining the
ProtoDef in terms of types that the Rust compiler is able to evaluate at compile
time (embedding it into the text section of the binary). This would avoid the
work of constructing the ProtoDef with every instance, as (to follow) we see that
one ProtoDef is able to instantiate any number of Proto instances. Instead, this
object defined such that it requires some simple initialization at runtime. The
overhead is inconsequential, particularly as instantiate is not a performance-
sensitive function. However, the benefits of this dynamic definition are the
ability to manipulate these definitions at runtime.

40

3.3. TRANSLATION PIPELINE

Construction: built_proto

The combination of ProtoDef and MemInitial represent (a specification of) the
behavior, and initial state of an executable protocol object respectively. The
final step is to put it all together and perform the only remaining subtask: TCA.
Reo-rs encapsulates this work in the build method defined for the ProtoDef

type, visible in Listing 11 on line 32.
Completing subtask TCA in this context consists of (1) initializing a protocol

object complete with auxiliary bookkeeping structures, and (2) implementing
the behavioral specification.

Our design for the implementation of executable protocol objects relies on
a lightweight interpreter, which traverses a terse datastructure whose contents
correspond to IF rules. For this reason, we are able to delay TCA until the
program’s runtime. Section 4.3.2 explains how they function at runtime. Here,
we focus on how the Proto structure is initialized.

Many of the fields of Proto are included to facilitate the granular opera-
tions that are defined by Reo-rs, without a clear parallel in the imperative form
specification. Nevertheless, their presence is essential at runtime: for example,
semaphores and control message channels. The fields that remain correspond
to definition of the ProtoDef. Both its symbol table, and its rules are incorpo-
rated into the Proto instance after they undergo preprocessing, which performs
two vital functions:

1. Optimize Representation for Execution
Proto represents the ultimate departure from the initial Reo specification.
in Chapter 4 to follow, we explain how the contents of Proto are accessed
directly while in use as a communication medium at runtime. Due to
their different purposes, these types have different representations, each
specialized to its own purpose. Where ProtoDef prioritizes terseness and
readability in the use of symbolic port and function names, the translation
to Proto resolves them to concrete data structures for cheaper access, e.g.,
indexes into a vector replace symbolic port names.

2. Ensure Internal Consistency
As Reo’s backend for Rust is under our control, we are safe in the pre-
sumption that the Reo compiler can be trusted to create only internally
consistent ProtoDef structures. However, the code generation process
crosses a boundary between two compilers, and is designed to minimize
their coupling by condensing the data that passes between them. As is
good software development practice, Reo-rs works to minimize its de-
pendency on the Reo compiler. In particular, Reo-rs avoids assuming that
the Reo-generated ProtoDef describes some valid, sensible protocol. This

41

3.3. TRANSLATION PIPELINE

precaution is motivated because IF simply exposes more opportunities
for inconsistencies than RIR (owing to its increased explicitness), which
may cause modifications to the Reo compiler to introduce bugs.3

To make error handling ergonomic, Reo-rs adheres to Rust’s idiom for er-
ror handling. In the event that an inconsistency is detected during build,
an error variant is returned with information about the inconsistency.
Listing 12 shows the resulting type signature of build, including some
examples of possible error variants.

Listing 11 demonstrates how the result of build is returns the resulting pro-
tocol object. Observe that it is returned indirectly, represented by a ProtoHandle.
The relationship between these objects and the definition of their behavior at
runtime is detailed in Chapter 4 to follow.

3A user may tamper with their Reo-generated Rust code such that a different, consistent pro-
tocol results. We cannot distinguish this from intended behavior, and so users take responsibility
for their own misfortune in tampering with generated code.

42

3.3. TRANSLATION PIPELINE

1 use reo_rs::*;

2 fn instantiate<T: FromStr>() -> ProtoHandle {

3 let type_info = TypeInfo::of::<T>();

4 let mem_init = MemInitial::default().with("m", "VALUE".from_str());

5 let proto_def = ProtoDef {

6 name_defs: {

7 "A" => Port { putter: true, type_info },

8 "B" => Port { putter: false, type_info },

9 "m" => Memo(type_info),

10 },

11 rules: [

12 RuleDef {

13 premise: Premise {

14 ready_ports: {"A"},

15 full_mem: { },

16 empty_mem: {"m"},

17 },

18 instructions: [],

19 movements: { "A" => {"m"} }

20 },

21 RuleDef {

22 premise: Premise {

23 ready_ports: {"B"},

24 full_mem: {"m"},

25 empty_mem: { },

26 },

27 instructions: [],

28 movements: { "m" => {"B"} }

29 }

30],

31 };

32 let built_proto = proto_def.build(mem_init).unwrap();

33 return built_proto;

34 }

Listing 11: The Reo-generated Rust source given the fifo1 connector’s
Reo specification as input. Section 3.3 explains how this representation
bridges the gap between the Reo and Rust languages. The ProtoDef

type on line 5 specifies the protocol’s behavior in imperative form, as it
appears embedded into Rust’s syntax.

43

3.3. TRANSLATION PIPELINE

1 fn build(&ProtoDef, MemInitial) -> Result<ProtoHandle, BuildError>;

2

3 type BuildError = (Option<usize>, BuildErrorInfo);

4 enum BuildErrorInfo {

5 MovementTypeMismatch { getter: Ident, putter: Ident },

6 ConflictingMemPremise { name: Ident },

7 PutterCannotGet { name: Ident },

8 GetterHasMuliplePutters { name: Ident },

9 InitialTypeMismatch { name: Ident },

10 GetterHasMultiplePutters { name: Name },

11 EqForDifferentTypes,

12 CheckingNonBoolType,

13 /* 12 more variants */

14 }

15 type Ident = &'static str; // static string literal type

Listing 12: Signature of the build function. Its inputs are (1) an im-
mutable reference to a ProtoDef, which is used to determine the pro-
tocol’s behavior, and (2) a MemInitial, which stores initialized memory
cells to be incorporated into the protocol’s state. The return result is an
enumeration type, returning ProtoHandle upon success, and a tuple on
failure, whose elements are, respectively (1) the index of the imperative
rule where the error occurred, if applicable, and (2) BuildErrorInfo, an-
other sum type communicating the nature of the error with additional
information.

44

Chapter 4
Protocol Runtime

Previously, Chapter 3 described how a Reo protocol specification is translated
by the Reo compiler into the Rust language as an executable protocol object. In
this chapter we discuss how these objects are able to act as the communication
medium between a set of communicating components. This approach allows
the user’s component code to exchange data with its environment through the
protocol object’s exposed ports. Recall that components make no assumptions
about the world beyond their ports, and consequently, have no notion of the
system in which they play a part. From a user’s perspective, ports are en-
tirely opaque, and their components may use them to exchange data with their
environment without any concern for global coordination.

Internally, protocol objects orchestrate the actions on their boundary ports
into interactions defined by its protocol specification. As much as possible,
the protocol will work to facilitate data flow. However, whenever a boundary
port initiates an action which does not yet fall into a suitable interaction, the
protocol exercises its power to block its completion until the time is right.

Section 4.1 begins by examining the Reo-generated protocol objects for the
Java language, allowing us to use this previous work as a touchstone for our
own. Within, Section 4.1.3 observes opportunities for our implementation to
improve upon it by the addition of safety properties, and exploiting opportu-
nities for optimization. Section 4.2 makes our goals explicit by defining the
requirements and guidelines used to inform our design process and determine
the assumptions used to facilitate out implemented optimizations. Section 4.3
follows with the implementation of the Reo-rs library, which defines our pro-
tocol and port objects. Within, Section 4.3.1 explains how we leverage Rust’s
affine type system to expose a safe user-facing API. Sections 4.3.2–4.3.4 explain
how the protocol object behaves at runtime, detailing the implementation of
optimizations which enable it to (1) coordinate actions without needing a ded-

45

4.1. EXAMINING THE JAVA IMPLEMENTATION

icated thread, (2) increase parallelism by delegating data movement to compo-
nent threads, and (3) internally perform reference counting and reference pass-
ing while preserving Reo’s semantics. Finally, Section 4.4 gives an overview of
how our requirements and guidelines are satisfied, including references to the
sections containing the relevant details.

4.1 Examining the Java Implementation

The Reo compiler has seen extensive development for its Java code generator
in particular. In this section, we examine the properties of the source code it
generates. Later, Section 4.1.3 makes particular note of opportunities for our
own version to improve upon this design, or at least deviate to the end of
specializing its implementation to better suit the Rust language.

4.1.1 Architecture

Fundamentally, the generated code adheres closely to Reo’s literature, revolv-
ing around the interplay between implementors of the Port and Component in-
terfaces. (For brevity, we will refer to classes that implement these interfaces
by these names also). From the perspective of a programmer, the entrypoint is
the constructor of a generated protocol Component.

Running a system requires an initialization procedure: (1) a Port is instanti-
ated per logical port, (2) a Component is instantiated per logical component, and
(3) pairs of components are linked, by overwriting a port field for both objects
with the same instance of Port. To get things going, each component must be
provided a thread to enter it’s main loop; in idiomatic Java, this manifests as
calling new Thread(C).start() for each component C. A simplified example
of the initialization procedure is shown in Listing 13 for the simple sync pro-
tocol. Observe that the data type of the ports (here, String) are represented in
the generic argument of Port.

The design revolves around Port as a communication primitive between
threads, and equivalently, between components. As such, ports themselves
are the critical region, with contents only accessible to the holder of its lock.
In contrast, Components are used only to store their ports and to be used as
namespaces, the static environment within which their behavior is defined by
the run function. In the case of the Reo-generated protocol component, the
contents of run implements its Reo specification, with logic broken into the
rules, assignments, and guards reminiscent of RBAs. Essentially, any behavior
that interacts with a Port can be considered a component, whether or not it
implements the Component interface.

46

4.1. EXAMINING THE JAVA IMPLEMENTATION

1 Port<String> p0 = new PortWaitNotify<String>();

2 Port<String> p1 = new PortWaitNotify<String>();

3

4 Sender c0 = new Sender();

5 Receiver c1 = new Receiver();

6 Sync c2 = new Sync();

7

8 p0.setProducer(c0); c0.p0 = p0;

9 p0.setConsumer(c2); c2.p0 = p0;

10 p1.setProducer(c2); c2.p1 = p1;

11 p1.setConsumer(c1); c1.p1 = p1;

12

13 new Thread(c0).start();

14 new Thread(c1).start();

15 new Thread(c2).start();

Listing 13: A simplified example of initialization for a system centered
around a Sync protocol object, which acts as a channel for transmitting
objects of type String. Both ports and components are constructed be-
fore they are ‘linked’ in both directions: each port stores a reference
to its components, and each component stores references to its ports.
The system begins to run when each component is given a thread and
started.

4.1.2 Behavior

The representation of protocol rules is very intuitive; a rule is implemented as
a block of code which operates on a component’s ports. Once generated into
Java, the only obvious sign that a component was generated from Reo is its
linkage to multiple other components. The (simplified) generated Component

code of sync, seen previously, is shown in Listing 14. This demonstrates that
rules are indeed commandified, i.e., their behavior is encoded as discernible data
structures (appropriately called Command).

The behavior and structure of a component go together, and are generated
by Reo at a relatively granular level. As such, the encoding of memory cells
is natural also. Components represent memory cells as fields, and use null to
represent emptiness, i.e, the absence of a data element.

4.1.3 Observations

Reo-generated Java objects have a very clear correspondence to their declarative
Reo specification. This carries over to how components and ports are used
by an application developer. For example, Port objects act both as points of

47

4.1. EXAMINING THE JAVA IMPLEMENTATION

1 private static class Sync implements Component {

2 public volatile Port<String> p0, p1;

3

4 private Guard[] guards = new Guard[]{

5 new Guard(){

6 public Boolean guard(){

7 return (p1.hasGet() && (!(p0.peek() == null)));

8 } }, };

9

10 private Command[] commands = new Command[]{

11 new Command(){

12 public void update(){

13 p1.put(p0.peek());

14 p0.get();

15 } }, };

16

17 public void run() {

18 int i = 0;

19 while (true) {

20 if(guards[i].guard())commands[i].update();

21 i = i==guard.length ? 0 : i+1;

22 synchronized (this) {

23 while(true) {

24 if (p1.hasGet() && (!(p0.peek() == null))) break;

25 try {

26 wait();

27 } catch (InterruptedException e) { }

28 } } } } }

Listing 14: A simplified example of a Reo-generated Java protocol
class for the sync connector. By convention, it is started by invoking
start, which is a method inherited from the Runnable interface which
Component extends. This method assumes that all ports are correctly
initialized and linked to another ‘compute’ port. Its RBA-like behavior
comes from an array of guards and commands which it iterates over in
a loop, firing rules as possible forever.

data exchange and as primitive concurrency mechanisms aligning put with
get. From this design, we observe the following noteworthy properties:

1. Protocol Event Loop
Protocols are fundamentally passive in that they do not act until acted
upon. Nevertheless, protocols each have their own dedicated thread that
waits in a loop for a notification from its monitor. Notifications origi-
nate from a component’s own port in the event of a put or get invoca-
tion. For this reason, protocols and components are related in both direc-

48

4.1. EXAMINING THE JAVA IMPLEMENTATION

tions, afforded by setting a port variable in one direction, and functions
setProducer and setConsumer in the other. This is visible in Listing 13 on
lines 8–11.

True to the RBA model, the protocol must check which (if any) commands
can be fired continuously. The running thread achieves this by evaluating
all guards and firing rules as possible. If no progress can be made, the
thread awaits a notification. This is unfortunate, as this approach requires
guards to be evaluated repeatedly, which can be arbitrarily expensive. As
the protocol relies on the actions of other components to make progress,
it is counterproductive for it to spend a lot of system resources evaluating
guards to false. In cases where threads must share processor time, the
excessive work of the protocol component will begin to get in the way of
other components making progress, in turn leading yet more guards to
evaluate to false.

2. Reference Passing
Java is a managed programming language whose garbage collector is cen-
tral to how the language works. To support the transmission of arbitrary
data types, Port is generic over a type. The language only supports this
kind of polymorphism for objects. Unlike primitives (such as int), the
data for objects is stored on the heap and is garbage collected by the Java
Virtual Machine (‘JVM’). Variables of such objects are therefore moved
around the stack by reference. Moving and replicating values is cheap
and easy, as they always have small (pointer-sized) representations.

As is usual for Java, generics may only be defined for classes that in-
herit from Object (excluding primitives such as int and float). As is the
idiom, primitives are represented by immutable object classes (Integer,
Float, etc.) in these cases. Users are not able to transmit small values
without introducing this indirection. The storage that backs their prim-
itive is also out of their control, and is decided by the JVM. As a conse-
quence, transmitting even primitive values through ports may result in
heap-allocation. This aspect of the generated Java code will require the
most change for the Rust version, as Rust has a very different model for
memory management; it does not use a garbage collector by default, and
structures are stored first and foremost on the stack as in the C language.

3. Two Hops for Data
As protocols are components like any other. Consider a protocol P with
boundary components A and B. Data transmitted from A to B requires
values to hop at least twice: A → P, and P → B. Fortunately, as stated
above, the cost of the ‘hop’ itself is trivial, as only the pointer-sized refer-
ence is moved. The real problem is the overhead resulting from the hop

49

4.1. EXAMINING THE JAVA IMPLEMENTATION

requiring three threads to exchange data in series. If this movement is
defined as within a synchronous interaction, the round trip holds up P’s
execution of the rule, and the entire system around it.

4. Vulnerable to User Error
The construction and linking of components with ports is not something
the protocol itself is concerned with. Indeed, every component assumes
that their port variables will be initialized by their environment. At the
outermost level, this environment is in the application developer’s hands.
Components make no attempt to verify that they are correctly linked
according to the specification; currently, there is not any infrastructure in
place to support this checking if it were desired. As a result, it is possible
make mistakes such as fusing two of a protocol’s ports into one. Whether
this is a problem worth solving depends on the burden of responsibility
that Reo intends to place on the end user. These difficulties cannot be
completely avoided, but approaches exist to minimize these opportunities
for mistakes.

While ports are clearly directional ‘from the inside out’ (ports store dis-
tinct references to their producer and consumer components), the same is
not so ‘from the outside in’. Neither of a port’s components is prevented
from indiscriminately calling put or get. The assignment of a port’s val-
ues for ‘producer’ and ‘consumer’ component is in user space also. As
a consequence, these fields may not agree with the components that in-
teract with the ports at all. In fact, any number of components may store
a reference to a port, each arbitrarily calling put and get. If done un-
intentionally, this would lead to lost wakeups, where the thread blocking
for a notification differs from the thread receiving the notification, and so
never wakes up. Java solutions exist to wrap ports in objects that con-
strain the API such that a component is only permitted to use the port
as intended (e.g., putters can put, but not get). However, without affine
types, there is no obvious way to ensure that each port is used by at most
one putter and one getter.

5. Port Data Aliasing
In Reo, it is common for connectors to replicate port data. Owing to
the nature of Java, this is currently achieved by duplicating references.
Replication of references is called aliasing, as the referent is accessible via
multiple bindings (‘aliases’). If no referee can observe the presence of
another, aliasing is not a problem. This is the case for some objects. As
an example, Integer is an immutable object which also does not define
any behaviors that can lead to further aliasing. This is not the case in
general. Objects often facilitate the mutation of their fields, or define

50

4.1. EXAMINING THE JAVA IMPLEMENTATION

methods which access other objects which do. When accessed by multiple
threads in parallel, this can result in undefined behavior in the user’s
program. This contradicts Reo’s value-passing semantics. Users cannot
interact with values they acquire through ports without knowledge of
their environment, as they cannot otherwise be sure if operations on these
values are safe.

The Rust compiler statically enforces the impossibility of data races (see
Section 2.2.2). Safe reference-passing between threads is nontrivial in
Rust; users typically rely on thoroughly engineered libraries to provide
safe abstractions for such things, rather than implementing the primi-
tives themselves by introducing and managing unsafe code. Section 4.3.1
explains our solution for preserving Reo’s semantics.

6. Non-Terminating Protocols
Currently, Reo-generated protocol objects loop forever unless they raise
an exception and crash. For protocols that can perform actions with ob-
servable side effects in the absence of other components, this is perhaps
a good idea. However, in the majority of realistic cases, protocols are
indeed passive, and cannot do meaningful work as the only component.
Reo semantics tend to reason about infinite behaviors. However, real pro-
grams often do end, and it is desirable that the program’s exit is not held
up by an endlessly-blocked protocol thread.

7. Linked Protocols Deadlock
Section 2.1.3 explains that RBAs in our context do not work as acceptors
of observed port values. Instead, they distinguish guards from assign-
ments such that they can perform an active role in deciding the system’s
next state. In implementation, this manifests as protocol threads being
passive, reacting to the actions on their boundary ports. Concretely, the
protocol will rely on the ability to peek into the contents of a port, al-
lowing it to reason about a value before it has been transmitted. In this
manner, protocols rely on the ability to impose synchrony on the actions
at their boundary. When two protocol components are linked by a port,
each will passively wait for the action of the other. No protocol will act
‘first’. The problem of dynamic synchronous decomposition necessitates
each protocol participating in difficult distributed problem solving. The
solution is not present in the Java implementation, and is out of the scope
of our work as well. The problem here is one of safety: the Java imple-
mentation permits the linkage of two protocols, despite their behavior
being incorrect.

51

4.2. REQUIREMENTS AND GUIDELINES DEFINED

8. Sequential Coordination
The Java implementation is structured such with ports being the critical
region between components. As protocols have multiple ports, at first
glance it may appear that coordination events could occur in parallel.
However, no communication through protocol P happens without the
single thread in P’s run method. Indeed, put and get operations can be
started in parallel by the boundary components, but P can only complete
it’s half of these operations sequentially. In effect, a Reo-coordinated sys-
tem is bottlenecked by the protocol component. Each rule’s firing is a
substantial task, and only one is able to occur at a time.

