

This is the peer reviewed version of the following article: Jin, Jing, Ling Gao, Lan Zhao, Zhong-shan Gao, Xiong-wei Li, Han-bing Xie, and Jun-bei Ni et al. 2019. "Selection Of Pru P 3 Hypoallergenic Peach And Nectarine Varieties". Allergy 75 (5): 1256-1260. doi:10.1111/all.14102, which has been published in final form at <a href="https://doi:10.1111/all.14102">https://doi:10.1111/all.14102</a>. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions <a href="http://www.wileyauthors.com/self-archiving.">http://www.wileyauthors.com/self-archiving.</a>

Document downloaded from:



## **1** Selection of Pru p 3 hypoallergenic peach and nectarine varieties

2 To the Editor,

Peach is an important fruit consumed worldwide. However, it is also one of the most
frequently reported allergenic fruits<sup>1</sup>. Component diagnosis of peach allergy indicates
Pru p 1, Pru p 2, Pru p 3 Pru p 4, Pru p 7 and Pru p 9 are involved <sup>2, 3</sup>. Pru p 3 is the
dominant allergen responsible for severe allergic reaction<sup>4</sup> and it is considered to be
the primary sensitizer to other LTPs in Mediterranean and Central Europe <sup>5</sup>.

The levels of Pru p 3 differ between varieties<sup>6</sup>. To date, measurement of Pru p 3 in a limited number of peach and nectarines from Spain, US and Italy has been reported<sup>7</sup>. Significant variation of allergen concentration in processed foods containing peach has also been observed<sup>8</sup>. The content of Pru p 3 of peach/nectarine determines the potential risk for peach allergic patients.

13 China is the origin of peach with representative genetic diversity to be explored for 14 hypoallergenic varieties<sup>9</sup>. A core collection of 103 varieties cultivated in Jiaxing, 15 Zhejiang Province were selected to represent this diversity, including 23 nectarines 16 and 80 peach varieties (with fruit hair, round or flat, 77 cultivated, three wild) 17 (Supplementary Table 1). The soluble solid content (SSC), ripening date and 18 peach aroma intensity were recorded. Specific methods are detailed in the Supporting 19 Information. Pru p 3 was quantified by ELISA based on our previous research<sup>6</sup>.

Significant differences in Pru p 3 content were identified in individual varieties 20 (P<0.0001) (Figure 1A). Most nectarine varieties had low Pru p 3 content with 21 pedigree of 'Armking' and 'Mayfire' (Supplementary Table 1), while a large variation 22 was observed in peach: the lowest (3.5µg/g) in a wild peach, and the highest 23  $(64.4\mu g/g)$  in flavorsome yellow flesh peaches. In cultivated peach and nectarine, the 24 level was higher than in wild varieties, and usually higher in peach than nectarine. In 25 addition, fruit harvest month greatly influenced the Pru p 3 content (P < 0.001). Peach 26 varieties ripening late generally had higher levels than earlier ones: 40.19  $\mu$ g/g on 27 average for varieties ripening in August/September, about three times the level of 28

those in May (Figure 1B). Fruit flesh color also reflected the Pru p 3 content 29 (P=0.0072, n=100). The results showed that hypoallergenic varieties were mainly 30 yellow flesh nectarines and red flesh peaches (Figure 1C, D). Correlation analysis 31 between Pru p 3 and soluble solid content (SSC) and the influence of aroma showed 32 that higher Pru p 3 content related to higher SSC (P=0.0006, r=0.3394, n=98) and 33 stronger aroma (P=0.0002) (Figure 1E, F), indicating that good quality peaches had 34 high allergenic potential. The Pru p 3 content of flat peaches, becoming more popular 35 in Mediterranean countries and China, is expected to be high, as demonstrated in 36 Supplementary Table 2. There was 4% to 30% variation between years (2016-2018) 37 for the same variety. The distribution of Pru p 3 in different parts of peach fruit differs 38 greatly: the content in peel was 13 to 60 times higher than in pulp (Supplementary 39 Table 2). 40

Immunocytochemical observations of Pru p 3 in four varieties with significantly 41 different Pru p 3 content showed striking differences. In low Pru p 3 content 'Hu You 42 278' (nectarine, 4.02µg/g) (Figure 1 G1) and peach variety 'Xue Bu Dai' (red flesh, 43 4.00µg/g, Figure 1G2), small amounts of Pru p 3 was located in the pericarp layer, 44 and less in the mesocarp. In high Pru p 3 content yellow flesh peach variety 'Mei Jin' 45 (37.42µg/g, Figure 1G3) and 'Jin Shuo' (57.89µg/g, Figure 1G4), the fluorescent 46 signals were clearly stronger than 'Xue Bu Dai' and 'Hu You 278' in both the pericarp 47 and mesocarp cells. All three peach varieties (with hair) (Figure G2, 3, 4) contained 48 high Pru p 3 in the hair. These results were consistent and data are shown in 49 Supplementary Table 2. The Pru p 3 content in the pulp of a yellow flesh peach 50 cultivar such as 'Jin Shuo', was higher than that in the whole fruit of some nectarines 51 or red flesh peaches. This indicates that, although peeling the fruit is theoretically an 52 effective way to reduce Pru p 3, it is not always practical and does not always 53 alleviate the risk of peach allergic reaction. The correct choice of variety is better. 54

