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Abstract: Wheat rust diseases, including yellow rust (Yr; also known as stripe rust) caused by Puccinia
striiformis Westend. f. sp. tritici, leaf rust (Lr) caused by Puccinia triticina Eriks. and stem rust (Sr)
caused by Puccinia graminis Pres f. sp. tritici are major threats to wheat production all around the
globe. Durable resistance to wheat rust diseases can be achieved through genomic-assisted prediction
of resistant accessions to increase genetic gain per unit time. Genomic prediction (GP) is a promising
technology that uses genomic markers to estimate genomic-assisted breeding values (GBEVs) for
selecting resistant plant genotypes and accumulating favorable alleles for adult plant resistance
(APR) to wheat rust diseases. To evaluate GP we compared the predictive ability of nine different
parametric, semi-parametric and Bayesian models including Genomic Unbiased Linear Prediction
(GBLUP), Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Elastic
Net (EN), Bayesian Ridge Regression (BRR), Bayesian A (BA), Bayesian B (BB), Bayesian C (BC) and
Reproducing Kernel Hilbert Spacing model (RKHS) to estimate GEBV’s for APR to yellow, leaf and
stem rust of wheat in a panel of 363 bread wheat landraces of Afghanistan origin. Based on five-fold
cross validation the mean predictive abilities were 0.33, 0.30, 0.38, and 0.33 for Yr (2016), Yr (2017),
Lr, and Sr, respectively. No single model outperformed the rest of the models for all traits. LASSO
and EN showed the lowest predictive ability in four of the five traits. GBLUP and RR gave similar
predictive abilities, whereas Bayesian models were not significantly different from each other as well.
We also investigated the effect of the number of genotypes and the markers used in the analysis on
the predictive ability of the GP model. The predictive ability was highest with 1000 markers and
there was a linear trend in the predictive ability and the size of the training population. The results
of the study are encouraging, confirming the feasibility of GP to be effectively applied in breeding
programs for resistance to all three wheat rust diseases.

Keywords: genomic prediction; wheat landraces; yellow rust; leaf rust; stem rust

1. Introduction

Wheat is one of the most important cereal crops of the world, grown from the Equator
to the Arctic Circle, and considered a staple food of 35% of the world population, which
serves as the major source of carbohydrates in the human diet [1,2]. The three rust diseases
of wheat, namely yellow rust (Yr), stem rust (Sr), and leaf rust (Lr), are a continuous threat
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to wheat production around the world [3]. Several genes for resistance to each of the
three rusts have been catalogued and genetically characterized [4], however, many of the
known genes have now become ineffective, that is susceptible, to newly virulent races of
the pathotypes. Rusts have been detected in areas where they had not been detected before.
Therefore, a continuous search for new sources of resistance is of paramount importance in
the fight against the wheat rust diseases [5]. Fungicides have been used to control wheat
rusts; however new races frequently develop resistance to commonly used fungicides,
complicating the control of these diseases [6]. Moreover, environmental concerns have
prompted some countries (e.g., the EU) to impose regulations to restrict the amounts
of chemical products used in agriculture (Directive 2009/128/EC), also reinforcing the
importance of ensuring rusts resistance in modern varieties.

