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ABSTRACT  10 

The seasonal variations in Pseudo-nitzschia species and domoic acid (DA) concentration were 11 

investigated, at three shellfish farms in SW coastal Mediterranean. In parallel, the toxicity of 12 

mussels was tested. Two distinct groups of species were enumerated according to morphology 13 

and size (Pseudo-nizschia delicatissima and P. seriata groups). DA was detected over a 14 

nine-week period from July to October 2012 in the Lagoon, with a maximum concentration 15 

recorded in July (12.71 ng DA l-1). DA was positively correlated with the presence of P. 16 

seriata-group and P. delicatissima-group and was mostly occurred during P limitation period 17 

in seawater. No DA was found in mussels that were collected during the period of DA absence 18 

in seawater. Our results suggest that temperature, salinity, inorganic and organic nutrients were 19 

significant for the seasonal dynamics of P. seriata and P. delicatissima groups, but that the P 20 

limitation was the most driving factor for DA production in these areas. The relative influence 21 

of environmental factors should be further studied to better understand the recent surfacing of 22 

massive blooms of toxigenic Pseudo-nitzschia in SW Mediterranean coast. 23 

Keywords: Domoic acid, Pseudo-nitzschia, diatoms, Mediterranean lagoon. 24 
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Introduction 26 

Domoic acid (DA) was firstly described in the red macroalga Chondria armata (Takemoto, et 27 

al., 1966), and later recorded in 1987 in Prince Edward Island, Eastern Canada, where it was 28 

responsible for three deaths and the poisoning of over 100 people (Bates et al., 1998). Since 29 

this time, the toxin was discovered in many parts of the world, and become a threat in several 30 

regions worldwide (Trainer et al., 2008). Research into the risks associated with DA toxicity 31 

has highlighted the importance of both the acute and chronic effects of DA on the health of 32 

many marine organisms including mammals, seabirds and humans (Bates, 2000; Scholin et al., 33 

2000). The toxin can be transferred effectively to higher trophic levels via filter feeders such as 34 

molluscan shellfish, copepods crustaceans and fishes (reviewed by Bargu et al., 2008; Lelong 35 

et al., 2012; Trainer et al., 2012). Once ingested, the toxin can provoke Domoic Acid Poisoning 36 

(DAP) in birds and marine Mammals (Hallegraeff, 2003) and Amnesic Shellfish Poisoning 37 

(ASP) in humans, which represents a serious threat for their health (Trainer et al., 2008, 2012; 38 

Lefebvre and Robertson, 2010). 39 

The neurotoxin is naturally produced by some diatom species of genus Pseudo-nitzschia 40 

H. Peragallo. Among the fifty one species of this genus, twenty six are known to be toxic, 41 

although not always (Lelong et al., 2012; Trainer et al., 2012; Lundholm, 2018; Bates et al., 42 

2018). Two Nitzschia species (N. navis-varingica and N. bizertensis) have been also reported 43 

to produce domoic acid (e.g. Bates, 2000; Kotaki et al., 2000; Lundholm et al., 2003; 44 

Bouchouicha Smida et al., 2014). The genus Pseudo-nitzschia constitutes a frequent component 45 

of the planktonic diatom community and can reach bloom abundances that could impact the 46 

fauna and the shellfish industry, and be a hazard to public health. In 1988, a bloom of 47 

Pseudo-nitzschia resulted in closure of shellfish harvesting areas in the Bay of Fundy, eastern 48 

Canada, where the blue mussels and clams have become contaminated with high levels of DA 49 
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(Martin et al., 1990), In European Atlantic coasts, DA has affected shellfish production areas 50 

of Spain since 1994 (Arévalo et al., 1997) and in France since 1998 (Amzil et al., 2001) 51 

In the northern Mediterranean Sea, the occurrence of Pseudo-nitzschia was well 52 

documented from French, Spanish, Italian and Greek coasts (Kaninou-Grigoriadou et al., 2005, 53 

Quiroga 2006, Amato et al., 2007, Quijano-Scheggia et al., 2008, Giménez et al., 2013). 54 

However, studies on Pseudo-nitzschia dynamics, diversity and toxicity are relatively scarce in 55 

southwestern (SW) Mediterranean (Turki et al., 2004; Andrée et al., 2011; Giménez et al., 56 

2013), although their blooms are increasing in magnitude and frequency (Sahraoui et al., 2009, 57 

Bouchouicha Smida, 2014).  58 

In the last decade, shellfish activity was intensively developed in several SW 59 

Mediterranean waters, as in the Lagoon and the Bay of Bizerte. Unfortunately, blooms of 60 

Pseudo-nitzschia were repeatedly observed in these areas during the last few years (Turki et al., 61 