Skin prick testing (SPT) was performed on nine patients from Shanxi and Zhejiang
provinces, recruited on the basis of their clinical history and a positive peach
ImmunoCAP. All of them had provided written informed consent and approved by the

local ethics committee (authorization No. 2011-R-1, Second Affiliated Hospital, 58 College of Medicine, Zhejiang University), in collaboration with the Third People's 59 Hospital of Datong, Shanxi (authorization No. 2015-001). The identified low Pru p 3 60 'Hu You 278' (nectarine, 4.02µg/g) and high Pru p 3 variety 'Mei Jin' (peach cultivar, 61 37.42µg/g), according to our quantification and immunocytochemical localization, 62 were tested to assess the sensitization of varieties with different Pru p 3 content in 63 allergic individuals. All nine allergic subjects had a positive SPT to fresh peach cv 64 'Mei Jin', higher than those with nectarine cv Huyou 278, and one patient was 65 negative to nectarine (Table 1). ImmunoCAP results showed that 9/9 were positive to 66 peach, 7/9 positive to Pru p 3 and /or Art v 3, 2/9 positive to Pru p 4 and none of them 67 positive to Pru p 1 (Table 1). 68

In summary, Pru p 3 content differed considerably depending on the variety, related to 69 fruit type, flesh color and ripening date. Low risk varieties were nectarines and red 70 flesh peach, maturing in May to July and with low or mild fruit quality. This research 71 provides a directive for evaluating potential Pru p 3 levels for patients and clinical 72 doctors. We identified several hypoallergenic nectarines (May Fire, Hu You 278) and 73 three red-flesh peach varieties 'Xue Bu Dai', 'Zi Xue Tao' and 'Wu Yue Xian'. 74 Because of the narrow genetic background of nectarines worldwide from limited 75 founder cultivars such as 'Armking' and 'Mayfire', hypoallergenic nectarines are 76 77 recommended for further clinical trials.

3 / 7

# 78 Legend 79 Figure 1. Comparison of Pru p 3 content in different variety groups and 80 immunocytochemical localization of Pru p 3 in low and high content varieties.

A: Pru p 3 content in different fruit types. B: different harvest month. C: flesh color of nectarines.

82 D: flesh color of peaches. E: Influence of soluble solid content (SSC) and F: aroma intensity. G:

83 Immunocytochemical localization of Pru p 3 in (1) 'Hu You 278', (2)- 'Xue Bu Dai', (3) 'Mei Jin'

84 and (4) 'Jing Shuo'. Scale bar =  $200 \,\mu$ m, 100x magnification. Difference between groups was

assessed by Kruskal-Wallis nonparametric test followed by Dunn's multiple comparison test (A, B,

**D**, **F**) and Kolmogorov-Smirnov test (**C**). \*p<0.05, \*\*p<0.01, \*\*\*p<0.001, \*\*\*\*p<0.0001; ns, not

87 significant. Data expressed as mean  $\pm$  SE.

#### 88 **Reference**

- Bao ZS, Yang ZW, Wu SD, et al. Peach allergy in China: a dominant role for mugwort pollen lipid
  transfer protein as a primary sensitizer. *J Allergy Clin Immunol*, 2013, 131(1), 222-224.
- Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, et al. EAACI Molecular Allergology User's Guide.
   *Pediatr Allergy Immunol*, 2016, 27 Suppl 23:1-250.
- 3. Somoza ML, Garrido-Arandia M, Victorio-Puche L, et al. Peach tree pollen and Pru p 9 may induce
   rhinoconjunctivitis and asthma in children. *Pediatr Allergy Immunol*, 2019, 00:1–4.
- 4. Ma S, Yin J, and Jiang N. Component-resolved diagnosis of peach allergy and its relationship with
   prevalent allergenic pollens in China. *J Allergy Clin Immunol*, 2013, 132:764-767.
- 5. Mothes-Luksch N, Raith M, Stingl G, et al. Pru p 3, a marker allergen for lipid transfer protein
  sensitization also in Central Europe. *Allergy*, 2017, 72:1415-1418.
- 6. Gao ZS, Ma YT, Zhou X, et al. Quantification of peach fruit allergen lipid transfer protein by a
  double monoclonal antibody-based sandwich ELISA. *Food Anal Methods*, 2016, 9(4), 823-830.
- 7. Ahrazem O, Jimeno L, Lopez-Torrejon G, et al. Assessing allergen levels in peach and nectarine
   cultivars. *Ann Allergy Asthma Immunol*, 2007, 99(1), 42-47.
- 103 8. Duffort OA, Polo F, Lombardero M, et al. Immunoassay To quantify the major peach allergen
- Pru p 3 in foodstuffs. differential allergen release and stability under physiological conditions. *J Agri Food Chem*, 2002, 50(26), 7738-7741.
- 106 9. Li XW, Meng X, Jia HM, et al. Peach genetic resources: diversity, population structure and linkage
- disequilibrium. *BMC Genetics*, 2013.14(1), 84.