Wheat landraces are an important potential source of diversity for breeding and pre-
breeding germplasm, primarily due to the co-evolution with biotic and abiotic stresses
throughout history [7]. These landraces often contain untapped resistance for many biotic
and abiotic stresses, such as for example the wheat rusts [8]. In a recent study, it was
concluded that genetic enhancement programs can be directly initiated from landraces [9].
There are two types of genetic resistance against the wheat rusts: (i) seedling (qualitative,
vertical, and/or all stage resistance) which is usually effective throughout the life of the
plant. However, it is controlled by race-specific genes and may not provide broad-spectrum
resistance to all races unless the needed genes are pyramided into single plant genotypes
and (ii) APR (quantitative resistance, partial resistance or horizontal resistance) which is
expressed as the plant reaches its reproductive stage [3], and most likely provides protection
to all races at varying levels. APR is usually non-race-specific, but it can also be race-specific
in the case of Yr11, Yr12, Yr13, and Yr14 [10]. Either way, APR is considered more durable
over time, providing long-term resistance, than race-specific, seedling resistance [11].
The precise phenotyping for APR in field conditions is an expensive and labor-intensive
undertaking. The average cost of the most basic field assay in CIMMYT field experiments
was estimated to be around US$30 to 40 per accession planted in two replications in a
single location [12]. This cost is increased many-fold when experiments are conducted in
glasshouses while the current molecular-genotyping cost of a single genotype is less than
US$20 [13]. Genomic prediction (GP) is a technique that can help increase the rate of genetic
gain per unit price and reduce the length of breeding cycles [14]. Genomic prediction is
carried out in two steps, the genotypic marker information of genotypes is used to predict
the genomic estimated breeding values (GEBVs), and selection of new germplasm is
developed via hybridization based on these GEBVs before field experiments [14]. Thus
the number of genotypes and unit cost of the experiment is reduced, thereby increasing
genetic gains [15]. Therefore, GP studies are primarily focused on developing methods
and models to estimate GEBV with as much accuracy as possible. In wheat, GP studies
have been reported in a diverse set of populations from global wheat lines in CIMMYT [16]
to bi-parental [17] and, multi-parental [18] populations, and landrace collections [8,19,20].
The success of highly accurate estimations of GEBVs and model calibration depends upon
intensive phenotyping and genotyping of the training population, which is then used to
estimate the GEBV of the genotypes in the actual test set. The type and number of genotypes
in the training population affects the prediction accuracies of the different models used
for GP [14]. Several studies have shown the potential of GP for various quantitative traits
including resistance to rust diseases in wheat [8,12,14,15,19,21]. Many GP models have
been developed and tested before [14]. In general, the models differ according to how
the marker effects are treated and the way the models account for population structure.
There are several parametric, semi-parametric, and nonparametric models for GP. The
Genomic Best Linear Unbiased Prediction (GBLUP) and Ridge regression (RR) models treat
all marker effects as the same, whereas the Bayesian models treat markers with different
effect sizes differently.

This study aims to compare and evaluate the GP accuracies of nine different methods
including parametric, semi-parametric, and Bayesian models to predict APR for yellow,
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leaf, and stem rust of wheat in a panel of bread wheat landraces from Afghanistan. We also
investigated whether the number of landraces in the training population and the numbers
of markers used in the analyses have an effect on the predictive ability of the model used
for GP.

2. Results
2.1. Phenotypic Data and Heritability

The phenotypic distributions for all traits are shown as percentages in Table 1, and as
violin and box plots in Figure 1. The landraces showed the highest percentage of resistant
reaction to leaf rust in 2016 (21.5%), while the lowest percentage of resistant landraces was
observed in leaf rust in 2017 (9%). In the case of yellow rust the landraces showed similar
reaction types in both years. The Pearson correlation coefficient for yellow rust across the
two years was high (0.70). The mean correlation between leaf rust years 2016 and 2017 was
moderate (0.4). The correlation between stem and leaf rust was also moderate (0.5). There
was no significant correlation between yellow rust and the other leaf and stem rust scores
(−0.2 and −0.1) (Table 2).

Table 1. Phenotypic percentage distribution for yellow (YR), leaf (LR), and stem (SR) rust, in 2016
and 2017, under field conditions.

Disease-Year
Rust Infection Types

Heritability
R (%) MR (%) MS (%) S (%)

YR-2016 12.4 19.5 22.0 46.0 0.97
YR-2017 13.0 21.9 18.2 46.9 0.97
LR-2016 21.5 7.2 13.1 58.0 0.98
LR-2017 9.0 11.4 8.1 71.2 0.97
SR-2017 10.1 13.5 14.7 61.5 0.97
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Table 2. Pearson correlations at significance level alpha = 0.05 (*) between yellow (YR), leaf (LR) and
stem (SR) rust trials, in 2016 and 2017, under field conditions.

YR-2016 YR-2017 LR-2016 LR-2017 SR-2017

YR-2016 0.70 * −0.22 −0.26 * −0.09
YR-2017 0.70 * −0.26 * −0.11 −0.14
LR-2016 −0.22 −0.26 * 0.41 * 0.48 *
LR-2017 −0.26 * −0.11 0.41 * 0.51 *
SR-2017 −0.09 −0.14 0.48 * 0.51 *