2014, Sahraoui et al., 2012, Bouchouicha Smida et al 2014), exceeding in some cases the 62 

warning threshold density of 105 cells l-1 (Auby, 2006). Recently, strains of three species of 63 

Pseudo-nitzschia, isolated from Bizerte Lagoon, were identified as DA producers in culture [P. 64 

brasiliana (11.6 ng DA mL-1) P. delicatissima (7.5–9.5 fg cell-1 DA) and P. calliantha (13.4-65 

149.1 ng DA mL-l)] (Sahraoui et al., 2009, 2011). Furthermore, some works have reported low 66 

levels of DA (2 µg DA l-1) in seawater of the Bizerte Lagoon and in local shellfish samples, as 67 

Mytilus galloprovincialis (0.13 - 1.60 µg DA g 1 tissue) and oysters (Crassostera gigas) (0.42 68 

– 2.50 µg DA g-1 tissue) (Turki et al., 2014; Bouchouicha Smida et al., 2014). However, these 69 

reports were punctual in time and until now no long-term investigation of DA on shellfish was 70 

done.  71 

Managing Pseudo-nitzschia spp. blooms and DA occurrence in shellfish areas, as Lagoon 72 

and Bay of Bizerte, requires long-term field investigations in order to understand species 73 
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dynamics and toxicity. The aim of the study is to analyze seasonal variation of Pseudo-nitzschia 74 

species in relation to environmental factors at three mussel aquaculture sites, during an annual 75 

cycle (from March 2012 to April 2013). Data provided here are concerning the main 76 

Pseudo-nitzschia groups (“P. delicatissima” and “P. seriata”). The study also focuses on the 77 

presence of DA in both seawater and local shellfish samples, based in more accurate technique 78 

of DA detection (the LC-MS/MS and LC-UV) than previously used by De la Iglesia et al. 79 

(2008). 80 

Materials and methods 81 

Study site 82 

The study was carried out during 14 months at coastal waters, in three shellfish farming areas 83 

located in the SW Mediterranean Sea. One is within the Bizerte Bay (station 1, 37°15'33' 84 

N,09°59'24'' E) and the two others were inside the Bizerte Lagoon (station 2, 37°15'59''N, 85 

09°52'22'' E and, station 3, 37°13’55’' N, 09°51'58'' E) (Fig. 1).The lagoon is connected to the 86 

Mediterranean Sea through a 7 Km long, 300 m with and 12 m deep channel. Marine inflows 87 

are important in summer while freshwater is mainly supplied in winter (20 Mm3 yr-1) from 88 

several surrounding rivers and the Lake Ichkeul (Béjaoui et al., 2008). Hence, water salinity 89 

shows a seasonal pattern and varies throughout the year from 30 to 39 psu (Sakka Hlaili et al., 90 

2007; Béjaoui et al., 2010) Tidal force is negligible compared to wind forcing, which is the 91 

main factor controlling water circulation in the lagoon (Béjaoui et al., 2008). The lagoon is a 92 

very important shellfish aquaculture area, including approximately 330 ha divided into 10 93 

shellfish production farms (Fig. 1). The production (20 – 223 tons yr-1) is mainly composed of 94 

mussels (Mytilus galloprovincialis) and Pacific oysters (Crassostrea gigas) (DGPA, 2013). 95 

Additionally, clams (Ruditapes decussata) are also harvested in variable quantities.  96 

The Bay of Bizerte is a wide opening ecosystem, (37°20'9''-37°29'9'' N, 10°05'20''-9°52'00'' E, 97 

Fig. 1),  with depth varying from 16 to 20 m and salinity from 36 to 38 psu (Addad et al., 2008).  98 
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Hydrodynamics is mainly driven by the current flowing from west to east with a speed of 0.2–99 

0.5 m s-1 and long-shore currents that steer northeast or east of the Bay (Béjaoui et al., 2008). 100 

Within the bay, a recent shellfish farm is acting (Fig. 1), with mussels and oysters as main 101 

produced species. 102 

Sampling 103 

The sampling was carried out bi-monthly, from March 2012 to April 2013, in the stations 2 and 104 

3 (Fig. 1). Station 1, was monitored during the same period, except on 14 March, 10 May, 18 105 

September, 21 October and 12 December 2012 and 19 February 2013, due to rough weather. 106 

