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Abstract: Thinning strategies, namely shade or photosynthetic inhibitors, rely on the reduction of
carbon supply to the fruit below the demand, causing fruit abscission. In order to clarify the subject,
seven field trials were carried out in Lleida, Girona, and Sint-Truiden (2017 + 2018), using orchards
of ‘Golden’ and ‘Gala’ apple trees. At the stage of 9–14-mm fruit diameter, four treatments were
implemented: (A) CTR-control, trees under natural environmental conditions; (B) SN-shaded trees,
trees above which shading nets reducing 50% of irradiance were installed 24 h after metamitron
application date—without application of metamitron—and removed after five days; (C) MET-trees
sprayed with 247.5 ppm of metamitron; (D) MET + SN-trees submitted to the combined exposure
to metamitron application and shading nets. Low radiation significantly increased metamitron
absorption (36–53% in the three locations in 2018) and reduced its degradation. Net photosynthesis
and stomatal conductance were strongly reduced in all treatments, with minimum values 2 days after
spraying (DAS) and incomplete recovery 10 DAS in MET + SN. All treatments resulted in leaf sucrose
and sorbitol decreases, leading to a negative carbon balance. SN and MET + SN promoted the highest
thinning efficacy, increasing fruit weight and size, with MET + SN causing over-thinning in some trials.
Leaf antioxidant enzymes showed moderate changes in activity increases under MET or MET + SN,
accompanied by a rise of glutathione content and a reduction in ascorbate, however without lipid
peroxidation. This work shows that environmental conditions, such as cloudy days, must be carefully
considered upon metamitron application, since the low irradiance enhances metamitron efficacy and
may cause over-thinning.
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1. Introduction

Annual apple (Malus domestica Borkh.) production has increased steadily, becoming the third
most produced fruit in the world in 2018, with 86 million metric tons [1]. In times in which farmers
must meet the high quality criteria of the market, thinning is one of the most important management
practices to achieve apple quality for fresh consumption and, consequently, economic sustainability.
The thinning strategy needs to be adjusted every year, depending on the fruit set and desired crop
load. However, the results can strongly differ between years and regions [2,3] in some cases, in an
unpredictably manner.

Nowadays, there are several widely used chemical thinning agents, including metamitron.
This triazinone herbicide is a systemic xylem-translocated compound, which inhibits photosystem
(PS) II by blocking the electron transfer between the primary and secondary quinones, leading to the
closure of the reaction centres and disrupting thylakoid electron transport [4,5], which, ultimately,
will greatly reduce photosynthetic carbon fixation [4,6]. The use of shading nets is another thinning
technique used in several crops and in organic farming, namely in grapes [7] and apples [8,9]. The role
of light in apple production was frequently studied [10]. Studies have shown that by significantly
reducing light availability to apple trees through shading, for a certain number of days at a specific
post-bloom period, fruit drop will be promoted due to a restriction in carbohydrate availability
caused by the limited leaf C-assimilation [8,11–13]. Under light, the photochemical reactions provide
reducing power, nicotinamide adenine dinucleotide phosphate (NADPH), and chemical energy
molecules, adenosine triphosphate (ATP), both of which are essential for sugar production resulting
from the carboxylation capability of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO),
and Calvin-Benson cycle functioning.

Both metamitron and shading nets can significantly reduce the photosynthetic rate in apple trees,
by inhibiting the photosynthetic apparatus [14], and by reducing the amount of light energy reaching
the chloroplast, which will reduce glucose and sorbitol synthesis [15]. This last monosaccharide
is necessary to form sucrose, the main form of transport of assimilated carbon within the plant,
from source to sink organs [16]. Additionally, sorbitol synthesis could also be affected. This polyol
represents the highest percentage of non-structural sugars in apple trees, being as well a primary
product of photosynthesis in the Rosaceae family [17]. However, unlike sucrose, which is synthesized
and utilized by leaves of all ages, sorbitol is synthesized in leaves, but is metabolized only in sink
tissues [18].

It is increasingly accepted that thinning efficacy is directly related to carbohydrate balance, leading
to the development of several models for thinning estimation [19–22]. A carbohydrate surplus will
lead to a lower fruit drop rate, while a deficit will result in fruit growth decline and stimulation of
the abscission zone formation, promoting the efficacy of the thinning compound [22]. Meteorological
conditions also play a very important role on the tree’s carbon balance [22–24], thus with the potential
to change the efficacy of metamitron from no thinning at all to an over thinning effect [25]. A study
of the interactions between cloudy weather, fruit set, and chemical thinning application methods is
therefore relevant to unveil the variability of thinning efficacy.

Several abiotic stressors that impair the photochemical energy use can increase cell oxidative
conditions [26]. Metamitron also reduces the light energy use by blocking PSII function, what might
contribute to an over reduction of the photosynthetic apparatus, thus increasing the probability of
electron acceptance by molecular oxygen and a greater reactive oxygen species (ROS) production in
the chloroplast [27–29]. In fact, plant strategies to cope with abiotic stresses normally involve a wide
set of responses, being the control of reactive oxygen species (ROS) one of the most important [30].
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This involves enzymatic and non-enzymatic antioxidants that direct and indirectly allow the plants
to cope with the ROS imbalance, thus avoiding oxidative damage. The ascorbate-glutathione
pathway, whose enzymes act directly on ROS, such as H2O2, and also regenerate reduced forms of
non-enzymatic antioxidants (e.g., ascorbate, glutathione), is a very important way of maintaining the
plant oxidative status.

On the other hand, the reduction of irradiance reaching the photosynthetic apparatus by means of
shading nets would reduce the probability of oxidative stress occurrence. Therefore, the evaluation
of the balance of oxidative stress and their control mechanisms in apple leaves might contribute to
improve the understanding regarding the implications of the single or combined use of metamitron
and shade treatments. Overall, in this study, we characterize some physiological and biochemical
responses of the apple leave/tree to the single and combined use of these thinning agents. It is also our
goal to evaluate the effect of low irradiance (cloudy days) in fruit abscission and how it can enhance
metamitron thinning efficacy, in order to provide the grower with more detailed information about
time intervals with negative carbon balance which, depending on the crop load goal, acts as perfect
thinning windows or may cause over-thinning.

2. Materials and Methods

2.1. Plant Material and Experimental Design

2.1.1. Plant Material

Trials were performed in experimental orchards of Malus × domestica in Lleida and Girona (Spain)
in 2017, and in Lleida, Girona, and Sint-Truiden (Belgium) in 2018. In Lleida, trials were carried out
in the experimental orchards of IRTA, Mollerussa, northeast of Spain (41◦61′96.37′′ N/0◦87′06.66′′ E,
245 m altitude), using ‘Gala Brookfield’ trees, grafted on M.9 NAKB, spaced 4 m × 1.4 m, with a canopy
height of 3 m, planted in 2003, with ‘Fuji’ as pollinator. In Girona, trials were carried out in IRTA
Más Badia, northeast of Spain (42◦03′12.97′′ N/3◦03′46.13′′ E, 12 m altitude), using ‘Golden Reinders’
trees, grafted on M9 NAKB, spaced 3.8 m × 1.1 m, with a canopy height of 2.5 m, planted in 2003,
with ‘Granny Smith’ as pollinator. In Sint-Truiden, trials were performed on the orchards of PCFruit
Research Station-Proefcentrum Fruitteelt vzw, Belgium (50◦45′49′′ N/05◦09′26′′ E, 96 m altitude), using
‘Golden Delicious’ trees, grafted on M9, spaced 3.5 m × 1.5 m, with a canopy height of 3 m, planted in
2005, without pollinator.

For biochemical evaluations, the leaves were cleaned with a water-wet tissue before being frozen
in liquid N2. All leaves were then finely powdered with a mortar and pestle in liquid N2 and kept at
−80 ◦C until analysis.