2.2. Marker Distribution and Genetic Relationship Matrix

From a total of 24K markers, a set of 11,428 markers was used in this study after
filtering the markers on missing information and minor allele frequency. The markers
with known genetic positions were distributed across the whole A, B, and D genomes
(Supplementary Table S1). The percentage of markers on the A, B, and D genomes was
33.4, 38.3, and 27.2%, respectively. The highest number of markers were distributed on
chromosomes 2B and 2A, whereas chromosomes 4D and 4A had the lowest number of
markers (Figure 2). There were three clusters in the Principal Component Analysis among
the 363 bread wheat landraces collected from seven geographic regions in Afghanistan.
The first three principal components explained 19.6% of the genetic variation. However,
there was no clear clustering by the geographic origin of the landraces (Figure 3). The
genomic relationship matrix showed a high degree of relatedness amongst the landraces,
making them suitable for genomic prediction analysis (Supplementary Figure S1).
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2.3. Genomic Predictive Abilities of the Nine Methods for Yellow Rust

Table 3 shows that for the yellow rust evaluation trial in 2016, the model that gave the
highest prediction accuracy (0.33) was RKHS. While LASSO and EN both gave the lowest
prediction accuracies, they did not deviate significantly from the other models. Overall, the
accuracies for the GBLUP, RR, BRR, BA, BB, and BC models for yellow rust during 2016
were similar. The prediction accuracies for yellow rust in 2017 followed the same pattern
as in 2016 except that the RKHS model was not the best in predicting yellow rust as was
the case in 2016. LASSO and EN gave the lowest accuracies for yellow rust also in 2017.
The prediction accuracies for GBLUP, RR, BRRM, BA, BB, and BC were similar.
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Table 3. Predictive abilities of the models for yellow (YR), leaf (LR), and stem (SR) rust adult plant
resistance under field conditions using nine different methods in wheat landraces from Afghanistan
preserved in ICARDA’s gene bank.

Model
Disease-Year of Field Experiments

YR-2016 YR-2017 LR-2016 LR-2017 SR-2017

GBLUP 0.32 ± 0.02 0.30 ± 0.01 0.38 ± 0.01 −0.003 ± 0.05 0.30 ± 0.01
RR 0.32 ± 0.01 0.30 ± 0.01 0.38 ± 0.01 0.03 ± 0.04 0.302 ± 0.02

LASSO 0.31 ± 0.03 0.26 ± 0.02 0.36 ± 0.02 −0.03 ± 0.05 0.33 ± 0.02
EN 0.31 ± 0.02 0.28 ± 0.02 0.36 ± 0.02 −0.04 ± 0.05 0.33 ± 0.02

BRR 0.32 ± 0.02 0.30 ± 0.01 0.38 ± 0.01 0.04 ± 0.04 0.31 ± 0.02
BA 0.32 ± 0.02 0.30 ± 0.01 0.37 ± 0.01 0.09 ± 0.04 0.30 ± 0.02
BB 0.32 ± 0.02 0.30 ± 0.01 0.38 ± 0.01 0.04 ± 0.04 0.31 ± 0.02
BC 0.32 ± 0.01 0.30 ± 0.02 0.37 ± 0.01 0.04 ± 0.03 0.30 ± 0.02

RKHS 0.33 ± 0.01 0.29 ± 0.01 0.37 ± 0.01 0.05 ± 0.03 0.29 ± 0.01

2.4. Predictive Abilities of the Different Methods for Leaf Rust

For leaf rust in 2016, the GBLUP, RR, BRR, and BB models gave the highest prediction
accuracies (Table 3). The two models LASSO and EN gave the lowest prediction accuracies
but not much significantly different from the others. The accuracy for RKHS was slightly
better than LASSO and EN. For the leaf rust in 2017, none of the models was able to predict
the landraces’ GEBV scores. This may be because of too many missing observations in
the training subsets, which did not allow the models to predict the landraces. Stem rust
predictive abilities of the different methods. For the stem rust dataset, the models that gave
the highest prediction accuracies were LASSO and EN, followed by BRR and BB (Table 3).
The RKHS model gave the lowest prediction accuracy for stem rust disease. The prediction
accuracies from GBLUP, RR, BA, and BC models were similar. LASSO and EN model gave
the highest prediction accuracy only for the stem rust dataset whereas in the case of the
yellow and leaf rust datasets they were the least performing models.
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2.5. Comparison between the Models

Based on the predictive abilities for all the models, it was clear that none of the single
models outperformed the rest for each of the three rusts and in both years. Overall, the
GBLUP, RR, BRR and BB models gave the highest prediction accuracies than other models
for most traits. The models LASSO and EN gave the lowest prediction accuracies for yellow
and leaf rust, and the highest prediction for stem rust. A cluster dendrogram showing
the hierarchical clustering of the prediction models separates the LASSO and EN models
from the rest of the models. Also the regression models were far from the Bayesian models
in Figure 4. The Spearman rank correlation coefficients between the GEBVs between all
models (Table 4) show that all the models were highly correlated to each other. The LASSO
and EN models had the lowest correlation coefficient (0.82) with the GEBVs of the other
models. The correlations between the GEBVs among the other models were unity or close
to unity.
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the different genomic prediction methods.