Characteristics of the three stations are reported in Table 1. At each station, water temperature 107 

and salinity were recorded in situ, using a multi-parameter (WTW, Multi1970i). At each station, 108 

water samples (three replicates) were collected, using a Hydrobios water sampler, from the 109 

chlorophyll a maximum depth. The later was distinguished from the Chl a vertical profile 110 

determined before each period of sampling. The samples were stored in isothermal containers 111 

and processed within a few hours (2-4 h) after sampling. These samples served for analyses of 112 

nutrients, domoic acid, Chl  a and for identification and enumeration of phytoplankton. Each 113 

analysis was done in triplicate. 114 

The shellfish sampling was performed every 15 days, from March 2012 to June 2012, at 115 

the three farms. At least 2 kg of mussels (mean length: 6 cm ± 0.77; width: 3 cm ± 0.38) were 116 

taken per sample and served for analysis of domoic acid in their edible tissues.  117 

Analyses 118 

Nutrient analyses 119 

Water samples (1000 ml) were filtered through 0.2 µm polycarbonate filters (Millipore). 120 

The filtrates were collected in acid-washed vials and stored frozen (-20°C) until analyses. 121 

Nutrient concentrations were determined by spectrophotometric methods. Nitrite and nitrate 122 

were analyzed according to Wood et al. (1967), and ammonia following the procedure of 123 
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Aminot and Chaussepied (1983). Phosphorous levels were determined as described in Murphy 124 

and Riley (1962), whereas, reactive dissolved silicate was analyzed according to Aminot and 125 

Chaussepied, 1983 Urea was analyzed using the diacetyl monoxime thiosemicarbizide 126 

technique (Price and Harrison, 1987), modified to account for a longer time period (72 h) and 127 

lower digestion temperature (22°C). Detection limits of the analytic methods were 0.01, 0.02 128 

and 0.1 µM, for nitrite, phosphate and silicate, respectively, 0.05 µM for nitrate and ammonia, 129 

and 0.002 µM for urea.  130 

Phytoplankton analyses 131 

For chlorophyll a (Chl a), samples (1000 ml) were filtered through Whatman GF/F filters. 132 

Pigment concentration was determined using the standard spectrophotometric method (Parsons 133 

et al., 1984), following extraction with 10 ml of 90% acetone overnight at 4°C in the dark.  134 

For phytoplankton identification and enumeration, samples (150 ml) were fixed with 135 

acidic Lugol’s solution (3% final concentration). The count of cells was carried out, after 136 

settling for 24 h, under an inverted microscope (100x oil immersion objective) (CETI) 137 

(Utermöhl 1931; Lund et al., 1958).  138 

Potentially toxic diatoms cannot be accurately distinguished at species level by the light 139 

microscopy (Trainer et al., 2008). Therefore, Pseudo-nitzschia cells were assigned to one of 140 

two groups based on their transapical axis and morphology: the Pseudo-nitzschia delicatissima 141 

group (width < 3 mm) and the Pseudo-nitzschia seriata group (width > 3 mm) (Hasle and 142 

Syvertsen, 1997). 143 

Domoic acid analysis 144 

According to the analysis of DA in shellfish and seawater (particulate), certificate calibration 145 

solution of DA (CRM-DA-f, 101.8 ± 2.1 µg ml-1) was obtained from the Measurement Science 146 

and Standards, National Research Council of Canada. HPLC gradient grade and LC-MS 147 

hypergrade acetonitrile, methanol and formic acid were purchased from Merck (Darmstadt, 148 
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Germany). Milli-Q water was obtained from a Millipore water purification system (Bedford, 149 

MA, USA). 150 

Domoic acid analysis in shellfish by liquid chromatography-UV absorbance detection (LC-UV) 151 

A minimum of 100 g per sample of whole tissue was drained in a sieve before homogenization 152 

of the pooled individuals. Then, aliquots of 4.0 ± 0.1 g of the homogenate tissue were accurately 153 

weighed into a 50 ml Falcon centrifuge tube and vortex-mixed in a digital multi-tube vortexer 154 

DVX-2500 (VWR Int., West Chest, PA, USA), with 16 ml of methanol/water (1:1, v/v). After 155 

extraction, samples were centrifuged at 2.795 ×g for 20 min (MR 22i Centrifuge, Joan, France) 156 

and the supernatant was filtered through a 0.45 µm cut-of nylon syringe filter (Whatman). 157 

Conventional chromatographic separations (Quilliam et al., 1995; CEN 2008) were performed 158 

on an HPLC Alliance 2659 (Waters, Milford, MA, USA) equipped with reversed phase column 159 

Zorbax C18 (4.6 x 250 mm2, 5µm particle size) purchased from Agilent Technologies (Santa 160 

Clara, CA, USA). A photodiode array detector 2996 (Waters, Milford, MA, USA) operated at 161 