2.1.2. Treatment Implementation

The shade treatment was imposed by using shading nets installed at 4 m high, covering the whole
canopy until the ground, on Eastern and Western sides of tree, which reduced the photosynthetic
photon flux density (PPFD) by 50%, evaluated by two Watchdog 3670I Silicon pyranometers placed
above and under the net and a Testo 1000 Microstation (Spectrum Technologies Inc., Aurora, CO, USA)
(Figure 1). The shading nets were placed 24 h after metamitron application, to ensure that absorption
was not affected by low radiation and/or temperature, maintained during 5 days, and were removed at
the end of the fifth day.

Spraying of metamitron, the active ingredient of Brevis® (ADAMA, Telaviv, Israel), was carried
out always in the early morning with the recommended dose of 247.5 ppm per 1000 L ha−1, using
a hand-gun sprayer. The moment of single application was determined by average fruit diameter:
between 9–10 or 13–14 mm in 2017 (in two distinct trials) and around 14 mm in 2018.

Four treatments were established: (A) CTR-control, corresponding to trees under natural
environmental conditions; (B) SN-shaded trees, trees above which shading nets were installed
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24 h after metamitron application date—without application of metamitron—and removed after
five days; (C) MET-trees sprayed with 247.5 ppm of metamitron, applied as referred above;
(D) MET + SN-trees submitted to the combined exposure to metamitron application (MET) and
shading nets placement during 5 days after metamitron application (SN). Metamitron and/or shade
treatments were implemented between the 18th of April and the 18th of May.
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Figure 1. Shading nets installed in Girona, IRTA Más Badia orchards, in 2017.

To monitor the environmental conditions in each trial, temperature and relative humidity sensors
placed in both sides of the blocks and in the middle (with and without shading net), in each case, in the
upper (2 m) and lower (1 m) level of the trees. In Lleida, six Testo 177-h1 (Testo, Titisee-Neustadt,
Germany) were used; in Girona, six EasyLog USB Data Logger (Lascar Electronics, Wiltshire, UK)
were used; and six Testo 174H sensors (Spectrum Technologies Inc., Aurora, CO, USA) were used
in Sint-Truiden.

The initial number of flower clusters was similar among treatments (data not shown). Four blocks
were established along two rows of the orchard, each 150-m long, in a randomized complete block
design, with several trees between them with no treatments assigned and no observations done.
The blocks were interspersed within the two rows, assuring that there were no blocks for observation
immediately on the side row, avoiding the edge effect. Each block was constituted by four trees per
treatment, but only the 2 central ones were used, performing a total of 8 observed trees per treatment,
except in Girona 2017, where 4 trees per treatment was used.

2.2. Metamitron Leaf Analysis

In 2017, leaf samples for metamitron and desamino-metamitron concentration were collected 2, 4,
6, and 9 days after spraying (DAS) in leaves of the 9–10 mm fruit diameter trial in Lleida, whereas in
2018, the samples were taken 2 DAS in all locations. Each sample was a pool of three shoot leaves from
the top, middle, and bottom part of each tree, with three samples being taken from the Eastern and
three from Western side of the canopy, for a total of six repetitions per treatment.

Metamitron extraction was conducted according to the QuEChERS method [31] using 500 mg fresh
weight (FW) of frozen leaf powder and 3 mL of acetonitrile. The samples were shaken manually for
1 min, after which, 1.95 g of extraction Supel™ QuE Citrate Extraction Tube (Sigma-Aldrich, St. Louis,
MO, USA) was added, containing 1.2 g of magnesium sulfate, 0.3 g of sodium chloride, 0.15 g of
sodium citrate dibasic sesquihydrate, and 0.3 g of sodium citrate tribasic dehydrate. The samples were
further shaken manually for 1 min and centrifuged (6000× g, 5 min, 4 ◦C). An aliquot of 1.2 mL of the
supernatant was transferred to a 2 mL Supel™QuE Verde clean-up tube (Sigma-Aldrich, St. Louis, MO,
USA), vortexed, and further centrifuged (6000× g, 5 min, 4 ◦C). The obtained supernatant was filtered
with a polytetrafluoroethylene (PTFE) 0.45 µm filter, and injected. Standard curves were used for the
quantification of metamitron (Sigma-Aldrich, St. Louis, MO, USA) and desamino-metamitron-desamino
(LGC Standards, Middlesex, MA, USA).
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2.3. Leaf Gas Exchanges

Leaf gas exchanges measurements included net photosynthesis rate (Pn), and stomatal conductance
to water vapour (gs), and were obtained using a portable Infra-Red Gas Analyzer (IRGA) LCi Ultra
Compact Photosynthesis System (ADC BioScientific, UK), under ambient conditions of irradiance,
temperature (between 17–25 ◦C), humidity, and CO2 supply (400 ± 20 ppm), between 10–12 h. In each
of the four blocks, two evaluations in the Eastern and two in the Western side of the canopy were
performed, in recently fully developed shoot leaves at ca. 1.5 m height, totaling 8 leaves per treatment.
In 2017, gas exchanges measurements were taken in Lleida and Girona 2, 4, 6, 9, and 11 DAS, while in
2018, they were taken in Sint-Truiden 2, 5, and 10 DAS.

2.4. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activity

For ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO, EC number: 4.1.1.39), one shoot
leaf per tree, making a total of four samples per treatment, were sampled 5 DAS in Sint-Truiden, in 2018,
and from each leaf, ten 0.5 cm2 leaf discs (80 mg FW) were cut, immediately frozen in liquid N2 and
stored at −80 ◦C.

2.4.1. Extraction

Leaf material was homogenized in a cooled pestle and mortar, along with quartz sand, and 1%
(w/v) insoluble polyvinylpyrrolidone, in 1 mL of ice-cold extraction buffer 50 mM Bicine-KOH (pH 8.0),
containing 1 mM EDTA, 5% (w/v) polyvinylpyrrolidone, 6% polyethylene glycol (PEG4000), 10 mM DTT,
50 mM β-mercaptoethanol, and 1% (v/v) protease inhibitor cocktail for plant extracts (Sigma Aldrich,
Germany). The homogenates were centrifuged (14,000× g, 5 min, 4 ◦C), and the clear supernatant was
immediately used for RuBisCO activities evaluation by the incorporation of 14CO2 into acid-stable
products at 25 ◦C, following [32].

2.4.2. Total Activity Evaluation

The assay medium for enzyme activity determination contained 100 mM Bicine-NaOH pH 8.2,
40 mM MgCl2, 100 mM NaHCO3 and 10 mM NaH14CO3 (7.4 kBq µmol−1). For total activity (Vt),
450 µL of assay medium and 25 µL of extract was incubated for 3 min at 25 ◦C for carbamylation,
after which 25 µL of 0.4 mM RuBP was added. The reaction was allowed for 1 min, after which it was
stopped with 200 µL 10 M HCOOH (formic acid). Samples were then kept overnight in an oven at
70 ◦C until total medium evaporation and the residue rehydrated with 500 µL of ultrapure water and
5 mL of scintillation liquid (Ultima GoldTM, Sigma-Aldrich, St. Louis, MO, USA). Radioactivity due to
14C incorporation in the acid-stable products was measured by liquid scintillation counting using a
scintillation spectrometer LS 7800 (Beckman Instruments Inc., Indianapolis, IN, USA).

2.5. Leaf Non-Structural Sugars

In 2017, sampling was performed between 11:30 and 13:00, at 2, 4, 6, and 9 DAS only from the
9–10-mm application in Lleida for starch analysis, while in 2018, that was done at 2, 5, and 10 DAS for
soluble sugars in all trials. In 2017, four repetitions per treatment, one per block, in pools of 2 shoot
leaves and 2 spur leaves were used. In 2018, the number of repetitions was increased to six.