Table 4. Spearman rank correlation coefficients between GEBVs for all genomic prediction methods.

GBLUP RR LASSO EN BRR BA BB BC RKHS

GBLUP 0.97 0.82 0.82 0.97 1 0.97 1 1
RR 0.97 0.9 0.9 1 0.97 1 0.97 0.97

LASSO 0.82 0.9 1 0.9 0.82 0.9 0.82 0.82
EN 0.82 0.9 1 0.9 0.82 0.9 0.82 0.82

BRR 0.97 1 0.9 0.9 0.97 1 0.97 0.97
BA 1 0.97 0.82 0.82 0.97 0.97 1 1
BB 0.97 1 0.9 0.9 1 0.97 0.97 0.97
BC 1 0.97 0.82 0.82 0.97 1 0.97 1

RKHS 1 0.97 0.82 0.82 0.97 1 0.97 1

2.6. Simulation Analysis

We ran two different simulations to see the effect of training population size and
the number of markers on the prediction accuracy. The GBLUP method was used to
compare the effect on prediction accuracy. The whole panel of 363 bread wheat landraces
was divided into four subsets of 100, 200, 300, and a whole set of 363 landraces. The
prediction accuracy was lowest in the subset of training population with 100 landraces
with an increasing trend as the population size increased. In the second simulation, the
genotypic data was divided into a randomly selected set of markers from 100, 250, 500,
1000, 3000, 6000, and 9000 to the full set of 11,428 markers. The prediction accuracy was
lowest with the set of 100 and 250 markers and as the numbers of markers increased so the
prediction accuracy till the set of 1000 markers where the prediction was highest beyond
that, no significant progress was observed (Figure 5).
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3. Discussion

Globally the wheat cereal rusts are the economically most devastating diseases of
wheat crops [22]. Previously many studies have predicted important wheat diseases
including rusts with different genomic prediction models using elite lines, cultivars and
landraces [8,15,19,20,23]. Here we investigated the prediction accuracy of nine genomic
prediction methods to predict wheat rust disease responses in a panel of landraces of
Afghanistan origin preserved in ICARDA’s gene bank. The genomic relationship of training
and testing populations has been reported to be an important factor in predicting GEBVs
with high accuracy, and is therefore of paramount importance in the development of
training and testing populations [24].

There was no clear clustering among the landraces with respect to their origin. How-
ever, a high degree of relatedness among the landraces made them a good population for
genomic prediction analysis.

There was no significant correlation between the reaction to yellow rust and the
reaction to the other leaf and stem rust, indicating possibly different genetic resistance
bases between them.

Among the wheat rusts evaluated in the study, leaf rust (0.38) had the highest mean
genomic prediction accuracies followed by both yellow rust from the 2016 dataset and
stem rust (0.33) and the least prediction accuracy was observed in yellow rust dataset from
2017 (0.30). The genomic prediction accuracies were moderate with average prediction
accuracy of 0.32 across all rusts. The level of prediction accuracy is similar to previously
published work on maize and wheat [16,18] The results were consistent with a previous
study of genomic prediction analyses for all three wheat rusts in landraces using GBLUP
and Bayesian Regression or BRR [8]. The nine models used in the study gave almost similar
prediction accuracies. However, the prediction accuracies from LASSO and EN methods
were the lowest for yellow rust and leaf rust, but the highest for stem rust. Similar trends
were obtained in previous studies with no significant differences amongst the different
genomic prediction models [20,25]. The GBLUP and Bayesian models investigated in the
study gave almost similar prediction accuracies despite considering all marker effects
having similar variances in the GBLUP model. Therefore, the use of prior densities for
marker effects in all Bayesian models did not yield significantly better prediction accuracies.
Hence, both models can be used for prediction of complex traits like wheat rusts. However,
since we did not observe any significant differences in regression-based GBLUP and RR
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methods, and the Bayesian-based models, the assumption of marker effects having equal
variances proved to be effective for the rust traits that were analyzed in this study. Thus,
the higher computational time required for prior densities and shrinkage of the Bayesian
models may not be needed.