| 108 | Author's name                                                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 109 | Jing Jin <sup>1*</sup> , Ling Gao <sup>1*</sup> , Lan Zhao <sup>1</sup> , Zhong-shan Gao <sup>1,2,3</sup> , Xiong-wei Li <sup>4</sup> , Han-bing                            |
| 110 | Xie <sup>1</sup> , Jun-bei Ni <sup>1</sup> , Ke-xin Gan <sup>1</sup> , Shan-dong Wu <sup>2</sup> , Zheng-wen Ye <sup>4</sup> , Jun Luo <sup>4</sup> , Ke Cao <sup>5</sup> , |
| 111 | Rui-juan Ma <sup>6</sup> , Miao-jin Chen <sup>7</sup> , Pere Arús <sup>8</sup> , Serge A. Versteeg <sup>3</sup> , Hui-ying Wang <sup>9</sup> ,                              |
| 112 | Meiling Liu <sup>10</sup> , Hui-juan Jia <sup>1</sup> , Ronald van Ree <sup>3</sup>                                                                                         |
| 113 | <sup>1</sup> College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou,                                                                               |
| 114 | China                                                                                                                                                                       |
| 115 | <sup>2</sup> Allergy Research Center, Zhejiang University, 310058, Hangzhou, China                                                                                          |
| 116 | <sup>3</sup> Departments of Experimental Immunology and of Otorhinolaryngology, Amsterdam                                                                                   |
| 117 | UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the                                                                                                        |
| 118 | Netherlands                                                                                                                                                                 |
| 119 | <sup>4</sup> Forest & Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai,                                                                            |
| 120 | 201403, China                                                                                                                                                               |
| 121 | <sup>5</sup> Zhengzhou Fruit Research Institute, China Academy of Agricultural Sciences,                                                                                    |
| 122 | Zhengzhou, China                                                                                                                                                            |
| 123 | <sup>6</sup> Horticultural Institute, Jiangsu Academy of Agricultural Sciences, Zhong-Lin Street                                                                            |
| 124 | 50, Nanjing, 210014, China                                                                                                                                                  |
| 125 | <sup>7</sup> Fenghua Honey Peach Institute, Xikou, Fenghua, Zhejiang Province, 315521, China                                                                                |
| 126 | <sup>8</sup> IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB –                                                                                         |
| 127 | Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain                                                                                                    |
| 128 | <sup>9</sup> Department of Allergy, the Second Affiliated Hospital, School of Medicine, Zhejiang                                                                            |
| 129 | University, Hangzhou, 310013, China.                                                                                                                                        |
| 130 | <sup>10</sup> Department of Allergy, The Third People's Hospital of Datong, Datong, Shanxi,                                                                                 |
| 131 | 037008, China                                                                                                                                                               |
| 132 | *Jing and Gao contributed equally to this research.                                                                                                                         |
| 133 | Correspondence: Prof. Zhongshan Gao, E-mail address: gaozhongshan@zju.edu.cn;                                                                                               |
| 134 | and Dr. Xiongwei Li, lixiongweisea@163.com                                                                                                                                  |

6 / 7

JIN et al

## 135 Acknowledgements

This study was funded by the National Natural Science Foundation of China (grant 136 31272131 and 31372040), Shanghai Science and Technology Committee Rising-Star 137 Program (19OB1404600) and The Key Project for New Agricultural Cultivar 138 Breeding in Zhejiang Province, China (2016C02052-5). Dr. WANG Lirong, Dr. YU 139 Mingliang, Dr. SHEN Zhijun, Dr. NIU Liang, Dr. WANG Zhigiang, Mr. MA Zhisheng, 140 Mr. LIU Hangkong, Dr. TIAN Jianbao and Mr. WU Dajun provided some peach 141 accessions. Ms WANG Xuefeng and Ms ZHAO Xiuzhen performed the skin prick test. 142 Dr. ZHANG Xianqi and Ms WANG Tingting provided assistance in the sera 143 collection. 144

## 145 **Conflict of Interest**

Gao ZS has received grants from National Natural Science Foundation of China (31272131) and the Key Project for New Agricultural Cultivar Breeding in Zhejiang Province (2016C02052-5), Dr. Li XW has received grant from Shanghai Science and Technology Committee Rising-Star Program; Dr. Jia HJ has received grants from National Natural Science Foundation of China (31372040) and the Key Project for New Agricultural Cultivar Breeding in Zhejiang Province (2016C02052-5). The remaining authors declare that they have no relevant conflict of interests.

### 153 Authors' contributions

IS4 ZSG, RvR and JHJ conceived and planned the study. JJ, GL, LZ, XWL, HBX and KXG collected peach samples and extracted total proteins. JJ, LG, LZ, JBN, SDW and SAV established ELISA method and data analyses. XWL, KC, ZWY, JL, RJM, KC, MJC, PA and HJJ selected the core peach collection. MLL and HYW performed the diagnosis and skin prick tests. JJ, GL, ZSG, XWL and RvR wrote the manuscript. All authors read and approved the final manuscript.

