

This document is a postprint version of an article published in Molecular Phylogenetics and Evolution© Elsevier after peer review. To access the final edited and published work see https://doi.org/10.1016/j.ympev.2020.106985

Document downloaded from:

Ripe for reassessment: a synthesis of available molecular data for the speciose diatom family Bacillariaceae

David G. Mann^{1,2,*}, Rosa Trobajo¹, Shinya Sato³, Chunlian Li^{4,5}, Andrzej Witkowski⁴, Frédéric Rimet⁶, Matt P. Ashworth⁷, Ruth M. Hollands² and Edward C. Theriot⁸

- ¹ Marine and Continental Waters, Institute for Food and Agricultural Research and Technology (IRTA), Crta de Poble Nou Km 5.5, E-43540 Sant Carles de la Ràpita, Catalunya, Spain
- ² Royal Botanic Garden Edinburgh (RBGE), Edinburgh EH3 5LR, UK
- ³ Fukui Prefectural University, 1-1 Gakuen-cho, Obama, Fukui 917-0003, Japan
- ⁴ Institute of Marine and Environmental Sciences, University of Szczecin, and Natural Sciences Research and Educational Center, University of Szczecin, Mickiewicza 16a, PL-70-383, Szczecin, Poland
- ⁵ Ecological Institute, South China Normal University, 510631, Guangzhou, China
- ⁶ UMR CARRTEL, Savoie Mont-Blanc University, INRAE, 75bis avenue de Corzent, CS50511, F-74203 Thonon-les-Bains, France
- ⁷ UTEX Culture Collection of Algae, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- ⁸ Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA

*Corresponding author. email: dmann@rbge.org.uk

Abstract

The Bacillariaceae is a very species-rich family of raphid diatoms and includes the large and taxonomically difficult genus Nitzschia, whose species are often small-celled and finely structured and have few discrete morphological characters visible in the light microscope. The classification of *Nitzschia* is still mostly based on one developed in the second half of the 19th century by Grunow, who separated the genus into a series of sections largely on cell shape and symmetry, the position of the raphe, transverse extension of the fibulae, and folding of the valve. We assembled and analysed single-gene and concatenated alignments of nSSU, nLSU, rbcL, psbC and cox1 to test Grunow's and subsequent classifications and to examine selected morphological characters for their potential to help define monophyletic groups. The maximum likelihood trees were equivocal as to monophyly of the family itself but showed good support for each of eight main clades of Bacillariaceae, three of which corresponded more or less to existing genera (Hantzschia, Cylindrotheca and Bacillaria). The other five main clades and some subclades comprised groups of Nitzschia species or assemblies of Nitzschia species with other genera (Pseudo-nitzschia, Fragilariopsis, Neodenticula, Tryblionella, Psammodictyon). Relationships between most of the eight main clades were not resolved robustly but all analyses recovered Nitzschia as non-monophyletic. The Grunowian classification of Nitzschia into sections was not supported, though in some respects (e.g. treatment of sigmoid species) it is better than subsequent reclassifications. Several of the main clades and subclades are cryptic (lacking morphological synapomorphies) and homoplasy is common in both light microscopical and ultrastructural characters (to the extent that organisms initially assigned to the same species sometimes prove to belong to a different main clade). Nevertheless, some characters, including the structure of the raphe canal and girdle, seem to be sufficiently conservative evolutionarily to give a provisional estimate of relationships if molecular data are unavailable. No new formal classifications are proposed but various options are explored and research needs identified.

- **Key words:** diatoms; frustule morphology; girdle bands; molecular phylogenies based on nSSU, nLSU, *rbcL*, *psbC*, *cox1* markers; raphe canal; taxonomy
- Abbreviations: *cox*1, mitochondrial gene encoding cytochrome *c* oxidase subunit 1; cpSSU rDNA, chloroplast small-subunit ribosomal RNA gene (chloroplast 16S rDNA); nLSU, nuclear large-subunit ribosomal RNA gene (28S rDNA); nSSU, nuclear small-subunit

ribosomal RNA gene (18S rDNA); *psbC*, chloroplast gene encoding CP-43 photosystem II protein; *rbcL*, chloroplast gene encoding the large subunit of ribulose bisphosphate carboxylase–oxygenase (Rubisco)

1. Introduction

Diatoms are some of the most abundant and geochemically important organisms on earth, accounting for perhaps 20% of global photosynthetic carbon fixation (Mann, 1999) and dominating biological transformations of silicon (Conley, 1997, 2002) as a result of their use of this element to construct their unique silicified cell walls. The Bacillariaceae is a species-rich, ecologically diverse family of motile diatoms. It is ubiquitous, occurring in fresh, brackish, marine and hypersaline aquatic habitats from polar regions to the tropics (e.g. Hustedt, 1937–9; Medlin and Priddle, 1990), and inhabits sediments, periphyton and the water column; some species grow subaerially on damp rocks and soils. Several have been acquired as endosymbionts by dinoflagellates and foraminifera (e.g. Hehenberger et al., 2016; Lee et al., 2000) and some species (principally in the genus Pseudo-nitzschia) produce domoic acid, a toxin that causes 'amnesic shellfish poisoning' (Trainer et al., 2012). While most Bacillariaceae are photosynthetic, some are facultative heterotrophs (Hellebust and Lewin, 1977) and a few are obligate heterotrophs, being among the small number of diatoms that have completely lost the capacity for photosynthesis (e.g. Kamikawa et al., 2015; Onyshchenko et al., 2019; a few apochlorotic species have recently been discovered in the non-Bacillariacean genus Tursiocola by Frankovich et al., 2018). The biogeochemical impact of Bacillariaceae in the biosphere is considerable: for instance, a single species, Fragilariopsis kerguelensis, contributes most of the vast deposits of biogenic silica beneath the Southern Ocean (Zielinski and Gersonde, 1997). Historically, it is interesting that a member of the family, Bacillaria paxillifera (Fig. 1A), was one of the first diatoms to be given a formal name (Müller, 1786, as Vibrio paxillifer) and the first to be separated into a genus of its own, Bacillaria (by Gmelin, 1788).

Given these properties, it is perhaps surprising that the taxonomy of the Bacillariaceae is in a rather poor state, except with respect to the toxin-producing species. The main reasons for this are probably (1) the difficulty of studying Bacillariaceae species, since many are smallcelled and delicately structured with few diagnostic characters that can be assessed in the light microscope (e.g. Fig. 1C); (2) the size of the group – the family contains many hundreds of species, with most currently classified in *Nitzschia*. This is a huge genus: VanLandingham (1978) could already list 690 acceptable and 250 unacceptable species names according to Mann (1986), while despite some revisions that narrow the concept of the genus, AlgaeBase currently lists 867 accepted names (Guiry, 2019); (3) the principal revisionary accounts of diatoms for the seminal *Rabenhorst Kryptogamen Flora* (Hustedt, 1927–66) never reached the Bacillariaceae.