4.2 Requirements and Guidelines Defined

Following the observations of Reo-generated Java objects in Section 4.1, we
identify and make explicit the design choices and goals that inform the design
and implementation of our own protocol objects for the Rust language. First,
we identify a number of functional requirements, representing the goals which
can be assessed for satisfaction unambiguously.

Rvalue Preserve Reo’s value passing semantics. No user interaction should con-
tradict these semantics. This precludes data races as a result of aliasing
values which the user considers to be independent.

Rinit Prevent the protocol from being initialized in an inconsistent state. Pre-
vent port objects from being unitialized, unsafely accessed in parallel, or
incorrectly connected to the protocol.

Rffi Facilitate a foreign function interface with other systems languages C
and C++. Ports and protocol objects should be accessible from those
languages as well as Rust, such that they can be constructed, used and
destroyed.

Not all useful properties can be meaningfully quantified by strict require-
ments. We identify a set of guidelines intended to focus the design process,
and to form a basis for the assumptions that make meaningful optimizations
possible. By their nature, these guidelines cannot be clearly satisfied. Instead,
the extent to which guidelines are satisfied is motivated by argumentation, and
supported by experimental evaluation in Chapter 5 where applicable.

Gdata Allow the transmission of large data types without requiring the user to
move them from the stack to the heap. Minimize the number of times
data must be moved in memory such that data transmission remains per-
formant for types with large representations.

52

4.3. PROTOCOL OBJECTS

Gfast Minimize the overhead of control operations for the protocol object to
route payloads and perform bookkeeping. In particular, minimize the
cost of evaluating the rules before one is selected for firing.

Gend Facilitate a correct and ergonomic means of detecting the termination of a
protocol object, i.e., protocol objects for which no more rules can be fired.
Facilitate the protocol object being destroyed and its resources freed.

4.3 Protocol Objects

Here, we detail the structure and behavior that cause our Rust protocol object
type, Proto, to coordinate the actions of boundary ports at runtime in accor-
dance with its associated Reo specification. Section 4.3.1 details the user-facing
API, explaining how its helps to provide safety properties. Protocol objects of-
fer an expansive design surface, and so Section 4.3.2 relates our implementation
at a conceptual level to that of the Java version that came before. Section 4.3.3
lays out the structural definition of Proto, which is relevant for understanding
its connection to the code generation process and imperative form explained in
Chapter 3. Finally, Section 4.3.4 details the implementation of Proto’s behavior
at runtime, explaining the roles of the boundary components, how actions are
arranged into interactions, and the effects of our implemented optimizations.

4.3.1 Application User Interface

The Reo compiler generates protocol descriptions in imperative form, which
then are transformed by Reo-rs into runnable objects. The user interacts mostly
with Reo-rs itself, and Reo provides only the entrypoint function for building
particularly instances of protocol object (explained in Section 3.3). In this sec-
tion we explain which functionality of Reo-rs is user-facing, and explain how
the API helps to satisfy our requirements.

Construction and Destruction

Reo-rs is built to interface with the Reo compiler, but it is not dependent on
it. The entry point for protocol objects is the ProtoDef type, which is a con-
crete realization of the (logical) imperative form. For a concrete example, the
previous chapter includes Listing 11, showing the ProtoDef for the fifo1 con-
nector. Regardless of whether the constructed ProtoDef was Reo-generated, it
is instantiated along with any initial memory cells (in the MemInitial structure)
to produce a ProtoHandle. This type has a small, pointer-sized shallow repre-
sentation (i.e., 32 or 64 bits) to the Proto structure on the heap. The handle is

53

4.3. PROTOCOL OBJECTS

opaque to the user, at first glance offering no functionality other than replica-
tion (safely aliasing the Proto) or destruction. If the the last handle to a Proto

instance is destroyed, all of its resources are freed. This is achieved by relying
on Rust’s canonical Arc type (‘atomic reference-counted’) from the standard
library for the definition of ProtoHandle.

The protocol remains inert until the user acquires some of its ports. How-
ever, they cannot be constructed independently. Instead, the user must invoke
claim method of a ProtoHandle, which is parameterized by the port’s logical
name; this corresponds with the symbolic name as it appears in the imperative
form. By encoding both its orientation (i.e., Putter or Getter) and its data type
as type parameters for each port object, claim is able to reflect on these proper-
ties and return an error (Section 2.2.2 explains how Rust represents exceptions
with enumeration types) if they incongruous with the protocol’s definition, or
if the port of that name is currently claimed. Similarly, port objects notify their
ProtoHandle that their name is again available to be claimed in the event of
their destruction. All together, this API is able to guarantee that (1) every log-
ical port has at most one port object at once, and that (2) the types of ports
enforce that their orientation and data type align with their specification.

Proto objects are stored on the heap, but their ownership is shared between
all of their existing ProtoHandle replicas. Internally, ports contain a ProtoHandle

each also. The Arc within ensures that these handles are moved, acted upon
and destroyed in a thread-safe manner. A Proto instance is destroyed when its
last handle is destroyed, freeing all of its resources in the process. Proto objects
do not rely on any static variables, allowing any number of them to be in-
stantiated and used throughout a program without them interfering with one
another’s execution (except, of course, their sharing of the underlying hard-
ware resources).

Port Operations and Variants

The API that defines put and get operations for ports is partitioned over port
types in the expected way. Concretely, ports are represented in Reo-rs by dis-
tinct types Putter<T> and Getter<T>, each generic over their data type, T. Ap-
propriately, get is only defined for getters, and put is only defined for putters.
In both cases, the operations rely on Rust’s borrowing rules to ensure that even
if the port objects is shared within the user’s program, it is impossible to act
on a port from two threads concurrently (without circumventing the Rust com-
piler with unsafe operations). For example, the signature of get is specifies that
the getter is accessed via a mutable reference1 (written &mut).

1This terminology is often confusing; despite the name, ‘mutability’ is more often used to
mean ‘mutually exclusive’, as is the case here. The Rust compiler will only permit this operation
in a context where it is certain that the port is not concurrently being used elsewhere.

54

4.3. PROTOCOL OBJECTS

The get operation blocks the calling thread until an element of type T is
returned. Users are able to customize their involvement in the interaction by
invoking one of get’s variants. For example, get_timeout blocks the thread up
to a specified timeout, and returns an Option<T> to distinguish success from
failure. The latter case represents the failure to participate in an interaction, al-
lowing the caller to reclaim the control flow and continue working. Getters also
have the option of calling get_signal, which expresses a wish to participate in
an interaction, but no desire to acquire the value itself. The utility of this option
is that Reo-rs will alter its behavior to potentially avoiding a clone operation,
or other associated overhead (explained in Section 4.3.4). The effects of this
variant on performance are shown in Section 5. Finally, get_signal_timeout

combines the functionalities of the other operations as expected.
Putters have access to put_timeout, which varies from put as before. Both

operations have the potential to return the putter’s value. This may occur even
if the value was involved in an interaction, but was not acquired by any getters.
Returning the value allows the user’s program to decide what to do with the
value. For example, a user may decide to put the value again until it is read. If
this behavior is undesired, putters offer the put_lossy and put_timeout_lossy

variants which will not return the value regardless of the actions of getters,
dropping it if needs be.

Value-Passing API Semantics

The Rust language conflates the movement of values to new variable bindings
with two meanings: (1) the value’s ownership is transferred to the new binding
and scope, and (2) the value’s shallowest representation is moved in memory.
Reo’s semantics require that the data transmitted through ports is truly moved,
transferring ownership. Clearly, not doing so would violate the semantics; val-
ues acquired through ports might be dropped or acted upon at the whims of
their original putter, of which the getter would have no knowledge. As is id-
iomatic for the Rust language, our API transfers ownership into the scope of
put and out of the scope of get by moving the value itself. Naïvely, this has
significant performance implications, as the cost to move a value is dependent
on the size of its representation. For example, a 10MB array is significantly
more costly to move than a byte. For cases where the relocation of bytes is not
necessary, Rust programmers can often rely on LLVM to optimize the memory
movements away, passing consumed resources by reference ‘under the hood’
(but retaining the semantic movement of ownership). However, these optimiza-
tions are not guaranteed. Users of the Rust language have grappled with this
shortcoming for years, but the search for a satisfying solution remains an open
problem [Mat15]. The only way to guarantee that the data is passed by refer-
ence at runtime is to expose an unsafe API, which relies on the user to pass

55

4.3. PROTOCOL OBJECTS

references and manage the associated ownership manually. Our requirements
prioritizing safety (Rvalue) and performance (Gdata) are in conflict. Our so-
lution is to expose these options to the user as variants for put and get, and
allow them to decide on a case-by-case basis:

1. Value passing.
We expose safe functions put and get to consume and return data by
value, guaranteeing correctness. Depending on the compilation environ-
ment, it may require up to two moves of the data.

2. Reference passing. User provides correctness.
Operations are parameterized by references (or raw C-like pointer types)
which Reo-rs writes to and reads from directly. The caller takes respon-
sibility for ensuring that the value at the pointer’s destination is initial-
ized or dropped as necessary to correspond with Rust’s usual ownership
system. For example, this version of put is given a pointer to initialize
memory, which the operation will initialize.

3. Value pass a ‘referring’ type.
As far as Reo-rs is concerned, this is indistinguishable from case (1). How-
ever, the user intentionally reinterprets the data types of their ports such
that they represent indirections. For example, Box<T> is a pointer-sized
owned type which will be transmitted by Reo-rs much like any other
pointer-sized integer, oblivious to the fact that it indirectly represents
another type Q. Taken to the extreme, a naïve solution replaces all data
types with heap-allocated indirections. Other approaches may be simple
(eg: transmitting an index to a shared vector) or arbitrarily complicated
(Several Rust libraries exist for decoupling an object’s data from its own-
ership, such as rent_to_own, managed and swapper)2.

To reflect our priority of safely, the ‘default’ port operations use value pass-
ing, corresponding to options (1) and (3). Users are able to take safety into their
own hands by opting into *_raw port operation variants. We rely on Rust’s id-
iom of marking such operations as unsafe, communicating to the user that they
are adopting the responsibility of reading the API documentation to determine
and provide the necessary guarantees, as is usual in languages such as C. In-
voking unsafe function requires the user’s code to be explicitly qualified as an
unsafe block, making it difficult to unintentionally overlook this requirement.

2These libraries are publicly available on crates.io.

56

crates.io

4.3. PROTOCOL OBJECTS

Interface with C and C++

Programming languages rely on an ABI (application binary interface) for trans-
lating functions and types into binary according to a dependable convention.
When languages agree on this interface, it ensures that both caller and callee
with agree on how structures are laid out in memory, how parameters are
passed, and so on. It is common for Rust, C and C++ to interface using the
C ABI, and as such, there is syntactic support for selecting the ABI to be used
per function and per structure. Reo-rs makes use of this feature to expose
C-friendly types and functionality as part of its foreign function interface. In
most cases, this requires nothing more than the addition of preprocessor anno-
tations, i.e., #[repr(C)] and #[no_mangle], and visibility keywords, i.e., extern.

Rust makes frequent use of generic type parameters, which rely on the com-
piler for dispatch at the call site (see Section 2.2.2). C has no analog for this
feature, and thus, some structures and functions are be provided secondary
concrete representations. As an example, Rust represents the Putter and Getter

types with a generic argument, affixing its data-type at compile-time. Reo-rs
preserves safety guarantees by relying more extensively on reflection at run-
time for these cases.

Section 2.2.2 explains that Rust does not use header files. Instead, function
signatures may be expressed with traits, which are able to declare functions
without defining them. However, traits are of no use to C, as they are inherently
coupled with Rust’s generic system. To facilitate the sort of workflow that is
idiomatic to C, such that compilation can be distinguished from linkage. The Rust
ecosystem offers Bindgen3, an addon for generating C header files from Rust
source. Bindgen is installed as a module for Cargo, Rust’s package manager
(comparable to Pip for Python, NPM for Node-js, and perhaps Maven for Java).
With this tool, we are able to generate C header files without much friction, and
include them in any distributions such that downstream dependents on Reo-rs
can incorporate them into their applications as they would do for any other C
library. Once compiled and linked, their C or C++ applications would execute
as would any other binary, and the use of Rust for compiling Reo-rs is no
longer visible. Owing to its nature, calls that cross the Rust-C boundary do not
induce any significant overhead [KN18].

4.3.2 Design Process

Many designs for the implementation of Reo-like coordinators are possible.
Their structure and workings all depend on how information is arranged, and
how multiple threads come together to coordinate on an a priori unknown task
without stepping on one another’s toes. In our case, we concentrate on the

3https://crates.io/crates/bindgen

57

https://crates.io/crates/bindgen

4.3. PROTOCOL OBJECTS

case where all participants in the system share a memory address space, which
opens up many means of exchanging data between threads.4 As is typical in
multithreading, the problem is not accessing the data, but rather restraining
oneself from accessing the data at the wrong time. Before we can approach any
design decisions, we examine what we know for certain: ports invoke put or
get, each from their own thread. They cannot return immediately, as this would
not result in the correct system behavior; when not aligned in time, getters will
often (unknowingly) read uninitialized data, and putters will write their data,
never to be read. They wish to exchange data in accordance with some defined
protocol, but a priori have no knowledge of the protocol, nor their role in it.
The aim is to facilitate rule firing ‘greedily’ as opportunity allows: i.e., protocol
objects should fire rules as frequently as possible such that the behavior of the
system is not constrained beyond the constraints of the protocol itself.

The Coordinator

The most obvious starting point is asking ‘who decides which rule to fire?’
Reaching consensus prevents the system from reaching some malformed state
where two rules are being committed to in tandem, violating the protocol or
deadlocking on some resource they have in common. It is easy to contrive of
such examples where numerous ports are involved. For example, consider a
case where two rules disagree on which of two putter ports distribute their
datum to a set of getters. If not done carefully, some getters may receive one
value, and the rest another. The most approachable solution is to stick more
closely to the Reo model by introducing a specialized coordinator for each pro-
tocol. Consensus is trivial when one participant is elected the leader for every
circumstance. Unfortunately, we cannot rely on some port x being involved in
every rule firing such that they are the coordinator. Many protocols do not have
such an x that can be relied upon to be present. The Java back-end solves this
problem by adding a fresh ‘protocol’ thread whose task is to only coordinate
the others. This approach is easy to think about, as there is a clear mapping
from threads to roles. However, the protocol thread is not inherently coupled
to the actions of ports. It has to wait for opportunities to coordinate, necessi-
tating the transmission of explicit events from compute threads to the coordi-
nator. These messages can use a channel, or use something like semaphores or
monitors to send signals instead, and then relying on the coordinator to redis-
cover which ports are ready by reading the state of shared memory. Next, one
must decide who organizes the actions into an interaction. The Java backend’s
approach is to spread ports out over space such that they can become ready

4This assumption provides context for our work, but is not an inherent assumption of all of
our design choices. Wherever possible, we make this distinction in the text.

58

4.3. PROTOCOL OBJECTS

concurrently.5 The coordinator then treats the port structures like messaging
pigeonholes, and performs the task of moving data around itself. The coordi-
nator’s notification to the ports is subtle; taking the form of put and get calls
which release port-local locks, unblocking the compute threads, completing the
interaction. This solution is effective, but has some downsides, as discussed in
Section 4.1.3.

Event Handling

A minor change with the potential for improvement is to remove the necessity
of the protocol thread to rediscover the nature of the event which generated a
wakeup signal. Rather than signals with no payload, we can use events which
carry explicit information, eg: ‘Port x is ready to get!’. With this approach, the
coordinator waits in an event loop, handling incoming events. The Rust ecosys-
tem has a number of libraries for defining event loops built atop system signal
handles. An early implementation made use of the mio crate for sending events
which communicated which port has become ready. With this minor change,
the coordinator does not need to inspect the contents of ports directly, which,
owing to their modification by multiple threads, inherently cause several cache
misses for the coordinator. Rather, the coordinator is able to manage a private,
dense, redundant record of which ports are ready. Aside from the unfortu-
nate data duplication, this optimization contributes greatly to the satisfaction
of Gfast. Unfortunately, regardless of how fast mio may be, the event must still
cross the boundary between threads. In overburdened systems, this also has
the consequence of causing context switches, introducing yet more overhead.

Threadless Protocol

If the coordinator has its own ‘protocol thread’, threads focus on their own
work; the coordinator coordinates, and port threads interact with their ports.
However, for all interactions that involve one or more ports (which are fre-
quent in practice) we observe that despite the presence of multiple specialized
threads, their tasks are not concurrent. Port threads perform external work
until they instigate a port operation, and block. They do not wake up until the
coordinator wakes up itself, and completes the port operation. Port threads
and coordinator cannot know when to act, and must rely on notifications from
one another. Threads must wake up and go to sleep frequently.

One pivotal decision of our final design is to attempt to alleviate this prob-
lem. If threads of other components must wait for progress anyway, why not

5Conceptually this could be in parallel, but the actual implementation the exchange neces-
sitates the use of a class monitor lock (a structure for coordinating actions for all instances of a
class) to prevent interfering with the protocol thread itself.

59

4.3. PROTOCOL OBJECTS

have them do the coordination themselves? In our approach, we discard the
dedicated protocol thread and reinterpret the coordinator as a role which the
other threads take turns adopting. Conceptually, this change is a minor one;
there is ultimately still at most one thread acting as coordinator. Until now,
we have taken for granted that the coordinator can complete interactions with
impunity. If only the protocol thread coordinates, there is no risk of data races.
In our new model, anyone can be a coordinator; care must be taken to prevent
two threads from adopting the role at once. Where before the bottleneck ex-
isted (implicitly) as a single coordinator thread processing a sequence of events
one at a time, we now make the lock explicit: upon becoming ready, every
thread attempts to acquire the protocol lock, the holder of which acts is the only
coordinator for the duration.

Delegating the Task of Data Exchange

Owing to our focus on values at the systems level, we do not have the sim-
plifying luxury of the Java backend to presume that moving data is cheap. In
Rust, as in C and C++, values are not represented by indirect references by
default; often, their shallowest representations are all there is to them. To sat-
isfy Gdata, the Java backend’s (admittedly intuitive) representation of ports
as data pigeonholes is wasteful. For many realistic Reo protocols, data often
moves through protocols synchronously, moving from Putter to Getter with-
out any storage in memory cells in between.

Our implementation introduces a new idea in an attempt to capitalize on
this observation: getters fetch their data directly from the source. In this ap-
proach, the coordinator does not necessarily handle data itself. Rather, it de-
cides which rule to fire and delegates the task of moving the data to the getters
themselves. In addition to skipping a redundant ‘data hop’ from putter to co-
ordinator, this also facilitates the dissemination of a putter’s datum to all its
getters in parallel. This change requires extra messaging form the coordinator,
as getters are given more responsibility. Where before a signal from coordinator
to getter sufficed (‘Your datum is ready!’), coordinators must now communi-
cate the location of the getters’ source (‘Your datum can be found at P!’). Note
that this idea is applicable in a context where components are distributed, i.e.,
they do not all share an address space. In such cases, it becomes vitally impor-
tant to manage the task of data movement for the sake of performance, which
is likely to complicate this optimization further.

4.3.3 Architecture

The protocol is reified in the Proto type. Internally, these objects store struc-
tures which correspond closely to its imperative form specification type, ProtoDef.

60

4.3. PROTOCOL OBJECTS

As such, one can think of ProtoDef as a behavioral specification of a Proto.
Their differences in structure and contents are a result of them being used for
different purposes. ProtoDef strives to minimize redundancy in order to sim-
plify parsing, and to minimize the surface for internal inconsistency. On the
other hand, Proto is structured to facilitate execution at runtime. As discussed
in Section 3.3.3, the build method is the only user-accessible means of con-
structing Proto instances. Section 3.3.3 from the previous chapter explained
how this final translation step is performed. The definition of the resulting
Proto is provided in Listing 15. To follow, we explain its fields and their role in
facilitating the behavior described in Section 4.3.4.