## 160 Keywords

161 Allergen; peach; Pru p 3; hypoallergenic varieties; protein quantification

7/7



#### **Detailed methods used:**

#### 1. Preparation of fruit samples

Soluble solid content (SSC) was measured with a digital refractometer (ATAGO, PR-101 $\alpha$ ), and peach aroma intensity was classified subjectively as light, medium or strong (Supplementary Table 1) based on the Descriptors and Data Standard for Peach<sup>1</sup>. For 24 varieties (**Table S2**), the peel and pulp were separated: for melting peaches, this can easily be done by hand, while for nectarines a knife peeler was used, with 1 mm thickness.

#### 2. Immunocytochemical localization of Pru p 3

Four varieties 'Hu You 278', 'Xue Bu Dai', 'Mei Jin' and 'Jin Shuo' were used for immuno-cytochemical localization with specific monoclonal antibody 4-1 used in ELISA quantification above. The EnVision two steps method was used for immunocytochemical analysis. Harvested fruits were sectioned and fixed in FAA. After recovering the allergen by boiling in citrate buffer solution (0.01M, pH6.0) for 20 min, sections were exposed to 3% H<sub>2</sub>O<sub>2</sub> in methanol for 10 minutes to quench endogenous peroxidase activity, and nonspecific binding was blocked by incubation in PBS containing 5% BSA for 30 minutes. Peach tissue sections were incubated with anti-Pru p 3 antibody 4-1 (1mg/ml) at a titer of 1:100 overnight at 4°C. After washing, sections were incubated with the secondary antibody labeling with green fluorescence Alexa Fluor 488 goat anti-mouse IgG (H + L) for 1 hour, with exposure to a substrate chromogen mixture for 10 minutes. Green color was present on the section viewed under an OLYMPUS DP80 microscope after staining with hematoxylin. Images of sections from different varieties were taken with the same magnification and the same exposure time.

#### 3. Patients and Skin Prick Test

Five patients from Shanxi and four from Zhejiang province were recruited on the basis of their clinical history and positive skin tests to peach extracts. All of them had provided the written informed consents. Written consent was obtained from all participants (or their representative) and the study was approved by the local ethics committee (authorization No. 2011-R-1, Second Affiliated Hospital, College of Medicine, Zhejiang University), in collaboration with the Third People's Hospital of Datong, Shanxi (authorization No. 2015-001) A serum sample from each patient was taken during the first visit and was kept frozen at -40 ° C until used. Skin tests to fresh peach were performed by skin prick test, following the technique described by Dreborg and Foucard<sup>2</sup>.

#### Reference

1. Wang, L., Zhu, G. Descriptors and data standard for peach (*Prunus persica* L.). Beijing: *China Agriculture Press.* (*in Chinese*) 2005.

2. Dreborg, S., & Foucard, T. Allergy to apple, carrot and potato in children with birch pollen allergy. Allergy, 1983, 38(3), 167-172.

| Code | Variety            | Pedigree Origin country                       |                          | Fruit trait* | SSC (%) | Aroma | Maturity time | Pru p 3 (ug/g FW) |
|------|--------------------|-----------------------------------------------|--------------------------|--------------|---------|-------|---------------|-------------------|
| 1    | Mao Tao 1          | Wild peach for rootstock                      | Zhejiang province, China | PWR          | 9.4     | L     | Early August  | 3.47              |
| 2    | Xue Bu Dai         | Landrace                                      | Henan province, China    | PRR          | 12.0    | L     | Early July    | 4.00              |
| 3    | Hu You 278         | Rui Guang 3×May Fire                          | Shanghai, China          | NYR          | 10.7    | L     | Middle June   | 4.02              |
| 4    | Hu You 005         | Rui Guang 3×May Fire                          | Shanghai, China          | NYR          | 9.9     | L     | Middle June   | 5.42              |
| 5    | May Fire           | Seeding Selection of Armking                  | USA                      | NYR          | 11.4    | L     | Late May      | 3.54              |
| 6    | Armking            | Palomar × Springtime                          | USA                      | NYR          | 11.0    | L     | Early June    | 6.68              |
| 7    | Zi Xue Tao         | Landrace                                      | Zhejiang province, China | PRR          | 9.1     | L     | Late June     | 7.12              |
| 8    | Zhong You Tao 11   | Zhong You Tao 5×SD9238(Rui Guang 3x May fire) | Henan province, China    | NYR          | 11.2    | М     | Late June     | 7.18              |
| 9    | Zao Hong Zhu       | Jing Yu×A369                                  | Beijing, China           | NWR          | 14.3    | М     | Late May      | 7.41              |
| 10   | Zhong You Tao 8    | Hong Shan Hu×Sunshine                         | Henan province, China    | NYR          | 14.5    | L     | Middle July   | 7.85              |
| 11   | Wu Yue Xian        | Landrace                                      | Shanxi province, China   | PRR          | 9.0     | L     | Middle June   | 8.02              |
| 12   | Pan Tao Wang       | Early Red 2×Zao Lu Pan Tao                    | Henan province, China    | PWF          | 13.1    | М     | Early June    | 8.13              |
| 13   | Mao Tao 2          | Wild peach for rootstock                      | Zhejiang province, China | PYR          | 11.9    | L     | Early August  | 8.53              |
| 14   | Zhong Nong Jin Hui | Rui Guang 2×Armking                           | Henan province, China    | NYR          | 12.8    | М     | Early June    | 9.07              |
| 15   | Zhong You Tao 12   | 6-2×SD9238 (Ruiguang 3 x Mayfire)             | Henan province, China    | NWR          | 12.7    | М     | Late May      | 9.97              |
| 16   | Jin Xia You Pan    | Xia GuangבNF'                                 | Jiangsu,China            | NYF          | 13.4    | L     | Early July    | 10.89             |
| 17   | Mao Tao 3          | Wild peach for rootstock                      | Zhejiang province, China | PWR          | 12.4    | L     | Middle August | 11.35             |
| 18   | Chun Mei           | (Zao Hong 2×Flatpeach)×(Rui Guang 3×May Fire) | Henan province, China    | PWR          | 12.0    | М     | Early June    | 11.87             |
| 19   | Zhong You Tao 5    | Rui Guang 3×May Fire                          | Henan province, China    | NWR          | 9.0     | L     | Early June    | 12.13             |
| 20   | Chao Li Chun       | Ruiguang 3 x Mayfire                          | Beijing, China           | NYR          | 9.3     | L     | Late May      | 13.53             |
| 21   | Zhong You Tao 4    | Ruiguang 16×May Fire                          | Henan province, China    | NYR          | 12.6    | М     | Early June    | 13.62             |
| 22   | Jin Xia            | 75-3-9(Okubo×Okitsu)×75-6-18(Okitsu)          | Shanxi province, China   | NWR          | 12.3    | М     | Early July    | 14.30             |
| 23   | Zao Mei            | Qing Feng×Zhao Xia                            | Beijing, China           | PWR          | 10.8    | М     | Late May      | 14.33             |