Traditionally, a key feature of the Bacillariaceae has been the possession of a central or eccentric raphe usually raised above the rest of the valve on a ridge – referred to as the '*keel*' – and subtended internally by rib-like or more substantial bridges of silica, called *fibulae* (Fig. 1). Fibulae are also found in a few other families – the Entomoneidaceae, Auriculaceae, Rhopalodiaceae and Surirellaceae, referred to here as the EARS group – and genera (*Undatella*, *Thalassiophysa*); the EARS group were recovered as monophyletic by Ruck and Theriot (2011) and Ruck et al. (2016). Some earlier studies implied a close relationship of the EARS genera to the Bacillariaceae (e.g. Hustedt, 1930; Krammer and Lange-Bertalot, 1988). Karsten (1928) went as far as to put the surirelloid diatoms (as the 'Surirelloideae') within the Bacillariaceae (his 'Nitzschiaceae'.) However, molecular phylogenetic analyses have recovered the Bacillariaceae as separate from the EARS group, and monophyly of the keeled, fibula-bearing taxa has been statistically rejected (Ruck and Theriot, 2011), suggesting independent evolution of fibulae (see also Witkowski et al., 2015).

Within the Bacillariaceae the current classification into genera and sections is still based in many respects on one developed by Albert Grunow in the mid 19th century. In his first treatment of the Bacillariaceae, Grunow (1862) recognized five genera (*Denticula, Tryblionella, Nitzschia, Bacillaria* and *Homoeocladia*) and split *Nitzschia* into 10 groups (Supplementary Fig. 1), principally on the basis of valve shape (straight, bent, sigmoid, centrally constricted, etc: Fig. 1A–H) and fibula morphology (fibulae short or extended: compare Figs 1C, E with 2B). No distinction was made between apomorphic and plesiomorphic resemblance in these features. Later, in what remains the last comprehensive review of the family (Cleve and Grunow, 1880) new sections were added to those recognized previously and most of the 1862 groupings were altered (Supplementary Fig. 1). The outcome was that *Nitzschia* was split into 24 sections, using the characteristics listed in Table 1.

Note that the taxonomic distribution of many features remains unknown (Table 1), further complicating a modern understanding of the morphology. Note too that most of Grunow's sections were defined by a combination of character states, each partly shared by other sections (Table 1) rather than by putative synapomorphies, suggesting a purely phenetic classification for the most part. There were, however, a few cases (e.g. the three special features listed under 'Other' in Table 1 and some aspects of stria structure) where an individual feature appeared to be restricted to just one section and could therefore be proposed as a synapomorphy diagnostic of it. During the 160 years since Grunow established his classification, there have been several changes to it, but the overall framework remains the same (Supplementary Fig. 1). These changes have been made piecemeal and a full-scale morphological revision, while necessary to give morphological data an independent voice, will be an extensive and very time-consuming task, simply because of the large amount of comparative data that remains unknown. We therefore turn our attention to the abundance of molecular data gathered in order to attempt to frame specific questions for future research.

Many gene sequences are available for members of the Bacillariaceae, with a particular bias towards *Pseudo-nitzschia* because of the need for reliable classification and identification as a result of the toxicity of some species. Several phylogenetic studies of the Bacillariaceae have been made based on single genes and these have generally provided weak or no statistical support for most nodes (e.g., Lundholm et al., 2002a; Trobajo et al., 2009; Rimet et al., 2011; Kamikawa et al., 2015; Rovira et al., 2015; Witkowski et al., 2015; Stepanek et al., 2016; Carballeira et al., 2017). Only in a few studies have more than two genes been sequenced for the same clone (Ruck and Theriot, 2011; Witkowski et al., 2016; Ashworth et al., 2017; Kim et al., 2019; Lobban et al., 2019; Onyshchenko et al., 2019; Mucko et al., 2020, in press), but these studies and some of the single gene studies have limited taxon sampling relative to the known diversity of the Bacillariaceae. Until now, the largest single gene study had 195 (28S rDNA) and 175 (*rbcL*) non-identical Bacillariaceae sequences (Carballeira et al., 2017), and the largest three gene study had 56 sequences (though two may be identical) (Kim et al., 2019).

Here we have assembled and reanalysed existing molecular data (including 987 sequences from GenBank: Supplementary Table 1) and have also taken advantage of many new Bacillariaceae sequences (Supplementary Table 2) obtained during recent projects (including a marine benthic diatom project at Szczecin University and French and UK projects to provide barcodes for freshwater biomonitoring). The major purpose of our molecular analyses was to understand where morphology and molecules agree, at least broadly, so that attention can be focused on the most challenging and unresolved areas, and therefore the most promising areas for new insights. We also hope that, by identifying well-supported groups (either by molecular

data alone or a combination of molecular and morphological data), such groups might be treated in depth in independent taxonomic revisions.

2. Materials and methods

2.1 Cultures and microscopy

Clones were isolated, grown and prepared as described in Supplementary File 1, and examined by light microscopy (LM) and scanning electron microscopy (SEM) as described by Sato et al. (2013), Rovira et al. (2015), Mann and Trobajo (2014), Witkowski et al. (2016) and Carballeira et al. (2017). Images were processed and assembled using Adobe Photoshop (Adobe CS5 Extended, version 12.0.4), with adjustments of grey levels to the whole image via the Levels and Curves tools, and sometimes also general application of Unsharp Mask or High Pass filters. To summarize girdle structure in Bacillariaceae we made photomontages rather than make line drawings. This was done by cutting, resizing and assembling fragments from several SEM photographs; images prepared in this way are clearly indicated in the figure captions. The original images used to identify clones and document their morphology (and to provide the basis for the morphological annotations in the *rbcL* tree in Fig. 4) are archived in University of Szczecin, INRAE Thonon, and the Royal Botanic Garden Edinburgh, UK. In addition, watermarked SEM images of clones isolated and grown in the Natural History Museum London, RBGE and Spain by RT, DGM, SS and Dr Laia Rovira have been made available as pdf files on the Algae World website (https://rbg-

web2.rbge.org.uk/algae/research/Bacillariaceae_images.html). Voucher slides and/or material of cultures are held in the Royal Botanic Garden Edinburgh, the Thonon Culture Collection (TCC: https://www6.inrae.fr/carrtel-collection_eng/), and the University of Szczecin diatom collection; information specifying the sources of clones for newly deposited sequences is given in Supplementary File 1 (Table 1)..