2.5.1. Soluble Sugars

Quantification of sucrose, fructose, glucose, and sorbitol was based on the method described
by [33] using 150 mg FW frozen leaf material. The separation of sugars was performed using a
Sugarpak1 column (300 × 6.5 mm, Waters) at 90 ◦C, using H2O (containing 50 mg EDTA-Ca L−1) as
eluent, at a flow rate of 0.5 mL min−1 in an HPLC system equipped with a refractive index detector
(Model 2414, Waters, Milford, MA, USA). Standard curves of each sugar were used for quantification.
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2.5.2. Starch

Starch quantification was performed based on a previous report [34] using ca. 150 mg FW frozen
leaf material. The glucose derived from starch was enzymatically determined, with readings at 340 nm
using a spectrophotometer UV-VIS Helios (Thermo Fisher, Waltham, MA, USA).

2.6. Leaf Oxidative Status Evaluation

Sampling was performed 5 DAS in Sint-Truiden, in 2018, between 10–12 h. Each sample was a
pool of three shoot leaves (one sample per block, totaling 4 samples per treatment) that was frozen in
liquid nitrogen and stored at −80 ◦C until analysis.

2.6.1. Lipoperoxidation and H2O2 Content

Sample extraction was performed using 200 mg FW frozen material, homogenized with 2.0 mL
of 0.1% trichloroacetic acid (TCA), and centrifuged (12,000× g, 15 min, 2 ◦C). Lipid peroxidation
was estimated by measuring malondialdehyde (MDA) content, using the thiobarbituric acid (TBA)
method, as described by [35]. After extraction, 4 mL of 20% TCA containing 0.5% TBA was added
to a 1 mL aliquot of the supernatant. This mixture was heated (95 ◦C, 30 min) followed by quick
cooling in an ice bath and centrifugation (10,000× g, 15 min, 2 ◦C). The amount of MDA was calculated
from the coefficient of absorbance at 532 nm after subtracting the non-specific absorption at 600 nm.
The extinction coefficient 155 mM−1 cm−1 for MDA was used.

Hydrogen peroxide (H2O2) content was measured using the method described previously [36].
To a 50 µL aliquot of the supernatant obtained in the extraction, 959 µL of 100 mM phosphate buffer,
pH 7.6, and 1 mL of 1 M potassium iodide were added. The absorbance of the supernatant was
measured at 390 nm and for quantification, we used a standard curve of hydrogen peroxide (0, 1.1, 2.2,
3.3, 4.4, and 5.5 µg mL−1).

2.6.2. Antioxidative Enzyme Assays

For catalase (CAT), guaiacol peroxidase (GPOD), superoxide dismutase (SOD), and glutathione
redutase (GR) 200 mg FW frozen material were homogenized in 2 mL of cold 100 mM Tris-hydrochloric
acid (HCl) buffer, pH 7.8, containing 3 mM dithiothreitol, 1 mM EDTA, 2% (w/w) insoluble PVPP
and centrifuged (12,000× g, 20 min, 4 ◦C). For ascorbate peroxidase (APX) activity determinations,
10 mM of ascorbate was added to the previously described solution. For glutathione peroxidase (GPX)
activity determinations, 0.1% (w/v) Triton X-100, 5 mM cysteine, and 0.1 mM Phenylmethanesulfonyl
fluoride were added to the solution described for CAT, SOD, GPOD, and GR. The resulting supernatant
was used for determination of enzymatic activity (4 replicates were used for each determination).
Absorbance was measured in a Hitachi (U-2000 UV/Vis, Hitachi, Japan) spectrophotometer, at ca. 25 ◦C.
The enzyme activity was expressed as unit g−1 FW.

Catalase

CAT activity (EC 1.11.1.6) was evaluated as described earlier [37], with some changes, by following
the decrease in absorbance at 240 nm for 2 min in a solution containing 10 mM of H2O2 in 50 mM
phosphate buffer, pH 7.0. Enzymatic activity was defined as the consumption of 1 µmol H2O2 per min
and per cm3 using a coefficient of absorbance of 39.4 mM−1 cm−1.

Guaiacol Peroxidase

Guaiacol peroxidase (GPOD) activity (EC 1.11.1.7) was determined following the increase of
absorbance at 470 nm, according to a modification of methodology described previously [38], using a
reaction mixture containing 30 mM 2-methoxyphenol (guaiacol) and 4 mM H2O2 in 0.2 M sodium
acetate buffer, pH 6.0. Enzymatic activity was defined as the consumption of 1 µmol of guaiacol
per min and per mL using a coefficient of absorbance for tetraguaiacol of 26.6 mM−1 cm−1.
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Glutathione Reductase

Glutathione reductase (GR) activity (EC 1.8.1.7) was determined using a modified [39] method,
measuring the increase in absorbance at 412 nm, using a reaction mixture containing 3 mM
5,5′-dithio-bis(2-nitrobenzoicacid) (DTNB), 2 mM nicotinamide adenine dinucleotide phosphate
(NADPH) and 20 mM oxidized glutathione (GSSG) in 100 mM phosphate-ethylenediaminetetraacetic
acid (EDTA) buffer, pH 7.6, and 1mM EDTA. Enzymatic activity was defined as the consumption of
1 µmol of GSSG per min and per mL using a coefficient of absorbance of 6.2 mM−1 cm−1.

Superoxide Dismutase

Superoxide dismutase (SOD) activity (EC 1.15.1.1) was determined using a modified [40] method,
following the variation of absorbance at 550 nm, using a reaction mixture with 0.1 mM EDTA, 0.5 mM
Xantine and 0.05 mM of ferricytochrome c in 100 mM phosphate buffer, pH 7.6, and 1 U mL−1

xantine-oxidase. Enzymatic activity was defined as µmol of ferricytochrome c reduction by superoxide
radical min−1.

Ascorbate Peroxidase

Ascorbate peroxidase (APX) activity (EC 1.11.1.11) was determined according to a previous
study [41], in a reaction mixture containing 0.25 mM ascorbate and 0.3 mM hydrogen peroxide in
50 mM phosphate buffer, pH 7.0, following the decrease in absorbance at 290 nm. Enzymatic activity
was defined as the consumption of 1 µmol ascorbate per min and per mL using a coefficient of
absorbance of 2.8 mM−1 cm−1.

Glutathione Peroxidase

Glutathione peroxidase (GPX) activity (EC 1.11.1.9) was determined according to [42], in a
reaction mixture containing 1.14 mM sodium chloride, 2 mM reduced glutathione, 2.5 mM hydrogen
peroxide, 2 mM NADPH in 50 mM Tris-HCl buffer, pH 7.9. Enzymatic activity was defined as the
glutathione-peroxidase necessary to reduce 1 µmol NADPH per min and per mL at room temperature
using a coefficient of absorbance of 6.2 mM−1 cm−1.

2.6.3. Non-Enzyme Antioxidants Quantification

For glutathione and ascorbate evaluations, samples of 100 mg of powdered frozen leaf were
homogenized in 0.5 mL of ice-cold 6% meta-phosphoric acid, pH 2.8, containing 1 mM EDTA and 1%
activated charcoal powder for chlorophyll removal. Homogenates were centrifuged (27,000× g, 15 min,
4 ◦C), and the obtained supernatant was stored at -80 ◦C prior to glutathione and ascorbate analysis.

Glutathione

The quantification of reduced (GSH) and oxidized (GSSG) glutathione was based on the method
described previously [43]. Total glutathione was measured spectrophotometrically at 412 nm in a
microplate reader Synergy HT (BioTek Instruments, Winooski, VT, USA). Oxidized glutathione (GSSG)
was measured by incubating the diluted sample in 0.5% 2-vinylpyridine for 1 h at 25 ◦C and then
proceeding as described above. Reduced glutathione (GSH) was determined as the difference between
total glutathione and GSSG.

Ascorbate

The quantification of ascorbic (AsA) and dehydroascorbic (DAsA) acids was based on a method
adapted from a previous study [44], as described earlier [45]. Absorbance was recorded at 525 nm in a
microplate reader Synergy HT (BioTek Instruments, Winooski, VT, USA). Concentration of AsA was
determined using a calibration curve of AsA in the range of 10–60 mM prepared in 5% metaphosphoric
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acid. The concentration of DAsA was calculated by subtracting the AsA concentration measured from
the total ascorbate assayed.