## Supplementary Table 1. List of 103 core peach varieties and their basic fruit traits with Pru p 3 content.

| 24 | Jin Yuan              | Jin Xiu×75-1-3                                  | Shanghai, China          | PWR | 17.7  | L   | Late July       | 14.61 |
|----|-----------------------|-------------------------------------------------|--------------------------|-----|-------|-----|-----------------|-------|
| 25 | Hakuri                | Feicheng Tao                                    | Japan                    | PWR | 16.2  | L   | Middle July     | 14.84 |
| 26 | Zao Hong Lu           | Armking×81-3-3                                  | Bejing,China             | NWR | 10.5  | М   | Early June      | 15.50 |
| 27 | Zao Jiu Bao           | Bud mutation from Okubo                         | Shanxi province, China   | PWR | 13.0  | М   | Early July      | 15.82 |
| 28 | Rui Guang 2           | Jingyu x NJN76                                  | Beijing, China           | NYR | 12.8  | М   | Late May        | 16.77 |
| 29 | Hu You 018            | Rui Guang 3×May Fire                            | Shanghai, China          | NYR | 8.7   | М   | Middle June     | 17.64 |
| 30 | Chun Lei              | Sunago Wase×Bai Xiang Lu                        | Shanghai, China          | PWR | 9.3   | М   | Late May        | 18.43 |
| 31 | Jin Xiang             | Bei Nong 2×60-27-7                              | Shanghai, China          | PYR | 15.6  | Н   | Middle July     | 18.58 |
| 32 | Nan Fang Jin Mi       | (Sunred×Maravilha) 1-15 x Shu Guang             | Henan province, China    | NYR | 14.9  | М   | Late May        | 18.59 |
| 33 | Yang Tao              | Landrace                                        | Zhejiang province, China | PWR | 10.8  | М   | Middle June     | 18.62 |
| 34 | Hang Mi 1 Hao         | unknown                                         | Zhejiang province, China | PWR | 15.2  | М   | Early July      | 18.93 |
| 35 | Sha Hong Tao          | Bud mutation from Kurakato Wase                 | Shaanxi province, China  | PWR | 15.6  | М   | Early July      | 19.67 |
| 36 | Zi Jin Hong 1 Hao     | Natural seed cultivated by embryo rescue        | Jiangsu, China           | NYR | 9.7   | L   | Early June      | 20.12 |
| 37 | Ling Shen 1 Hao       | Landrace                                        | Zhejiang province, China | PWR | 17.9  | Н   | Early September | 20.38 |
| 38 | Li You 5 Hao          | unknown                                         | Zhejiang province, China | NYR | 9.3   | L   | Late June       | 20.89 |
| 39 | Ling Shen 2 Hao       | Landrace                                        | Zhejiang province, China | PWR | 16.1  | L   | Early September | 21.11 |
| 40 | Jin Xiu Huang Tao     | Bai Hua ×Yun Shu 1                              | Shanghai, China          | PYR | 15.1  | М   | Early August    | 21.14 |
| 41 | Dong Feng Da Hong Tao | Landrace                                        | Shanxi province, China   | PWR | 12.58 | М   | Middle June     | 21.27 |
| 42 | Meng Lu Shui Jing     | Seedling                                        | Zhejiang province, China | PWR | 15.5  | М   | Middle July     | 21.88 |
| 43 | Zao Hong Tao          | 60-4-1) ×Er Yuan Tao                            | China                    | PWR | 10.5  | L   | Early June      | 21.90 |
| 44 | Chun Mi               | 89-3-16 (Zao Hong 2×Li He Pan Tao) ×SD9238 (Rui | Henan province China     |     |       | м   | Farly June      | 21.01 |
|    |                       | Guang 3×May Fire)                               | Henan province, Unina    | PWR | 10.4  | Ivi |                 | 21.91 |
| 45 | Xue Xiang Lu          | Bai Hua×Chu Xiang Mei                           | Jiangsu province, China  | PWR | 11.3  | М   | Middle June     | 22.09 |
| 46 | Zhong Pan Tao 10      | Hong Shan Hu×91-4-8(NJN78×Feng Hua Pan Tao)     | Henan province, China    | PWR | 11.7  | М   | Middle June     | 22.59 |
| 47 | Ying Guang You Tao    | unknown                                         | Zhejiang province, China | NWR | 12.6  | М   | Late May        | 23.42 |