2.2 Molecular phylogeny

Five markers were used: nuclear-encoded 18S rDNA (nSSU) and partial (D1/D2 or D1–D3) 28S rDNA (nLSU), choroplast-encoded *rbcL* and *psbC*, and mitochondrial *cox1* sequences

(Supplementary Tables 1, 2). Data were assembled from the following sources: (1) existing GenBank accessions (those available up to the beginning of 2018), (2) the Marine Benthic Diatom Project of Szczecin University (http://geocentrum.usz.edu.pl/en/szczecin-diatom-culturecollection-szcz/); (3) sequences obtained from the Thonon Culture Collection (TCC: Rimet et al. 2019 and see https://www6.inrae.fr/carrtel-collection eng/) that have hitherto been available only from the online TCC database; (4) sequences obtained to support DNA-based biomonitoring of UK rivers; and (5) unpublished sequences accumulated over many years in Edinburgh by R. Trobajo, D.G. Mann, G. Simpson, L. Rovira and S. Sato, during miscellaneous studies of marine and freshwater Bacillariaceae. We only included sequences whose raw (unaligned) length was 1400 bp (SSU) or 1000 bp (*rbcL*, except KY320321, 988 bp, because of the availability of a nSSU sequence for this clone). nLSU sequences were accepted whether they included all three of the variable D1-D3 domains or only two of them, providing they were >500 bp long (except KP941049, 497 bp, because of the availability of a cox1 sequence for the same clone). In the concatenated analyses some shorter sequences of SSU and *rbcL* were used, if the other genes' sequences met our usual criteria. All available psbC sequences were used: 232 sequences were over 1000 bp, 5 were over 900 bp, and one was 568 bp. Additional new sequences were obtained using the primers and protocols in Supplementary File 1. All previously unpublished sequences have been deposited in GenBank and their accession numbers are given in Supplementary Table 2.

Sequences were first aligned preliminarily using MUSCLE or Clustal and quick ML analyses were then performed using MEGA v. 6 or v. 7 (Kumar et al., 2016) to identify and assess similar sequences. To produce the most compact matrix and hence achieve faster analysis in the single-gene analyses (for which hundreds of accessions were available in the case of nSSU, *rbcL* and nLSU), sequences were removed if they were identical to others that were more complete or differed from them only in ambiguities, or apparently artefactual at the 5' or 3' ends. However, such 'suboptimal' sequences remained eligible for inclusion in concatenated 2- or 4-gene alignments.

For the concatenated gene analyses, sequences of different genes (*rbcL*+nSSU, *rbcL*+nLSU, *rbcL*+nSSU+nLSU+*psbC*) were almost always admitted *only* if they were obtained from the same clone, to avoid the possibility of creating chimaeric data by combining sequences from different taxa as a result of inaccurate or inconsistent identification (it became evident during our analyses that morphology-based identifications are often problematic in the Bacillariaceae). A very few exceptions to the rule were allowed, particularly in *Pseudo-nitzschia* and *Fragilariopsis*, where the species-level taxonomy is rather well understood and the sampling of diversity has been particularly intense, but where sequences for different genes are not always available for the same clone. In the 4-gene set (*rbcL*+nSSU+nLSU+*psbC*), clone data were included if data for three out of the four genes were available; those more often missing were the shorter regions, i.e. nLSU and *psbC*.

Combining existing and new sequence data, the datasets finally comprised 298 (nSSU), 279 (nLSU), 309 (rbcL), 119 (psbC), 111 (cox1), 188 (rbcL+nSSU), 163 (rbcL+nLSU) and 120 (*rbcL*+nSSU+nLSU+*psbC*) Bacillariaceae sequences. Outgroups added were (1) Craspedostauros, Achnanthes and Staurotropis (the CAS group), Undatella, and three Amphora species (A. laevissima, A. obtusa var. crassa and A. vixvisibilis, referred to here as 'Psammamphora' because the dorsal positions of the chloroplasts and biarcuate raphe are reminiscent of species classified in sections *Psammamphora* or *Amblyamphora* by Cleve 1895), which are closely related to Bacillariaceae according to some recent analyses (Stepanek and Kociolek, 2014; Witkowski et al., 2016; Ashworth et al., 2017); (2) Diploneis and Pleurosigma, representing the large sister group of {Bacillariaceae+outgroup 1} in the analysis of raphid diatoms by Ashworth et al. (2017); and (3) the Eunotiales, which may be an adjacent branch to the Bacillariaceae (Theriot et al., 2015) or the sister group of all other raphid diatoms (e.g. Theriot et al., 2010; Stepanek and Kociolek, 2014; Ashworth et al., 2017). The last is consistent with the informal analysis of morphology by Round et al. (1990), dividing raphid diatoms into Eunotiophycidae and Bacillariophycidae on the basis of raphe structure. There were fewer choices of outgroup in the cox1 analysis, because of poorer taxon sampling; for this gene, we selected two Eunotia sequences.

After selection, sequences of protein-coding genes (*rbcL*, *psbC* and *cox1*) were aligned using MUSCLE or Clustal implemented in MEGA v. 6 or v. 7 (Kumar et al., 2016). For SSU rDNA, SSU sequences were aligned by the SSUalign program (Nawrocki *et al.* 2009), with the covariance model based on the 10 diatoms included with the program download and supplemented with secondary structure models from 23 additional diatoms from the CRW website (Cannone et al., 2002). This model is available from E.C. Theriot. We employed SSUAlign's default settings for removal of problematically aligned regions (95% Bayesian Posterior Probability of correct alignment). For nLSU, secondary structure was taken into account manually during alignment (see Supplementary file 1. The most problematic loop regions were subsequently eliminated from the alignments before analysis. The final alignments are given in Supplementary Files 2–9.

Maximum likelihood phylogenetic analysis was performed as detailed in Supplementary File 1. The names of terminals were corrected after analysis using TAXNAMECONVERT (Schmidt, 2004) and thereafter manually; trees were prepared for presentation and annotated using iTOL (Letunic and Bork, 2016; <u>https://itol.embl.de/</u>).

3. Results and Discussion

Phylogenetic trees of the Bacillariaceae are presented in Figs 3 and 4 and Supplementary Figs 2– 7. We selected the four-gene tree (Fig. 3) and the *rbcL* tree (Fig. 4) for presentation in the main text. The four-gene tree shows very good support for eight major clades (see below); the *rbcL* tree has a much better representation of taxa and is used to explore the distribution of selected morphological characters used in traditional classifications or surveyed by SEM.

In both the four-gene tree and the *rbcL* tree (Figs 3, 4), and also in the single- and twogene trees given in Supplementary Figs 2–7, the main clades are colour-coded to aid comparison. In addition, in the *rbcL* tree we have indicated to which Grunowian groups the taxa belong. This has been done (1) in order to help evaluate the traditional classifications of Bacillariaceae (especially the sections within *Nitzschia*) and (2) because the Grunowian groups act as proxies for the sets of traditionally used morphological characteristics evident in LM (Table 1).