2.7. Yield Parameters

All fruits were picked from each observed tree at harvest, on one time. The number of fruits
per tree, yield, fruit weight, and distribution per fruit size was determined using a commercial sort
machine (Maf Roda Agrobotic, Montauban Cedex, France).

2.8. Statistical Analysis

The various measured and calculated parameters were subjected to an analysis of variance, through
a one-way ANOVA, to evaluate the differences between treatments on one single day after spraying,
or a two-way ANOVA to evaluate the differences between the four treatments, across the several
days after spraying, followed by a Tukey’s test for mean comparisons. Each ANOVA was performed
independently for each of the trials. For metamitron leaf concentration and non-structural sugars data
analysis six samples were used and a completely randomized design analysis was performed. A 95%
confidence level was adopted for all tests. The statistical analysis was performed using Statistix 9
(Analytical Software, Tallahassee, FL, USA).

3. Results

3.1. Environmental Conditions

A brief characterization of the environmental conditions in the seven performed trials is shown in
Table 1. Global irradiance values were quite homogeneous within all trials. The 2018 trial in Girona
stands out due to the higher night temperature values, above 14 ◦C, registered before the application.
In all the other trials carried out, the sensors installed inside and outside the shading nets showed no
relevant differences neither in humidity nor in temperature (≈5% and 0.5 ◦C, respectively), meaning
that the only different parameter was irradiation, which was reduced by half.

Table 1. Summary of meteorological conditions ± SE in trials performed in each year and location
and fruit diameter at the time of metamitron application: average of daily irradiance 5 days after
spraying (DAS) (MJ m−2), average night-time temperature from 20:00–8:00 h (◦C), 5 nights before
and after spraying, and average air relative humidity (%) during the 3 h prior to spraying in natural
environmental conditions (Control) and under the shading nets (SN).

Location
Fruit

Diameter
(mm)

Global Irradiance
MJ/m2—5 Days after

Night
Temperature
◦C—5 Nights

before

Night
Temperature
◦C—5

Nights after

Diurnal
Temperature
◦C—5 Days

after

Relative
Humidity

%

Control SN Control Control Control Control

2017

Lleida
10 ± 0.4 24.8± 2.1 12.4 ± 1.2 11.1 ± 0.4 7.9 ± 0.5 14.3 ± 0.4 71.7 ± 1.1
13 ± 0.4 17.7 ± 1.9 8.8 ± 0.9 7.5 ± 0.5 8.0 ± 0.6 13.0 ± 0.3 56.0 ± 3.4

Girona
9 ± 0.7 20.7 ± 1.8 10.4 ± 0.9 9.3 ± 0.6 10.4 ± 0.4 13.3 ± 0.4 47.3 ± 3.1

13 ± 0.2 19.2 ± 1.2 9.6 ± 0.6 10.4 ± 0.4 8.2 ± 0.7 11.0 ± 0.4 46.3 ± 3.0

2018

Lleida 14 ± 0.3 17.5 ± 1.2 8.8 ± 0.6 10.2 ± 0.2 11.8 ± 0.5 12.7 ± 0.5 61.5 ± 2.1
Girona 14 ± 0.3 19.3 ± 1.3 9.7 ± 0.6 15.5 ± 0.7 11.8 ± 0.4 14.6 ± 0.3 69.1 ± 1.9

Sint-Truiden 14 ± 0.4 22.1 ± 1.4 11.1 ± 0.7 11.5 ± 0.2 11.6 ± 0.3 14.3 ± 0.6 60.5 ± 1.7

3.2. Metamitron Absorption and Degradation to Desamino-Metamitron

To evaluate the metamitron impacts it is crucial to determine its absorption by the leaves and
its permanence/degradation along time. For the applied dose, MET treatment reached 2 mg g−1 dry
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weight (DW) in leaf biomass of metamitron 2 DAS, but the combined MET + SN treatment showed a
significantly higher content of 1/3 considering an average of the three locations (Figure 2).
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combining the data from those trials for each site (Figure 4). The recovery period was evaluated 9 
DAS in the 9–10 mm fruit diameter metamitron application and 11 DAS in the 13 mm, and the 
analysis made separately (data not shown). 
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Figure 2. Metamitron content (mg g−1 DW), evaluated 2 DAS, in the trials of 2018 in Girona (‘Golden
Reinders’), Lleida (‘Gala Brookfield’) and Sint-Truiden (Golden Delicious’). For each parameter, the mean
values ± SE (n = 6) followed by different letters express significant differences between treatments
within each cultivar after a Tukey’s HSD test (p-value ≤ 0.05). SN-Shading net; MET-Metamitron.

The pattern of variation of MET and MET + SN was similar during the whole experiment for
desamino-metamitron, the main degradation product of metamitron (Figure 3). However, for MET in
a higher extent (usually more than double) along this period. Desamino-metamitron highest values
were observed at 6 DAS, decreasing afterwards in both treatments.
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Figure 3. Desamino-metamitron content evaluated 2, 4, 6, and 9 DAS, for metamitron with (MET +

SN-N) or without (MET-•) shading nets, in the trials of 2017, in Lleida (‘Gala Brookfield’). For each
parameter, the mean values ± SE (n = 8) followed by different letters express significant differences
between treatments within each day (a and b), or between days within each treatment (A and B), after a
Tukey’s HSD test (p-value ≤ 0.05). SN-Shading net; MET-Metamitron, DAS-Days after spraying.

3.3. Leaf Gas Exchanges

Pn and gs were similar among the treatments applied at 9–10 mm and 13 mm, allowing combining
the data from those trials for each site (Figure 4). The recovery period was evaluated 9 DAS in the
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9–10 mm fruit diameter metamitron application and 11 DAS in the 13 mm, and the analysis made
separately (data not shown).

Overall, the treatments of metamitron and/or shade imposed a reduction on Pn and gs until 6 DAS
in both locations. In detail, SN significantly reduced Pn and gs in Lleida (50% and 55%) (Figure 4b)
and Girona (24% and 53%) (Figure 4c,d), respectively, 2 DAS. Lowered Pn and gs values were mostly
maintained 4 DAS, but a strong increase to values close to their controls was observed 6 DAS, that is,
just one day after shade removal.

MET significantly reduced Pn at 2 and 4 DAS, 35 and 42%, and 39 and 80%, in Lleida and Girona,
respectively, as compared to their control values on the same days.Morevover, although in Lleida
the Pn values in the MET treatment were invariant until 6 DAS, in Girona, minimum Pn values were
observed 4 DAS with a tendency to recovery afterwards. MET further caused gs reductions in both
sites, with maximal declines at 4 DAS of 42 and 40% of their respective controls.
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Figure 4. Net CO2 gas exchange (Pn) (µmol CO2 m−2 s−1) (a,c) and stomatal conductance to water vapor
(gs) (mmol H2O m−2 s−1) rate (b,d), in Lleida and Girona, respectively, evaluated 2, 4, and 6 days after
shade (DAS) installation, in the 2017 trials in Lleida (‘Gala Brookfield’) and Girona (‘Golden Renders’).
Shading nets were removed 5 DAS. For each parameter, the mean values ± SE (n = 16) followed by
different letters express significant differences between treatments within each day (a–c), or between
days within each treatment (A, B, and C), after a Tukey’s HSD test (p-value ≤ 0.05). SN-Shading net;
MET-Metamitron, DAS-Days after spraying.