| 48 | Xia Cui             | Yu Hua 2 ×77- 1- 6((Bai Hua×Tachibana Wase)×Zhao<br>Xia)     | Jiangsu province, China  | PWR | 12.4  | М | Late June   | 23.95 |
|----|---------------------|--------------------------------------------------------------|--------------------------|-----|-------|---|-------------|-------|
| 49 | Reddomun            | Bai Feng×Bai Tao                                             | Japan                    | PWR | 12.2  | М | Early July  | 24.48 |
| 50 | Da Guan 1 Hao       | Selected from Nunomewase                                     | Henan province, China    | PWR | 9.3   | М | Early June  | 24.81 |
| 51 | X1-4                | Yu Lu×Hu Jing Mi Lu                                          | Zhejiang province, China | PWR | 13.0  | М | Early July  | 24.91 |
| 52 | Kawanakajima Hakuto | Found in White peach and Shang Hai Shui Mi mixed garden      | Japan                    | PWR | 15.1  | М | Early July  | 24.94 |
| 53 | Okubo               | Seedling of Hakuho                                           | Japan                    | PWR | 13.14 | М | Early July  | 25.17 |
| 54 | Okubo Late          | Seedling of Okubo                                            | Shanxi province, China   | PWR | 13.14 | Н | Middle July | 25.17 |
| 55 | Xin Hong            | Landrace                                                     | Zhejiang province, China | PWR | 14.1  | М | Early July  | 25.20 |
| 56 | Hu Jing Mi Lu       | Seedling of Hakuho                                           | Jiangsu province, China  | PWR | 14.7  | М | Middle July | 25.43 |
| 57 | Zao Feng Huang      | unknown                                                      | Zhejiang province, China | PWR | 12.5  | L | Middle June | 26.25 |
| 58 | Yumyeong            | Da Hua Zao Sheng×Bu Mu Zao Sheng or Okubo×Bu<br>Mu Zao Sheng | Korea                    | PWR | 15.0  | L | Middle July | 26.51 |
| 59 | Xin Yu              | Landrace                                                     | Zhejiang province, China | PWR | 14.9  | М | Middle July | 26.77 |
| 60 | Springtime          | Luken's Honey X July Elberta                                 | USA                      | PWR | 10.0  | М | Early June  | 26.88 |
| 61 | Akatsuki            | Bai Tao×Bai Feng                                             | Japan                    | PWR | 12.8  | М | Early July  | 27.26 |
| 62 | X1-7                | Yu Lu×Hu Jing Mi Lu                                          | Zhejiang province, China | PWR | 10.8  | М | Early July  | 27.31 |
| 63 | Mei Shuai           | Okubo×90-1(Ba Yue Cui×Jing Yu)                               | Hebei province, China    | PWR | 12.6  | М | Middle July | 27.67 |
| 64 | Zhong You Tao 13    | unknown                                                      | Henan province, China    | NYR | 12.1  | М | Early June  | 27.95 |
| 65 | Asama Hakuto        | Bud mutation from Kouyou Hakuto                              | Japan                    | PWR | 16.2  | М | Middle July | 28.28 |
| 66 | Yu Lu               | offspring of Shanghai Shumi                                  | Zhejiang province, China | PWR | 15.5  | Н | Late July   | 28.36 |
| 67 | Wasesimizu          | Early variation of Shang Hai Shui Mi                         | /                        | PWR | 11.6  | L | Middle June | 28.70 |
| 68 | Mei Shuo            | 'Jinyu' selfing                                              | Hebei province, China    | PWR | 12.3  | М | Early June  | 29.17 |
| 69 | Hakuho              | Shanghai Cling                                               | Japan                    | PWR | 12    | М | Middle July | 29.66 |