3.1. Overall tree topologies

The Bacillariaceae are not monophyletic in any of the trees except *cox1*, which has the least satisfactory sampling of all the datasets (compare Supplementary Fig. 7 with Figs 3 and 4, and with Supplementary Figs 2–6). In the nSSU tree (Supplementary Fig. 4), only four sequences interfere with monophyly, namely a single sequence of *Craspedostauros alatus* (GenBank KX981860: this appears within clade 8C-I, which otherwise comprises *Fragilariopsis* sequences) and the three *Staurotropis* sequences (which branch off the Bacillariaceae close to

clade 1). In the four-gene tree (Fig. 3) and *rbcL*–nSSU (Supplementary Fig. 2), the whole CAS (*Craspedostauros–Achnanthes–Staurotropis*—) group lies within the Bacillariaceae, with other non-Bacillariaceae (namely '*Psammamphora*', the three naviculoid taxa and Eunotiales) appearing as outgroups. With single-gene *rbcL* and *psbC* (Fig. 4 and Supplementary Fig. 6) the outgroup is composed almost wholly of Eunotiales, other non-Bacillariaceae being scattered among clades 1–8, though never within any of them. Thus, (1) the taxa that 'trespass' into the Bacillariaceae are not the same in the different trees, and so, not surprisingly, (2) there is no support for any node that makes the Bacillariaceae non-monophyletic.

The genus *Undatella*, which has never been included in the Bacillariaceae but possesses fibulae (Paddock and Sims, 1980), is placed within the least inclusive clade containing Bacillariaceae species in the *rbcL*, *rbcL*–nSSU and nSSU trees (Fig. 4, Supplementary Figs 2, 4); it appears to be a close relative of the Bacillariaceae and could arguably be included within the family.

The four-gene tree (Fig. 3) shows good support for **eight major clades** of Bacillariaceae (numbered 1–8 in the figures). Support values are >85% except for clade 5 (78% bootstrap) and clade 3, which comprises only a single representative of a clade sampled more extensively in the single-gene nSSU and *rbcL* analyses. There is also support (>85%: Supplementary Table 3), for 12 subclades (4A, 4B-I, 4B-II, 5A, 5B, 6A, 6B, 8A-I, 8A-II, 8B, 8C-I, 8C-II), either solely in the 4-gene tree or (for some clades represented in the 4-gene tree by only one terminal) in a combination of the 4-gene tree and one or more of the single-gene and other concatenated trees. The relationship between the eight major clades is unclear, with moderate support (>70%) only for a few nodes linking them and then only for those that separate from each other 'high' in the tree (i.e. those that probably diverged from each other most recently): there is 78% support for a sister relationship between clades 5 and 6 and 88% for one between clades 7 and 8. Clades 4–8 form a monophyletic group with 72% support. Deeper relationships are essentially unresolved. The *rbcL*–nLSU tree has a very similar topology to the four-gene tree, with good support (>70%) for all the numbered clades and subclades.

The single-gene *rbcL* (Fig. 4), nSSU, nLSU and *psbC* trees (Supplementary Figs 4–6), and the *rbcL*–nSSU and *rbcL*–nLSU trees (Supplementary Figs 2, 3) include clades that correspond to the eight major clades present in the four-gene tree (Fig. 3). However, perhaps not

11

surprisingly, since they are based on a wider sampling of taxa, they also contain some extra wellsupported clades not represented in the four-gene tree. These are clades W, X and Y in *rbcL* and *rbcL*–nSSU (Fig. 4 and Supplementary Fig. 2); B and F in nSSU (Supplementary Fig. 4), and apochlorotics-B (a clade of obligate heterotrophs) in nLSU (Supplementary Fig. 5). There are also some unsupported clades ('groups': Z in *rbcL* and *rbcL*–nSSU; E in nSSU) and grades (e.g. A, C and D in nSSU; V in *rbcL*). Some taxa that are included within the major clades in the fourgene tree are separated from them in individual gene trees; for example, *Tryblionella* cf. *compressa* and *Nitzschia* cf. *aequorea* are included in clade 8B in the four-gene tree (Fig. 3) but form a separate grade ('V') in *rbcL* (Fig. 4). *Cox1* (Supplementary Fig. 7) has been sampled less than the other genes and its dataset lacks representatives of three major clades (clades 1, 3 and 5).

In addition to all the groupings mentioned, there are a few taxa that are not clearly linked to any others in any tree. These include *Cymbellonitzschia banzuensis* (in nSSU, *rbcL* and *rbcL*–nSSU), *Nitzschia alba* (nLSU: information on this species is inevitably limited by the absence of photosynthesis genes), and the toxin-producing *N. bizertensis* (nSSU, nLSU). Dinotom sequences (*rbcL* only: Fig. 4) are scattered through clade 6B and clade W; the phylogeny suggests that at least six or seven different Bacillariaceae may have been involved in endosymbiotic events with dinoflagellates (see also Yamada et al., 2019, supplementary figure S1).

Some of the groupings present in our trees have been noted previously. Clade 8C (*Pseudo-nitzschia* and *Fragilariopsis*) was detected by Lundholm et al. (2002a, as "clade A") in LSU phylogenies. It is also seen in the SSU phylogeny of Rimet et al. (2011), where a link between clade 8C and species belonging to clades 8B and 8A-I was also demonstrated.

3.2. Apparently misplaced taxa

In all trees there are sequences that seem misplaced, given the identifications made by their authors. We give three examples, which probably have different explanations, discussed later and in Supplementary File 10. The first is the *cox1* sequence KJ671739 of clone A2ni, which was identified as from "*Pseudo-nitzschia* sp.". Whereas *Pseudo-nitzschia* sequences generally form a well-supported homogeneous monophyletic group (clade 8C), either alone or with

Fragilariopsis (in the nLSU tree: Supplementary Fig. 5), in the *cox1* tree (Supplementary Fig. 7) KJ671739 is placed anomalously, outside the *Pseudo-nitzschia–Fragilariopsis* clade, although GenBank BLAST of KJ671739 does indeed return *Pseudo-nitzschia* species (*P. lundholmiae*, and *P. hasleana*) as the nearest matches, though with low percent identity (c. 85%).

The second example is several sequences from a single study (Huang et al., 2017: strains Xmm11S4, Xmm20S5, Xmm16S2 and Xmm28S1), supposedly representing *N. dubiiformis*, *N. palea*, *N. capitellata* and *N. epithemioides*. Each of these species is also represented in our SSU dataset by other sequences (from other clones), none of which group with the Xmm strains. We consider that all for these Xmm clones were misidentified, since none of the photographs provided by Huang et al. show the diagnostic characteristics of the four species named.