The MET + SN treatment caused the most significant reduction in Pn and gs 2 and 4 DAS, to half of
CTR values, or even to a greater extent. Furthermore, 2 DAS, the values were usually lower than those
of MET. Although a tendency to recover was observed after shade removal, in MET + SN treatment, Pn

and gs did not differ from those from MET alone, showing that 6 DAS metamitron was leading the
impact of MET + SN treatment. Evaluation of the leaf gas exchanges for longer periods in the Lleida
experiments showed that at 9 DAS MET plants still represented 30% (Pn) and 25% (gs) lower values
than CTR, but 11 DAS differences between treatment become absent (data not shown). Measurements
performed in Sint-Truiden in 2018 were in line with those of Lleida in 2017, although at 10 DAS
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(thus, five days after the removal of the shading nets), only the MET + SN maintained significant
reduced Pn values (data not shown).

3.4. RuBisCO Activity

Total activity of RuBisCO (Vt) was singificantly reduced to less than half as CTR, in MET and
MET + SN treatments, without significant differences between them (Table 2).

Table 2. RuBisCO total activity (Vt) (µmol CO2 m−2 s−1) evaluated 5 DAS, in the trial of 2018 in
Sint-Truiden (‘Golden Delicious’). For each parameter, the mean values ± SE (n = 4) followed by
different letters express significant differences between treatments within each cultivar after a Tukey’s
HSD test (p-value ≤ 0.05). SN-Shading net; MET-Metamitron.

Vt (µmol CO2 mg−1 Chl)

CTR 20.7 ± 1.4 a
SN 19.8 ± 0.9 a

MET 8.4 ± 0.3 b
MET + SN 8.3 ± 0.8 b

3.5. Leaf Sugars

SN treatment significantly reduced sucrose content in Lleida and Girona at 2 DAS (36 and 53%)
and in all locations at 5 DAS (between 47–62%) (Table 3). A similar trend was observed for sorbitol,
although less striking than sucrose, significant in Sint-Truiden at 2 DAS (36%) and in all locations at
5 DAS (between 22–34%). Glucose also showed significant a reduction in Lleida, with 21% less content
than CTR. At 10 DAS, there were no differences from CTR likely due to the removal of the nets at
5 DAS.

The MET treatment showed only non-significant impacts 2 DAS. However minimum levels
were reached at 5 DAS, and sucrose (34–59%), fructose (24–44%), sorbitol (22–24%), and total sugars
(21–24%) were frequently significantly reduced, as compared to CTR. At 10 DAS, Lleida trees still
presented reduced content of sucrose, whereas Sint-Truiden all evaluated sugars presented values
similar to control.

The combined MET + SN treatment showed a consistent tendency to cause greater impact that
the single treatments in all days and trials, although minimum values were reached at 5 DAS. By this
time, MET + SN treatment promoted significant reductions in sucrose (62–78%), sorbitol (29–42%),
and total sugars (30–38%) in the three locations, as compared to the control. In addition, this treatment
resulted in 70% less glucose in Lleida and 53 and 64% less fructose content in Lleida and Sint-Truiden,
respectively, comparing to the respective controls. At 10 DAS, the trees still presented a reduced
content of sucrose of 80% compared to the CTR.

Table 3. Main soluble sugars content (mg g−1 DW) of apple leaves: sucrose, glucose, fructose, sorbitol,
and total sugars at 2, 5, and 10 DAS in Lleida (‘Gala Brookfield’), Girona (‘Golden Reinders’) and
Sint-Truiden (‘Golden Delicious’) in the 2018 trials. Shading net was removed 5 DAS. For each parameter,
the mean values ± SE (n = 6) followed by different letters express significant differences between
treatments within each day (a, b, and c), or between days within each treatment (A and B), after Tukey’s
HSD test (p-value ≤ 0.05). No letters indicate a p-value > 0.05. SN-Shading net; MET-Metamitron,
DAS-Days after spraying.

2 DAS

Sucrose Glucose Frutose Sorbitol Total

Lleida

CTR 16.6 ± 1.2 aA 31.5 ± 2.8 aA 2.9 ± 0.5 aA 91.0 ± 5.3 aA 141.9 ± 7.9 aA
SN 10.7 ± 1.0 bA 31.3 ± 2.9 aA 2.4 ± 0.5 aA 76.8 ± 4.2 aA 120.9 ± 6.9 aA

MET 12.7 ± 0.5 abA 31.6 ± 2.3 aA 2.3 ± 0.2 aB 68.1 ± 9.9 aA 114.6± 13.5 aA
MET + SN 10.9 ± 1.7 bA 32.0 ± 3.8 aA 1.7 ± 0.6 aA 79.8 ± 6.4 aA 124.4± 12.1 aA
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Table 3. Cont.

2 DAS

Sucrose Glucose Frutose Sorbitol Total

Girona

CTR 19.6 ± 1.9 aA 48.4 ± 4.0 aA 2.3 ± 0.7 88.9 ± 7.8 abA 151.3± 12.9 abA
SN 9.3 ± 0.9 bcA 37.9 ± 1.5 abA 3.1 ± 0.4 71.3 ± 4.5 bA 121.6 ± 5.9 bA

MET 14.2 ± 2.0 abA 40.5 ± 4.1 abA 4.8 ± 0.7 101.0 ±10.1 aA 168.3± 15.1 aA
MET + SN 6.8 ± 1.0 cA 35.8 ± 2.1 bA 3.6 ± 0.6 65.3 ± 6.0 bA 111.5 ± 8.4 bA

Sint-Truiden

CTR 24.8 ± 3.0 aA 44.7 ± 4.7 6.2 ± 0.6 aA 120.0 ±10.9 aA 195.8± 14.6 aA
SN 21.1 ± 8.6 aA 33.7 ± 5.0 4.4 ± 0.3 aA 77.4 ± 4.6 bB 136.6± 10.5 bA

MET 17.5 ± 1.0 aA 42.6 ± 4.4 6.2 ± 0.8 aA 99.4 ± 6.3 abA 165.7± 10.7 abA
MET + SN 11.9 ± 1.1 aA 41.0 ± 2.7 5.5 ± 1.2 aA 78.4 ± 4.4 bB 136.7 ± 8.5 bA

5 DAS

Sucrose Glucose Frutose Sorbitol Total

Lleida

CTR 12.9 ± 0.9 aB 36.3 ± 1.6 aA 3.2 ± 0.2 aA 87.4 ± 2.6 aA 138.9 ± 4.9 aA
SN 4.9 ± 0.5 cB 28.6 ± 1.8 bA 2.2 ± 0.4 abA 58.5 ± 2.7 cB 75.1 ± 2.6 cB

MET 6.7 ± 0.5 bB 31.6 ± 1.7 abA 1.8 ± 0.1 bB 69.4 ± 2.5 bA 109.5 ± 2.3 bA
MET + SN 2.9 ± 0.6 bcB 10.5 ± 0.6 cA 1.5 ± 0.1 bA 50.9 ± 2.7 cB 85.9 ± 3.5 cB

Girona

CTR 15.5 ± 1.4 aA 28.1 ± 2.1 aB 3.1 ± 0.5 70.5 ± 3.7 aB 117.2 ± 6.5 aB
SN 6.1 ± 0.2 bB 25.1 ± 1.8 aB 3.2 ± 0.2 46.6 ± 2.0 bB 78.9 ± 3.0 bB

MET 6.7 ± 1.4 bB 25.5 ± 3.3 aB 2.9 ± 0.8 53.8 ± 5.7 abB 89.0 ± 10.4 bB
MET + SN 5.2 ± 0.5 bA 23.1 ± 1.1 aB 2.2 ± 0.3 42.8 ± 4.5 bB 73.3 ± 5.0 bB

Sint-Truiden

CTR 16.6 ± 1.1 aB 39.7 ± 3.1 5.0 ± 1.1 aA 85.4 ± 4.4 aB 146.7 ± 8.7 aB
SN 7.7 ± 1.1 bcB 35.2 ± 1.7 3.4 ± 0.5 abA 66.4 ± 4.0 bB 112.1 ± 6.3 bB

MET 11.0 ± 1.5 bB 30.8 ± 1.1 3.8 ± 0.7 abB 66.9 ± 3.9 bB 112.5 ± 5.0 bB
MET + SN 6.4 ± 0.6 cB 35.7 ± 2.6 1.8 ± 0.3 bB 59.0 ± 2.7 bC 102.8 ± 4.8 bB