242 ± 10 nm wavelength. Isocratic elution was carried out with a mobile phase consisting of 162 

acetonitrile: water (1:9) with 0.1% formic acid at 1.2 ml min-1 flow rate. The column oven was 163 

set at 40°C and injection volume was 20 µl. The limit of quantification for DA and its isomer 164 

epidomoic acid was 0.5 mg kg-1. The method is accredited under ISO 17025 by the Spanish 165 

National Accreditation Body (ENAC) and applied for official control analysis of DA in 166 

shellfish from shellfish harvesting areas (accreditation 900 LE/1797). 167 

 168 

Domoic acid analysis in phytoplankton by rapid resolution liquid chromatography-tandem 169 

mass spectrometry (LC-MS/MS) 170 

For analysis of particulate DA in seawater samples, 1000 ml of seawater were filtered 171 

through GF/F filters (Whatman) and processed according to the method by rapid resolution 172 
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liquid chromatography-tandem mass spectrometry (LC-MS/MS) (Melliti Ben Garali et 173 

al.,2016).  174 

Statistical analyses 175 

Statistical analyses were performed in SPSS software.11.0 for Windows. An analysis of 176 

variance (ANOVA) was used to test the significance of the temporal variations of abiotic and 177 

biotic variables. The conditions of normality of data distribution (Kolmogorov-Smimov test) 178 

and homogeneity of variance (Bartlett-Box test) were respected. The Sperman’s correlation was 179 

calculated to test the linear relationship between the diatoms abundance (total and 180 

Pseudo-nitzschia groups) and environmental factors. Spearman’s rank analysis was also 181 

conducted to determine whether DA was correlated with the presence of Pseudo-nitzschia (total 182 

and groups) and environmental factors (temperature, salinity and nutrient levels and ratios).  183 

Results 184 

Hydrological and chemical environment  185 

Water temperature was similar among the three stations (P > 0.05) and varied between 11 186 

(April 2013) and 30.4 °C (July 2013) (Fig. 2a). No spatial variation was found in salinity, which 187 

was around 38.2 PSU, except from 14 March to 3 May 2012, when it dramatically fell to 14–188 

24 PSU (Fig. 2b). This was associated with frequent rains and considerable fresh water influx 189 

from the surrounding rivers.  190 

The water of the three stations was characterized by high levels of inorganic nitrogen 191 

(NO2+NO3+NH4: 5 – 50 µM; Fig. 2f). Organic nitrogen (i.e. urea) reached also relatively high 192 

concentrations ranging from 0.29 (March 2012) to 6 µM (September 2012) (Fig. 2c). 193 

Concentrations of PO4
3- fluctuated between 0.14 (March 2012) and 6.1 µM (July 2012), 194 

whereas those of Si(OH)4 varied from 0.2 (December 2012) to 5.3 µM (February 2013) 195 

(Fig. 2d).  196 
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As nutrient levels, the N:P, Si:P and Si:N ratios significantly varied over time (P< 0.01). 197 

At the three stations, there was severe limitation on Si (Si:P= 0.11 – 7.16; Si:N= 0.14 – 0.47) 198 

during the sampling period. The N-nutrients were also limiting in station 1 (N:P = 0.5 – 10) 199 

over all sampling period and in station 2 (N:P = 2.6 – 14) during most dates. In contrast, P 200 

limitation (N: P = 23 – 87) was detected in station 3 during two periods, from 01 March to 29 201 

May 2012 and from 06 July to 03 October 2012.  202 

Phytoplankton communities 203 

From June to the end of the sampling period, Chl a was relatively similar among all 204 

stations, ranging from 0.35 to 6.905 µg l-1. Some biomass peaks (6.41-6.82 µg l-1 were observed 205 

from November to September 2012, but they were less pronounced than those of the first 206 

sampling period. 207 

Phytoplankton abundances were always higher at station 3 (2.8 x 106 - 5.7 107 cells l-1) 208 

compared to those at stations 1 and 2 (1.1 - 7.0 x 106 cells l-1) (P < 0.05), particularly from 01 209 

March to 10 May 2012. This period was characterized by the most pronounced bloom in most 210 

stations.  211 

Dynamics of diatoms and Pseudo-nitzschia 212 

As observed for total phytoplankton (Fig. 3), diatoms reached very high densities during 213 

the first sampling period (01 March - 10 May 2012), particularly at station 3 (2.6 107-35 x 107 214 

cells l-1) and then at station 2 (0.5-5.5 x 107 cells l-1) (Fig. 4b, c). At marine station 1, the diatoms 215 

bloom was less pronounced (0.6- 1.4 x 107 cells l-1). The observed blooms were mainly 216 

composed by species of Chaetoceros in all stations. Subsequently, diatoms were less abundant 217 

in the three stations (2.5 105- 4.3 x 106 cells l-1), but showed some peak density (Fig. 4).  218 