1 pub struct Proto {

2 cr: Mutex<ProtoCr>, // accessed by coordinator with lock

3 r: ProtoR, // shared access

4 }

5 struct ProtoR {

6 rules: Vec<Rule>,

7 spaces: Vec<Space>,

8 name_mapping: Map<Name, LocId>,

9 port_info: HashMap<LocId, (IsPutter, TypeInfo)>,

10 }

11 struct ProtoCr {

12 unclaimed: HashSet<LocId>,

13 is_ready: BitSet,

14 memcell_state: BitSet, // presence means mem is FULL

15 allocator: Allocator,

16 ref_counts: HashMap<Ptr, usize>,

17 }

Listing 15: Definitions of the most coarse-grained structures of a proto-
col instance. Proto is the entrypoint, composed of ProtoCr in the critical
section, accessed by only the coordinator, and ProtoR outside it, accessed
by all.

Critical Region

Section 4.3.2 explains how threads initiating actions at boundary ports of a
protocol assume the role of coordinator. It is fruitful to examine the fields
of Proto in accordance to which roles access them, and how their access is
safely controlled. The most coarse-grained distinction is that between fields
inside and outside the protocol’s lock-protected critical region. This divide is
so fundamental, that is is immediately apparent by looking at the definition of
Proto itself, seen in Listing 15. ProtoCr stores all of the fields manipulated only

61

4.3. PROTOCOL OBJECTS

by the coordinator, such as the allocator, to which the coordinator delegates the
task of storing persistent values. This is explained further in Section 4.3.4 to
follow. Also observe the field responsible for managing which ports are claimed
(See Section 4.3.1). While this is not a task traditionally associated with the
coordinator, it’s mutually exclusive access between threads necessitates that
this structure is protected by the lock.

Spaces

Clearly, ProtoCr can contain only the data that is not contended by multiple
threads. Some structure is still needed for threads to rendezvous such that
information can be exchanged and actions can be aligned in time. In the Java
implementation, the class Port served two distinct purposes: (1) stored the
value being exchanged by two threads, and (2) acted as the rendezvous for
putter and getter. As explained in Section 4.3.2 above, the former of these tasks
does not involve the coordinator in Reo-rs. However, the latter is still relevant.
To meet this need, ProtoR associates a Space for every identifier (for ports and
memory cells alike). The difference is name exists to distinguish them from
ports, to which they are certainly related, but not identical. For every identifier,
its Space contains precisely the data needed for it to communicate with its
peers. For ports, this includes a MsgBox, which serves as a control-message
channel from coordinator to compute-thread. Spaces are discussed further in
Section 4.3.4 to follow.

4.3.4 Behavior

This section explains how the data structures of the Proto type comes to life at
runtime to emerge as coordination according to the protocol with which it was
configured.

Rule Interpreter

Unlike the Java implementation, Reo-rs moves the specification of the proto-
col type very late into the pipeline from Reo to the final application. Rather
than relying on Reo to generate native application code, in this work we make
more extensive use of the virtualization pattern. At runtime, the coordina-
tor traverses rules in data form, performing tasks as a rudimentary interpreter.
The tasks associated with such a Rule correspond closely to the conceptual in-
terpretation of the imperative form. At this granulairty, interactions do not
exist explicitly. Rather, the interpreter must perform the work associated with
each rule interaction as a sequence of actions which, all together, appear to the

62

4.3. PROTOCOL OBJECTS

observer as an interaction. For simple rules, it is clear to see how such interac-
tions can be created. For example, consider a simple rule with constraint P = C
where P and C are putter and getter ports respectively. Here, P’s value is simply
moved to C if both ports are ready. As RBF rules become more complex, more
actions become necessary to achieve the results of the interaction. Section 3.2
explains how by imperative form’s restrictive representation already captures
the result of this action-centric breakdown such that the interpreter does not
need to compute it at runtime. These actions preserve their interaction-based
semantics by behaving as transactions, with actions clearly divided into two se-
quences around an instant where the rule can be thought to commit. As long as
their effects can be reversed, action prior to the commit can create temporary
variables and trigger aborts as they please. This approach is flexible enough to
represent Reo’s transform channels, allowing values to be created and destroyed
synchronously by being represented inside the transaction itself.

Minimizing the Bottleneck

Reo-rs shares its centralized locking architecture with the Java backend. Re-
gardless of whether the coordinator and the thread that performs the role are
decoupled, the importance of providing it mutual exclusion is clear; two co-
ordinators in tandem would not be safe in the knowledge that the state does
not change between evaluating the guards and changing the state. Methods
exist for fragmenting protocols such that the locking becomes finer grained as
protocols are into sets of smaller ones. As such, the Reo compiler internally
produces a set of protocols as its output, though the work on this feature is
ongoing. Nevertheless, we consider this decomposition an orthogonal concern
and develop it no farther. Reo-rs embraces this central lock, but takes measures
to minimize the duration for which it is held. In this section we discuss these
measures and how they work together to help satisfy Gfast. To structure our
reasoning, we identify the tasks a coordinator performs from the moment to
acquires the lock (accepting its role), to the moment it releases it (relinquishing
the role).

1. Initialization
Section 4.3.1 explains how the time spent purely on overhead is dimin-
ished by avoiding the event-signal interaction used by the Java implemen-
tation, necessary to wake a sleeping protocol thread. Once the coordina-
tor has acquired its lock (a task needed in both versions), transitioning
into the work of the coordinator is nothing more than the time taken to
invoke the coordinate function call.

2. Checking Readiness and Memory State
Imperative form shares the explicit representation of the synchronization

63

4.3. PROTOCOL OBJECTS

constraint with RBAs, encoding precisely which ports are involved with
the firing. Clearly, a rule cannot fire until all ports involved are ready.
Per port, this is a boolean property which can be represented by a single
bit flag. Owing to the simplicity of this data, each of these sets can be
represented as a single bit-vector, a data structure for which set opera-
tions are exceptionally fast. Reo-rs takes this optimization a step further
by extracting another boolean property per memory cell: fullness. The
idiomatic encoding for memory cells storing data of type T in Rust would
be the Option<T> type, such that Option::None represents emptiness. In-
stead, the relevant flags for fullness are extracted, separated from their
data and instead coalesced into another bit-vector. With just a handful of
fast bit-wise operations, the coordinator is able to quickly detect whether
a rule cannot fire, as a result of a port not being ready, or a memory cell
being full when it should be empty, or empty when it should be full. In
practice, the vast majority of cases where a rule’s guard is unsatisfied are
detected in this step.

3. Instructions
Instructions are relatively expensive compared to the other steps in a
rule’s interpretation. Their cost scales with their complexity, as they can
be defined as arbitrarily large and deep formula terms. Even individ-
ually, the cost of each operation can be high, as they include arbitrary
user-defined function invocations, arbitrary user-defined equality checks,
and allocation space for newly-created data objects. Section 4.3.4 explains
how the cost of memory allocation is mitigated such that the allocation it-
self is amortized to constant time. For the rest of these operations, there is
not much that can be done to avoid the cost; for the most part, they would
be expensive even if each rule were performed by a native Rust function.
Fortunately, the vast majority of rules for Reo connectors require no in-
structions at all. In practice, Reo connectors tend not to inspect the data
whose flow they coordinate. The more intrusive the protocol’s routing
logic becomes, the more it begins to resemble computation (i.e., not coor-
dination), a task for which Reo should probably not be optimized. For the
protocols without instructions (including fifo1, alternator, sequencer,
sync, and more), the support for instruction parsing costs no more than
the time to determine that there are zero instructions to execute.

4. Movements
Once a rule is committed, the role of the coordinator is to kick any get-
ters into action, delegating the data exchange to them. Each movement
encodes one resource (Putter or memory cell) being distributed amongst
a set of recipients (each a Getter or memory cell). This meta interaction

64

4.3. PROTOCOL OBJECTS

is not synchronous; getters may take arbitrary time before waking up
and actually participating in the data exchange. This is not the case for
memory cells; as part of the configuration of the protocol, this is manip-
ulated by the coordinator only. As such, operations which move values
into memory (where memory cells act as getters) are performed first. Sec-
tion 4.3.4 explains this procedure in more detail. Here, it suffices to say
that the movement of memory between memory cells is fast.

For port-getters, the coordinator does not move the value itself. Rather,
the work is delegated to the compute-thread by sending a control mes-
sage to the getter’s MsgBox.

Usually, the coordinator does not have to interact with the resource (act-
ing as putter) at all. It can rely on getters to ‘clean up’. The coordinator
returns, releasing the protocol lock. The only exception is for movements
with zero getters. Such cases can represent a resource being destroyed.
In these cases, there is no getter to perform the cleanup, and so, the coor-
dinator does it itself. For a Putter, this is no more than sending a control
message, releasing it. For memory cells, this may require running the
drop function associated with the memory cell’s data type. Section 4.3.4
provides more detail on how these are managed.

Data Exchange

Eventually, each Getter waiting at their MsgBox receives a control message from
the coordinator, revealing to them the identifier from which they must fetch
their value. Their task is to locate the corresponding Space and contend with an
unknown number of fellow getters to complete the movement. The correctness
of this exchange relies on the satisfaction of a number of properties:

1. One getter cleans up the resource
Regardless of whether the resource is a Putter or a memory cell, the set of
getters are responsible for cleaning up the resource to finish the interac-
tion. In the case of a putter, this takes the form of sending them a control
message, notifying them that everyone has finished inspecting their da-
tum and they may return to the caller. Clearly it is unsafe for anyone
to release the putter before some getter has finished reading the datum;
by returning, the putter may invalidate the memory region storing the
datum.

In the case of a memory cell resource, cleanup takes the form of resetting
its ready-flag inside ProtoCr, signifying that the memory cell is in a stable
state can again be involved in rule firings. This is necessary as there is
no dedicated thread guaranteed to set this flag in future, as is the case

65

4.3. PROTOCOL OBJECTS

for getters and putters. Section 4.3.4 to follow also explains how these
memory cells are emptied in these events such that they can again store
new values. This manipulates the protocol’s state, potentially making
new rules’ guards satisfiable. As such, this last getter must once again
acquire the protocol lock and attempt to coordinate.

2. At least N− 1 getters clone

Rust generalizes the operation for replicating a datum to produce another
instance from it. It is idiomatic to rely on the standard trait Clone with
single operation clone to implement this behavior. This approach covers
cases for which there is a non-trivial means of replicating objects; some-
times, performing a bit-wise copy of the structure’s shallowest represen-
tation is not enough. Consider the example of Arc (‘atomic reference-
counted’) in Rust’s standard library. This type consists of just a pointer
to some heap-allocated tuple (refcount, data), and is used for shared,
reference-counted ownership of data. For this type, coping the pointer to
the tuple is not sufficient. Cloning must follow the pointer and increment
refcount.

3. One getter moves instead of cloning
Data movements represent the transmission of data from source to a set
of destinations. Generally, the value is no longer present at the source
afterwards. Naïvely, the original must be dropped to complete the in-
teraction. However, it is wasteful and counter-intuitive to replicate an
object only to destroy the original. Instead, we wish to move a value be-
tween threads, much as Rust’s move semantics allow the movement of
affine types between bindings. This cannot be done in the conventional
way, as movement is defined is generally within the context of a single
thread and scope. Regardless of Rust’s expressiveness, it is nonetheless
an action-centric language, and does not offer the interaction we need.6

When orchestrated correctly, we are able to implement a safe move op-
eration between threads by invoking a pair of unsafe operations, one on
either end. In unsafe Rust, it is possible to copy a value without influenc-
ing the original. If not done correctly, this can easily lead to double frees.
On the other hand, it is possible to leak resource memory with forget,
an operation of Rust’s standard library which causes the compiler to con-
sider the value moved without invoking drop. These pitfalls should be

6Rust is able to understand uni-directional movement of values into new threads using the
same mechanism by which closures can enclose variables in their parent scope. More complex
types are able to also create their own notions of safe ‘movement’ by composing actions as we
suggest in this section. As in our case, they require the use of unsafe, as by definition the Rust
compiler cannot reason about their correctness in the usual way.

66

4.3. PROTOCOL OBJECTS

familiar to C programmers, as unsafe Rust gives one the capability to in-
teract with ‘raw’ pointers in a fashion similar to that of C. Together, these
actions constitute the inter-thread move primitive we need.

We elaborate our task by requiring an election between getters, such that
one is designated the mover, and the rest are cloners.

4. All clones must be complete before the move
It is unsafe to move a value before or while performing clone on the orig-
inal. Essentially, every data exchange must proceed in two strict phases:
all clones occur in the first, and the move occurs in the second. Con-
sider again the example of type Arc by examining this sequence of events
that results in undefined behavior: (1) Let x have type Arc, containing a
pointer to heap region at p. (2) x is moved to binding y. (3) y goes out of
scope, it’s refcount is reduced to zero, and so its heap allocation is freed.
(4) Arc::clone is invoked with x, which traverses its pointer to memory
position p, and attempts to increment refcount. p is no longer allocated,
and arbitrary memory corruption ensues. To prevent such cases, Reo-rs
must take care to order all clones of some value before it can be moved,
as the Rust compiler would do.

Many solutions are possible, but they have in common that these getters
must exchange some meta-information safely across thread boundaries. Our
solution uses a pair of atomic variables for this purpose, count and mover, ini-
tialized by the coordinator a priori to N and true respectively. In a nutshell,
mover is true if no getter has yet claimed the role of mover, which represents
both (1) the responsibility to clean up, and (2) the privilege of moving the orig-
inal value, rather than cloning it. All but the mover are cloners. Part of the
procedure at large is a pair of elections between getters to determine a mover
and a last getter. We elect a mover first. The time between the elections gives
the cloners the opportunity to clone, safe in the knowledge that the mover will
not clean up until they are finished. If the mover is also elected last, they clean
up and return immediately, as all clones must already be complete. Otherwise,
the mover must await a signal from whomever is last before cleaning up.

This process is complete enough to implement the desired functionality for
Reo-rs. However, we identify two optimization opportunities which have the
unfortunate consequence of complicating the data exchange procedure further:

1. Not all getters want data
Getters participating as a result of the get_signal operation will not re-
turn a value. Clearly these getters cannot avoid participating in the mover
election, as then nobody would clean up. These getters specialize their
interactions by participating in the last election first. The intuition is that

67

4.3. PROTOCOL OBJECTS

if they lose this election, it is safe for them to return without participating
in the mover election; clearly this covers the case of no getters wanting
the data. It is also safe to rearrange these elections in this case; these get-
ters have no intention to clone, and thus are not a threat to the invariant
that required these elections to be ordered in the first place: all clones are
complete by the time the last getter is finished.

2. Copy-types can be replicated without clone
Section 2.2.2 explains how Copy marks types for which have a trivial de-
structor, and are safe for multiple getters to replicate by copying their
value bit-wise. This is the case for primitives, and structures composed
entirely out of primitives, such as arrays of integers.

For copy-types, the mover and the copiers may copy the original datum
in parallel. Afterward, only the last getter is elected to clean up, safe in
the knowledge that all copies are finished.

The full data exchange procedure is spelled out in Rust-like pseudocode in
Listing 4.3.4 in the Appendix.

Memory Cells

Section 4.3.3 explains that per location (generalizing ports and memory cells),
Reo-rs maintains a persistent Space structure at a fixed location on the heap
such that threads have a predetermined location to rendezvous on communi-
cation primitives. Section 4.3.4 follows up, explaining how these structures are
also pivotal to data exchange. When getters converge on the space of a Putter,
they rely on the presence of a prepared data reference in the space to the lo-
cation of the putter’s datum on its own stack. In this manner, values moving
between ports are never moved to the heap at all. The memory alignment of
the putters datum generally differs per data exchange, necessitating that their
space’s reference be updated to the location of their value each time.

Memory cells differ from putters in that their value persists beyond the
lifetime of any individual thread participating in the protocol; consequently, the
data itself must be stored on the heap. A naïve implementation treats memory
cells similarly to putters by continuously updating (i.e., overwriting) the data
reference in the associated Space such that it points to a freshly allocated value
on the heap every time the memory cell is filled.

We are able to rely on a property of Reo for an optimization: memory cells
have predefined types. Instead of shifting the pointer around to a fresh alloca-
tion each time, we are able to preallocate the space needed to store one value
per memory cell. In this model, the references do not change. Instead, each
has a single allocation which is repeatedly reused. Whenever the cell is empty,

68

4.3. PROTOCOL OBJECTS

the contents of the allocated space are uninitialized. This can be done safely
by relying on auxiliary structures for tracking when memory cells are empty;
Section 4.3.4 explains how bit-vectors serve this purpose for Reo-rs. This ap-
proach removes the cost of creating and allocating spaces at runtime. Unfortu-
nately, this approach suffers a drawback inherited from its strict interpretation
of Reo’s value-passing semantics: moving data between memory cells is ex-
pensive. While small optimizations are possible for some circumstances, they
are only applicable in a handful of situations. For example, memory cells can
swap references to swap their (logical) contents.

Requirements Gdata and Gfast incentivize a more extensive optimization.
Reo-rs intentionally decouples memory cells (including their spaces and their
fullness flags) from storage, which describes where the contents of the cells is
kept on the heap. We observe that Reo protocols perform logical replication
of values often, while mutating existing values rarely. As such, many situa-
tions exist in which we are able to safely alias values between memory cells
by relying on reference counting. We extend the idea of reusing allocations,
but rather that fixing them per memory cell, we allow all memory cells of the
same data type to draw from a shared pool of reused allocations; this pattern
is often referred to as an arena allocator. The intricacies of this process are del-
egated by the coordinator to the Allocator, which tracks which storage cells
of a type are available (free) and which are occupied. Rules which replicate,
destroy or move data between memory cells can avoid moving values alto-
gether, instead manipulating only the references within spaces, and reference
counters of storage cells. For example, a rule which empties memory cell m0
(destroying the contents) needs to only decrement the reference counter. Only
when the counter reaches zero does the allocator need to be involved, invoking
the value’s drop function in place and freeing the storage slot. This approach
has another advantage: clone is invoked lazily, in some cases being avoided
altogether. Consider a connector for which values originate from putters, get
stored in memory slots, are replicated repeatedly, only to be destroyed before
ever being emitted to a getter. In this example, clone is never necessary. Of-
ten, this pattern is known as copy-on-write. This approach has an additional
consequence; the data exchange operation explained in Section 4.3.4 may be
initialized such that nobody is permitted to move. Fortunately, the procedure
previously given (in Listing 4.3.4) handles this case correctly.

Type Reflection

Section 2.2.2 explains how Rust offers both static and dynamic dispatch for ex-
ecuting generic code, similar to how it is done for C++. These options offer a
trade-off in runtime speed, binary size and flexibility. Reo-rs cannot hope to
rely on static dispatch to resolve the concrete types of port data, as they are

69

4.3. PROTOCOL OBJECTS

only discovered later in the moment our Rule structures are interpreted. The
idiomatic approach to such situations is to rely on dynamic dispatch, which
virtualizes the operations on some generic type by adding indirection which is
resolved at runtime through the traversal of function pointers. As with C++,
Rust uses virtual function tables (‘vtables’) for this purpose. Dynamic objects
are stored in place alongside a pointer to the relevant vtable, and operations
traverse the table according to a statically-defined layout to resolve the concrete
functions. Clearly, this is only possible if the method creating the dynamic ob-
ject and the operations on it agree on the vtable’s contents. To this end, Rust
relies on its trait system: dynamic objects are created and interacted with in
terms of some trait, which provides it with both an interface and a type. As
such, Reo-rs defines a trait PortDatum, which defines all the operations belong-
ing to all port data: (1) how is the object laid out in memory, (2) how are objects
checked for equality, (3) how are objects cloned, etc. Effectively, we define a su-
pertrait of the traits that characterize a type for which all of the operations are
defined which Reo may require. Concretely, these subtraits correspond with the
abstract type properties seen in Section 3.3.1. Two problems present themselves
with Rust’s idiomatic approach to dynamic dispatch:

1. Who defines PortDatum for the user’s data types? The idiomatic approach
is to expose the trait and simply require the user to implement the trait’s
associated operations to their type. However, if we do not trust the user
entirely, some of our desired optimizations become impossible.7 For ex-
ample, users must mark their objects as Copy, communicating that their
shallow representation can be safely copied in memory.