Many previous studies have reported similar prediction accuracies for GBLUP and
Bayesian methods in different populations and for different traits [12,15]. The models BA
and RR gave similar prediction accuracies in genomic prediction studies in dairy bulls [26];
BC and RR models gave same prediction accuracies in oats for yield, heading and plant
height [27]; BA, BB, and BC methods had similar prediction accuracies as RR in North
American Holstein bulls [28]; and in a study of Fusarium head blight the RR, BC, and BL
models gave similar prediction accuracies [13]. The GBLUP or RR models are also reported
to give similar prediction accuracies as the BC and BL methods in stem and yellow rust
of wheat [12,21]. In some studies Bayesian models have given slightly better prediction
accuracies than GBLUP and RR methods: BC and BA gave better accuracy over RR-BLUP
in a study of different quantitative traits in Loblolly pine (Pinus taeda L.) [29]; and BA and
BB excelled over GBLUP in simulation studies [24,30]. However, other studies reported
higher predictive ability of GBLUP over its Bayesian counterparts, especially with traits
controlled by large-effect QTL [31,32].

The nonparametric models such as RKHS have been reported to show better prediction
accuracy than parametric models like GBLUP and RR [16,33]. In our study RKHS gave
somewhat similar predictive accuracies as GBLUP and the results are consistent with
studies concluding that there was no clear advantage of one model over the other [34].
However, the Bayesian models performed better than RKHS in leaf and stem rust GEBV
prediction. LASSO and EN models predicted the lowest prediction accuracies for yellow
rust and leaf rust while highest for stem rust, both the models predict GEBV’s by assuming
that some markers have large effects on the trait in study and thus may suggest the presence
of casual genes with large effect in case of stem rust and it needs to be further investigated.

The choice of the best genomic prediction model is the key to successful GEBV pre-
dictions [25]. The accuracy of prediction ability of a model depends upon several factors
including trait heritability, marker coverage and density, and the size of the training
population. The relatedness between training and validation population also aids in
selecting the most accurate model for prediction of traits under study in specific popula-
tions [24,31,33,35]. All the genomic prediction models gave almost zero GEBV outcomes
for the leaf rust 2017 dataset. This may be attributed to a lot of missing observations in the
data and as a result, the training population was too small to be able to predict the GEBVs.

To investigate the effect of population size on prediction accuracy we divided the
whole population into four subsets and compared the accuracies in all the subsets using
the GBLUP method. The results indicated that the increase in the number of genotypes
included in the training populations resulted in an increase in prediction accuracy until
a certain level (n = 300), being consistent with previous studies [25]. The choice of the
prediction methods becomes more important with an increase in the number of training
populations [36].

Similarly, to investigate the effect of the number of markers on the prediction ability
of a model the marker data was divided into eight subsets. As reported in previous
studies, the GBLUP model gave better and higher accuracies with an increasing number
of markers [31,37]. The prediction accuracy from using 500 markers is better than 100
and 250 markers and 1000 markers predicted better GEBV’s than 500 markers but after
1000 markers not much gain could be made. Studies have reported that genomic prediction
accuracy is not influenced after a certain number of markers is implemented [38]. Further
investigations with increasing marker density could provide more clear insights, but in
previous reports it was observed that even analysis with combinations of dense 35k and
90k markers did not increase prediction accuracy [23]. Therefore, we concluded that the
whole panel of 363 landraces with 1000 markers can give roughly the same prediction
accuracy all 11k markers.
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The hierarchal clustering of the nine genomic prediction models using the GEBVs
grouped them as expected, where regression models grouped together and Bayesian
models were clustered together. The RKHS model was placed far from both regression
and Bayesian models. LASSO and EN gave the lowest prediction abilities for Yellow rust
and Leaf rust whereas highest for Stem rust and were as expected grouped together in the
cluster analysis. The clustering of the models based on the predicted GEBVs were similar
to a previous study [15].