Within the Bizerte Lagoon (i.e. stations 2 and 3), Pseudo-nitzschia cells exhibited 219 

permanent presence from April 2012 (at station 2) or June 2012 (at station 3), until the end of 220 

the sampling period (Fig. 4b, c). At both stations, cell densities, varying from 2.5 x 104 to 1.5 x 221 



10 
 

106 cells l-1, rapidly increased during September - October 2012. In contrast, at the Bizerte Bay 222 

(i.e. station 1), Pseudo-nitzschia species were sporadically observed at few dates, with a density 223 

of 7 – 30 x 104 cells l-1 (Fig. 4a). When observed, Pseudo-nizschia contributed 1.5 - 24.07 % of 224 

total phytoplankton and 5.2- 40% of diatoms. The highest contributions were obviously found 225 

at lagoonal stations.  226 

The two groups (P. seriata group and P. delicatissima-group) were observed during most 227 

sampling period (Fig. 5). At station 1, the P. seriata-group was more present contributing 70 – 228 

100 % of total Pseudo-nitzschia abundance. The second group, P. delicatissima-group, was 229 

found only during four dates (14 Jun and 20 July 2012; 19 February and 13 April 2013) and 230 

was contributed 50 to 100% of total Pseudo-nitzschia. At stations 2 and 3, these groups have 231 

almost similar allocations to the total Pseudo-nitzschia (20-80%).(Fig. 5b, c). In some dates, 232 

Pseudo-nitzschia communities were exclusively composed by P. seriata group (as at station 3 233 

in 07 March 2012 and 14 June 2013) or by P. delicatissima group (as at station 2 in 03 234 

September and 12, 20 December 2012, and 07 March 2013). 235 

Relating environmental conditions to Pseudo-nitzschia occurrence 236 

The relationship between environmental data and Pseudo-nitzschia assemblage data were 237 

tested in order to determine which variables best explained/matched the species group data 238 

(Table 2). The results showed that the two identified groups were ecologically similar. The P. 239 

delicatissma-group significantly (P <0.01) correlated to salinity, silicate, phosphate, urea and 240 

Chl a. With the exceptions of total inorganic N, all correlations were positive. The P. seriata-241 

group positively correlated to salinity, urea, water temperature, phosphate and Chl a, but 242 

negatively to total inorganic N. When considered both Pseudo-nitzschia groups, they positively 243 

(P<0.01) correlated to salinity, silicate, phosphate, urea and Chl a, with the exceptions of total 244 

inorganic N. Total diatoms were positively related to phosphate, total inorganic N and Chl a, 245 

but total diatoms negatively correlated to salinity (P< 0.01). 246 
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Domoic acid levels 247 

LC-MS analysis showed that particulate domoic acid was present in seawater from July 248 

to October 2012 only at lagoonal stations (i.e. stations 2 and 3), but it was more prevailing at 249 

station 3 (6 dates) than at station 2 (3 dates) (Fig. 6). Levels of DA ranged from 0.85 to 250 

12.71 ng l-1, with the highest value observed on 06 July 2012 at station 3. In this station, the 251 

DA presence was associated with a period of P limitation (N: P = 26.43 to 62). Effectively, DA 252 

was negatively correlated to PO4
3- levels (-0.543; P<0.01) but positively related to N:P ratio 253 

(0.420). However, there was a positive correlation between DA and inorganic N-nutrients at 254 

station 3 (0.721; P<0.01). The pronounced DA concentration was measured when Pseudo-255 

nitzschia community in station 3 was composed by P. seriata (70%) and delicatissima (30%) 256 

groups (Fig. 5c). Furthermore, the DA occurrence was significantly positively correlated to the 257 

presence of P. seriata-group (0.745; P<0.01) and P. delicatissima-groups (0.740; P<0.01). In 258 

station 2, a significant linear relationship was also found between DA and the occurrence of 259 

both Pseudo-nitzschia groups (0,530). In both stations, DA exhibited a significant positive 260 

relationship with temperature and salinity, as observed for Pseudo-nitzschia groups (Table 2).  261 

Although Pseudo-nitzschia species and DA was found in seawater, no DA was detected 262 

in tissues of mussels collected from March to June 2012 in the three stations.  263 

Discussion  264 

Diversity of Pseudo-nitzschia community 265 

Results revealed that the nutrient-enriched waters of the Bizerte Lagoon and Bay are 266 

suitable for proliferation of potentially toxic diatoms. The same trend has been previously 267 

reported in the Lagoon by Bouchouicha et al. (2014), and in other eutrophic environments, e.g. 268 