2. How do we express types of PortDatum which do not implement all of
the subtraits? (e.g., a type which cannot be replicated). One is able to
express Reo connectors which will not use these operations, (and thus
is is correct not to require them), but we cannot know whether they are
used statically.

We solve both of these problems by using an experimental feature the Rust
language not yet available in the stable version: specialization. With this fea-
ture, we solve the first problem by defining PortDatum for every conceivable
generic type ourselves, with their fields populated as a function of the type’s
properties. In this manner, PortDatum can be made entirely private, benefit-
ing the user in alleviating their need to implement it, and benefiting Reo-rs by
guaranteeing it is implemented correctly for every type. This also solves the

7This is a limitation of Rust’s trait system, which prohibits the inclusion of associated func-
tions and properties for traits used for the creation of dynamic objects. Rust does not support
representing them in the vtable. This limitation may be removed in future.

70

4.3. PROTOCOL OBJECTS

second problem; as PortDatum is under our control, we can provide dummy
implementations for operations which the type does not define, such that all
PortDatum-implementor types can use the same vtable layout, despite imple-
menting different sets of PortDatum’s subtraits. Conceptually, we can repre-
sent undefined functions with null pointers in the vtable. For safety’s sake,
we instead define default functions whose bodies trigger an explicit panic, un-
winding the stack and throwing unrecoverable errors. If all goes well, these
dummy functions are never executed. However, if a programming oversight
results in Reo invoking a dummy function (which implies that the values data
type was incorrectly specified), the program crashes with an unmistakable er-
ror message. Listing 16 gives a simplified8 view of the PortDatum trait, and its
implementation for any9 data type, T.

Elaborating on what was explained previously, Rust’s chosen representa-
tion of dynamic objects is the fat pointer. Each dynamic object is represented as
a pair of pointers, one to its data (i.e., some structure with fields), and one to
its behavior (i.e., the vtable). Dynamic objects can be thought to carry their be-
havior around with them. While ergonomic in general, this is often redundant
in the case of Reo, where values are guaranteed to only move between ports
and memory cells of the same type anyway. Reo-rs would repeatedly over-
write these tuples in order to overwrite the data, redundantly overwriting the
vtable pointer with an identical one. This is a symptom of Rust’s design for dy-
namic objects: concrete operations are reflected per invocation. This approach
is detrimental to Reo-rs for two reasons:

1. Dynamic objects are only accessible through their trait interface. Behind
this interface, their concrete types are erased. There is no means to check
equality between the concrete types behind the dynamic indirection. This
ability is required for the build procedure (see Section 3.3.3) to ensure that
memory is initialized with the expected type and so on.

2. Dynamic objects carry their vtable pointers with them. This increases the
size of their representation. For small types, the size increase is (propor-
tionately) significant.

8The real trait definition contains more fields, and must perform some manipulations of raw
pointers to get around Rust’s restrictions on which traits may be used for dynamic dispatch.
For this reason, it is important for us to control its definition for any type T. These details are
omitted for brevity.

9In the final implementation, we must include some trait bounds for all PortDatum types. Send
and Sync are common Rust marker traits for types that can be passed between threads by value
and reference respectively. They are implemented by default for all reasonable types such that
users almost never need to consider them [KN18] (they are derived for user-defined types by
default also), but this requirement covers some prickly safety pitfalls.

71

4.4. REQUIREMENTS AND GUIDELINES EVALUATED

Our solution is to implement our own dispatch system that makes use of
Rust’s native vtables and dynamic dispatch, but without the above properties.
Essentially, we split Rust’s fat pointers into their data and behavior components,
using the former as data as usual, and using the latter as a key to reflect on the
concrete type’s behavior as needed. Section 3.2 introduced the TypeInfo type,
which appears to the user as nothing more than some identifier for its type.
Under the hood, this value is the vtable pointer itself. Types with identical im-
plementations have identical vtables, and so we are able to compare equality
of the vtable itself to check equality of the erased (concrete) type. Listing 17
shows how function TypeInfo::of provides the user with the only means of
creating a TypeInfo for some T. Only in the ProtoDef type does Reo-rs accept
the user’s provided TypeInfo directly, as it would be unsafe to rely on the user
providing some T with a matching TypeInfo. Instead, the API of Reo-rs in-
cludes one layer of static dispatch into the library where necessary such that
the creation of the TypeInfo can be trusted. For example, when populating
some MemInitial structure with the initial values of memory cells (as described
in Section 3.3.1), values can only be input using the provided with function. The
user uses Rust’s safe dispatch system, oblivious to Reo-rs translating their con-
crete objects into dynamic ones behind the scenes. For example, the user might
do: MemInit::default()::with("X", Foo::new()), resulting in Reo-rs storing a
dynamic PortDatum object named X, with TypeInfo::of::<Foo>().

Listings 27 and 28 in the appendix demonstrate how TypeInfo::of appears
in the generated binary.

4.4 Requirements and Guidelines Evaluated

In this section, we give a summary of the means by which the requirements and
guidelines of Section 4.2 are satisfied and adhered to respectively. This doubles
as an overview of this chapter at large, motivating its points by referring to the
relevant subsections above.

Rvalue Values passing through ports preserve value-passing. This is achieved
even in the presence of reference-passing optimizations ‘under the table’
by leaning on the same philosophy that Rust uses to prevent data races:
prohibit mutable aliasing. Objects are only aliased (accessible via multiple
bindings) if they are identical. Section 4.3.1 explains how protocols limit
aliasing to their internals by relying on value-passing port operations.
On the other hand, Reo-rs aliases values, but only until they are mutated.
Section 4.3.4 explains how memory values are safely aliased.

Section 3.2 explains how Reo-rs interprets an imperative form protocol
description at runtime, relying on a transaction-like model to safely allow

72

4.4. REQUIREMENTS AND GUIDELINES EVALUATED

the creation of new values to be incorporated in synchronous interactions.
In this manner, protocols whose rules create and reason about temporary
values can be faithfully represented.

Rinit Section 4.3.1 explains how users are shielded from the granular initializa-
tion procedure. Reo-rs exposes an API with explicit constructor functions
build and claim of protocols and ports respectively. Protocol objects are
extensively customizable by the expressiveness of imperative form, with
which build is parameterized. At the same time, these structures are
internally-consistent by build as the only user-facing means of instantia-
tion.

Rffi C and C++ foreign-function interfaces are provided by relying simply on
declarations with the C ABI where possible. As C cannot support Rust’s
notion of generics, where necessary, the ffi module provides generic-free
alternatives for data types and functions where generics are represented
as data instead. Reo-rs can thus be compiled once into either a statically-
or dynamically-linked library for use in these other languages without
any additional runtime overhead.

Gdata Reo-rs facilitates the transmission of any fixed-size data types by value.
This permits but does require data to be heap-allocated. Sections 4.3.4
and 4.3.4 explain how Reo-rs has a value-passing API, but relies on reference-
passing to minimize the number of times values are moved in memory.

Gfast Section 4.3.2 explains Reo-rs coordinates the actions of multiple threads
while minimizing the overhead of inter-thread communications. Sec-
tion 4.3.4 explains how meta-operations are represented such that they
can be batched, allowing the coordinator to reduce the overhead of pro-
cessing rules for firing.

Gend Section 4.3.2 explains how protocol objects are not given their own threads,
trivially facilitating termination detection if no ports remain to interact
with it. Section 4.3.1 describes how protocol structures are implicitly
cleaned up once all of their ports are destroyed.

73

4.4. REQUIREMENTS AND GUIDELINES EVALUATED

1 trait MaybeCopy { // private helper trait

2 const IS_COPY: bool = false;

3 }

4 impl<T> MaybeCopy for T {} // default case. NOT COPY

5 impl<T: Copy> MaybeCopy for T { // specialize for COPY TYPES

6 const IS_COPY: bool = true;

7 }

8 ///

9 trait MaybeEq { // private helper trait

10 fn maybe_eq(&self, _: &Self) -> bool {

11 panic!("This type cannot check equality!")

12 } }

13 impl<T> MaybeEq for T {} // default case. NOT PartialEq

14 impl<T: Eq> MaybeEq for T {

15 fn maybe_eq(&self, other: &Self) -> bool {

16 return self == other

17 } }

18 ///

19 trait PortDatum { // main PortDatum trait. also private

20 fn is_copy(&self) -> bool;

21 fn eq(&self, other: &Self) -> bool;

22 }

23 impl<T> PortDatum for T {

24 fn is_copy(&self) -> bool {

25 <Self as MaybeCopy>::IS_COPY

26 }

27 fn eq(&self, other: &Self) -> bool {

28 <Self as MaybeEq>::maybe_eq(self, other)

29 } }

Listing 16: Using Rust’s specialization feature to define PortDatum (sim-
plified) for every generic type T by relying on T always implementing
helper traits MaybeCopy and MaybeClone. MaybeCopy can be implemented
for any T, defining a default behavior in one block, and then overriding
it for a more specialized behavior in the other. The Rust compiler will
resolve which block to use based on the static properties of T, deriving a
PortDatum implementation with precisely the desired definition. In this
manner, PortDatum can be made inaccessible to the user, allowing Reo-rs
to trust that it was defined in the expected manner. The helper traits are
necessary to satisfy the requirements of the specialization feature: there
must be a strict ordering on the specificity of implementation blocks for
the same trait.

74

4.4. REQUIREMENTS AND GUIDELINES EVALUATED

1 struct TypeInfo(VtablePtr); // VtablePtr field is private. User can only interact with

`of` function.↪→

2 impl TypeInfo {

3 pub fn of<T>() -> TypeInfo {

4 // 1. fabricate bogus (uninitialized) data pointer to some type T.

5 let x: Box<T> = unsafe { MaybeUninit::uninit().assume_init() };

6 // 2. SAFE cast to trait object (Rust appends PortDatum vtable pointer for T)

7 let fat_x = x as Box<dyn PortDatum>;

8 // 3. convert to "raw" dynamic object: a pair of pointers with UNSAFE cast.

9 let raw: TraitObject = unsafe { transmute(fat_x) };

10 // 4. discard the bogus data. Return wrapped vtable only

11 return TypeInfo(raw.vtable)

12 } }

Listing 17: ‘Tricking’ the Rust compiler into retrieving the vtable of a
given type T for dynamic dispatch to virtual functions of trait PortDatum.
The safe cast on line 7 inserts a pointer to a vtable which the compiler
will ensure is present in the program text. TypeInfo structures can later
be used for type reflection, by manually appending this pointer to re-
construct the fat pointers that Rust natively uses for dynamic dispatch.

75

Chapter 5
Benchmarking

Chapters 4 described protocol objects generated by Reo for the Rust language.
In this chapter, we evaluate the performance of these objects at runtime. To
begin, we place their performance in context with their Java counter parts, and
with handcrafted Rust code in Section 5.2. Their performance characteristics
are examined more closely in Section 5.3, investigating the effect the imple-
mented optimizations, and examining the relationship between properties of
the input specification and performance at runtime.

5.1 Experimental Setup

For experiments throughout this chapter, we used a machine with the prop-
erties given in Table 5.1. Our experiments are available for inspection in the
source code in experiments.rs. For all tests, the Rust compiler (rustc) used was
version 1.38.0-nightly (bc2e84ca0 2019-07-17) contemporary with stable release
version 1.36.0 (a53f9df32 2019-07-03). Section 4.3.4 explains the need for this
compiler version to support currently-experimental features: (1) specialization
and raw in facilitating type reflection at runtime.

Experiments were run using the inbuilt testing functionality of Rust’s pack-
age manager (i.e., invoking cargo test), using release-level compiler optimiza-
tions. All measurements shown are the mean of all measurements of runtimes
for which protocol structures were built A times, and then runs were measured
B times for each, i.e., the mean of A× B total repetitions. The values of A and
B are specified in the captions of figures or tables in which the measurements
appear. If left unspecified, A and B are 100 and 1000 respectively.

76

experiments.rs

5.2. REO-RS IN CONTEXT

Component Properties
Operating System Windows 10.0.2.1000
Processor 4× 2 intel core i7-7500U CPU (64-bit) at 2.70 GHz
Memory 12Gb DDR4 2400MHz
Storage Micron 1100 SATA 5122 GB SSD

Table 5.1: Component properties of the machine used for experiments
in this chapter, included for the sake of reproducibility.

5.2 Reo-rs in Context

This section compares the performance of Reo-rs to its various competitors:
(1) the existing Reo back-end for the Java language, and (2) handcrafted Rust
protocol code. The goal is to provide the reader with an understanding on the
strengths and weaknesses of Reo-rs in a broader context.

5.2.1 Versus the Java Implementation

We begin by making the most intuitive benchmark to get an understanding
of how effectively Reo-rs has been optimized for its task; we compare it to
the work of the Reo compiler’s Java code-generator. This comparison spans
two vastly different systems with different goals, but also compare a memory-
managed language to a system’s language. The reader should bear this in mind
when interpreting the measurements, and focus primarily on the differences in
performance relative to other measurements of the same system, i.e., we are
most interested in comparing the ‘shapes’ of response curves. As our test sce-
nario, we have a set of N getters repeatedly copying some memory value M,
retained inside the protocol from initialization. By involving a contended re-
source, we are able to test and compare the scalability the generated programs,
both in terms of number of ports and the size of the transmitted data.

The unfairness of our comparison cuts both ways, as there is not a clear
means of comparing the transmission of large values; the Java version relies
entirely on object aliasing, effectively implementing different semantics. For
Java, the size of values transmitted is largely irrelevant. We begin by a compar-
ison on the only common ground; Figure 5.1a shows both Java and Rust are
transmitting pointer-sized objects in the fetch connector. Aside from the order
of magnitude difference in runtime, we observe a different ‘shape’. Reo-rs is
observed to be significantly faster in the case of a single getter. This is easy
enough to explain; the type relied upon for protecting the coordinator’s critical
region is Mutex from the parking_lot crate, which provides implementations of
these kinds of concurrency primitives. Mutex is documented as having a ‘fast

77

5.2. REO-RS IN CONTEXT

(a) (b)

Figure 5.1: Comparison of interaction time for the fetch connector for
both Java and Rust backends moving small values. rust_8 and java_8

both move a payload of 8 bytes (to match the reference size of the 64-
bit JVM). rust_8000 gives an example of how the runtime of Reo-rs
can change with respect to modest changes in data size. The two sub-
figures mirror one another except for the linear and logarithmic y-axes
respectively.

78

5.2. REO-RS IN CONTEXT

Figure 5.2: Comparison of interaction time for the fetch connec-
tor for both Java and Rust backends moving 64-kilobyte-sized data.
The Rust backend moves the datum by value, while the Java parallel
java_reference aliases the object (moving by reference). This back-
end does not support value-passing that preserves Reo’s semantics. We
achieve safety here by the coordinator injecting clone operations of byte
arrays to mirror Rust’s bit-wise copy, called java_value . Note the loga-
rithmic y-axis.

path’ optimization for when the lock is acquired uncontested. Runs with one
getter are thus able to take advantage of this optimization every time.

Figure 5.2 attempts to draw the same comparison as before, but in the case
of large data types. The Java-generated protocol objects do not do true value-
passing. It is out of the scope of this project to attempt to implement this effi-
ciently. Instead, we reason about the possible measurements we might observe
for a hypothetical, correct value-passing Java implementation. In the figure, the
region is bounded by (existing, unsafe) reference passing on the one hand, and
naíve value-passing on the other. The latter is implemented as a modification
to the protocol component’s run method: values send to getters are first cloned.

79

5.2. REO-RS IN CONTEXT

5.2.2 Versus Handcrafted Programs

Clearly, Reo-rs cannot outperform hand-optimized Rust on a case-by-case ba-
sis; whatever Reo-rs does, the hand-optimized code can mimic and specialize to
surpass (or at least match) its performance. Reo-rs has the burden of balancing
performance with other concerns such as flexibility and safety. Here, we mea-
sure the performance gap between Reo-rs and the handcrafted implementation
of a small set of test protocols.

Firstly, we examine a case for which Reo-rs is expected to do poorly: we
apply Reo-rs to a very simple protocol. To make matters worse, we perform the
experiment in a circumstance in which explicit synchronization bookkeeping is
unnecessary: port operations are accessed sequentially. Concretely, we examine
the fifo1 connector. At these small scales, it matters considerably how we
perform our optimization. Figure 5.3 shows runtimes for Reo-rs compared to
three handcrafted solutions. channel is the most intuitive solution, relying on
the ubiquitous crossbeam channel for its efficient message-passing channels.
The option version represents a memory cell as the the Option type from the
Rust standard library; it can implement the reading and writing of a memory
cell with methods replace and take. Finally, copy uses unsafe Rust, shirking
Rust’s idioms to access a pre-allocated heap buffer directly. We see that the
runtime of Reo-rs is never the fastest solution. Particularly for small port-
values, the simplicity of this protocol is not worth the overhead Reo-rs incurs
by traversing rules, comparing guards and so on. Still, it is surprising that
Reo-rs overtakes the crossbeam channel, whose implementation clearly does
prioritize the efficient movement of very large values.

The comparison become more interesting when we apply Reo-rs to less triv-
ial connectors, as they begin to necessitate synchronization. The alternator2
is a canonical Reo circuit that routes messages from putters {P0,P1} to getter G
in an alternating fashion (starting with P0). The semantics of this connector are
subtly different from that of a sequencer; the first value is transmitted once
all ports are synchronously ready, after which the second value is transmitted
asynchronously.

Listing 5.4 shows how Reo-rs fares against a simple handcrafted solution
which maps Reo-rs channel primitives and the connector’s synchronization
constraint to crossbeam’s channels and the Barrier in Rust’s standard library,
implemented to closely correspond with the specification, available for inspec-
tion as Listing 25 in the appendix. Figure 5.4b shows that, as before, the perfor-
mance of Reo-rs far surpasses that of our handcrafted solution for very large
values, likely as a result of relying on crossbeam, whose slowdown was pre-
viously observed in Figure 5.3. More interesting is the observation that while
Reo-rs is still inferior for small values, the gap has closed significantly across
the board, suggesting that the synchronization overhead is more similar in both

80

5.2. REO-RS IN CONTEXT

(a) (b)

Figure 5.3: Time from beginning of put to end of get in connector fifo1
compared to handcrafted Rust alternatives of various sorts. channel is
intuitive, using a crossbeam 1-capacity buffered channel. option stores
the temporary variable in an Option type, and writes and reads from
it using replace and take operations. copy uses unsafe rust to perform
reads and writes to an allocated heap buffer directly. In both figures, the
x-axis is logarithmic. The second plot displays information with a loga-
rithmic y-axis also. Results are the mean of 100× 1000 measurements

81

5.2. REO-RS IN CONTEXT

(a) (b)

Figure 5.4: Mean interaction duration of the Reo-generated alternator2
connector in comparison to an intuitive implementation based on chan-
nel primitives in the crossbeam crate, and the Barrier from the Rust
standard library showing (1) absolute runtimes, and (2) the slowdown
factor of Reo-rs compared to the handmade code. Note the logarithmic
x-axis. Measurements are the mean of 500× 5000 repetitions.

versions. For completeness sake, and to put out best foot forward, we include
the effects of the C-like unsafe API variants of Reo-rs port operations explained
in Section 4.3.1.