10 DAS

Sucrose Glucose Frutose Sorbitol Total

Lleida

CTR 10.8 ± 0.8 aB 14.2 ± 2.5 aB 2.5 ± 0.4 aA 89.9 ± 4.8 aA 117.4 ± 7.8 aA
SN 7.9 ± 0.8 abA 11.2 ± 1.5 aB 2.2 ± 0.4 aA 87.0 ± 2.7 aA 108.4 ± 2.8 aA

MET 5.0 ± 0.8 bcB 15.6 ± 1.0 aB 3.7 ± 0.7 aA 80.9 ± 4.0 aA 101.4 ± 4.3 aA
MET + SN 2.1 ± 0.3 cB 12.7 ± 1.3 aB 3.4 ± 0.6 aA 75.1 ± 5.4 aA 95.3 ± 6.6 aAB

Sint-Truiden

CTR 15.3 ± 1.8 aB 45.9 ± 2.2 3.4 ± 0.6 aA 102.6 ± 4.0 aAB 167.1 ± 7.3 aAB
SN 11.2 ± 0.8 aB 38.5 ± 4.8 3.2 ± 0.2 aA 93.8 ± 3.4 aA 140.7 ± 4.9 aA

MET 12.5 ± 0.6 aB 37.5 ± 2.5 3.0 ± 0.5 aB 103.6 ± 6.7 aA 156.6 ± 9.0 aA
MET + SN 12.4 ± 1.0 aA 35.4 ± 3.0 3.5 ± 0.2 aAB 98.7 ± 4.0 aA 150.0 ± 7.5 aA

Regarding the insoluble sugar starch, all treatments promoted content reduction up to 6 DAS
(significantly until 4 DAS). Maximal declines (greater than 70%) were observed at 4 DAS, as compared
to the respective control value (Table 4). The starch content was similar among the treatments at 9 DAS,
although related to a strong starch reduction in CTR plants, as compared with the previous days.
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Table 4. Leaf starch content (mg g−1 DW) at 2, 4, 6, and 9 DAS (9–10-mm application trial) in the trial
of 2017, in Lleida (‘Gala Brookfield’). Shading net was removed 5 DAS. For each parameter, the mean
values ± SE (n = 4) followed by different letters express significant differences between treatments
within each day (a and b), or between days within each treatment (A and B), after Tukey’s HSD test
(p-value ≤ 0.05). No letters indicate a p-value > 0.05. SN-Shading net; MET-Metamitron, DAS-Days
after spraying.

Starch (mg g−1 DW)

2 DAS 4 DAS 6 DAS 9 DAS

CTR 10.5 ± 1.7 aA 8.6 ± 2.1 aA 11.0 ± 4.2 aA 3.4 ± 2.0 aB
SN 3.2 ± 0.7 bB 2.6 ± 0.9 bB 7.3 ± 2.1 aA 3.8 ± 1.3 aB

MET 3.9 ± 0.6 bA 2.1 ± 0.9 bA 4.9 ± 0.9 aA 5.3 ± 1.9 aA
MET + SN 4.8 ± 2.1 bA 2.2 ± 0.5 bA 8.0 ± 3.7 aA 2.6 ± 0.7 aA

3.6. Leaf Oxidative Status

3.6.1. Lipid Peroxidation

The MDA and H2O2 content were not affected regardless of treatment, as compared to CTR values
(Figure 5).
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Figure 5. Leaf average contents of malondialdehyde (MDA) (µM g−1 FW) (a) and hydrogen peroxide
(H2O2) (µg g−1 FW) (b) evaluated 5 DAS, in the trial of 2018 in Sint-Truiden (‘Golden Delicious’).
For each parameter, the mean values ± SE (n = 4) followed by different letters express significant
differences between treatments within each cultivar after a Tukey’s HSD test (p-value ≤ 0.05). No letters
indicate p-value > 0.05. SN-Shading net; MET-Metamitron.

3.6.2. Antioxidative Enzyme Activity

Changes in the activity of the studied antioxidative enzymes were observed 5 DAS, differently
among treatments (Figure 6). MET promoted greater activity values in APX, whereas MET + SN
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induced maximal values for CAT, GR, and GPX. By contrast, these two treatments resulted in the
lowest activity of SOD. POD activity differed significantly in SN (decreased) and MET (increased).
The SN imposition did not significantly affect the activity of any of the studied enzymes.Agronomy 2020, 10, x FOR PEER REVIEW 15 of 24 
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Figure 6. Catalase (CAT) (a), guaiacol peroxidase (POD) (b), glutathione reductase (GR) (c), superoxide
dismutase (SOD) (d), ascorbate peroxidase (APX) (e) and glutathione peroxidase (GPX) (f) activities
(U g−1 FW) evaluated 5 DAS in the trial of 2018, in Sint-Truiden (‘Golden Delicious’). For each
parameter, the mean values ± SE (n = 4) followed by different letters express significant differences
between treatments within each cultivar after a Tukey’s HSD test (p-value ≤ 0.05). SN-Shading
net; MET-Metamitron.

3.6.3. Ascorbate and Glutathione Content

More than 90% of the total glutathione (GSH + GSSG) was in the reduced form (GSH) in all
treatments (Figure 7a). All treatments promoted the increase of GSH + GSSG and GSH contents,
significantly in MET, and, especially, MET + SN with maximal values (3 fold higher than CTR content).
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Ascorbate showed a somewhat inverse pattern of that displayed by glutathione. All treatments
reduced AsA and AsA + DHA contents, with minimal values observed under SN and MET + SN
(Figure 7b).Agronomy 2020, 10, x FOR PEER REVIEW 16 of 24 
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(AsA + DHA) and reduced ascorbate (AsA) (b) (µmol g−1 FW) evaluated 5 DAS in the trial of 2018, in 
Sint-Truiden (‘Golden Delicious’). For each parameter, the mean values ± SE (n = 4) followed by 
different letters express significant differences between treatments within each cultivar after a 
Tukey’s HSD test (p-value ≤ 0.05). SN–Shading net; MET–Metamitron. 
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Figure 7. Total glutathione (GSH + GSSG) and reduced glutathione (GSH) (a) and total ascorbate
(AsA + DHA) and reduced ascorbate (AsA) (b) (µmol g−1 FW) evaluated 5 DAS in the trial of 2018,
in Sint-Truiden (‘Golden Delicious’). For each parameter, the mean values ± SE (n = 4) followed by
different letters express significant differences between treatments within each cultivar after a Tukey’s
HSD test (p-value ≤ 0.05). SN-Shading net; MET-Metamitron.

3.7. Yield Parameters

The MET treatment caused a consistent reduction in the number of fruits per 100/flowers clusters,
although always non-significantly, whereas fruit weight and the percentage fruits > 70 mm followed
an opposite tendency (the latter significantly only in Girona, 2018 with a 2.7 fold increase (Table 5).
Despite these changes, yield per tree was barely affected by MET.

The SN treatment induced the exact same pattern as MET, although with strong (significant)
variations in fruits per 100/flowers (Girona and Sint-Truiden in 2018), fruit weight (Lleida 2017;
Sint-Truiden, 2018), percentage of larger fruits (Lleida, 2017), and a somewhat stronger negative impact
on yield (significantly in Sint-Truiden in 2018).

Among treatments, the MET + SN combination resulted in the greatest impacts in the studied
parameters. That was the case of the reduction in fruits per 100/flowers in all trials, although significant
only in Girona and Sint-Truiden in 2018. Consequently, there was a maximal significant increase in
fruit weight, ranging from 20.1 g (Lleida 2017) to 109.3 g (Girona 2018), and fruit size, between 23%
(Lleida, 2017), to more than double (Girona, 2017; Lleida and Girona, 2018) in all trials.