NW Adriatic Sea (Penna et al., 2006). In the lagoon, Pseudo-nitzschia composed a large 269 

fraction of total phytoplankton and total diatoms. These contributions were in the range of those 270 

previously reported in the Bizerte lagoon (68% of total phytoplankton Sahraoui et al., 2011). 271 
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Similarly, in other coastal environments, such as Santa Monica Bay, California and NE of the 272 

Adriatic, the genus Pseudo-nitzschia have often contributed to potentially harmful 273 

phytoplankton (92 - 100%) (Penna et al., 2006; Shipe et al., 2008). 274 

During the study, abundance of Pseudo nitzschia were similar as those reported by 275 

previous studies in the lagoons of Bizerte (Bouchouicha Smida et al., 2014) and of Nadoor 276 

(Daoudi et al., 2009). As observed in previous studies (Sahraoui et al., 2009; Downes-Tettmar 277 

et al., 2013), Pseudo-nitzchia was positively correlated with temperature and salinity, during 278 

our sampling. Both factors were reported to be important in controlling Pseudo-nitzschia 279 

growth as well in laboratory as in field (Bates, 1998; Doucette et al., 2008). 280 

High levels of inorganic nutrient in seawater may also stimulate the Pseudo-nitzschia 281 

proliferation (Downes-Tettmar et al., 2013). This was supported by positive correlations 282 

observed, during our study, between Pseudo-nitschia cell density, silicate and phosphate. In 283 

other ecosystems (as Western English Channel), negative correlation was rather observed 284 

between these diatoms, phosphate and silicate (Downes-Tettmar et al., 2013). Beside the 285 

inorganic nutrients, organic material, including urea, may stimulate the Pseudo-nitzschia 286 

growth (Loureiro et al., 2009). Furthermore, Hillebrand and Sommer (1996), showed that 287 

Pseudo-nitzschia multiseries grew equally well on glutamine and urea as on nitrate. Similar 288 

result was observed during our study, since these diatoms were significantly related to urea. 289 

Moreover, the most contribution of Pseudo-nitzschia was excided by the high concentration of 290 

urea. In fact, there is clear evidence that Pseudo-nitszchia can utilize multiple sources of 291 

nitrogen especially urea. This preference preferably in urea increased under the conditions 292 

limiting of the N:P ratio. The study of Kudela et al. (2008) showed that Pseudo-nitzschia 293 

australis exhibits the highest affinity for nitrate followed by ammonium then urea. In our recent 294 

work, we reported that Melliti Ben Garali et al., 2016. Nitrogen is also a necessary component 295 

for synthesis of domoic acid 296 
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During one year sampling, the Pseudo nitzschia communities were composed by species 297 

belonging to two groups of Pseudo-nitzschia. Several works have also reported that several 298 

groups frequently contributed to Pseudo nitzszchia assemblages in the Lagoon and Bay of 299 

Bizerte (Sahraoui et al., 2012) and in the Northwestern Mediterranean Sea (Andree et al., 2011; 300 

Loureiro et al., 2009). 301 

However, there is not a strong degree of seasonal separation between the two groups, as 302 

observed in other waters (Fehling et al., 2006; Kaczmarska et al., 2007; Downes Tettemar et 303 

al., 2013). Effectively, both groups prevailed and peaked at the same periods. The only 304 

difference was found between the beginning of P. seriata-group and P. delicatissima-group 305 

occurrences. It seemed that the first group appeared earlier than the second. 306 

The P. delicatissima-group exhibited a pronounced occurrence in the Bizerte Lagoon, 307 

while in the marine station their presence was sporadic. The dominance of P. delicatissima -308 

group was previously reported for other Mediterranean areas (Sahraoui et al., 2009). During 309 

our study, some environmental factors (temperature, salinity, phosphate, total nutrient and urea) 310 

enhanced the proliferation of P. delicatisima–group. In contrast, there was a negative 311 

relationship between this group and total inorganic N This result agrees with previous 312 

suggestions that species belong to P. delicatissima–group are effective scavengers in low 313 

nutrient conditions (Fehling et al., 2006). In contrast to P. delicatissima –group, the P. seriata–314 

group was more prevalent throughout the year in the Lagoon as in the Bay. This result suggests 315 

that the P. seriata-group was eury-halin and hence could have a large temporal and spatial 316 

distribution. The occurrence of P. seriata-group was positively related to temperature, 317 

phosphate, and urea. This agrees with results of Fehling et al. (2006) in Scottish waters. As 318 

observed for P. delicatissima-group, negative relationship was found between the P. seriata-319 

group and total N-nutrient. Conversely to our finding, a previous study, in the sampled sites, 320 

showed that P. seriata-group was uncorrelated with environmental factors and exhibited a 321 
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narrow spatio-temporal dispersion (Sahraoui et al., 2009). The patterns in occurrence of 322 