The third example of apparently misplaced sequences is given by two of our own strains, BC0799 and TCC886. TCC886 is referred to in our trees (nSSU, rbcL, rbcL-nSSU: Fig. 4, Supplementary Figs 2, 4) as "Nitzschia cf. palea" but it was originally identified by us with LM, and also by Luc Ector (personal communication), as N. palea. It agrees with descriptions of N. palea (e.g. Krammer and Lange-Bertalot, 1988; Cantonati et al., 2017) in shape, dimensions, and stria and fibula density (Fig. 5J; compare N. palea in Fig. 5C-I). However, whereas other N. *palea* sequences (except the Xmm strain already mentioned) belong to one shallowly branching subclade of clade 6B, whatever the gene analysed (e.g. Figs 3, 4), TCC886 is positioned far away from clade 6B, on its own (SSU) or in an unsupported grouping ('Z') also including N. lorenziana (rbcL, rbcL-nSSU). Clone BC0799 (Fig. 5A, B, K) was likewise identified by us originally (by LM) as N. palea and, like TCC886, falls outside the main N. palea clade, lying within clade 6B in a very well supported subclade (100% support in both *rbcL* and *rbcL*-nLSU) containing other delicate 'Lanceolatae' species. Although the fine striation of BC0799, which is almost unresolvable in LM (c. 47 in 10 µm) is beyond the limit given for N. palea in floras (Krammer and Lange-Bertalot, 1988; Cantonati et al., 2017), it is not greater than the highest densities recorded by Trobajo et al. (2009) for clones assigned to the N. palea complex on the basis of their gene sequences. The overall shape, fibulae and stria pattern of clone BC0799 conform to those of N. palea (compare Fig. 5A, B with Fig. 5C-I). The ultrastructure of BC0799 and TCC886 also agrees well with N. palea, with uniseriate striae, two longitudinal rows of poroids within the raphe canal (Fig. 5K–N), and an interruption of the striae at the junction between the valve face and the distal mantle (not shown).

3.3. How well do the traditional classifications of the Bacillariaceae agree with the molecular phylogenies?

The following points emerge from a comparison of the principal clades of the molecular phylogenies (see the 4-gene phylogeny in Fig. 3) with the Grunowian and other historical classifications (Fig. 4 and also Table 1, Supplementary Fig. 1):

- Clade 1 consists of *Bacillaria* sequences. However, two further sets of species identified as *Bacillaria* [the three 'Bacillaria II' sequences in nSSU (Supplementary Fig. 4), and 'cf. Bacillaria' in nSSU, *rbcL* (Fig. 4) and *rbcL*–nSSU (Supplementary Fig. 2)] lie outside clade 1, implying that *Bacillaria* is polyphyletic (but see General discussion).
- The genus *Nitzschia* is non-monophyletic. *Nitzschia* species comprise all of clades 2, 4B-II, 6, 8A, almost all of 8B, and X, and there is also a scatter of species elsewhere (Figs 3, 4, Supplementary Figs 2–7).
- Clade 2 contains the type species of *Nitzschia*, *N. sigmoidea*, and is therefore by definition 'typical' *Nitzschia*. It corresponds quite well to the group referred to earlier (by Mann, 1986) as 'subgenus *Nitzschia*', which was characterized by the presence of flaps of silica (conopea) externally, extending out on either side of the raphe (Fig. 6A; see also Lobban et al., 2019). However, the *rbcL* tree (Fig. 4) indicates that clade 2 also includes some species (*N. alicae*, *N.* aff. *sublinearis*, *N. heufleriana*) that lack conopea and so have not previously been thought to belong to 'subgenus *Nitzschia*' (see section 3.4).
- Clades 3 and 7 correspond to the genera *Hantzschia* and *Cylindrotheca*, respectively. Three subclades, 4B-I, 8C-I and 8C-II, also correspond to genera that are currently accepted, namely *Psammodictyon*, *Fragilariopsis* and *Pseudo-nitzschia* (Figs 3 and 4). *Fragilariopsis* was recovered within *Pseudo-nitzschia* in some previous analyses based on nLSU or ITS rDNA (e.g. Lundholm et al., 2002a; Lim et al., 2018) and in our nLSU tree too (Supplementary Fig. 5), but its position there was without support and the two genera are separated in all our trees apart from nLSU.
- Only a few clades correspond to Grunowian sections. One of them that does is clade 5B (Figs 3, 4), which corresponds to Grunow's *Nitzschia* sect. *Apiculatae* (e.g. Fig. 2E), Interestingly, this section was abandoned and subsumed within an undifferentiated

section *Tryblionella* by Hustedt (e.g. 1930), which was in turn promoted to a separate genus by Round et al. (1990), who emphasized the wide and folded valves and frequently interrupted striae (Fig. 2C–E) as characteristics of the genus. Our analysis contained three further isolates that fall within the definition of *Tryblionella* by Round et al. (1990). These are *T. debilis* (*rbcL* only, Fig. 4; a valve is shown in Fig. 2C), *T. compressa* (nLSU only, Supplementary Fig. 5), and *T. cf. compressa* (all analyses except *cox1*: for a valve, see Fig. 2D). The relationships of *Tryblionella debilis* are unclear: if it is indeed related to *N. tubicola*, as *rbcL* suggests, *T. debilis* would belong to clade 5, like *T. apiculata*, *T. hungarica* and *T. gaoana*, but *Tryblionella* would nevertheless be non-monophyletic. The position is clearer with respect to *Tryblionella compressa* and *T. cf. compressa*, since they clearly belong to clade 8B, far from the other *Tryblionella* species in clade 5 (Figs 3, 4), despite sharing folded valves (as required for both *Tryblionella* and *Apiculatae* according to Grunow: Table 1). The modern and older definitions of *Tryblionella* therefore need to be revised.

- Most of Grunow's sections *Dubiae* and *Bilobatae* probably belong in clade 4B (Figs 3, 4), but one species, *N. umbonata*, is apparently quite unrelated (Fig. 4, where it appears in group Z), despite having an almost identically shaped valve and raphe to *N.* cf. *dubia*.
- The sigmoid *Nitzschia* species (e.g. Fig. 1G) do not constitute a monophyletic group (see, for example, the positions of taxa belonging to Grunow's *Sigmoideae*, *Sigmata* and *Obtusae* in Fig. 4) and there is therefore a conflict with the amalgamation of all into an expanded *Sigmoideae* that was made by Hustedt (1956). The sigmoid species fall into clades 2 (which contains Grunow's *Sigmoideae* species), 6A (containing Grunow's *Sigmata*) and 6B (containing Grunow's *Obtusae* but also representatives of other Grunowian sections).
- Grunow's sections *Lanceolatae*, *Lineares* and *Nitzschiella* are polyphyletic (Fig. 4). The artificiality of the *Lanceolatae* was already evident from the single-gene nSSU study by Rimet et al. (2011) but is even clearer with expanded datasets.
- The single *Denticula* species included (*D. kuetzingii*) is embedded in clade 8B, sister to *N. amphibia* (a member of Grunow's sect. *Lanceolatae*), again undermining the validity of the current concept of *Nitzschia* (Fig. 3).