| 70 | Hong Sha Zi        | seedling                                               | Shaanxi, China            | PWR | 11.8 | М | Early June      | 30.58 |
|----|--------------------|--------------------------------------------------------|---------------------------|-----|------|---|-----------------|-------|
| 71 | Sunago Wase        | Seedling                                               | Japan                     | PWR | 10.6 | М | Middle June     | 31.50 |
| 72 | Zhong You Tao 14   | 90-1-25[25-17(Jing Yu×NJN76)×Hake]×SD9238              | Henan province, China     | PWR | 11.5 | М | Early June      | 31.73 |
| 73 | Qing Tao           | Seedling                                               | Zhejiang province, China  | PWR | 17.7 | Н | Early September | 32.34 |
| 74 | Qin Wang           | Seedling from Okubo                                    | Shaanxi province, China   | PWR | 17.1 | L | Middle July     | 33.45 |
| 75 | Yan Hong           | Seedling                                               | Beijing, China            | PWR | 15.9 | L | Late July       | 33.87 |
| 76 | Wan Mi             | seedling                                               | Beijing, China            | PWR | 14.7 | М | Early September | 34.08 |
| 77 | Dong Feng Shui Mi  | Landrace                                               | Shanxi province, China    | PWR | 9.6  | М | Middle June     | 34.16 |
| 78 | Nan Shan Tian Tao  | Landrace                                               | Guangdong province, China | PWR | 18.0 | L | Middle July     | 34.78 |
| 79 | Qiu Bai Tao        | Seedling                                               | Zhejiang province, China  | PWR | 13.9 | L | Late July       | 35.01 |
| 80 | Jia Tang Tao       | Landrace                                               | Zhejiang province, China  | PWR | /    | Н | Late July       | 36.06 |
| 81 | Zao Lu Pan Tao     | Sa Hua Hong Pan Tao×Zao Xiang Yu                       | Beijing, China            | PWR | 10.0 | М | Early June      | 36.31 |
| 82 | Nunome Wase        | Seedling                                               | Japan                     | PWR | 11.2 | Н | Early June      | 36.43 |
| 83 | Yan Feng           | Landrace                                               | Zhejiang province, China  | PWR | 14.3 | М | Middle June     | 36.60 |
| 84 | Jin Qiu            | Yang Quan Rou Tao x Ming Xin                           | Shanxi province, China    | PYR | 13.0 | L | Middle August   | 37.31 |
| 85 | Mei Jin            | 'Jinyu' selfing                                        | Hebei province, China     | PYR | 14.6 | L | Early July      | 37.42 |
| 86 | Zao Zhen Bao       | unknown                                                | Zhejiang province, China  | PWR | 10.3 | М | Late June       | 39.84 |
| 87 | Yuan Meng          | Hu Jing Mi Lu×Hakuri                                   | Zhejiang province, China  | PWR | 13.1 | L | Early August    | 40.81 |
| 88 | Kurakato Wase      |                                                        | Japan                     | PWR | 10.0 | Н | Middle June     | 41.33 |
| 89 | Tai Yuan Shui Mi   | Landrace                                               | Shanxi province, China    | PWR | 17.4 | L | Early August    | 41.66 |
| 90 | Qiu Fen            | Landrace                                               | Shanxi province, China    | PWR | 20.5 | Н | Late July       | 42.54 |
| 91 | Qiu Xiang          | Seedling                                               | Beijing, China            | PWR | 12.3 | Н | Early September | 42.60 |
| 92 | Hong Bu Ruan       | Landrace                                               | Shanxi province, China    | PWR | 15.5 | М | Late July       | 43.35 |
| 93 | Mei Gui Lu         | Sunago Wase×Yu Hua Lu                                  | Zhejiang province, China  | PWR | 11.9 | М | Early June      | 44.86 |
| 94 | Zhong Hua Shou Tao | Selection and breeding from the bud mutation of winter | Shandong,China            | PWR | 12.2 | Н | Early September | 47.76 |

|     |                   | peach in north China         |                          |     |      |   |                 |       |
|-----|-------------------|------------------------------|--------------------------|-----|------|---|-----------------|-------|
| 95  | Zheng Huang 3 Hao | Zao Shu Huang Gan×Feng Huang | Henan province, China    | PYR | 6.2  | М | Early July      | 49.01 |
| 96  | Wan Bai Mi        | Wu Yun×Bai Feng              | Jiangsu province, China  | PWR | 14.0 | Н | Early September | 49.22 |
| 97  | Yu Lu Pan Tao     | Landrace                     | Shanghai, China          | PWF | 15.0 | Н | Middle July     | 49.92 |
| 98  | Taiyuan Shui Mi   | Seedling                     | Shanxi province, China   | PWR | 10.5 | М | Middle June     | 50.90 |
| 99  | Jing Yu           | Okubo×Xingjin You Tao        | Beijing, China           | PWR | 14.4 | L | Middle July     | 55.09 |
| 100 | Jin Shuo          | Yingqing x Yangtao           | Shanghai, China          | PYR | 17.5 | Н | Early September | 57.89 |
| 101 | Jin Hua           | Seedling of Jin Xiu          | Shanghai, China          | PYR | 17.3 | М | Late August     | 60.06 |
| 102 | Qing Feng         | Okubo×Xin Duan Yang          | Beijing, China           | PYR | 14.6 | Н | Middle August   | 60.44 |
| 103 | F2-18             | Hu Jing Mi Lu×Hakuri         | Zhejiang province, China | PYR | 15.0 | Н | Early July      | 64.41 |