Our results reveal the potential use of landraces from Afghanistan as valuable genetic
resources for breeding programs focused on rust resistance in wheat. The GP accuracies
obtained in the studies were moderate and consistent with previous studies of genomic pre-
diction for rust diseases [8,12,21], and this magnitude of genomic prediction is considered
useful for the prediction of other landraces preserved in gene banks [19]. The landraces
preserved in the gene banks can be improved using conversion (improve landraces until
they become elite material) and introgression (landraces crossed with elite material) ap-
proaches. Genomic prediction has been proven to be a useful strategy in improving genetic
merit with either strategy [9]. The current study shows the potential of genomic prediction
for enhancing breeding for rust resistance in wheat and concludes that models like GBLUP
with light computational capability can predict the GEBV similarly well compared to other
models which require more computational time. Moreover, for GP studies the number of
markers can be optimized to save computational time and that the efficacy of accurate GP
can be increased with an increase in the size of the training population. The GP models
can be utilized to predict the GEBVs of other landraces preserved in the gene banks and
after verification of GEBVs with phenotyping in natural conditions, outstanding parental
stocks can be selected for future crossing with either of the strategies discussed above to
accelerate genetic gain over time.

4. Materials and Methods

A panel of 363 bread wheat landraces conserved in the ICARDA gene bank and
collected from seven geographic regions of Afghanistan was used in the study. The
highest number of landraces were collected from Badakhshan and Takhar regions with
119 accessions from each region. The rest of the accessions were collected from Bagh-
lan (n = 66), Kabul (n = 7), Konarha (n = 1), Kunduz (n = 50), and Samangan (n = 1)
(Supplementary Table S2). The panel was screened for adult plant resistance (APR) against
yellow rust, leaf rust, and stem rust.

4.1. Adult Plant Evaluation and Phenotypic Data

The field experiments were laid out as an augmented design with un-replicated
landraces and repeated check rows in 22 blocks. Each block contained 17 landraces and
two checks. Thirty seeds from each accessions were planted in a 1-meter rows with 30 cm
spacing between the rows. To ensure sufficient inoculum production for disease infection,
a mixture of the universally susceptible varieties ‘Morocco’, ‘Seri 82’, and ‘Avocet S’ along
with the locally susceptible varieties ‘Bolani’, ‘Basribey’ (from the CIMMYT cross ‘Kauz’),
and ‘Cumhuriyet 75’, ‘Kunduru’, ‘Kasifbey’, and ‘Gonen’ was planted as spreader after
every 20 rows, as well as spreader rows bordering the nurseries. The experiments were
managed as per the standard local agronomic practices during the crop season.

4.1.1. Adult Plant Resistance for Yellow Rust

APR to yellow rust was evaluated under field conditions against the PstS2 and PstS7
(Warrior race) races of yellow rust, which had been collected in previous years and pre-
served at RCRRC (for virulence/ avirulence formula of these two races see Supplemental
Table S2) The landraces were inoculated artificially with a mixture of the two races in tal-
cum powder using a backpack sprayer at the seedling stage. The inoculation was repeated
twice, at the tillering and booting stage. The field was irrigated with an artificial misting
system. The plants were scored when the disease severity reached 100% on the susceptible
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check Morocco, using the Modified Cobb Scale [39]. The landraces were also recorded
for major infection types R, MR, MS, and S, based on the 0–9 scale where disease scores
of 0, 1, and 2 were considered resistant 3 and 4 moderately resistant 5 and 6 moderately
susceptible and 7, 8, and 9 as susceptible [40].

4.1.2. Adult Plant Resistance for Leaf Rust

The bread wheat landraces were evaluated for APR against leaf rust during the field
cropping seasons 2016 and 2017. A leaf rust isolate collected from field infection in 2016 was
used in seedling assessment of leaf rust isogenic lines. The virulence/ avirulence formula
of this isolate is presented in Supplemental files (Supplementary Table S2). Collected spores
in 2016 was used in field inoculations in 2017. Collected spores were suspended in light
mineral oil (Soltrol 170) and artificially sprayed twice using an atomizer during the tillering
and booting stages. The data was recorded based on disease infection types on the above
indicated 0-9 scale. During the 2017 cropping season, due to the high yellow rust epidemic,
it became very difficult to distinguish both yellow rust and leaf rust, and therefore only 221
landraces could be recorded that year for leaf rust APR which survived during the leaf rust
scoring because of their full susceptibility to yellow rust.

4.1.3. Adult Plant Resistance to Stem Rust

APR to stem rust was evaluated for the bread wheat landraces against naturally
occurring local stem rust races during the 2017 cropping season. In race typing of collected
samples from the same field using the 20 north American differential lines [41], presence of
stem rust race TKTTF was confirmed (Supplementary Table S2). The stem rust response
was evaluated based on the above indicated 0–9 scale.