3.4. Can the major molecular clades and subclades be characterized morphologically?

We have mapped some morphological features onto the *rbcL* tree (Fig. 4) in order to see whether any of them characterize the major clades and could perhaps serve for identifying taxa where molecular data cannot be obtained (e.g. in fossils or rare species). The features comprise some that are not used in traditional classifications (because they cannot be assessed in LM), such as the structure of the striae and raphe canal. In addition, of course, the Grunowian sections to which particular sequences are assigned in Fig. 4 summarize the distribution of the LM characters listed in Table 1. Wherever possible, we used information derived from the clone that was sequenced. However, it is important to have in mind that there is often little or no extra information about a clone in GenBank beyond a name and a source location and author(s); in such cases we usually used morphological information published for the species to which the sequences were assigned. Our surveys were aided by the catalogues of diatom images published by Gaul et al. (1993) and Henderson and Reimer (2003), a survey of publications since 2003, and our own data.

Inspection of the characters plotted in the *rbcL* tree (Fig. 4), either implicitly (via the characters summarized in the Grunowian classification) or explicitly, reveals the following:

- None of the eight major clades, except possibly clade 1, can be defined by even a single morphological synapomorphy. The possible exception may be the special colony type discovered in *Bacillaria paxillifera* in the 18th century and generally considered to be the defining characteristic of the genus *Bacillaria* (though not of the section *Bacillaria* within *Nitzschia* as defined by Grunow in Cleve and Grunow, 1880), but even this is not certain because of the lack of documentation for some of the clones sequenced.
- Most morphological characters show some degree of homoplasy when mapped on our molecular trees, even those that are invariable within at least one of the major clades. For example, constant hantzschioid symmetry (i.e. no nitzschioid frustules are formed) is present throughout clade 3 (corresponding more or less to the genus *Hantzschia*) but, though rare outside, it does occur in at least two other taxa in the molecular trees (*N. varelae* in clade 6B and *Cymbellonitzschia*: Fig. 4 and see also Carballeira et al., 2017, and Stepanek et al., 2016). Constant hantzschioid symmetry is also present in three species that can be assigned to clade 2 on the basis of their morphology (presence of

conopea: Mann and Trobajo, 2014). Again, since the three Grunowian groups possessing sigmoid frustules do not comprise a single clade (see above), either sigmoid shape or non-sigmoid shape or both must be homoplasious in the Bacillariaceae.

- One ultrastructural character that has until now (e.g. Mann, 1986; Mann and Trobajo, 2014; Lobban et al., 2019) appeared to be a reliable guide to relationships is the presence of external silica flaps (conopea), adjacent to the raphe. This had previously appeared to be a synapomorphy for clade 2 (which, as already noted, includes the type species of *Nitzschia*, *N. sigmoidea*: Fig. 6A) but is now revealed to have been lost in at least three species (*N. heufleriana*, *N. alicae* and *N.* aff. *sublinearis*: for SEM of the clones that we studied, see Fig. 1I and Supplementary Fig. 8; also Hlúbiková et al., 2009). Hence, the presence of conopea seems to be a sufficient basis for assigning particular Bacillariaceae to clade 2 but it is not essential for group membership.
- The presence (Fig. 2F) or absence (Fig. 2A) of central raphe endings, generally detected in LM by the presence or absence of a wider space between the central fibulae or by a very small thickening of the valve between the raphe slits (a 'central nodule'), has long been important in the taxonomy of Bacillariaceae. The first use of the character seems to have been by Grunow (in Cleve and Grunow, 1880: Table 1) and the character was also emphasized by Hustedt (e.g. 1929, 1949). Since almost all raphid diatoms outside the Bacillariaceae possess central raphe endings, their absence is presumably apomorphic in the family. The distribution of this character state (Fig. 4) indicates many independent losses of central raphe endings and sister species sometimes differ in this respect (e.g. in clade 6B, *N. capitellata* has central endings but *N. palea* does not). In contrast, central raphe endings are consistently absent, so far, in clades 1 and 2.
- The striae are similar in most Bacillariaceae, comprising single (uniseriate) lines of simple round or oval poroids, and this appears to be the ancestral condition (Fig. 4). However, clade 4B-I contains species in which the areolae are chambered ('loculate': Fig. 2F) and clades 5B and 8C have independently evolved bi- to multiseriate striae (Figs 2E, 6B; see also the single-gene SSU analysis by Rimet et al., 2011).
- Some ultrastructural characters appear to be at least as helpful as some of the LM characters used in traditional classifications, despite evidence of homoplasy. One set of underused valve characters comes from the structure of the raphe canal walls, for

- example a doubling of the striae within the raphe canal (Fig. 6D, E, G; see also Trobajo et al., 2006, 2013), which in our dataset is almost restricted to clade 8A-I (Fig. 4); the exception is one species of clade 8B (N. amphibia: Fig. 6D). Another, though more homoplasious character is the number of longitudinal rows of areolae in the canal, which can be zero (e.g. in *Pseudo-nitzschia* and *Fragilariopsis*: Fig. 6B); consistently only one in most species of clades 8B and 8A-II (Fig. 6C) but occurring also elsewhere; one to two (e.g. in *N. palea*, Fig. 6F); strictly two, as in many of clade 8A-II and some clade 6B (Fig. 5K); through to three or more rows, e.g. in the type species of Nitzschia, N. sigmoidea (in clade 2: Fig. 6A), and N. sigma (in clade 6A; Fig. 6H). A difference in the number of longitudinal rows of poroids within the raphe canal appears to distinguish clade 8A-I, with two or more rows (Fig. 6E, G), from 8A-II and 8B, both with only one row (Fig. 6C, D), thus reinforcing the morphological separation between these subclades evident from the doubling of the striae within the raphe canal. The absence of poroids in the raphe canals of *Fragilariopsis* and *Pseudo-nitzschia* (noted also by Lundholm et al., 2002a) correlates with the planktonic habit of these genera, in which the raphe has lost much of its usual functional significance (raphe-associated motility requires a solid substratum to work: Edgar and Pickett-Heaps, 1983), except just after cell division in Pseudo-nitzschia, when the cells slide over each other after cell division to create stepped colonies. The same simplification of raphe canal structure (loss of poroids and narrowing of the canal) occurs also in some other marine planktonic species currently classified in Nitzschia, including N. bicapitata, N. braarudii and N. sicula (Hasle, 1964; see also Lundholm et al., 2002a), and is perhaps adaptive.
- Grunow's classification depended in part on fibula morphology whether the fibulae are clearly visible or not, and if visible, whether they are extended across the valve (Fig. 2B) or not (Fig. 1J. Unfortunately, most of the species with highly extended fibulae (Grunow's sections *Perrya, Epithemioideae, Grunowia, Scalares, Insignes,* and the genus *Denticula*: Table 1), have yet to be characterized by molecular data: exceptions are *N. epithemioides* (nSSU: the species occupies a somewhat isolated position [in Group D] in Supplementary Fig. 4) and *Denticula kuetzingii* (embedded in clade 8B: Figs 3, 4). In Fig. 4 we have plotted five character states for the fibulae, based on their shape and structure, how much they extend inwards into the cell lumen (shallow vs deep) and whether they