A significant reduction the yield per tree was registered only in Girona in 2018, with a decline of
58% as compared to the respective control.
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Table 5. Number of fruits per 100 flower clusters, fruit weight (g), yield per tree (kg) and percentage
of fruits in fruit size class >70 mm at harvest in the trials of 2017, in Lleida (‘Gala Brookfield’) and
Girona (‘Golden Reinders’) and in the trials of 2018, in Lleida (‘Gala Brookfield’), Girona (‘Golden
Reinders’) and Sint-Truiden (‘Golden Delicious’). Shading nets were removed 5 DAS. In 2017 ± SE
(n = 16) represent the average of 9–10 and 13–14 mm trials and in 2018 values ± SE (n = 8) represent
each trial. Values followed by different letters express significant differences between treatments for
each trial independently after a Tukey’s HSD test (p-value ≤ 0.05). No letters indicate p-value > 0.05.
SN-Shading net; MET-Metamitron.

Fruits/100
Flower Clusters

Average Fruit
Weight (g)

Yield/Tree
(kg) % Fruits > 70 mm

2017

Ll
ei

da

CTR 108.0 ± 9.8 135.5± 3.5 b 42.0 ± 3.4 40.5± 3.0 b

SN 87.1 ± 6.0 152.9± 3.6 a 37.5 ± 2.6 56.0± 2.7 a

MET 97.3 ± 5.0 145.9± 4.6 ab 39.9 ± 1.7 50.0± 3.5 ab

MET + SN 84.9 ± 7.0 155.6± 4.3 a 36.3 ± 3.3 50.0± 4.1 a

G
ir

on
a

CTR 184.3 ± 13.4 103.8± 1.4 b 21.5 ± 0.6 12.8± 2.0 b

SN 173.3 ± 10.0 111.5± 4.4 b 19.3 ± 0.9 27.6± 4.3 a

MET 169.0 ± 21.7 116.6± 4.2 ab 21.6 ± 0.9 27.4± 5.2 a

MET + SN 163.0 ± 24.3 134.1± 7.9 a 20.4 ± 0.8 27.5± 7.1 a

Fruits/100
Flower Clusters

Average Fruit
Weight (g)

Yield/Tree
(kg) % Fruits > 70 mm

2018

Ll
ei

da

CTR 71.8± 11.4 125.8± 2.4 b 48.0 ± 6.1 48.3± 8.4 b

SN 63.6 ± 5.7 133.5± 6.9 b 44.5 ± 3.8 73.4± 12.7 b

MET 68.5 ± 4.1 132.8± 4.0 b 47.8 ± 2.8 58.0± 10.8 b

MET + SN 47.3 ± 6.4 156.0± 2.3 a 37.8 ± 3.8 114.8± 9.8 a

G
ir

on
a

CTR 121.5± 13.9 a 125.0± 2.7 b 36.5 ± 2.4 a 34.0± 3.3 b

SN 49.8± 12.7 b 199.5± 18.8 ab 23.3 ± 5.8 ab 83.0± 6.5 a

MET 79.5± 13.9 ab 197.8± 9.5 ab 32.5 ± 1.6 a 90.3± 2.2 a

MET + SN 33.0± 11.7 b 234.3± 28.5 a 15.5 ± 4.7 b 89.0± 9.0 a

Si
nt

-T
ru

id
en CTR 99.0 ± 6.2 a 141.0± 6.3 c 27.5 ± 1.3 a 51.8± 9.3 b

SN 57.5 ± 8.9 bc 176.8± 7.2 ab 20.0 ± 2.5 b 51.8± 2.5 b

MET 81.3 ± 8.4 ab 154.3± 8.5 bc 24.5 ± 1.8 ab 63.0± 8.2 ab

MET + SN 41.5 ± 4.2 c 191.8± 6.1 a 24.5± 1.1 ab 81.0± 4.0 a

4. Discussion

4.1. Influence of Irradiance on Metamitron Absorption

Herbicide absorption and susceptibility is highly dependent on climatic conditions, namely
radiation [46], which can also inactivate growth regulators such as 2.4-D and indol-3-acetic acid
by photolysis [47]. Metamitron is a selective herbicide which can be inactivated by a deamination
reaction [48]. This reaction consists in slight modifications in the compound, associated with the rupture
of the N-NH2, bond, which occurs in the presence of light, oxygen, and water. This forms deaminated
compounds as main degradation metabolites, mainly desamino-metamitron, which is no longer capable
of inhibiting the photosystem activity [49,50]. Since metamitron maximum absorption wavelength is
306 nm, direct photodegradation reaction can occur in the field [51], in accordance with our findings
that showed a higher metamitron content (Figure 2) and lower (and more stable) degradation (assessed
by desamino-metamitron content) (Figure 3) in the leaves under shade (MET + SN) than under full
sun exposure (MET).
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4.2. Effect on Gas Exchanges and RuBisCO Activity

The Pn of leaves of trees under control conditions were in line with the findings of [52], which
reported values within the range between 15 and 25 µmol CO2 m−2 s−1 in apple tree leaves. PPFD is
crucial to photosynthetic performance and, consequently, to photo-regulation of plant growth and
development. If on one side MET disrupts the photosynthetic apparatus functioning, ultimately
interrupting CO2 fixation, on the other side light deprivation (SN) would reduce light energy availability
and, therefore, ATP and NADPH production.

Considerable thinning results can be obtained by shading the trees during a specific post-bloom
period [8,9,53], likely resulting from carbon starvation caused by the reduction in light availability.
A significantly lower total hourly net carbon exchange rate was recorded previously [8] in shaded apple
trees during the 8th day shading period and observed an almost complete recovery after the nets were
removed, which agrees with our results that demonstrated a strong Pn decline in SN, and a prompt
recovery of C-assimilation at 6 DAS (just one day after shade removal), and an absence of effects at
10 DAS. Moreover, RuBisCO Vt did not show differences from CTR values at 5 DAS, even with the
shading nets in place, what would help to support the quick Pn recovery at 6 DAS.

Metamitron can reduce Pn with a linear dose response in ‘Golden Delicious’ trees (the higher the
concentration the greater the inhibition and the longer period for recover) [14]. In a study conducted
previously [54], in ‘Maxi Gala’ and ‘Fuji Suprema’, at 3 DAS, Pn decreased 19.5% and 45.7% with very
high metamitron doses of 800 and 1050 ppm, respectively. In our study, using a commercial dose of
247.5 ppm, Pn was reduced between 25 and 79% from 2 to 6 DAS (Figure 4), when Pn was still greatly
suppressed. In fact, in our study, MET treated plants showed a Pn fully recovery only 10 DAS, while
in a previous [54] trial, that happened already 8 DAS. However, gs was reduced to ca. half 4 DAS
using the 247.5 ppm dose, whereas an impact was observed only with 1050 ppm in 1000 L ha−1 in [54].
Furthermore, RuBisCO inhibition of to less than half of the control value (5 DAS) would have also
contributed to the strong impact in Pn by MET.

MET + SN treatment led to minimal Pn and gs values 2 DAS, and to an incomplete recovery
10 DAS. This treatment imposed a restriction of light energy availability, while reduced gs and inhibited
RuBisCO activity. RuBisCO activity together with a reduction of thylakoid electron transport [55],
contributed to the observed Pn limitation.

4.3. Effect on Non-Structural Carbohydrates

Fruit abscission is triggered by a shortage in carbohydrate content [8,56–58]. In this context,
attempts to develop models aiming to support the grower in the thinning decision have been
made [19,22,59,60]. Variability in thinner efficacy is related to both the stage of fruit development,
and the availability of carbohydrates to support fruit growth [20]. Metamitron application was made
between 9–14 mm in fruit diameter, which has been proved to be the most critical and sensitive time [61].
In fact, fruit growth is mostly dependent on tree reserves in their initial growth stage, but from the
10-mm stage onwards, become dependent on shoot photosynthesis [59,62–64]. In this way, the reduced
Pn, caused either by metamitron and/or by shade, would have reduced the carbohydrate availability
needed for fruit growth, justifying variations in non-structural sugar content [23].