\*The first letter refers to P-peach, N-Nectarine; the second letter refers to flesh color: W-white, Y-Yellow flesh, R-Red flesh; the third letter refers to fruit shape: F-Flat, R-round shape

| Variation           | Origin | Charactoristics | Pru p 3, mean $\pm$ SD, μg/g of fresh weight |                     |                  |  |  |  |
|---------------------|--------|-----------------|----------------------------------------------|---------------------|------------------|--|--|--|
| varieties           | Ungin  | Characteristics | Pulp                                         | Peel                | Whole fruit      |  |  |  |
| May fire            | USA    | NYR             | $0.50 {\pm} 0.10$                            | 6.43±0.77           | $3.54 \pm 0.17$  |  |  |  |
| Xue Bu Dai          | China  | PRR             | $0.77 \pm 0.11$                              | $9.58 \pm 0.01$     | $4.00 \pm 0.95$  |  |  |  |
| Hu You 278          | China  | NYR             | $0.34 \pm 0.20$                              | $7.63 \pm 1.09$     | $4.02 \pm 0.84$  |  |  |  |
| Armking             | USA    | NYR             | $0.86 \pm 0.29$                              | $10.49 \pm 0.03$    | $6.68 \pm 1.50$  |  |  |  |
| Zao Hong Zhu        | China  | NWR             | $0.63 \pm 0.01$                              | $29.9 \pm 3.81$     | $7.41 \pm 0.55$  |  |  |  |
| Zhong Nong Jin Hui  | China  | NYR             | $0.26 \pm 0.01$                              | $33.57 \pm 0.66$    | $8.02 \pm 0.66$  |  |  |  |
| Chao Li Chun        | China  | NYR             | $1.88 \pm 0.54$                              | $52.22 \pm 0.69$    | $13.53 \pm 0.09$ |  |  |  |
| Spring Snow         | USA    | PWR             | $1.25 \pm 1.24$                              | $63.24 \pm 6.03$    | $14.84 \pm 1.96$ |  |  |  |
| Hu You 018          | China  | NYR             | $0.20 \pm 0.01$                              | $77.25 \pm 5.52$    | $17.64 \pm 0.32$ |  |  |  |
| Hang Mi Yi Hao      | China  | PWR             | $0.58 \pm 0.00$                              | $83.04 \pm 9.27$    | $18.93 \pm 0.54$ |  |  |  |
| Ying Guang You Tao  | China  | NWR             | $2.54 \pm 0.04$                              | $111.7 \pm 5.26$    | $23.42 \pm 0.91$ |  |  |  |
| Xia Cui             | China  | PWR             | $2.62 \pm 0.67$                              | $122.25\!\pm\!5.04$ | $23.95 \pm 1.96$ |  |  |  |
| Kawanakajima Hakuto | Japan  | PWR             | $2.56 \pm 0.05$                              | $145.0 \pm 11.3$    | $24.94 \pm 0.64$ |  |  |  |
| Hu Jing Mi Lu       | China  | PWR             | $3.08 \pm 0.14$                              | $152.34 \pm 6.46$   | $25.43 \pm 1.22$ |  |  |  |
| Xin Yu              | China  | PWR             | $3.95 \pm 1.23$                              | $135.65 \pm 6.95$   | $26.77 \pm 6.17$ |  |  |  |
| Zao Lu Pan Tao      | China  | PWR             | $3.91 \pm 0.05$                              | $162.10 \pm 3.86$   | $36.31 \pm 0.84$ |  |  |  |
| Nunome Wase         | Japan  | PWR             | $4.27 \pm 0.13$                              | $168.15 \pm 14.75$  | 36.43±1.33       |  |  |  |
| Mei Jin             | China  | PYR             | $4.78 \pm 1.85$                              | $143.00 \pm 0.02$   | 37.42±1.78       |  |  |  |
| Kurakato Wase       | Japan  | PWR             | $2.86 \pm 0.63$                              | $171.47 \pm 2.51$   | $41.33 \pm 0.21$ |  |  |  |
| Mei Gui Lu          | China  | PWR             | $4.75 \pm 0.09$                              | $179.26 \pm 9.54$   | $44.86 \pm 2.12$ |  |  |  |
| Zheng Huang 3 Hao   | China  | PYR             | $5.41 \pm 2.84$                              | $198.48 \pm 3.74$   | $49.01 \pm 5.01$ |  |  |  |
| Yu Lu Pan Tao       | China  | PWF             | $7.26 \pm 0.25$                              | $196.72 \pm 3.28$   | $49.92 \pm 7.07$ |  |  |  |
| Jin Shuo            | China  | PYR             | $7.14 \pm 0.28$                              | $199.4 \pm 4.06$    | $57.89 \pm 3.50$ |  |  |  |
| Jin Hua             | China  | PYR             | $9.52 \pm 0.18$                              | 211.39±13.10        | $60.06 \pm 6.19$ |  |  |  |

Supplementary Table 2. Pru p 3 content of peel and pulp in 24 peach varieties.

'Xue Bu Dai', 'Hu You 278', 'Mei Jin' and 'Jin Shuo' were used for Immuno-cytochemical localization; 'Hu You 278' and 'Mei Jin' were also tested for SPT. Two Flat peach 'Zao Lu Pan Tao' and 'Yu Lu Pan Tao' have high Pru p 3 content.