4.2. Correlation, Heritability, and Relationship Matrix

The Pearson correlations between the yellow, stem, and leaf rust were performed
using XLSTAT 2017 software (Addinsoft, New York, NY, USA) to estimate the relationship
between the phenotypic traits under study. Genetic and residual variances and broad-
sense heritability were estimated for the trials using the software PBTools (Version 1.4,
http://bbi.irri.org/products (accessed on 4 March 2021)). Principal Component Analysis
was performed in R software using the pcadapt package [42]. The unweighted Pair group
Method with Arithmetic Mean cluster dendrogram was completed using the software
PAST (Version 3.0, http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on
4 March 2021)).

4.3. Genotyping

The landraces were genotyped using DArT technology using genotyping by sequenc-
ing (GBS) method [43] at the Genetic Analysis Service for Agriculture (SAGA) at the
International Maize and Wheat Improvement Center (CIMMYT) in Mexico and supported
by the Seed of Discovery Project, SeeD. Markers were filtered based on missing data >20%,
minor allele frequency (MAF) <5%, and other parameters such as call rate, polymorphic
information content (PIC), and reproducibility, that resulted in 11,428 markers. The markers
were subjected to imputation before running the genomic prediction model using the EM
(Expectation-Maximization) algorithm as implemented in the BWGS package in R [44].

4.4. Genomic Prediction Methods
4.4.1. GBLUP and RR-BLUP

Genomic Best Linear Unbiased Prediction (GBLUP) uses a marker-based relationship
matrix to predict breeding values [45,46]. GBLUP is a parametric method that uses the
additive effect of the markers for the estimation of breeding values. It is strictly equivalent
to RR-BLUP (Ridge Regression) in theory. The mixed model used in GBLUP to predict
phenotypes of landraces is:

y = 1nµ + Zu + ε

http://bbi.irri.org/products
http://bbi.irri.org/products
http://palaeo-electronica.org/2001_1/past/issue1_01.htm
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where y is the phenotypic trait response, µ is the vector of means, Z is the random effects
design matrix, u represents genotypic response considered as random effects, whereas ε is
the residual vector. The methods were implemented in the BWGS package in R [44].

4.4.2. LASSO and Elastic Net

Least Absolute Shrinkage and Selection Operator (LASSO) penalizes the regression
method, shrinking more estimates than Ridge Regression. LASSO shifts the less informative
variables towards zero, and in the final model only the most significant coefficients are
kept. The objective function of the model is represented as:

min
β

N

∑
i=1

(yi − xi′β)2 + λL|β|

where xi is the marker genotype of landrace i, β is the marker effects, λL is a regularization
parameter, and | | is the L1 norm. The L1 penalty |β| regresses the effects towards zero
more than the L2 penalty ||β||2.

Elastic Net (EN) is the combination of both RR and LASSO regression [47]. The EN
model shifts some of the variables towards zero and others are set to exactly zero, as in RR
and LASSO. EN uses both the L1 and L2 penalties. The objective function of the model is
represented as:

min
β

N

∑
i=1

(yi − xi′β)2 + λE

(
(1− α)/2||β||2 + α|β|

)
where λE is a regularization parameter.

4.4.3. Bayesian Models

The Bayesian prediction models take into account prior marker effect distributions
and are of the formula:

y = 1nµ + Xβ + ε

where X represents the marker matrix incidence, and β is the vector of k marker effects. All
the Bayesian models were implemented in the BWGS package in R [44].

Bayesian Ridge Regression

Bayesian Ridge Regression (BRR) is considered as the Bayesian version of RR-BLUP;
the BRR shrinks the estimates of all the marker effects towards zero. The shrinkage is
dependent on the sample size, but however independent of the effect size. The difference
between BRR and RR-BLUP is between choosing the ridge parameter, in BRR a Gaussian
prior that is independent and identically distributed (IID) with a common variance to all
marker effects is used in the following form:

p
(

βR

∣∣∣σ2
βR

)
=

n

∏
j=1

N
(

βRj

∣∣∣0, σ2
βR

)
here, βR is the vector of regression coefficient, and the marker effect prior variance is
represented as σ2

βR . Then, the variance (σ2
βR ) was assigned an inverse scaled χ2 density

which includes a prior degree of freedom and scale as dfβR and SβR [35].