The alternator circuit is still simple enough that the handcrafted implemen-
tation is expressed in Rust code that is only a few lines long. It is in our best
interest to compare the performance of Reo-rs to handcrafted solutions closer to
the expected level of complexity for the use case of Reo. However, as programs
become more complex, it becomes more difficult to design handcrafted pro-
grams such that the results facilitate fair, and meaningful comparisons. As their
complexity increases, there are more opportunities for optimizations which ne-
cessitate making objective design choices. We leave a more complete analysis of
the performance of Reo-rs to handcrafted programs to future work. For now,
we conclude that Reo-generated Rust is unlikely to outperform handcrafted
programs for protocols at the expected level of complexity, but will be gener-
ally competitive with reasonable implementations of non-trivial protocols.

82

5.3. OVERHEAD EXAMINED

5.3 Overhead Examined

Here, we examine the performance characteristics of Reo-rs in more detail
under various circumstances. The goal is to understand how Reo-rs uses its
computational resources, and how performance responds to properties of the
specific protocol.

5.3.1 Parallelism Between Interactions

For connectors as simple as fifo1, overhead is overhead; there source of the
overhead is clear, and does not require thorough investigation to understand.
However, we are particularly interested in understanding how this overhead is
partitioned; as connectors become more complex, different parts of this over-
head impact performance in different ways.

Section 4 explains the nature of the coordinator role, and how its operations
are performed holding the lock for the Proto instance which connects ports as
their common communication medium. Table 5.2 shows measurements for an
experiment that attempts to understand which proportion of our overhead is
incurred inside the critical region, i.e., by the coordinator. In the case of this
experiment, our protocol has rules for movement which can be rendered as a
bipartite graph, allowing data flow from any putter in {P0,P1,P2} to any getter
in {G0,G1,G2}. As explained in Section 4.3.4, movements such as these do not
buffer the data elements inside the protocol; getters take values from putters
directly. As a consequence, putters are both the first and last to parttake in
any of our rule firings’ data movements. The table shows the mean duration
for which each putter was involved in such a firing. Along with the total
duration of the run, we are able to compute to which extent these putters were
able to work in parallel. We distinguish between four cases, corresponding
to rows in Table 5.2. The first three cases do not involve the clone operation,
and are observed to have insignificant differences for all measurements. For
this experiment, with modestly-sized values, we conclude that there is no large
difference in performance between these three cases:

move Values are moved from putter to getter synchonously.

copy Putters retain their values, and getters replicate them with a bit-wise copy
that does not mutate the original.

signal Getters do not return any data. They return after releasing putters.

The final clone case attempts to observe the effects of intentionally delaying
getters outside of the lock by necessitating the use of an explicit clone operation
whose duration is artificially lengthened. At this scale, sleep calls were out of

83

5.3. OVERHEAD EXAMINED

mean active time run
duration

mean
parallelismp0 p1 p2

move 2.68µs 2.594µs 2.993µs 31.1705ms 2.652
copy 2.737µs 2.4µs 2.673µs 28.7161ms 2.720
signal 2.351µs 2.282µs 1.943µs 24.7852ms 2.653
clone 4.451ms 4.461ms 4.416ms 44.609s 2.988

Table 5.2: Runs of 3 putters greedily sending their 2048-byte data di-
rectly to any of 3 getters, 10 000 times. The rightmost column computes
how many putters were involved in an interaction at any given instant,
i.e., indicating the extent to which their work was performed in parallel.
This test was performed with 4 variants, differing on the properties of
the data and whether the putter retained the original. Measurements
are the mean of 100× 10 000 repetitions.

the question, as its variability overwhelms any meaningful measurements. In-
stead, clone perform thousands of chaotic integer computations on the replica
before returning it. For these runs, putters retained their original values, but
the datum was not marked with the Copy trait. In all cases, we observed that
even at this coarse granularity, there was significant parallelism. For the ma-
jority of the time, new rules were able to fire whilst interactions were being
completed outside of the critical region. The final case in particular was within
a small rounding error of perfect parallelism, owing to the high cost of clone.

5.3.2 Time Inside the Critical Region

The previous section, we saw an experiment with data moving between putters
and getters. These runtimes included the putter’s time spent not only on the
movement itself, but also on the time spent in the role of coordinator. Here, we
examine the work that pertains to this role and how changes to the definition
of rules influence overhead. Figure 5.5 shows the overhead incurred by a coor-
dinator that traverses unsatisfied rules before finding one to fire. It is apparent
that in all cases, the overhead scales linearly, as expected. The time taken to
evaluate the satisfaction of a rule varies greatly dependent on its definition; the
evaluation of a rule involves many different operations mirroring the intrica-
cies of the imperative form it models, described in Chapter 3. To represent the
possibility space, the figure shows measurements for a simple protocol which
encounters replicas of one unsatisfied rule repeatedly, where its nature comes
in four distinct variants:

84

5.3. OVERHEAD EXAMINED

(a) (b)

Figure 5.5: Overhead as a result of evaluating a sequence of identical un-
satisfied rules before firing something. Experiment is repeated for four
variants of unsatisfied rules varying in the complexity of the operations
they before before being deemed unsatisfied. The two sub-figures show
the same information, with (b) representing it with a logarithmic y-axis
to accentuate the small-scale differences. Measurements are the mean
of 100× 10 000 repetitions.

guard A rule where some port is not ready. This is detected almost immediately
by cheap bit vector operations, as explained in Section 4.3.4. Evaluation
takes 8.76ns.

false A rule whose first instruction checks the predicate false. Evaluation takes
18.91ns.

ands A rule whose first instruction is a tree-like formula structure of twenty-
five conjunctions, only the last of which is false. Evaluation takes 180.72ns.

alloc A rule whose first instruction allocates a temporary false value. The
second instruction checks that this temporary value is true. Upon fail-
ure, the allocation must be rolled back, discarding the temporary value.
Evaluation takes 316.51ns.

These results meet our expectations. Rules can be arbitrarily complex, and
perform an arbitrary amount of work before concluding that they are not sat-

85

5.3. OVERHEAD EXAMINED

(a) (b)

Figure 5.6: Run time of the is_subset operation for bit vectors and
canonical hash sets. This operation is used very frequently by the coor-
dinator to determine whether a rule is satisfied. Figures show (a) run
times for the bit vector in response to a changing maximal element, i.e.,
number of ports, and (b) the speedup of the bit vector in comparison to
the hash set. Note the logarithmic axes.

isfied, and will not fire. Even for this small set of relatively simple examples,
we are able to see orders of magnitude in difference between the best case (in
which the rule is skipped as early as possible by evaluating a bit-vector), to
the worst case (involving several complex instructions). Fortunately, realistic
Reo connectors will be defined almost entirely by rules that are either skipped
as a result of evaluating these bit-vectors, or not at all. Even more expensive
guards can expect to incur overhead in the order of nanoseconds as long as
they involve no more than a handful of reasonable instructions.

The efficiency of the bit vector subset operation is key to the speed of the
coordinator. This is the first first three things evaluated for each and every rule,
checking whether all involved ports are ready, and if all the relevant memory
cells are full or empty. The bit-set capitalizes on how unusually often we need
this operation. Figure 5.6 shows how bit vectors are very efficient at checking
whether one is a subset of another. Here we see the time taken to evaluate
the positive case, representing the best-case scenario for our speedup. It is
guaranteed to occur at least three times every time a rule fires. Figure 5.6a

86

5.3. OVERHEAD EXAMINED

shows how low the cost of the operation stays, even when there are very many
ports involved. Figure 5.6b shows how significant the speedup over the subset
operation of canonical HashSet type. Admittedly, the majority of realistic Reo
circuits are on the low-end with respect to number of ports; if nothing else, this
is a result to encourage the development of more complex connectors. Observe
that the cost of the operation is agnostic to the fullness in the case of the bit-
vector. This is not so for the hash set, for which a fuller hash set makes for a
more expensive operation.

5.3.3 Parallelism Within Interactions

After data exchanges are initiated by the coordinator, the protocol’s lock is
released. Time spent exchanging can therefore only impact the threads that
play a part directly. Figure 5.7 shows measurements of the simo (‘single input,
multiple output’) protocol, which synchronously distributes a putter’s datum
to a set of getters. Figure 5.7 shows mean interaction times from the putter’s
perspective, measured in response to the cost of the data type’s clone operation
and the number of recipient getters. For the sake of the experiment, we use an
artificial clone operaton as before, to simulate a computation of the desired
intensity. We use an arbitrary ‘work unit’ as a relative metric of this duration.
It’s absolute meaning is not necessary; all that matters is that it is defined such
that its contribution to runtime is proportionate.

We observe that with fewer than two getters, the runtime does not scale
with the work units. Section 4.3.4 explains that amongst a set of getters, one is
elected the mover, both responsible for freeing the putter and given permission
to move the putter’s original if possible. The vast difference made by having
any getters at all can be explained by the implementation of the Mutex type
protecting the protocol’s critical region. With only one interacting port, the
mutex lock is always uncontested, and able to take the ‘fast path’.1

For few work-units, the duration of the interaction was always greater the
more getters were involved. Counter to our expectations, this was not a linear
relationship. The precise reason for this is uncertain, but owing to its repeata-
bility, we conclude that it’s a property of the system used for testing having to
share physical cores. Regardless, we observe that for all cases with numerous
getters, their durations converge toward more costly clone operations. Fig-
ure 5.8 confirms that as the parallelizable clone-work increases in significance,
getters parallelize their work more effectively.

1Our Mutex comes from the parking_lot crate. The relevant documentation is found at https:
//amanieu.github.io/parking_lot/parking_lot/struct.Mutex.html.

87

https://amanieu.github.io/parking_lot/parking_lot/struct.Mutex.html
https://amanieu.github.io/parking_lot/parking_lot/struct.Mutex.html

5.3. OVERHEAD EXAMINED

(a) (b)

Figure 5.7: Mean interaction duration from the perspective of the putter
into the simo connector. Results are distinguished by how many getters
synchronously acquire the putter’s datum in each interaction. Results
are shown in response to the cost of the clone function, in arbitrary work
units. Note the logarithmic x-axes in both figures, and the logarithmic
y-axis in (b). Measurements are the mean of 100× 3000 repetitions.

88

5.3. OVERHEAD EXAMINED

Figure 5.8: Mean interaction duration in the simo connector, showing
slowdown relative to that of runs with two getters. Results are shown
in response to the cost of the clone function, in arbitrary work units.
Note the logarithmic axes. Measurements are the mean of 100× 3000
repetitions.

89

5.3. OVERHEAD EXAMINED

5.3.4 Reference-Passing Optimization

Finally, we perform an experiment to verify that the reference-passing opti-
mization described in Section 4.3.4 is working as intended. Figure 5.9 shows
the results of the mean time taken for a datum to pass through a fifoN connec-
tor. This protocol makes trivial use of an m-long chain of memory cells. Values
originate as input on one end, shifting between cells from head to tail, and
finally being output at the tail. All measurements are dominated by the work
of moving the 213-byte values in memory from one place to another. shift_get
represents the most intuitive run, where values are moved twice: once into
the protocol’s storage, and once out to the getter. For this protocol, the Rust
compiler failed to optimize the logical data-movement of the safe API’s put

operation. Runs using this safe variant are prefixed with put_, and include an
additional value-movement.

As expected, runtimes in Figure 5.9a are seen stratified according to the
number of movements they perform. In all cases, longer chains of memory
cells indeed require more time (preventing the runtime to be constant with
respect to m), but the overhead is relatively small, and does not appear to
be affected by the baseline cost of movement; this is expected, as the cost of
reference-passing is unrelated to the value’s size, or data type in any way.

Figure 5.9b shows how the cost of reference-passing compares to the best-
and worst-case scenarios for the response of interaction time to the length of
the chain. Previously we have observed that Reo-rs experiences some constant
overhead per port interaction (e.g., in Figure 5.3b), so interaction time would
likely remain sublinear even if it performed value-passing between memory
cells naïvely. However, in most examples (including this one) we can safely
presume it’s slope would be far steeper than it is now.

90

5.3. OVERHEAD EXAMINED

(a) (b)

Figure 5.9: Round trip time (RTT) of a 213 byte value through a fifoN
connector with m ranging from 1 to 20, measuring the time taken from
the start of the put into the head of the chain, to the end of the get out of
the tail. (a) The experiment was repeated using variations of port opera-
tions to control the number of memory copies. put_* runs move the da-
tum using the safe value-passing API, and others use the unsafe C-like
reference-passing API. *_get runs acquire the output by value, while
others participate in synchrony by acquiring a signal. (b) put_in_out is
compared to the best- and worst-case scenarios for interaction times in
response to m. Measurements are the mean of 100× 10 000 repetitions.

91

Chapter 6
Generating Static Governors

The cumulation of the previous chapters describe a standalone contribution to
the Reo compiler. We have seen that users are able to generate Rust source
code from a Reo specification (Chapter 3) which may be used in conjunction
with their own Rust code to behave according to the corresponding protocol
specification at runtime (Chapter 4). The programmer is able to rely on these
protocol objects to constrain the behavior of their program at runtime such that
no deviations from the protocol specification may be observed.

In this chapter, we design the governor generator, a tool to augment the user’s
Reo-coordinated Rust programs. As with the Reo compiler before, this tool
generates a Rust source file from the Reo protocol specification which the user
may import as a dependency. Within, a Rust type which corresponds with a
governor. If integrated into the implementation of the user’s components, the
Rust compiler will enforce that the user’s code does not inhibit the behavior of
the system at large. In effect, users are provided an ergonomic means to opt
into their Rust compiler enforcing liveness properties of their programs.

Section 6.1 provides the formal definition of governors, and how they relate
to protocols, components and liveness. Section 6.2 describes the problem the
governor generator aims to solve from the perspective of a Rust programmer
relying on Reo to coordinate their components’ communication. Section 6.3
gives a high-level overview of our corresponding solution. Section 6.4 explains
in detail how the governor generator works, concentrating only on what is
required to make it minimally functional. Finally, Section 6.5 elaborates on the
means by which the solution is made ergonomic and practical.

92

6.1. GOVERNOR DEFINED

6.1 Governor Defined

A Reo protocol specification defines which interactions are permitted between
its boundary ports. In other words, protocols constrain the behavior of any
system in which they are a component. This is the result of Reo’s semantics,
which guarantees that the behavioral constraints of a system are the compo-
sition of that of its components, at any granularity. However, protocols do
not prevent their boundary components from adding constraints of their own.
As a consequence, the definition of a component viewed in isolation does not
provide any guarantees on which interactions are observable in the system at
large. To make this possible, a component needs some knowledge about the
behavior of the system beyond its own ports. Fortunately, Reo specifications
take us halfway there, as they make explicit which behaviors they permit in an
unambiguous form that can be transformed, and can be inspected. To proceed,
we define the governor.

Protocol P with interface ports IP defines GP,IP , its governor with respect to
its interface ports. GP,IP shares interface IP with P itself, and also constrains the
interactions between them in the same manner as P. However, all port actions
in GP,IP are the complements of those in P, i.e., all puts are gets and vice versa.
GP,IP characterizes the behavior of a component that, if connected to P with
interface IP, would result in a composite system with the same behaviors of P
itself. In other words, GP,IP describes the behavior which P would permit to
occur, from the perspective of a component interfacing with all of P’s ports.

Governors are generalized such that they are defined for any subset of a
protocol’s interface ports, i.e., a protocol P with interface IP defines a set of
governors {GP,x | x ⊆ IP}. Governors characterize the reverse-oriented behav-
iors as before, but such that these behaviors are projected onto the governor’s
own interface; projection is defined precisely by Baier et al. [BSAR06], and is
explained in Section 6.5.1 when it is needed. Here, it suffices to say that the
behavior as constrained by the governor omits the actions of all ports not in the
governor’s interface. This captures the intuition that the governor only speci-
fies the interactions of its own boundary ports, not constraining the actions of
other ports at all. As such, the behavior of a governor is at most as constrained
as that of the protocol itself; for every port not included the interface, the gov-
ernor potentially becomes more ‘lenient’. This is made clear for the trivial case
of a governor with the empty interface, which has no constraints whatsoever.

The utility of this construction is that it provides a means by which a com-
ponent interfacing with some protocol P with any of its ports may compute
precisely which behavior the protocol permits. By relying on the fact that pro-
tocol objects will facilitate any and all permitted interactions as possible at
runtime, this boundary component is able to predict precisely the behavior the

93

6.2. THE PROBLEM: UNINTENDED CONSTRAINTS

component that arises from its composition with the protocol. In the simplest
case, one is able to enforce that the resulting behavior matches the constraints
of the protocol; equivalently, the protocol’s boundary components do not con-
tribute any behavioral constraints that the protocol itself did not define already.
For such systems, one may understand the entirety of the system’s coordina-
tion behavior by inspecting the definition of the protocol alone. In these cases,
we say that the component is adherent to the protocol.

6.2 The Problem: Unintended Constraints

A central tenet of Reo’s design is the separation of concerns, part of which is
the desire to minimize the knowledge a compute component must have of its
protocol. In this view, coordinating the movements of data is not a concern
relevant to the task of computation. A desirable balance is possible with the
observation that protocol objects are able to partially impose protocol adher-
ence on their neighbors; Section 4.3.2 explains that, while external ports may
instigate a put or get at any moment, the coordinator will complete the oper-
ations only once the specification allows it. In this way, coordinators possess
a crucial subset of the features of governers: aligning the timing of two ac-
tions that compose an interaction. Unfortunately, in the properties of the realm
of sequential, action-centric programming itself implicitly imposes constraints
on the behavior of the system: put or get block until their interaction is com-
pleted, and no subsequent code (potentially, other port operations) will occur
until they do. This is beyond the capabilities of the coordinator to influence.

In the context of application development, this has an interesting conse-
quence; the behavior of the system is influenced by the behavior of (poten-
tially) all of its components. This is sensible in theory, but becomes unwieldy
in practice. Even small changes to the behavior of a compute component influ-
ences the system’s behavior in unexpected ways, as we are not used to thinking
about synchronous code as a composable protocol, nor are we able to intuit the
outcome of the composition. For example, Listing 18 gives the definition of a
compute function which a user may write to interact with a protocol. When
p and g are connected to a fifo1 protocol (which forwards p to g, buffering it
asynchronously in between), it runs forever and the output will be something
like: I saw true. I saw false. I saw true. I saw false. (...).
However, when connected with the sync protocol (which forwards p to g syn-
chronously), the system has no behavior. The problem is that even though
fifo1 and sync have the same interface, transform_not is adherent to the for-
mer, but not the latter. By definition, sync fires when both p and g are ready, but
transform_not does not put until the get is completed; effectively transform_rot

constraints the behavior at its ports by imposing an ordering. This property

94

6.3. SOLUTION: STATIC GOVERNANCE WITH TYPES

may be obvious at the small scale of this example, but it becomes more difficult
the larger and more complex the program becomes. Once the intricacies of
these programs grow beyond a programmer’s ability to keep track of these re-
lationships, the composed system may have unintended behavior. In the worst
cases, an innocuous change adds a new constraint such that no next interaction
exists, observed at runtime as deadlock.

1 fn transform_not(p: Putter<bool>, g: Getter<bool>) {

2 loop {

3 let input: bool = g.get();

4 print!("I saw {}.", input);

5 p.put(! input);

6 } }

Listing 18: A function in Rust which can be used as a compute compo-
nent in a system, connected to a protocol component.

6.3 Solution: Static Governance with Types

In this work, we accept that it is necessary to write compute code that has block-
ing behavior. Rather than attempting to empower the coordinator with the
ability to further manage its boundary components, we empower the boundary
components with the ability to manage themselves. To make this possible, we
expose the protocol’s specification to their components; specifically, we create a
means by which we are able to generate the relevant governor for a given pro-
tocol and interface. The resulting governors ensure that any implementation
is adherent to the protocol, by prohibiting it from adding any new constraints.
Counter-intuitively, this takes the form of disallowing the component from per-
forming the ‘wrong’ port operation, as the resulting blocking behavior would
inhibit its ability to perform the ‘right’ port operation.