Pseudo-nitzschia groups in Bizerte Lagoon suggest a degree of annual variation. Furthermore, 323 

several Pseudo nitzschia species that belong to the P. seriata-group may show different 324 

adaptation strategies to environmental conditions, as salinity and N nutrients. 325 

Domoic acid in seawater and shellfish. 326 

Most studies focused on DA levels in bivalves, but they are scarcer in seawater. In the 327 

SW Mediterranean Lagoon and Bay of Bizerte, the study of Sahraoui et al. (2012) was the first 328 

to detect DA in seawater (0.5 to 2 µg l-1) during one occasion characterized by a bloom of P. 329 

brasiliana, observed at one station of the Lagoon far from shellfish areas. To accurate our 330 

knowledge about the impact of Pseudo-nitzschia and DA presence on the shellfishing activity, 331 

our study have assessed DA occurrence during one year monitoring at three areas of mussel 332 

production, by using a more sensible methods, as LC-MS/MS and LC-UV for analyses of DA 333 

in seawater and shellfish, respectively.  334 

DA was detected when the Pseudo nitzschia community was almost shared between P. 335 

seriata and P. delicatissima-groups. These observations highlight the potential of P. seriata-336 

group and P. delicatissima-group to produce DA in these mytiliculture areas. Some species 337 

belonging to the P. delicatissima group (P. calliantha, P. brasiliana and P. delicatissima) were 338 

previously isolated from the Bizerte Lagoon and were confirmed to be toxin producer (Sahraoui 339 

et al., 2012). So, these species may also be the causative diatoms of DA measured during this 340 

study.  341 

Before our study, the P. seriata-group was found to be scarce in the Bizerte Bay and 342 

Lagoon (Sahraoui et al., 2012). However, during our sampling, species within this complex 343 

exhibited an important proliferation and may contribute to the DA presence in the lagoonal 344 

seawater. Effectively, some species in P. seriata-group (as P. seriata and P. australis) have 345 

been found to be toxic in seawaters for other ecosystems (Bates et al., 2004; Fehling et al., 346 
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2004; Howard et al., 2007). In station 1, no DA was found while Pseudo nitzschia cells were 347 

present. Therefore, the samples which displayed an absence of DA may have been composed 348 

predominantly by non-toxin producer Pseudo nitzschia species. This suggested that there was 349 

a change in species composition within Pseudo-nitzschia groups between lagoonal and marine 350 

waters. Furthermore, the absence of DA in marine waters, when Pseudo nitzschia. groups were 351 

prevailing, may be related to the environmental conditions, which could be not favorable to 352 

toxin production in these waters. 353 

DA was more observed when phosphate was limiting. Moreover, DA was positively and 354 

negatively correlated to N: P ratio and phosphate levels, respectively. Nutrient stress was 355 

previously reported as stimulated factor for DA production in natural water and culture 356 

(Howard et al., 2007). However, silicate limitation, rather than phosphate limitation, was 357 

reported as the main factor controlling DA in other areas (Fehling et al., 2004, Downes-Tettmar 358 

et al., 2013). Hence, there was evidence that phosphate limitation seemed to be the most driving 359 

factor for DA production in the lagoon of Bizerte. In contrast to phosphate, inorganic N-360 

nutrients were available when DA was measured and even DA showed positive correlation to 361 

these nutrients. The N-nutrients were reported to be necessary for toxin production, as DA is a 362 

nitrogen containing molecule (Bates, 1992). DA occurrence was also correlated positively to 363 

water temperature and salinity, as was shown previously in the Bizerte Lagoon (Sahraoui et al., 364 

2012) and other waters (Fehling et al., 2004). 365 

DA was measured when Pseudo-nitschia reached high abundances. These densities 366 

compared well with other studies (Sahraoui et al., 2012, Downes Tettemar et al., 2013) and 367 

even exceeded the threshold which triggers a requirement for DA analysis in shellfish (Turki et 368 

al., 2014). However, DA concentrations found during our study  were lower than those reported 369 

for other coastal waters, as southern Californian waters (7.3 mg l-1, Trainer et al., 2000; 2.33 370 

mg l-1, Busse et al., 2006); Mobile Bay (8 mg l-1, Macintyre et al., 2011); Luand Bay (14.01 ng 371 
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l-1, Blanco et al., 2010) and Gulf of Mexico (8000 ng l-1, Macintyre et al., 2011). This may 372 

indicate that low intensity toxin-producing Pseudo-nitzschia species were present at lagoonal 373 

stations during our sampling.  374 

The bivalves were sampled during March to June 2012, when no DA was found in the 375 

seawater, indicating the absence of toxic producer Pseudo nitzschia species. Obviously, no DA 376 

was also measured in the sampled mussels. During the period characterized by DA occurrence 377 

in seawater, we were unable to collect mussels because of high shellfish mortality following an 378 

anoxic incident (DGPA, 2013). Although this lack, DA levels in seawater were very low, so if 379 

mussels could be contaminated, their toxicity would have likely been below the value of 20 mg 380 

kg-1 (CODEX STAN 292-2008; Regulation (CE) No. 853/2004), as reported by Bouchouicha 381 