extend along the transapical ribs of the valve (the 'interstriae' of Ross et al., 1979). The character states are: (1) narrow, shallow, well separated, rib like fibulae (in clade 7, Cylindrotheca: see Reimann and Lewin, 1964; Round et al., 1990); (2) wider but shallow, solid fibulae that are not extended across the valve and whose bases are usually connected by ridges running parallel to the raphe (Figs 1J, 6B, 7A); (3) deep fibulae that are extended along one or more of the transapical ribs of the valve face but do not reach the midline of the valve (Fig. 7B); (4) deep fibulae that are extended across most or all of the valve face (Fig. 2B); and (5) shallow fibulae that are hollow and striated (because they are penetrated by poroids like those of the valve face: Fig. 7C). The distribution of these states in Fig. 4 suggests that, despite evidence of homoplasy, fibula morphology is a rather conservative character. For example, clade 4B species have type 3 fibulae, though this type is also found in other clades. In our dataset, the only species with type 5 fibulae are Simonsenia species and Tryblionella debilis. Fibula morphology thus separates T. debilis from the two other, unrelated groups of Tryblionella (the T. apiculata group in clade 5B and the *T. compressa* group in clade 8B), both of which have rather small solid fibulae. SEM observations of T. gracilis (Mann, 1978, fig. 721, as "Nitzschia tryblionella") indicate that this species has somewhat similar fibulae to T. debilis and can be predicted to be related to it. There are also similarities between T. debilis fibulae and the hollow fibulae that Sims and Paddock (1982) discovered in T. circumsuta (classified in a different section to T. debilis by Grunow in Cleve and Grunow, 1880; Table 1), which they referred to as 'fenestral fibulae'.

• Details of ornamentation support some molecular groupings that are surprising from gross morphology. For example, clade 4 includes species that have different shapes and symmetries and were consequently classified by Grunow in three different sections (*Panduriformes, Lineares* and *Dubiae*): this grouping was also evident in the studies by Rimet et al. (2011) and Lobban et al. (2019). Despite this, the clade 4 members studied are alike in having a dense covering of round or vermiform warts on the girdle bands and valve margin (Fig. 7D–F), which we have not found elsewhere apart from *Tryblionella apiculata* (Fig. 2E) and *T. hungarica*. The sister relationship between *Nitzschia amphibia* and *Denticula kuetzingii* is also reflected in details of ornamentation, namely the presence

in both of widely spaced 'blisters' on the girdle bands (Fig. 7G, H); these taxa also resemble each other in possessing cribra in their poroids (e.g. Figs 6D, 7G, H).

- The girdle is rarely studied in detail in any group of diatoms and there is no documentation of its structure in most Bacillariaceae. However, our observations suggest that it may characterize particular clades. For example, all clade 8A-1 clones that we have examined (including N. fonticola, N. acidoclinata, N. perminuta, N. hantzschiana, N. soratensis, N. costei) have a complex cingulum structure in which there is a wide band 1 with a single row of small round poroids, two narrow bands (bands 2 and 3) lacking poroids, and finally a wide band 4 bearing a single row of elongate poroids (Fig. 8F, G). This structure contrasts with the examples of clade 8B that have been studied (in Denticula kuetzingii, N. amphibia, N. inconspicua and Tryblionella cf. compressa), where wide and narrow bands alternate (Fig. 8D, E, H, I): bands 1 and 3 are wide and bands 2 and 4 narrow. We term this a "serial repeat" girdle. Furthermore, in contrast to species of clade 8A-1 and 8B, and also Psammodictyon constrictum (Fig. 8J) and Nitzschia sigma (Fig. 8L), in all of which there are abrupt changes in band width and structure across the girdle, the girdle bands of several species in clades 1, 2, 3, 4B-IIa, and 5A change ±gradually in width and complexity from the valve outwards, from a wide band with two or more longitudinal rows of poroids next to the valve, to narrow bands with fewer rows of much smaller and more closely spaced poroids (or no poroids at all) distally. Examples are Bacillaria paxillifera, N. sigmoidea, Hantzschia amphioxys sensu lato and N. linearis (Fig. 8A–C, L).
- The principal difficulty in studying girdle structure is that the bands furthest from the valve are usually the thinnest and most delicate and the most easily lost during specimen preparation. However, even if this means that the whole of the girdle cannot be reconstructed, some useful information can often be gained from the morphology of the first band (i.e. the one closest to the valve) or bands. For example, whereas clade 8A and 8B *Nitzschia* species have a single row of poroids in band 1 or none (Figs 7D, E, 8D, E, H, I, Supplementary Fig. 9A), some (but not all) superficially similar species in clade 6B have two rows of poroids (Supplementary Fig. 9B, C). Clade 2 species also have two or more rows (Fig. 8A and see also Mann and Trobajo, 2014).

- As might be expected from the recovery of *Pseudo-nitzschia*, *Fragilariopsis* and *Psammodictyon* as well-supported monophyletic groups in at least some trees, the particular morphological characters that traditionally define them seem to be synapomorphies. These are the stepped colonies of most *Pseudo-nitzschia* species, the ribbon-like colonies of *Fragilariopsis*, and the chambered areolae (reflected in the decussate striae: Fig. 2F) of *Psammodictyon*.
- We have not made a phylogenetic analysis of 'metric' characters, i.e. the continuously varying classical features traditionally used to separate species, such as valve outline and size, and the linear densities of striae and fibulae. However, inspection of the clades suggests that, for example, clade 8A-II species and a subgroup of clade 6B (marked by an asterisk in Figs 3 and 4) are in general more finely striated (>> 30 striae in 10 µm) and delicate than 8A-I and 8B; clade 5B species, on the other hand, are coarsely structured. The evolution of size and 'delicacy' may be worth further analysis.

4. Overall discussion

4.1. Problems of GenBank sequences

The sequences in GenBank are a precious source of data, even if they are not identified beyond family or genus, and any sequences of Bacillariaceae can potentially help to detect how the group has evolved molecularly. However, taxon identifications in GenBank are not peer-reviewed but rely on the expertise of depositors and, even if identifications are correct when the sequences are submitted, they may become incorrect later, as a result of changes to the classification. Hence interpretation of molecular phylogenies based on GenBank sequences needs to be cautious, especially in a family like the Bacillariaceae, where the taxonomy is often contentious.