There is a vast possibility space for facilitating this enforcement on the users
code given a governor as it is defined in Section 6.1; any solution that results
in protocol adherence is sufficient. For example, a human with a keen eye
and a steady hand would be able to check protocol adherence manually, by
reasoning about the behavior of all components involved. Instead, we opt for a
more ergonomic approach that leverages a tool the user is guaranteed to have
at their disposal anyway: the Rust compiler. Our solution involves the interplay
between two novel facets of the Rust language that follow from its affine type
system;

95

6.4. MAKING IT FUNCTIONAL

1. We are able to model the protocol’s underlying automaton (see Section 2.1.3)
as a type-state automaton (see Section 2.2.3), such that the Rust compiler
is continuously aware of the protocol’s state throughout control flow of
the user’s code wrt. its execution at runtime,

2. and we are able to protect the API of Reo-rs’s port objects (see Sec-
tion 4.3.1) such that the Rust compiler statically allows their use only
if doing so in the current state preserves protocol adherence.

From the user’s perspective, they are able to opt into the Rust compiler en-
forcing protocol adherence in their component code. Concretely, the are able
to modify their implementation such that it takes the form of a function with
a declaration (i.e., type signature) as defined in the Rust dependency gener-
ated by the governor generator. The user defines the function with put and
get operations interspersed with arbitrary Rust code as usual. However, any
port operations that would violate protocol adherence will result in the Rust
compiler generating a static type error; if their implementation is completed
without type errors, the user can be certain that their component’s behavior at
runtime will be protocol adherent.

6.4 Making it Functional

This section details the workings of the governor generator tool which gener-
ates Rust code given (a) a representation of a protocol’s RBA, and (b) the set of
ports which comprise the interface of the compute component to be governed.

6.4.1 Encoding CA and RBA as Type-State Automata

The type state pattern described in Section 2.2.3 provides a means of encoding
finite state machines as affine types. Their utility is in guaranteeing that all
runtime traces of the resulting program correspond to runs in the automaton.
For this class of machines, the encoding is very natural, as there can be a one-to-
one correspondence between the states of the abstract automaton, and the types
required to represent them. This is also the case for transitions and functions;
in the worst case, this mapping is one-to-one also. For an arbitrary transition
from states a to b with label x, a function can be declared to consume the type
for a, return the type for b, and perform the work associated with x in its body.

The encoding is more complicated for CA, where not only states but data
constraints must be encoded into types and must interact with transitions. One
approach is to treat configurations as states were treated before by enumerat-
ing them into types. For example, the configuration of state q0 with memory

96

6.4. MAKING IT FUNCTIONAL

cell m = 0 is represented by type q_0_0, while state q0 with m = 1 is repre-
sented by q_0_1. On a case-by-case basis, one might be able to represent several
configurations using one type in the event these configurations are never dis-
tinguished. For example, a connector may involve positive integers, but only
distinguish their values according to whether they are odd or even and noth-
ing else; in this case {q_0_0, q_0_1, q_0_2, ...} may be collapsed to {q_0_odd,
q_0_even}. For an arbitrary case unique types are needed for every combina-
tion of state with every value of every variable. As RBAs are instances of CA,
we are able to represent them using the same procedure. For the sake of con-
sistency with the previous chapters, we primarily use RBAs when reasoning
about governors.

We extend this idea to the first of the two tenets of our design, as they
appear in Section 6.3. Namely, we model the current configuration of the pro-
tocol as a type, updating it throughout our control flow such that it always
corresponds with the protocol’s configuration. From the user’s perspective,
they have precisely only token type in scope at all times. As defined previ-
ously, we are able to simulate ‘updating’ this type by overwriting it with a
replacement token as the return result from a functions whose behavior alters
the type. Concretely, our transition function consumes the old token (taking
it by value as a parameter), and produces the new token as part of its return
value. It follows that at all times we have precisely one token, whose type
corresponds with the configuration of the protocol.

6.4.2 Rule Consensus

The protocol works by firing rules at runtime which correspond to those of the
RBA which defines its Reo connector. Section 6.4.1 above explains how various
compute components are able to proceed in lockstep with the protocol’s RBA
in a type-state automaton of their own. For deterministic RBAs, this is easy
enough; everyone can trivially know which action occurs next, and they can
transition through configuration space independently, safe in the knowledge
that their representations of the run will stay aligned. This ignores temporary
misalignments in time for transitions in which the compute component does
not communicate with the protocol; for these cases, one may work ahead, leav-
ing the other in a previous state. However, they will catch up eventually when
they both reach a transition that involves them communicating (which is ul-
timately all that matters). This process becomes more complicated when the
protocol can reach configurations with multiple choices for the next transitions.
Without a priori agreement on how these situations are handled, the choice is
defined to be nondeterministic. Clearly, all is well as long as all parties agree
on this choice; problems only present themselves when compute components
and protocols disagree on what may happen next. If the view of a governor

97

6.4. MAKING IT FUNCTIONAL

are out of sync with its protocol it is generally unable to guarantee that the
actions it permits are adherent, or it may prohibit something it ought not to,
resulting in unintended constraints of the intended behavior (in the worst case,
deadlock). Clearly, this is a problem of consensus.

Many means of creating consensus exist. We are able to enforce a meta-
protocol a priori between governors and protocol such that consensus emerges
at runtime. This can be achieved without any overhead by making the decision
based only on information statically available. For example, peers may rely on
a shared, total priority ordering on rules to remove all nondeterministic choice.
Many such meta-protocols are possible, each making assumptions about the
desired system behavior.

This work takes the approach of statically ‘electing’ the protocol itself as the
leader in every case, and having all governors follow the lead of its arbitrary
choice by ‘asking’ it what to do next dynamically. This approach is primarily
motivated by its flexibility. In supporting an arbitrary choice on the part of the
protocol, we make the choice itself an orthogonal concern, ripe for exploration
in future work. Electing the coordinator in particular as the leader is also
somewhat natural, as it is only actor in the system with a complete view of the
protocol’s state, and can thus make the choice as a function of the state, i.e., the
protocol is capable of making the best-informed decisions.

In terms of implementation, we make a modification to the encoding of
our governor’s automaton such that it can represent all choices available from
a particular configuration. Before proceeding, the governor ‘collapses’ these
options to match the choice of the protocol by communicating with the coor-
dinator. Concretely, the Rust function for a rule no longer returns a particular
type-state token, but rather a StateSet which enumerates the options. This
object is collapsed as a result of calling determine. Handling the returned vari-
ants branches the governor’s control flow in a manner akin to a match (similar
to a switch statement in other languages), with each arm given a single state
token to proceed. Naïvely, this must be encoded as a distinct enum type with a
variant for every possible outcome. Clearly creating new type definitions for
every conceivable combination of branches is prohibitively expensive.1 Ideally
we wish to be able to create enumeration types on-the-fly with precisely the
variants needed on a case-by-case basis. Rust provides tuples for this purpose
in the case of struct (product types), it has no parallel for enum (sum types).
This feature has been requested for some time [rh14]. If it is supported one

1Early versions of our implementation indeed enumerated these types with a relatively ef-
fective powerset construction. However, it was unable to avoid explosion if there simply were
many solutions to be found. The nail in the coffin was the changing from the exponential base
from 2 to 3 as a result of the modification explained in Section 6.5.2.

98

6.4. MAKING IT FUNCTIONAL

day, this may be ideal fore representing these StateSets with minimal code
generation.

Until anonymous sum types are supported, our solution to the problem
of representing the generic StateSet type relies on Rust’s traits to encode the
variants as a tail-recursive list of nested tuples. Matching the elements of the
lists is achieved by repeatedly attempting to match the head. Listing 19 shows
one possible representation which uses a final sentinel list element to make
for an ergonomic definition of the StateSetMatch trait, which provides head-
matching behavior for singleton lists, distinct from that of larger ones. From
the user’s perspective, StateSet objects are opaque, and prevent the automaton
from proceeding with transitions until the object is collapsed to some usable
State object.

1 trait StateSetMatch {

2 type MatchResult;

3 fn match_head(self) -> Self::MatchResult;

4 }

5 struct StateSet<L> { data: /* omitted */ }

6 impl<H,Ta,Tb> StateSetMatch for StateSet<(State<H>, (Ta, Tb))> {

7 // a list with 2+ elements. match_head definition omitted

8 type MatchResult = Result(State<H>, StateSet<(Ta,Tb)>>;

9 }

10 impl<S> StateSetMatch for StateSet<(State<S>, ())> {

11 // singleton set. `()` acts as a sentinel element. match_head definition omitted

12 type MatchResult = State<S>;

13 }

14 fn example(ab_set: StateSet<(State<A>, (State, ()))>) {

15 match ab_set.match_head() {

16 Ok(a) => /* matched A */,

17 Err(b_set) => {

18 let b = b_set.match_head();

19 /* matched B */

20 } } }

Listing 19: Definition of type StateSet, which acts as an anonymous
sum type by encoding its variants as a tail-recursive tuple in its generic
argument. Two non-overlapping definitions of trait StateSetMatch are
provided to make the type behave as expected in response to associated
method match_head. Function example demonstrates how the arbitrary
number of variants are matched two at a time by repeatedly attempting
to match the first element of the list (the head), translating it into a
conventional Result enum which Rust can pattern-match as usual. The
result of this match can depend on the contents of field data, which is
instantiated dynamically at runtime by interacting with the coordinator.

99

6.4. MAKING IT FUNCTIONAL

6.4.3 Governed Environment

So far, this section has described only the first of two facets of our design,
as they appear in Section 6.3. Namely, we are able to model the protocol’s
configuration space, and trace its changes throughout the control flow of the
user’s component by continuously updating the type of the token, a small no-
data structure used only for encoding information in its type. What remains
is the step that connects this protocol configuration to its relationship with a
given port operation.

We define the Governed<Putter> and Governed<Getter> types as wrappers
for the Putter and Getter types existent in Reo-rs, corresponding to (logical)
input and output ports respectively. As is idiomatic in the Rust language, our
Governed type offers a type-safe means of ‘managing’ the API of the type it
wraps (by enclosing the original API and providing its own), without altering
the underlying data structure as it is represented at runtime. In other lan-
guages, this may be approximated with function overloading.

Everything comes together by defining the API of our wrapper types such
that its port operations are specified to consume a particular token, and pro-
duce a replacement. For this to work as intended, the function’s requirement
for input and output token types must correspond with transitions in the type-
state automaton. In other words, the API of our Governed type conflates two
otherwise orthogonal actions, such that one cannot occur without the other:
every port action a that changes the protocol’s configuration from Cx to Cy

(1) a occurs, (2) the token’s type for Cx is updated to the type for Cy. The
effect is the (static) prohibition of port operations which do not correspond to
transitions through the protocol’s configuration space, i.e., they do not occur
‘next’ for a protocol in the state matching the type of the token.

For cases there the token corresponds with a protocol configuration in
which there are several possible next actions (described in Section 6.4.2), the
user’s component cannot safely commit to any choice, as it would necessar-
ily constrain the component’s behavior, violating its protocol adherence. Such
cases are detected statically by having a StateSet with two or more elements.
At runtime, this problem is solved by ‘asking’ the protocol which branch to
take, after which we have a single state token and proceed as before. Stati-
cally, the choice is not yet known, and so the programmer must provide the
definition of the resultant behavior for each case. Section 6.4.2 explains that
our solution emulates matching by recursively defining behavior in response
to suffixes of a list whose elements match those of the StateSet.

100

6.5. MAKING IT PRACTICAL

6.5 Making it Practical

With a basic outline for the implementation, we are able to realize some func-
tional, yet naïve governors. However, there is a long way to go before these
systems can be applied in any realistic scenario. In this section, we explain
which problems remain to be solved, whether for the sake of managing com-
plexity, or for the user’s ergonomics.

6.5.1 Approximating the RBA

The approach to generating a type-state automaton from an RBA was given
in 6.4.1. Our type-state automaton suffer the same state space explosion of Con-
straint Automata, prior to the inclusion of memory (explained in Section 2.1.3).
We cannot hope to represent realistic programs with this approach alone, as the
necessary automaton would be wildly unmanageable in its number of states
and transitions. In this section, we explain how the type-state automaton is
adapted to approximate the protocol’s configuration space such that we strike
a balance between accuracy and simplicity, without any effect on the governor’s
correctness.

Data Domain Collapse

We abandon the goal of faithfully representing the entirety of the protocol’s
configuration space in favor of representing an approximation by assuming all
data types to be the trivial unit type. With this assumption, memory cells may
be in one of two states: (a) empty, (b) filled with ‘unit’. Converting existing
RBAs may see large subexpressions of data constraints becoming constant, in-
cluding checks for equality and inequality between port values. In practice,
the vast majority of Reo protocols do not reason about the contents of mem-
ory cells beyond distinguishing fullness from emptiness. For these protocols,
approximation has no effect. Note that this is the same rationale behind the op-
timization explained in Section 4.3.4. In this context, this means that, usually,
two configurations that are only distinguished by having different data values
in memory cells or begin put by putters satisfy precisely the same subset of
the RBA’s guards. Consequently, they do not need to be distinguished. This
simplification greatly reduces the total number of types to encode an RBA’s
configuration space. However, it is still necessary to consider the possible com-
binations of all empty and full memory cells, requiring potentially 2N types
for N cells. Rather than enumerating these types explicitly, we can rely on
the structure the RBA provides by simply encoding each automaton configu-
ration as a tuple of types Empty and Full. In a sense, each configuration tuple
is indeed its own type, but neither the code generator nor the compiler need

101

6.5. MAKING IT PRACTICAL

to pay the price of enumerating all the combinations eagerly. For example,
a configuration of three empty memory cells would be represented by type
(Empty,Empty,Empty). For brevity, we will henceforth shorten Empty and Full

to E and F respectively, and abbreviate tuples by omitting commas wherever
doing so will not result in ambiguity.

As before, we are able to represent an RBA rule as a function in the Rust
language by encoding a configuration change from q to p determines its decla-
ration such that it consumes the type-state of p and returns the type-state of q.
The naïve approach of generating functions per type-state is susceptible to the
same exponential explosion that plagued CAs in the first place. Fortunately,
tuple types have inherent structure which Rust’s generic type constraints are
able to understand. The use of generics to ignore elements of the tuple coin-
cides with an RBA’s ability to ignore memory values. Consequently only one
function definition per RBA rule is required. The way the rule’s data constraint
manifests is somewhat different, as our function must explicitly separate the
guard and assignment parts and represent them as constraints on the param-
eter type and return type respectively; this facet is borrowed from the Reo
compiler’s internal representation from Chapter 3.

As an example, Listing 20 demonstrates the type definitions and rule func-
tions for the fifo2 protocol, first seen in Section 2.1.3, with the associated RBA
shown in Figure 2.6. Observe that the concrete choices for tuple elements act
as value checks for memory cells in either empty or full states. Omission of
a check must be done explicitly using a type parameter such that the function
is applicable for either case of E or F, and to ensure the new state preserves
that tuple element; this causes memory cells to have the expected behavior of
propagating their values into the future unless otherwise overwritten by assign-
ments. This serves as an example of a case where our simplification coincides
with a faithful encoding of the original protocol, as fifo2 never discriminates
elements of the data domain shared by A and B.

RBA Projection

When a protocol’s interface is provided as-is to a compute component, its
model itself (an RBA in our case) defines precisely what it is permitted to
do, just with the orientation of operations reversed; for the component to be
compatible, it must put on port P whenever the protocol gets on P, and get on
port Q whenever the protocol puts on port Q. In such cases, the procedure
for encoding the RBA described in Section 6.5.1 can be applied directly. Oth-
erwise, the interface of a compute component does not subsume the entirety
of the interface of its protocol. In such systems, the protocol interfaces with
several compute components. Indeed such cases form the majority in practice;
compute components tend to only play a small role in a larger system.

102

6.5. MAKING IT PRACTICAL

1 enum E {} // E for "Empty"

2 enum F {} // F for "Full"

3 fn start_state() -> (E,E);

4

5 fn a_to_m0<M>(state: (E,M)) -> (F,M);

6 fn m0_to_m1 (state: (F,E)) -> (E,F);

7 fn m1_to_b<M>(state: (M,F)) -> (M,E);

Listing 20: Type-state automaton for the fifo2 protocol in Rust. The
three latter functions correspond to the three rules seen for the RBA in
Listing 2.6. Function bodies are omitted for brevity. Note that M is not
a type, but rather a generic type parameter to be instantiated at the call
site.

rule guard assignment
0 m0 = ∗ ∧ m ′0 = dA
1 m0 6= ∗ ∧ m1 = ∗ ∧ m ′1 = m0 ∧ m ′0 = ∗
2 m1 6= ∗ ∧ dB = m1 ∧ m ′1 = ∗

Table 6.1: RBF of the fifo2 protocol, equivalent to the RBA in Figure 2.6.
Formatted with an outermost disjunct per line such that guard and as-
signment parts per rule are discernible.

The contents of Section 6.5.1 are sufficient to generate some functional
governors. We consider a system containing protocol P and connected com-
pute component C with interfaces (port sets) IP and IC respectively, such that
IP ⊇ IC. We wish to generate governor GC whose task is to ensure that C
adheres to P. As a first attempt, we translate P’s RBA to Rust functions and
types as-is. We would quickly notice that the RBA’s data constraints represent
port operations that are excluded from IC. These interactions involve no ac-
tions on C’s part; from the perspectives of C and GC, these actions are silent.
Equivalently, we do not use the RBA of P directly, but consider instead its pro-
jection onto IC, which hides ports not in the interface projected upon, omitting
the actions of those ports from the specification.

As an example, we once again generate a governor for a compute com-
ponent with interface {A} with the fifo2 protocol. This time the protocol is
represented as an RBF in Table 6.1 to make the correspondence to the gener-
ated governor in Figure 21 more apparent. Observe that all but one of its rule
functions are silent, serving no purpose but to advance the state of the automa-
ton by consuming one type-state and producing the next. As demonstrated

103

6.5. MAKING IT PRACTICAL

1 fn a_to_m0<M>(state: (E,M)) -> (F,M) {

2 // A puts

3 }

4 fn m0_to_m1 (state: (F,E)) -> (E,F) {

5 // silent

6 }

7 fn m1_to_b<M>(state: (M,F)) -> (M,E) {

8 // silent

9 }

Listing 21: Type-state automaton rules which govern the behavior of
a compute component with interface ports {A} for the fifo2 protocol.
Function bodies list the actions which the component contributes to the
system. Observe that rules but 0 are silent.

here, this approach to generating governors is correct, but has two undesirable
properties:

1. API clutter
The user is obliged to invoke functions which correspond with rules in
the protocol’s RBA. In many cases, these rules will serve no purpose other
than to consume a type-state parameter, and return its successor.

2. Protocol entanglement
The type-state automaton captures the structure and rules of the proto-
col’s RBA in great detail. This is a failure to separate concerns, which
further couples the compute component to its protocol. This has the
immediate effect of making components difficult to reuse (their imple-
mentations are more protocol specific), as well as making them brittle to
changes to the protocol, making them difficult to maintain.

RBA Normalization

Section 6.5.1 introduced a procedure for generating governors, but also dis-
cussed a significant weakness; all governors are represented by type-state au-
tomata based on the original protocol’s rules. In this section, we introduce a
notion of normalization that intends to specialize the governors according to its
needs such that it is still ‘compatible’ with the protocol’s RBA in all ways that
matter, but has greatly reduced api clutter and protocol entanglement.

Let an RBA be in normal form if it has no silent rules. We observe that the
presence of silent rules contributes to both api clutter and protocol entangle-
ment. Ideally, we wish to abstract away the workings of the protocol as much as

104

6.5. MAKING IT PRACTICAL

possible; at all times, the governor only needs to know which actions the com-
ponent must perform next. To make this notion more concrete, we introduce
some definitions which build on one another to define the term we need: our
normalization procedure should generate an RBA with starting configuration
which port-simulates the protocol’s RBA in its starting configuration:

• Act(r) of an RBA state r:
The set of ports in r which perform actions (ie: are involved in interac-
tions).