Bayes A

Bayes A (BA) uses a scaled-t prior distribution of marker effects, as all the markers can
contribute differently towards the genetic variance. Therefore, it would not be correct to
assume a common variance to all the markers, and a model with marker specific shrinkage
can be more realistic [30]. BA shrinks the markers with effect closer to zero, but however
does not strongly affect markers showing large effects [48]. A scaled-t prior density is
assigned for shrinkage of markers. The BA model is implemented in two steps. In the
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first step the normal densities with zero mean and marker specific variance parameters are
assigned to marker effects. In the second step, IID scaled-inverse χ2 densities are assigned
to marker variances [49]. The prior densities for BA are denoted as follows:

p
(

β j, σ2
βj, Sβ

)
=

[
∏

k
N
(

β jk

∣∣∣0, σ2
βjk

)
χ−2

(
σ2

βjk |df β, Sβ

)]
× G

((
Sβ

)∣∣r, s
)

Bayes B

Bayes B (BB) uses the distribution prior where marker effects are assumed to be drawn
from a scaled-t distribution. The marker effects are presumed as zero with probability,
π, and they are drawn from a scaled-t distribution with probability 1-π. The difference
between BA and BB is that the BB model assumes many markers having no effect at all,
and thus π > 0 instead of π = 0 in case of BA [28]. This is considered as more realistic prior
as most of the genomic region does not contain quantitative trait loci and therefore have
zero effect [17]. The prior densities in BB used in the BWGS package as implemented in the
BGL

p
(

β j, σ2
β, π

)
=

{
∏

k

[
πN

(
β jk

∣∣∣0, σ2
β

)
+ (1− π)1

(
β jk = 0

)]
x−2

(
σ2

βjk |df β, Sβ

)}
× B(π|p0, π0)× G

(
Sβ

∣∣r, s
)

R package are represented as follows:

Bayes C

Bayes C (BC) is similar to BB except for a slab with Gaussian distribution instead of
t-density in the case of BB [46]. BC model treats the probability of zero effect markers as
unknown and estimates it instead of assigning it a predefined fixed as this could lead to
affect the shrinkage of marker effects. BC was thus developed to address the shortcomings
in BA and BB models [28]. BC is considered more flexible for the modeling of both
oligogenic and polygenic traits [15,50]. The BC model implemented in BWGS uses the
BGLR package library where BC is similar to the BB model except in that it estimates the
variance parameter (σ2

β) from the data, p
(

σ2
β

)
= x−2

(
σ2

β |df β, Sβ

)
.

4.4.4. Reproducing Kernel Hilbert Spaces (RKHS)

RKHS is a semiparametric regression method which accounts for nonadditive effects.
It is based on a kernel function and genetic distance among loci to regulate marker effect
distribution [51]. RKHS is of the same form as RR-BLUP and GBLUP where g = k and can
be represented as follows:

y = 1µ + Kα + ε

where y and ε are the same as previously described in GBLUP, whereas α is the random
effects vector. As implemented in the BWGS package using the BGLR library the additive
genetic effects u ∼ N

(
0, Kσ2

g

)
, where K is the Gaussian reproducing kernel, K

(
xi, xj

)
=

exp
{
−
[(

xi − xj
)
′
(

xi − xj
)]

/h
}

, and σ2
g is the additive genetic variance.

4.5. Simulation Analysis

To obtain further insights regarding the predictive abilities of the GP models, two
simulations were run based on modifying the number of landraces and by randomly
selecting subsets of markers to optimize the number of markers required for the highest
predictive ability. However, only the GBLUP model was used in the simulation analyses for
comparison with normal and simulated runs. Pearson correlation between the phenotypic
values and the GEBV was used to determine and compare the predictive ability of the
models. The predictive ability of the models was assessed using 5-fold cross-validation.
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The whole set of landraces was divided randomly into five subgroups and four of them
were used to estimate the GEBV’s of the fifth subset of landraces.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/3/558/s1, Figure S1. Heatmap of marker relationship matrix of 363 wheat landraces showing
relatedness (kinship) between the landraces. Supplementary File S1. The Genotypic data of 363 bread
wheat landraces used in the study. Table S1. Genomic distribution of 11,428 SNPs markers on Wheat
genome. Table S2. The 363 bread wheat landraces used in the study with original SeedID and origin
information.
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