Smida et al. (2014). This was contrary to what was observed in other Mediterranean sites 382 

(Amzil et al., 2001; Kaniou-Grigoriaadou et al., 2005). In Europe Atlantic coasts, DA has 383 

affected shellfish production areas of Spain, Portugal and France (Arévalo et al., 1997; Amzil 384 

et al., 2001; Vale and Sampavo, 2001). 385 

Conclusion 386 

Results revealed that the nutrient-enriched waters of the Bizerte Lagoon and Bay are 387 

suitable for proliferation of potentially toxic diatoms Although the Pseudo-nitzschia spp. 388 

produced only low concentrations of DA there is a theoretical potential for toxic events to occur 389 

at these sites.  390 

These findings indicate that during periods and conditions such as these, toxin production 391 

is could occur in this region. Species within this (P. seriata group) complex exhibited an 392 

important proliferation and may contribute to the DA presence in the Lagoon. However, further 393 

investigation is needed to gain an improved understanding of the different Pseudo-nitzschia 394 

spp. at the study sites and to establish which species are toxin producers. In summary, this study, 395 

conducted over 14 months shows how important detailed sampling of the environment is to the 396 
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understanding of Pseudo-nitzschia dynamics and toxin production. The information obtained 397 

is useful for phytoplankton monitoring programmers and the eventual inclusion into for 398 

forecasting toxic events.  399 
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Figure captions 632 

 633 

Fig. 1. Study sites: location of sampling stations 634 

Fig.2. Bi-monthly variation of the physico-chemical factors at the 635 

sampling stations  636 

Fig.3. Temporal variation in Chl a concentrations and phytoplankton 637 

abundance at the sampling stations (Averages ± SD) 638 

Fig. 4. Temporal variation in abundance of total diatoms and Pseudo-639 

nitzschia spp. at the sampling stations (Averages ± SD) ( period 640 

without  of sampling) 641 



27 
 

Fig. 5. Temporal variation in relative abundance of the two Pseudo-642 

nitzschia groups (P.seriata group and P. delicatissima group) at 643 

the sampling stations ( period without  of sampling) 644 

Fig. 6. Temporal variation of particulate domoic acid levels at the 645 

sampling stations (Average ± SD) 646 
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 711 

 712 

Table 1. Characteristics of the study stations located in three shellfish farms (geographical location, maximal depth and depth of euphotic zone 713 

(Zeu)  714 

 715 

                        

Stations Location Depth (m) Area (ha) Production capacity 
(tons) 

Reacing 
technic 

Creation Species 

Latitude (°N) Longitude (°E) Max        Zeu 

1 37°15'33' 09°59'24' 20.0 12.0 8 20 Spinneret 2009  Mussels and oysters 

2 37°15'59' 09°52'22' 4.0 19.2 150 100 Table 1963  Mussels and oysters 

3 37°13’55’ 09°51'58' 5.0 40.0 46 200 Spinneret 2002  Mussels and oysters 

            
 716 

 717 

 718 

 719 

 720 

 721 

 722 
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Table 2. Spearman’s correlation coefficients between diatoms or Pseudo-nitzschia (total and two groups) and environmental factors 723 

recorded during the sampling period. (**: correlation is significant at the 0.01 level; *: correlation is significant at the 0.05 level) 724 

                  

Environnemental Variables 
Total 

diatoms 
P. delicatissima-group P. seriata-group 

Pseudo-nitzschia 

(two groups) 

Domoic 

acid  

Water temperature - 0.059 0.200* 0.234* 0.213* 

 

0.345*  

Salinity - 0.274** 0.459** 0.535** 0.531** 

 

0.326*  

Silicate  -0.186* 0.244** 0.154 0.253**  
 

Phosphate 0.316** 0.354**   0.193* 0.338** -0.543**  

Total inorganic N   0.634** -0.406** -0.370** -0.423**  
 

Urea   0.091 0.415**   0.336** 0.435** 0.721**  
Chl a   0.522** 0.320** 0.243* 0.330**   
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