• Rule sequence from c0 to c1 of RBA R:
Any sequence of rules in R that can be applied sequentially, starting from
configuration c0 and ending in configuration c1.

• P-final wrt. port set I:
A rule sequence of RBA R, with last rule rlast is P-final with respect
to port set I if Act(rlast) ∩ I = {P} and for all rules r in the sequence,
r = rlast ∨Act(r)∩ I = ∅.

• RBA R1 in config. c1 port-simulates R2 in config. c2 wrt. Interface I:
If for every P-final rule sequence of R2 starting in c2, ending in c ′2 there
exists some P-final rule sequence of R1 starting in c1, ending in c ′1 such
that R1 in c ′1 port-simulates R2 in c ′2.

The intuition here is that it does not matter how the governor’s RBA struc-
tures its rules. It is unnecessary for governors to advance in lockstep with
the protocol to the extent that they agree on the protocol’s configuration at all
times. It suffices if the protocol and governor always agree on which actions the
ports in their shared interface do next. Figure 6.1 visualizes this idea; observe
how the normalized RBA has entirely different transitions (different labels and
configurations), but is ultimately able to pair actions of the protocol for ports
in its interface with its own local actions.

The final normalization procedure is given in Listing 22 in the form of
simplified Rust code. It works intuitively for the most part: silent rules are
removed, and new rules are added to retain their contribution of moving the
RBA through configuration space. The function normalize ensures that the
returned rule set is in the same configuration as the protocol after matching a
non-silent, but the configuration is allowed to ‘lag behind’ while the protocol
performs rules which it considers to be silent. New rules must be added to
‘catch up’ to the protocol after any such sequence of silent rules. The procedure
does this by building these composed rules from front to back, i.e., replacing
every silent rule x with a set of rules x · y, where y is any other rule. Once
completed, the RBA may contain rules that are subject to simplification. For
example, {m = ∗∧n = ∗, m 6= ∗∧n = ∗} can be represented by only n = ∗.

105

6.5. MAKING IT PRACTICAL

(E,E)
(a)

(F,E) (E,F) (E,E) (F,E)

(E,E)
(b)

(F,E) (E,F) (E,E) (F,E)

(E,E)
(c)

(F,E) (F,E)

A.get · B.put A.get

A.put · · A.put

A.put A.put

Figure 6.1: Rules being applied to walk three RBAs in lockstep, with
time horizontally, showing the (simplified) configurations traversed, and
annotating rules by showing which port actions they involve.
(a) RBA of protocol fifo2. (b) RBA of fifo2 projected onto port set {A}.
(c) RBA of fifo2 projected onto port set {A} and normalized to remove
silent rules.

The normalization algorithm is correct, as it does not have silent rules once
it returns (not_silent containing zero silent rules is invariant). Observe that
for each silent rule removed, it does not consider composing with itself. The
immediate result is that the algorithm never inserts some rule x · x for silent
rule x. This is not a problem, as all silent rules of our approximated RBAs are
idempotent with respect to their impact on the configuration. The algorithm
is able to take for granted that the result any chain of silent rules x · x · x · ... is
covered by considering x itself. Furthermore, the incremental removal of rules
prohibits the creation of any silent cycles at all. This is due to the reasoning
above being extended to any sequences also2

The normalization algorithm is terminating. It consists of finitely-many
algorithm steps in which the RBA A is replaced by RBA B = (A \ {r}) ∪ {r ·
x|r ∈ A \ {x} ∧ composable(x, r)} for some silent rule x ∈ A. Initially, A is the
input RBA with silent rules. The algorithm terminates, returning B when A is
replaced by B where B has no silent rules. Let P(x) be the set of acyclic paths
through RBA x’s configuration space. Observe that initially, P(A) is finite. It
suffices to show that in each algorithm round, |P(A)| strictly decreases. Within
a round, for every ‘added’ p in P(B) \ P(A), p contains a rule m · n such that
there exists p ′ in P(A) \ P(B) identical to p but with a 2-long sequence of rules
m,n in the place of x. From this we know that |P(A)| > |P(B)|. However, the
1-long path of x itself is clearly in P(A) \ P(B). Thus, |P(A)| > |P(B)|. qed.

2The reader may note the similarity between this observation and that made by the pumping
lemma for regular languages. [Lin06]. In both cases, we observe that an arbitrary sequence of
‘idempotent’ cycles as part of a walk through configuration space have no influence on the rest
of the path.

106

6.5. MAKING IT PRACTICAL

1 fn normalize(mut rules: Set<Rule>) -> Set<Rule> {

2 let (mut silents, mut not_silents) = rules.partition_by(Rule::is_silent);

3 while silents.not_empty() {

4 let removing: Rule = silents.remove();

5 if removing.changes_configuration() {

6 for r in silents.iter() {

7 if let Some(c) = removing.try_compose_with(r) {

8 silents.insert(c);

9 } }

10 for r in not_silents.iter() {

11 if let Some(c) = removing.try_compose_with(r) {

12 not_silents.insert(c);

13 } } } }

14 return not_silents;

15 }

Listing 22: Normalization procedure, expressed in (simplified) Rust
code. In a nutshell: while one exists, an arbitrary silent rule x is re-
moved, and the list of rules is extended with composed rules x · y such
that y is another rule.

rule guard assignment
0 m0 = ∗ ∧ m ′0 = dA
2 m1 6= ∗ ∧ dB = m1 ∧ m ′1 = ∗
1 · 0 m0 6= ∗∧m1 = ∗ ∧ m ′0 = dA ∧m ′1 = m0
1 · 2 m0 6= ∗∧m1 = ∗ ∧ m ′0 = ∗

Table 6.2: RBF of the fifo2 protocol, projected onto port set {A,B} and
normalized. Rules 0 and 2 are retained from Table 6.1, and new rules
1 · 0 and 1 · 2 are composed of rules from the original RBF.

To demonstrate the normalization procedure, Table 6.2 shows the result of
projecting the fifo2 connector’s RBF onto port set {A,B} and normalizing. The
two additional rules can be understood to recreate the behavior lost as a result
of omitting the silent rule 1 from the original RBF.

6.5.2 User-Defined Protocol Simplification

Recall, the purpose of a governor is to preserve a system’s liveness. They do
this by ensuring that their governed compute component performs port opera-
tions that allow the interfacing protocol (and the system around it) to progress.
Governors do this by enforcing that their compute component’s implementa-
tion covers each possible transition by providing code that performs the re-

107

6.5. MAKING IT PRACTICAL

rule guard assignment
0 m0 = ∗ ∧ m ′0 = dA
1 m0 6= ∗∧m1 = ∗ ∧ m ′1 = dA ∧m ′0 = ∗
2 m0 = m1 6= ∗∧m2 = ∗ ∧ m ′2 = dA ∧m ′0 = m ′1 = ∗
3 m0 = m1 = m2 6= ∗ ∧ dB = m0 ∧m

′
0 = m ′1 = m ′2 = ∗

Table 6.3: RBF of the a7b1 connector, which is characterized by cycling
through a predictable sequence of period 8, where A inputs seven times
and B outputs once. It works by encoding its configuration in an 8-long
cycle as a three bit integer using the fullness of memory cells m0−2.

quired task, and ensuring it is chosen correctly in accordance with the wishes
of the protocol. Section 6.4.2 explains how our type-state automaton represents
this by each configuration requiring the definition of a set of transitions, one
for each action.

An overzealous governor which requires the implementation to cover ad-
ditional (unnecessary) cases would still serve its purpose. In effect, such a
governor would enforce adherence to some other, more permissive protocol.
However, liberty of the protocol means responsibility to the compute compo-
nent: the more the protocol might do, the more the compute component must
consider doing. There is incentive for governors to do this: permissive proto-
cols are simpler to enforce.

This overzealousness becomes a problem when it infringes on the compo-
nent’s ability to express its behavior as intended. Consider the example of a
component X that forwards values from its input port A to its output port B.
Perhaps this component is used in a pipeline as intended such that the compo-
nent is involved in an endlessly alternating sequence, represented by regular
expression (AB)∗. Perhaps there is a sensible way for X to implement the more
permissive protocol which allows B firings to be omitted, expressed (A(B|λ))∗.
P has no problem discarding values input from A. However, if the governor
takes it a step further such that ‘anything goes’ (expressed (A|B)∗), X cannot
meaningfully represent its work. How on earth can it forward a message to B
before receiving it from A? Not even clairvoyance can help; what if A never
fires at all? This is how the user would experience the problem of a governor
infringing on the component’s own behavior. P has permissible constraints of
its own which the governor requires be relaxed.

Nevertheless, there is value in providing a compute component with a sim-
plified (permissive) view of the protocol where possible. As a motivating ex-
ample, consider the a7b1 connector, given as RBF in Table 6.3. This connector
uses the fullness of three memory cells to count in binary from zero to seven
(using the binary alphabet of memory cell states {E, F}), and cycling back again

108

6.5. MAKING IT PRACTICAL

to zero. Configurations in this cycle are distinguished by specifying different
behaviors on A and B. Here, the projection and normalization of the pro-
tocol’s RBF is trivial, as no rules are silent. Without the ability to simplify,
the Y must be implemented such that it corresponds exactly with the proto-
col’s (predictable) walk through its approximated configuration space, given in
Figure 6.2. As all states are distinguishable, so too are their corresponding state
types distinct. Now consider this protocol interfacing with some compute com-
ponent Y, which is always ready to consume and emit some data element Q.
Without simplification, the resulting governor would require that the traversal
through configuration space be spelled out; the user would be forced to distin-
guish these states, even though Y has no need for this specificity. Most likely,
the resulting implementation will be repetitive and verbose, defining the same
behavior for cases of configuration (EEE), (EEF), et cetera.

EEE EEF EFE EFF FEE FEF FFE FFF
A A A A A A A

B

Figure 6.2: Rules transitioning through configuration space of approxi-
mated RBAs for the a7b1 connector, with states named after the ‘count’
the three memory cells represent in base 2 (in binary alphabet {E, F}).
Here, the normalization procedure with interface set {A,B} is trivial as
no transitions are silent.

Our solution to this problem is to introduce a third type for representing
the state of a memory cell which may be either full or empty: Unknown (ab-
breviated as U). Rather than corresponding to a specific configuration of the
(approximated) RBA, the governor now reasons about the set of states which
the protocol may be in. For example, type (UUE) encapsulates all the con-
crete configuration types {(EEE), (EFE), (FEE), (FFE)}, and is liable to covering
the union of the rules applicable to any of those states. In this manner, it is
safe for the programmer to arbitrarily ‘forget’ the state of a memory cell, re-
placing its element in the tuple type with U. To be clear, U is not special as far
as Rust is concerned; we have changed from a binary to a ternary alphabet
for representing memory cells in types. However, U does not correspond to
any real configuration that memory cells are ever ‘really’ in at runtime; they
are always either empty or full. U is a stand-in for an empty or full memory
variable; this is an abstraction in which the protocol is not (explicitly) involved.
With this tool in their belt, the implementation of the compute component is
able to arbitrarily unify the state types of multiple branches. Our example

109

6.5. MAKING IT PRACTICAL

component Y above is able to implement its behavior to the satisfaction of its
governor with transitions through configuration space in Figure 6.3. This weak-
ening can be communicated quite ergonomically, resulting in something very
close to what the user would implement themselves: a single loop where the
four rules (numbered 0-3) may be applied to configuration type (UUU), each
resulting again in (UUU).

EEE

UUU

UUF

UFEFEE

0

1

2

3

Figure 6.3: Rules transitioning between configurations of the a7b1 con-
nector shown in Figure 6.2. Here, the user employs weakening to con-
vert (dashed arrows) tokens to those of (UUU), representing all concrete
configurations. RBA rules firing are shown with solid arrows, annotated
with the rule name, corresponding to those given in Table 6.3.

6.5.3 Match Syntax Sugar

Section 6.4.2 explains how the set of transitions to be covered by a configuration
type can be represented in Rust’s type system as a tail-recursive list. This
alleviates the problem of having to explicitly enumerate the needed sets each as
their own enumeration type. This is necessary, as the upper bound3 of state sets
is 23M , where M is the number of memory cells;4 suffice it to say, it is a large
number. Unfortunately, these are not natively-supported enumeration types,
and thus cannot be matched as is idiomatic in the Rust language. However,
Rust has extensive support for abstract syntax tree macros, allowing us to have
the best of both worlds; the user interacts with StateSet types by using a match-
like macro which enumerates the branches, but there is no need for concrete
enum classes to be defined for all the conceivable combinations. Figure 23 gives
an example of how these cases compare to one another.

3Many factors reduce this number drastically in practice. For example, state sets are usually
not large because they are only ever encountered when reached by transitions from some state.

4The number of unique state sets is 2S, where S is the number of configurations (automaton
state types). This, in turn is 3M, as each memory cell’s state is represented by a type in {E, F, U}.

110

6.5. MAKING IT PRACTICAL

1 enum StateSetXyz { X(X), Y(Z), Z(Z) }

2 fn match_standard(set_xyz: StateSetXyz) {

3 use StateSetXyz::{X, Y, Z};

4 match set_xyz {

5 X(x) => x.foo(),

6 Y(y) => y.bar(),

7 Z(z) => z.baz(),

8 } }

9 fn match_recursive(set_xyz: StateSet<(X, (Y, (Z, ())))>) {

10 use StateList::{Head, Tail};

11 match set_xyz.match_head() {

12 Head(x) => x.foo(),

13 Tail(set_yz) => match set_yz.match_head() {

14 Head(y) => y.bar(),

15 Tail(z) => z.baz(),

16 } } }

17 fn match_macro(set_xyz: StateSet<(X, (Y, (Z, ())))>) {

18 match_set! { set_xyz;

19 x => x.foo(),

20 y => y.bar(),

21 z => z.baz(),

22 } }

Listing 23: Example of three methods for matching a state set, represent-
ing a sum type of three variant types simplified here to X, Y and Z. First,
match_standard shows how this is done in idiomatic Rust, requiring an
enum type StateSetXyz be explicitly defined. match_recursive shows
how the same state set represented by a tail-recursive StateSet type can
be similarly matched by exhaustively ‘unzipping’ head elements using
a function match_head. finally, match_macro functions identically to the
second case, but relies on a sugaring macro match_set to mimic the syn-
tax of Rust’s match statement, seen in the first function.

111

Chapter 7
Discussion

In this chapter, we reflect on the work and findings in Chapters 3–5. This
includes a subjective assessment of the results of the project as a whole, and
identification of promising directions for future work.

7.1 Future Work

As with any project, there was insufficient time to investigate every topic en-
countered exhaustively. In this section, we highlight promising starting points
for future work related to Reo, or to our contributions in Chapters 3–6.

7.1.1 Imperative Form Compiler

Chapters 3 and 4 explain how the Reo-rs runtime makes use of a lightweight
interpreter to bring life to our protocol objects at runtime according to the
appropriate specification. This commandification pattern has its advantages;
namely, protocol behavior is alterable at runtime by manipulating the inter-
preted data. However, this flexibility does not come for free. The interpretation
steps incur overhead both to the protocol construction procedure, and more
importantly, to the work of port operations. Fortunately, our imperative form
does not necessitate the use of an interpreter. Future work could investigate
replacing the build procedure of Reo-rs with another compilation step such
that the behavior is represented in native, directly executable Rust.

Future work may investigate the use of custom domain specific languages
for compiling imperative form in a manner that it performs the same checking
as in build statically. The obvious means of doing this is to build a compiler
from scratch. However, other options exist that can make better use of existing
tools. For example, Rust’s procedural macros allow the programmer to define

112

7.1. FUTURE WORK

arbitrary transformations of Rust’s abstract syntax trees during compilation.
Essentially, one is able to invoke arbitrary, precompiled Rust code inside the
user’s Rust compiler itself. In this manner, one can embed the needed domain-
specific language into the Rust compiler.

7.1.2 Distributed Components

This work focuses on coordination between threads in shared memory. This
approach can already be applied in the context of distributed components by
abstracting ports behind local ones. However, we are unable to distribute the
internals of our protocol components, as they presuppose a single, monolithic
shared state in our current scheme. One can get around this by fragmenting
protocols into smaller ones, and distributing those smaller protocols across the
system. However, this cannot currently be done in all cases, as this fragmenta-
tion does not preserve synchrony.

Reo has a rich academic history in this distributed context. Examples in-
clude the works of Proencca et al. [PCDVA12], Koehler et al. [KAdV08], and
Jongmans et al. [JSA14]. Future work may investigate how our contributions
(e.g., reference-passing optimizations, static governors, etc.) can be applied in
distributed systems.

7.1.3 Optimize Rule Branching

Reo-rs is able to represent protocols whose rules contain branching (i.e., logical
disjunction). Rule-based form has already shown us the correspondence be-
tween our RBA rules and propositional logic, where the formula corresponds
to a protocol, with disjuncts as rules [DA18a]. In the same way such terms
can be manipulated until the formula is in disjunctive normal form, so too are
we able to remove branching from our rules by splitting them. For example, a
rule with data constraint (P0 = C0 ∨ P1 = C1)∧ P2 = C2 can be converted into
two rules with data constraints P0 = C0 ∧ P2 = C2 and P1 = C1 ∧ P2 = C2 re-
spectively. Such transformations are not particularly meaningful to the outside
observer; clearly they have no influence on the protocol’s semantics.1 However,
they do have interesting implications on performance. It is easy to contrive
of examples for both extreme ends of the spectrum for which this splitting is
either beneficial or detrimental to the performance of the protocol object, as
we are able to both introduce and eliminate redundant work by splitting rules.
As an example of a rule not worth splitting, consider one with very many in-
structions I before reaching a 3-way branch a∨ b∨ c where the branch is not

1Changing the granularity of rules can be semantically meaningful once it affects our ability
to express interesting properties. For example, fine-grained rules can be desirable when the
protocol is lifted to consider preference between nondeterministic branching.

113

7.1. FUTURE WORK

entirely nondeterministic (i.e., there are cases for which a cannot be chosen,
etc.). Before splitting, I is computed once, and then one of {a,b, c} will occur.
After splitting, this is represented by three separate rules for a, b, and c. In the
worst case, each evaluates I before the third fires successfully. By splitting, we
have introduced redundant computations of I.

In our case, only the Reo compiler’s internals perform manipulations on
protocol rules, while Reo-rs restricts itself to the treatment of tautologies and
contradictions. Future work may investigate more extensive manipulation of
protocol rules to optimize rules by conditionally splitting them to remove
branching.

7.1.4 Runtime Governors

Chapter 6 explains how our design for static protocol governors is able to en-
force protocol adherence at compile time. This approach is not always suitable,
as it presupposes that we trust the compilation process to enforce the gover-
nance. If the situation calls for a degree of separation between the compilation
process and its use at runtime, this may no longer be a good choice. For exam-
ple, consider the use of Reo to coordinate peers in a distributed system, where
the behavior of a component originates from a remote source, traveling over
the network.

Our static governors also have limitations on how finely they can distin-
guish the states of the protocol. In a perfect world, governors would use per-
fect models of the protocol’s state. Section 6.5.1 gives an example of some
practical reasons to approximate the protocol instead, resulting in a governor
that attempts to strike a non-trivial balance between accuracy and simplicity
of its local automaton. Dynamic governors have a far easier task, as they are
able to make choices at runtime, when all the relevant information is available.
Generally, these governors can therefore be more accurate. Future work may
investigate how these two extremes of the spectrum compare, and to what ex-
tent it may be practical to use some facets of both, to make an application more
robust. There may be systems in which redundant checking is worth its cost to
runtime performance.