A study conducted by [65] showed leaf sucrose and sorbitol contents by 105 to 112 DAFB, close to
our values under control. In addition, taking into account the differences that result from sampling in
different periods within the season (cultivar, weather, soil, and the tree conditions), our quantitative
results of glucose and sorbitol (around 30 DAFB) are consistent with the work developed by other
researchers [66].

Notably, with a few exceptions, glucose and fructose remained usually stable, even with the
lower Pn induced by MET + SN, irrespective of location or day. These reducing sugars are involved in
primary metabolism, but they did not respond to any source and sink manipulations, such as girdling
and defoliation [18,66–68]. By contrast, leaf sucrose and sorbitol were mostly reduced in all treatments.
Sucrose is formed in the cytoplasm and is then exported from source leaves to sink tissues [69]. Sorbitol



Agronomy 2020, 10, 1924 18 of 23

is the most abundant non-structural sugar in the Rosaceae family and is a major phloem-transported
sugar [65–68,70]. The single, and particularly, the combined imposition of shade and metamitron,
led to reductions of sucrose and sorbitol content. In agreement, researchers [71] reported a reduction in
fruit carbohydrates between 15 and 35% as compared to CTR, by shading limbs or whole trees, with a
PPFD reduction of 92% for a range between 5 to 10 days.

Starch can be formed as an end product of photosynthesis in chloroplasts, being a primary storage
form that can be mobilized in case of need [69,72]. In the present work, starch content was reduced 2
and 4 (and partially by 6) DAS in all treatments, likely associated with the lowered Pn values, and to a
remobilization of the available starch molecules to the global metabolism.

4.4. Oxidative Stress and Antioxidative Response

By interrupting thylakoid electron transport, metamitron might promote the transfer of electrons
to alternative acceptors, as molecular oxygen [27,28]. Hydroxyl radicals generated from H2O2 have
been shown to be potent inhibitors of PSII function [73–76]. However, shade would reduce the flux of
photons reaching the antenna, which can decrease the oxidative conditions, as reflected in the absence
of MDA and H2O2 variation of all treatments as compared to the control (Figure 5). In apple trees
subjected to abiotic stresses, as progressing drought, the increased enzymatic activity and more reduced
redox state of glutathione during the acclimation period were considered an initial stress response due
to changes in the redox state [77]. Here, MDA and H2O2 values did not showed significant changes in
comparison with control regardless of treatment (Figure 5), and only the MET (APX) and MET + SN
(CAT and GPX) promoted moderate activity increases (Figure 6). APX was slightly more active in MET
treatment, what might have conferred some protection, as observed by [78], when abiotic stresses were
imposed to trees. However, APX and CAT rises were not reflected in the H2O2 levels, even considering
that SOD activity and AsA contents were decreased by 5 DAS (Figure 7). Furthermore, the values of
APX and GR activity obtained in this work, along with total AsA and GSH, are generally significantly
lower than the ones that [79] obtained and lower than MDA and SOD results of another study [80],
both obtained in apple leaves. On the other side, our H2O2 and POD values are higher than the ones
obtained previously [80]. The triggering of these antioxidative components is often observed under
oxidative stress conditions. Therefore, overall, our findings pointed that increased oxidative stress
conditions were not present in neither of the applied treatments.

4.5. Environmental Conditions and Metamitron Thinning Efficacy

In general, the results of 2017 and 2018 showed that the SN treatment has a stronger impact in
yield related parameters (fruits/100 flower clusters, average fruit weight, yield/tree and % fruits >

70 mm) than the single metamitron application. The number of fruits per 100 clusters was reduced by
MET and/or SN (reducing radiation by 50% in the whole tree canopy for 5 days) treatments, between
6 and 42% in fruit drop, depending on year, location and treatment (stronger in MET + SN). These
results in SN treatment were in close agreement with the strong fruit abscission of 90% induced by
shading of the whole tree to 50% of normal light for 4 days from 20 to 41 DAFB [81]. Decreases of 35%
in the number of fruits after reducing radiation by 40% during 12 days at 12-mm fruit diameter in
‘Golden’ trees [14] of 23% more fruit abscission using a 90% radiation reduction for 8 days [8] were also
found. Furthermore, it was registered a reduction of 50% of the crop load in ‘Gala Must’ trees with a
70% radiation reduction for a larger period of 14 days at the stage of 14- to 26-mm fruit diameter [53],
and heavy abscission rates with radiation decrease to 4% during three days [59]. Finally, after reducing
90% of irradiance for 77 daylight hours in cv. ‘Gala Mondial’, researchers [9] observed a 27% reduction
in the number of fruits as compared with control.

Metamitron application (247.5 ppm) on ‘Golden’ trees, at 12-mm fruit diameter, led to crop
load reductions between 12 and 41% in trials performed previously [14], while the combination of
shading nets and metamitron led to the highest crop load reduction (40% less fruits than in control).
Our results show that metamitron, shade, and their combination increasingly reduced the number of
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fruits. However, since these treatments concomitantly promoted an increase in the number (and their
%) of larger size fruits (>70 mm), that resulted in the absence of significant yield reductions in most
trials, except in Girona (SN) and Sint-Truiden (MET + SN), both in 2018. Researchers [71] sprayed
terbacil, a photosynthesis inhibitor, and concluded that shading leads to more fruit drop comparing to
the compound application, although, in the present study, the SN and MET treatments did not show
significant differences in any of the trials.

In 2017, initial fruit set was low resulting in a higher difficulty to create a negative carbohydrate
balance and finally, low thinning efficacies, even in MET + SN. However, in 2018, initial fruit set
was very high and higher night-time temperature during the 5 nights before application (in Girona)
and some cloudy days during the 3 days after (in the tree locations) might have potentiated the
reduction in photoassimilates needed for fruit growth [82]. This might have contributed to some
over-thinning with MET + SN treatment, which promoted abscission rates of 58% in Sint-Truiden
and above 70% in Girona, responsible by a 58% cut in yield in the latter. Taking these observations
together, it was clear that the extent of metamitron effect can be amplified by a lowered PPFD reaching
the leaf surface. However, by comparing 2017 to 2018, other factors than low radiation that also
reduce carbohydrates availability [61], such as other meteorological conditions like high night-time
temperature, might contribute to increase metamitron thinning efficacy. This highlights the importance
of weather conditions at the moment of imposing the treatments and in the following days, regardless
of the use of shade or a chemical agent.

5. Conclusions

Shading net and/or metamitron application significantly limited C-assimilation, (associated with
reduced gs and RuBisCO Vt), with after effects observed until 10 DAS.

Low radiation seems to increase metamitron absorption and/or reduce its degradation, likely
resulting in a stronger and longer effect, associated to sucrose and sorbitol decreases, leading to a
negative carbohydrate balance. Thus, low radiation and/or metamitron created a transient carbohydrate
stress in the tree that resulted in activation of the fruit abscission zone, with a stronger abscission effect
under their combined imposition (MET + SN).

Only moderate increases were observed as regards the antioxidant enzymes in MET (APX) or
MET + SN (CAT, GR, GPX), accompanied by increased GSH content. Additionally, leaf lipoperoxidation
and H2O2 content remained unaltered, indicating that these metabolic defense mechanisms were able
to keep oxidative stress conditions controlled.

The single use of these thinning agents can restrict the photosynthetic metabolism and sugar content,
promoting thinning and the increase in fruit weight and size (fruits > 70 mm), without significant
negative implications to fruit yield. However, their combination can promote an over-thinning
(in Girona and Sint-Truiden, 2018), due to a further reduction of light irradiance due to cloudy days,
what may lead to significant yield losses (in Girona, 2018). Therefore, thinning efficacy is also clearly
dependent of environmental conditions at the time of the treatment’s implementation which are of
extreme importance for the achievement of an optimal thinning goal.
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