7.1.5 Further Runtime Optimization

Section 4.3.4 discusses various optimizations of Reo-rs’s runtime performance
applied in this work, chief among which is arguably the use of reference-
passing inside the protocol’s state as part of the implementation of rules such
that it preserves Reo’s value-passing semantics. Other optimization opportu-
nities presented themselves during the project, but were not investigated thor-

114

7.1. FUTURE WORK

oughly as they conflicted with our current goals, or were simply deemed less
fruitful than other tasks. Future work may investigate these optimizations:

1. Simplify rules in the context of a known priority ordering to break non-
determinism. For example, consider rule ra with priority over rule rb.
Clearly, ra must always be given a chance to fire first, allowing rb to pre-
sumes the negation of ra’s guard. In practice, this can often allow rules to
be meaningfully simplified, particularly when they are created by split-
ting nondeterministic branches as discussed in Section 7.1.3. For example,
consider rules with the data constraints M0 =M1 and M0 6=M1. If they
are prioritized in the order of their appearance here, the guard of the
second rule becomes trivially true.

2. Remove indirection inside Reo-rs when representing values smaller than
the pointer-size, by ‘stuffing’ the value inside the pointer field. This op-
timization has complex interactions with the memory storage system de-
scribed in Section 4.3.4, which uses pointers as keys to look up a value’s
reference count. Future work may investigate either (1) conditionally us-
ing stuffed pointers when it would not interact with the memory storage
system, or (2) finding a way to make the memory storage system disam-
biguate these stuffed pointers.

3. More extensively preprocess the imperative form as its executable object
is built (explained in Section 3.3.3). For example, instructions can be frag-
mented and reorganized such that the effects of a fired rule are unaltered,
but rules are able to detect and recover from unsatisfied guards by rolling
back earlier. In this way, one can minimize the cost of evaluating rules
with unsatisfied guards.

4. Minimize atomic operations used for the exchange of metainformation
during data exchange (Section 4.3.4). Assuming realistic numbers of ports
we are able to collapse several atomic operations into one, aggregating
distinct operations by using modulo arithmetic. For example, we are
able to increment two (logical) numbers using a single atomic counter by
adding 1 + 232. In this fashion, the move and countdown variables may be
unified to reduce lock contention and further increase performance and
parallelism.

5. Some of the information currently exchanged between threads using atom-
ics can be independently derived by reading the protocol’s rules. For
example, getters can deduce their putter and whether they are permitted
to move the datum this way, rather than being told by the coordinator
explicitly. It is unclear whether this is an improvement, as these threads

115

7.1. FUTURE WORK

must spend extra time recovering this information, performing work re-
dundant to that of the coordinator.

7.1.6 Avoid Lock Re-Entry

Section 4.3.2 motivates the lack of a dedicated coordinator thread to back proto-
col objects at runtime. As a consequence, port threads must share the responsi-
bility of manipulating a shared protocol state in accordance with the protocol’s
movement through its configuration space. Protocols have non-trivial configu-
ration spaces once they involve one or more memory cells in rules. To manip-
ulate their contents safely, locks are required around the shared ‘bookkeeping’
structures that track these cells’ states. Section 4.3.4 explains how our design
optimizes for the concurrency of rule firings by moving the work of interact-
ing with memory cells outside of the critical region. A consequence of this
approach is the occasional need for threads to reenter the critical region to up-
date the state of a memory cell. For example, the first lock event instigates the
rule firing and updates state, but marks memory cell M as ‘busy’ to ensure it
cannot be involved in a rule firing until all data movements outside the critical
region have completed. Once done, some thread has the responsibility to mark
M as ready once again, necessitating a second lock event.

Future work may investigate more efficient mechanisms for achieving the
same effect. As the mechanism is rather intricate, a vast space of possibilities
exist. For example, one may investigate the effect of forgoing the second lock
event in favor of leaving a message for a later coordinator to handle. This may
take the form of an efficient parallel queue, highly optimized for the addition
of new elements in parallel. More radical changes may also result in supe-
rior performance. Perhaps the locking can be avoided entirely if all the data
structures representing the protocol’s state become lock-free?

7.1.7 Runtime Reconfiguration

Chapter 4.3.4 explains how Reo-rs uses a lightweight interpreter to implement
protocol behavior at runtime, reading rules from a dense data structure. A
result of this approach is the ability to alter a protocol object’s behavior at run-
time arbitrarily by manipulating the data representing its rules. Future work
may investigate the introduction of a reconfiguration procedure to change the
protocol without tearing the instance down or influencing the compute compo-
nents in motion. The use of an interpreter trivializes the work of manipulating
the rules themselves, but care must be taken to change the protocol object’s
meta state safely such that it results in a new protocol which is again internally
consistent (e.g., reconfiguring the structures used for primitive concurrency,
message channels etc.).

116

7.2. CONCLUSION

7.2 Conclusion

The chosen design and implementation of a Rust code generator for the Reo
compiler achieved satisfactory results. Although our protocol objects were usu-
ally slower than handwritten Rust programs, they were competitively perfor-
mant in the case of non-trivial protocols. This is despite their interpretive im-
plementation, which has the added benefit of facilitating the reconfiguration of
a protocol’s behavior at runtime. Exploiting this feature was out of the scope
of this project, but provides an entrypoint for interesting future work.

By the nature of Reo, correctness of a protocol object’s behavior was al-
ways paramount. Still, this work also emphasized performance from its in-
ception, motivating the choice of the Rust language in particular. The hope
was to leverage its static ownership system to implement a powerful reference-
passing optimization employed by the Java backend, but free from the associ-
ated safety problems. However, the Rust compiler was stumped by Reo’s in-
teractions transferring values between threads and between scopes. Ultimately,
our solution followed the Rust idiom of manually managing ownership within
a minimal unsafe scope, and wrapping it in an API that was safe once again.
Here, Rust’s ownership and mutual-access semantics were invaluable. This
was the case for user-facing functionality in general, including that of creating
and destroying protocols and ports. In the end, we were able to provide an API
with strong, static safety guarantees provided the user does not intentionally
circumvent Rust’s semantics with unsafe code; a user can neither create nor
encounter malformed protocol or port objects, and they cannot experience sys-
tem behavior that contradicts the specification of the protocol (unintentionally
or otherwise). Furthermore, our design includes other novel optimizations that
result in benefits to the user. For example, protocols function without dedi-
cated threads, increasing performance for sequentially accessed protocols, and
trivializing the detection of a protocol’s termination.

Rust’s affine type system was instrumental in our design of static governors,
which allow a programmer to verify that their components do not threaten
the liveness of the system at large. This is done almost entirely at compile
time, catching errors as early as possible, and minimizing runtime overhead.
Our design demonstrates how an affine type system is able to communicate
powerful correctness guarantees across an API boundary. In our case, we are
able to embed a complex requirement ‘the component does not perform a port
action that contradicts the specification of a stateful protocol’ into terms the
compiler can understand and enforce: the program type checks. Users are
provided with a means to opt into tasking their Rust compiler with performing
this check, effectively allowing them to extend its verification capabilities with
little more than an added library dependency.

117

7.2. CONCLUSION

The translation procedure from Reo to Rust proved to be more complex
than was expected. The imperative form intermediate representation was added
out of necessity to curb the complexity of type checking and of applying vari-
ous optimizations without bloating the Reo compiler itself with Rust-specifics.
Unexpectedly, the introduction of this new form became integral to our pro-
tocol object’s design, enabling us to extend its capabilities beyond what was
originally intended. For example, when targeting Rust, the Reo compiler sup-
ports ergonomic and safe use of more exotic Reo primitives such as filter and
transform, which are able to perform tentative computations as part of syn-
chronous interactions. Imperative form also shows promise as an intermediary
step for imperative languages in general. It is conceivable that existing and
future language targets will be able to leverage this representation to reduce
the work of adding new imperative language targets to the Reo compiler.

118

Bibliography

[ABdBR07] Farhad Arbab, Christel Baier, Frank de Boer, and Jan Rutten. Mod-
els and temporal logical specifications for timed component con-
nectors. Software & Systems Modeling, 6(1):59–82, 2007.

[ABRS04] Farhad Arbab, Christel Baier, Jan Rutten, and Marjan Sirjani. Mod-
eling component connectors in reo by constraint automata. Elec-
tronic Notes in Theoretical Computer Science, 97:25–46, 2004.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for com-
ponent composition. Mathematical structures in computer science,
14(3):329–366, 2004.

[Arb05] Farhad Arbab. Abstract behavior types: a foundation model for
components and their composition. Science of Computer Program-
ming, 55(1-3):3–52, 2005.

[Arb11] Farhad Arbab. Puff, the magic protocol. In Formal Modeling: Actors,
Open Systems, Biological Systems, pages 169–206. Springer, 2011.

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Mod-
eling component connectors in reo by constraint automata. Science
of computer programming, 61(2):75–113, 2006.

[CCZ07] Bradford L Chamberlain, David Callahan, and Hans P Zima. Par-
allel programmability and the chapel language. The International
Journal of High Performance Computing Applications, 21(3):291–312,
2007.

[DA18a] Kasper Dokter and Farhad Arbab. Rule-based form for stream
constraints. In International Conference on Coordination Languages
and Models, pages 142–161. Springer, 2018.

119

BIBLIOGRAPHY

[DA18b] Kasper Dokter and Farhad Arbab. Treo: Textual syntax for reo
connectors. arXiv preprint arXiv:1806.09852, 2018.

[GC92] David Gelernter and Nicholas Carriero. Coordination languages
and their significance. Communications of the ACM, 35(2):96–108,
1992.

[Gel85] David Gelernter. Generative communication in linda. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 7(1):80–
112, 1985.

[Gor] Manish Goregaokar. Exotic sizes. https://doc.rust-lang.org/

nomicon/exotic-sizes.html. Accessed: 2019-06-01.

[JA12] Sung-Shik TQ Jongmans and Farhad Arbab. Overview of thirty
semantic formalisms for reo. Scientific Annals of Computer Science,
22(1), 2012.

[JSA14] Sung-Shik TQ Jongmans, Francesco Santini, and Farhad Arbab.
Partially-distributed coordination with reo. In 2014 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, pages 697–706. IEEE, 2014.

[JSA15] Sung-Shik TQ Jongmans, Francesco Santini, and Farhad Arbab.
Partially distributed coordination with reo and constraint au-
tomata. Service Oriented Computing and Applications, 9(3-4):311–339,
2015.

[JSS+12] Sung-Shik TQ Jongmans, Francesco Santini, Mahdi Sargolzaei,
Farhad Arbab, and Hamideh Afsarmanesh. Automatic code gen-
eration for the orchestration of web services with reo. In Euro-
pean Conference on Service-Oriented and Cloud Computing, pages 1–
16. Springer, 2012.

[KAdV08] Christian Koehler, Farhad Arbab, and Erik de Vink. Reconfiguring
distributed reo connectors. In International Workshop on Algebraic
Development Techniques, pages 221–235. Springer, 2008.

[KN18] Steve Klabnik and Carol Nichols. The Rust Programming Language.
No Starch Press, 2018.

[Lin06] Peter Linz. An introduction to formal languages and automata. Jones
& Bartlett Learning, 2006.

[Mat15] Niko Matsakis. Owned references to contents in an earlier stack
frame. issue 998. rust-lang/rfcs, Mar 2015.

120

https://doc.rust-lang.org/nomicon/exotic-sizes.html
https://doc.rust-lang.org/nomicon/exotic-sizes.html

BIBLIOGRAPHY

[NG14] Rob Nederpelt and Herman Geuvers. Type theory and formal proof:
an introduction. Cambridge University Press, 2014.

[Nys14] Robert Nystrom. Game programming patterns. Genever Benning,
2014.

[PCDVA12] José Proença, Dave Clarke, Erik De Vink, and Farhad Arbab.
Dreams: a framework for distributed synchronous coordination.
In Proceedings of the 27th Annual ACM Symposium on Applied Com-
puting, pages 1510–1515. ACM, 2012.

[rh14] User ‘rust highfive’. Anonymous sum types. issue 294. rust-
lang/rfcs, Sept 2014.

[Sha84] Mary Shaw. Abstraction techniques in modern programming lan-
guages. IEEE software, (4):10–26, 1984.

[Wal05] David Walker. Substructural type systems. Advanced Topics in Types
and Programming Languages, pages 3–44, 2005.

[Wel05] George Wells. Coordination languages: Back to the future with
linda. In Proceedings of the Second International Workshop on Coordi-
nation and Adaption Techniques for Software Entities (WCAT05), pages
87–98, 2005.

[ZHLS19] Xiyue Zhang, Weijiang Hong, Yi Li, and Meng Sun. Reasoning
about connectors using coq and z3. Science of Computer Program-
ming, 170:27–44, 2019.

121

Appendices

122

1 if T::IS_COPY { // irrelevant how many copy

2 if let Some(dest) = maybe_dest {

3 do_move(dest);

4 m.visit();

5 }

6 let was = count.fetch_dec();

7 if was == LAST {

8 let [visited_first, retains] = m.visit();

9 finalize();

10 }

11 } else {

12 if let Some(dest) = maybe_dest {

13 let [visited_first, retains] = m.visit();

14 if visited_first && !retains {

15 let was = count.fetch_dec();

16 if was != LAST {

17 mover_await();

18 }

19 do_move(dest);

20 finalize();

21 } else {

22 do_clone(dest);

23 let was = count.fetch_dec();

24 if was == LAST {

25 if retains {

26 finalize();

27 } else {

28 mover_release();

29 } } }

30 } else {

31 let was = count.fetch_dec();

32 if was == LAST {

33 let [visited_first, retains] = m.visit();

34 if visited_first {

35 finalize();

36 } else {

37 mover_release();

38 } } } }

Listing 24: A getter’s procedure for retrieving a value from a putter or
memory cell. Getters must coordinate such that one is elected the mover
with all others cloning. The mover must go last, and once everyone is
done, the resource must be cleaned up.

123

1 // initialization

2 let barrier_g = Arc::new(std::sync::Barrier::new(3));

3 let barrier_p0 = barrier_g.clone();

4 let barrier_p1 = barrier_g.clone();

5 let (data_0_s, data_0_r) = crossbeam_channel::bounded(0); // synch (unbuffered)

6 let (data_1_s, data_1_r) = crossbeam_channel::bounded(1); // asynch (1-buffered)

7

8 // port operation functions

9 let p0_put_function = || {

10 barrier_p0.wait();

11 data_0_s.send(P0_VALUE).unwrap();

12 };

13 let p1_put_function = || {

14 barrier_p1.wait();

15 data_1_s.send(P1_VALUE).unwrap();

16 };

17 let g_get_function = || {

18 barrier_g.wait();

19 let value_from_p0 = data_0_r.recv().unwrap();

20 let value_from_p1 = data_1_r.recv().unwrap();

21 };

Listing 25: Handcrafted alternator implementation ini Rust based on
channels from the crossbeam crate and a standard library Barrier for
explicit synchronization. This simple design is chosen for its simplic-
ity and its close correspondence to the Reo channels that constitute its
specification.

124

1 mov eax, 131096

2 call __rust_probestack

3 sub rsp, rax

4 lea rdi, [rsp + 9]

5 mov edx, 65536

6 mov esi, 2

7 call qword ptr [rip + memset@GOTPCREL]

8 mov byte ptr [rsp + 8], 1

9 mov byte ptr [rsp + 65552], 0

10 mov eax, 32

11 .LBB0_1:

12 movups xmm0, xmmword ptr [rsp + rax - 24]

13 movups xmm1, xmmword ptr [rsp + rax - 8]

14 movups xmm2, xmmword ptr [rsp + rax + 8]

15 movups xmm3, xmmword ptr [rsp + rax + 24]

16 movups xmm4, xmmword ptr [rsp + rax + 65520]

17 movups xmm5, xmmword ptr [rsp + rax + 65536]

18 movups xmm6, xmmword ptr [rsp + rax + 65552]

19 movups xmm7, xmmword ptr [rsp + rax + 65568]

20 movups xmmword ptr [rsp + rax - 24], xmm4

21 movups xmmword ptr [rsp + rax - 8], xmm5

22 movups xmmword ptr [rsp + rax + 65520], xmm0

23 movups xmmword ptr [rsp + rax + 65536], xmm1

24 movups xmmword ptr [rsp + rax + 24], xmm7

25 movups xmmword ptr [rsp + rax + 8], xmm6

26 movups xmmword ptr [rsp + rax + 65552], xmm2

27 movups xmmword ptr [rsp + rax + 65568], xmm3

28 add rax, 64

29 cmp rax, 65538

30 jb .LBB0_1

31 add rsp, 131096

32 ret

Listing 26: Snippet out of the x86-64 assembly generated by receiving a
large datum through recv from a simple channel from the Rust standard
library. It unrolls the movement of the entire object into a large sequence
of smaller operations rather than invoking a system call. This is the case
for the receipt of a Copy-type represented by 512 bytes.

125

1 #![feature(raw)]

2 use std::mem::{MaybeUninit, transmute};

3 use std::raw::TraitObject;

4 pub struct TypeInfo(usize);

5 impl TypeInfo {

6 pub fn of<T>() -> TypeInfo {

7 let x: Box<T> = unsafe { MaybeUninit::uninit().assume_init() };

8 let fat_x = x as Box<dyn PortDatum>;

9 let raw: TraitObject = unsafe { transmute(fat_x) };

10 TypeInfo(raw.vtable as usize)

11 } }

12 trait PortDatum {

13 fn foo(&self) -> u32 { 123 }

14 }

15 impl<T> PortDatum for T {}

16 pub fn test() -> TypeInfo {

17 TypeInfo::of::<u32>()

18 }

Listing 27: Example of how the TypeInfo::of function (1) ensures
the compiled binary includes a vtable for the requested type T with
PortDatum as its interface, and (2) returns the pointer to the vtable.

1 core::ptr::real_drop_in_place:

2 ret

3 example::PortDatum::foo:

4 mov eax, 123

5 ret

6 example::test:

7 lea rax, [rip + .L__unnamed_1]

8 ret

9 .L__unnamed_1:

10 .quad core::ptr::real_drop_in_place

11 .quad 4

12 .quad 4

13 .quad example::PortDatum::foo

Listing 28: x86-64 assembly of Listing 27. .L__unnamed_1 shows the
binary representation of the vtable of the u32 (32-bit unsigned integer)
type and PortDatum trait. Rust’s vtables have a predictable structure
with three fields followed by trait-defined function pointers. Lines 10–
12 store the concrete type’s (1) drop function pointer, (2) size in bytes,
(3) memory alignment in bytes.

126

	Introduction
	Background
	Reo
	Motivation and Purpose
	Language
	Semantic Models
	The Reo Compiler

	Target Languages
	Affine Type Systems
	The Rust Language
	The Type-State Pattern
	Proof-of-Work Pattern

	Protocol Translation
	Structuring the Translation Process
	Translation Subtasks
	Pipelining Subtasks
	Enabling Future Expansion

	Imperative Form
	Concept
	Definition

	Translation Pipeline
	At Reo Compile-time
	At Rust Compile-time
	At Application Runtime

	Protocol Runtime
	Examining the Java Implementation
	Architecture
	Behavior
	Observations

	Requirements and Guidelines Defined
	Protocol Objects
	Application User Interface
	Design Process
	Architecture
	Behavior

	Requirements and Guidelines Evaluated

	Benchmarking
	Experimental Setup
	Reo-rs in Context
	Versus the Java Implementation
	Versus Handcrafted Programs

	Overhead Examined
	Parallelism Between Interactions
	Time Inside the Critical Region
	Parallelism Within Interactions
	Reference-Passing Optimization

	Generating Static Governors
	Governor Defined
	The Problem: Unintended Constraints
	Solution: Static Governance with Types
	Making it Functional
	Encoding CA and RBA as Type-State Automata
	Rule Consensus
	Governed Environment

	Making it Practical
	Approximating the RBA
	User-Defined Protocol Simplification
	Match Syntax Sugar

	Discussion
	Future Work
	Imperative Form Compiler
	Distributed Components
	Optimize Rule Branching
	Runtime Governors
	Further Runtime Optimization
	Avoid Lock Re-Entry
	Runtime Reconfiguration

	Conclusion

	Appendices