An example where incorrect identifications could easily have led to misleading conclusions about non-monophyly is given by some of the '*Bacillaria*' sequences in GenBank. Our nSSU, *rbcL*–nSSU, and *rbcL* trees suggest rejection of *Bacillaria* as a monophyletic group, since in each case there are one or more '*Bacillaria*' sequences outside clade 1. The clade 1 sequences in the nSSU tree comprise five isolates, all identified as *Bacillaria paxillifera* (the type species) or *Bacillaria* sp., which group with 78% support (Supplementary Fig. 4); voucher

material or published photographs are available for some of these five (e.g. BAC901CAT in our collections; EW234 in An et al., 2017) and confirm the generic identifications. Three other clones (BA14c, RVSN23 and Xmm24S4) were also identified by their authors as B. paxillifera or *Bacillaria* cf. *paxillifera* but form a separate, though rather poorly supported (66% bootstrap) clade in the nSSU tree ('Bacillaria II' in Supplementary Fig. 4). This clade is apparently quite closely related to the clade 1 clones but does not form a monophyletic group with them, since the node linking the two Bacillaria clades (which has no bootstrap support) also subtends clade 2 Nitzschia species and some further taxa, including three non-Bacillariaceae sequences (two Undatella species and 'Navicula pulchripora'). However, none of the three 'Bacillaria II' clones can be confirmed as belonging to Bacillaria as this genus is currently defined. We had the opportunity to check the identity of clone BA14c (generously shared with us by Dr F. Pniewski) and found that, while it does indeed possess a more-or-less central raphe like typical Bacillaria species, it does not form the characteristic motile colonies of the genus and it differs from B. paxillifera in fibula structure. The identities of the other two nSSU sequences of 'Bacillaria II' are also doubtful and are discussed, together with the Xmm clones of the four species mentioned earlier (section 3.2: N. dubiiformis, N. palea, N. capitellata and N. epithemioides) in Supplementary file 10.

Such examples, and the '*Pseudo-nitzschia*' clone A2ni mentioned in section 2.2, show the need for careful evaluation of the identifications assigned to GenBank sequences and in some cases the accuracy of the sequence itself (for example, whether a protein-coding sequence is implausible because of indels or 'wrong' amino-acids or extra stop codons). We refer to these two checks as 'curation' of the sequences, following e.g. del Campo et al. (2018) and Rimet et al. (2019). Curation is especially important for nSSU, which was the first DNA marker to be used for microalgal classification (e.g. Medlin et al., 1988). From this 'head start', and because a few small hypervariable regions within the gene (e.g. the V4 and V9 regions) often discriminate between closely related species (e.g. Zimmermann et al., 2011), nSSU has become a favoured "barcode" marker for metabarcoding (e.g. Piredda et al., 2018) and also still provides the largest single set of diatom sequences for phylogenetic analysis. However, the demonstrated utility of nSSU has also meant that it is often used to document clones isolated by laboratories that do not specialize in identifying diatoms and other protists (in contrast to *rbcL, psbC*, and nLSU sequences, which have mostly been generated by laboratories with considerable experience in diatom taxonomy), resulting in many errors of identification. Hence nSSU sequences often need to be checked, including examination of voucher material, if this still exists, or photographs. The bonus of doing this is that, at the same time, data can be gathered for formal analysis of morphology, to determine which, if any, morphological features are shared by the members of monophyletic molecular groups.

4.2. Options for a revision of the Bacillariaceae

Although *Nitzschia* is very clearly paraphyletic (consistent with previous findings, e.g. by Lundholm et al., 2002a; Rimet et al., 2011; Stepanek et al., 2016; Lobban et al., 2019; Mucko et al., 2020, in press), we consider that it would be premature to suggest formal changes to the genera, subgenera and sections of the Bacillariaceae until :

- there has been further opportunity to check (curate) the sequences already available, to minimize misidentifications. Curation of *rbcL* sequences is already undertaken annually to incorporate new GenBank accessions into the Diat.barcode database (Rimet et al., 2019), though this exercise is arguably more rigorous for freshwater diatoms, given the primary use of Diat.barcode to support to river biomonitoring through metabarcoding. No formal mechanisms currently exist, as far as we know, for curating nSSU, nLSU and *psbC* sequences.
- 2. there has been a more comprehensive sampling of the diversity present within the Bacillariaceae. Our *rbcL* and nSSU trees each contain c. 300 unique sequences, but some of these represent multiple samplings of the same morphospecies and the total number of species sequenced for any gene is still far from the 867 "accepted" species names in *Nitzschia* according to AlgaeBase (Guiry, 2019). Sampling of the family is therefore still sparse. Furthermore, the full morphological diversity of *Nitzschia* has not yet been sampled either molecularly or morphologically: many characters remain poorly studied across a range of taxa and six of the 24 morphology-based sections created by Grunow (*Pseudotryblionella, Circumsutae, Insignes, Scalares, Perrya* and *Pseudoamphiprora*) are unrepresented in any of our trees. All six are marine or brackish groups and some are very rare: *Perrya* and *Pseudoamphiprora* species have probably never been seen alive.

- 3. several existing, valid genus names in the Bacillariaceae (some created many years ago but often neglected and rarely used) have been typified, because some of these names may be available for some of the potential splits of the family identified below. Examples are Zotheca (Pantocsek, 1902) and Grunowia (Rabenhorst, 1864). No type has been designated for *Zotheca* but among the species included by Pantocsek is one - Z. punctata - that is probably related to our T. cf. compressa and Tryblionella compressa; the genus name might therefore be available for clade 8B. For Grunowia, a type has been designated and this is G. sinuata (basionym Denticula sinuata), currently treated as *Nitzschia sinuata*. The girdle structure of *N. sinuata* (Mann, 1978, fig. 790) corresponds to that present in clade 8A-I, suggesting Grunowia might be available for this group, but so far there are no sequences for any gene in N. sinuata. Other potentially useful names are Pritchardia Rabenhorst (1864), Perrya Kitton (1874), and several recently described splits for which there are no molecular data (Supplementary Fig. 1). Finally, the name Nitzschiella, as well as being the name Grunow gave to one of his sections, is also available at generic level (Rabenhorst, 1864) and, depending on how it is lectotypified, could be available for either clade 4A (if typified with N. longissima) or clade 6 or 6B (if typified with N. acicularis). We recommend making it available for clade 6 or 6B, since the species related to N. acicularis (e.g. N. palea, N. paleacea, N. capitellata) are quintessential Nitzschia species for many people (lightly silicified and delicate valves, with very few morphological features to characterize them in LM) and the name Nitzschiella (='little *Nitzschia*') seems appropriate.
- 4. it has been decided whether *Craspedostauros*, *Achnanthes* and *Staurotropis* (hereafter the 'CAS genera') belong in the Bacillariaceae or not. The molecular data are currently equivocal because of the lack of support for the basal nodes of the trees and we cannot detect any morphological character that unambiguously supports evolution of the CAS genera from fibulate Bacillariaceae. The pore occlusions of CAS genera are cribra and volae (Round et al., 1990, Cox, 1999; Ashworth et al., 2017), rather than the fine sieve-like structures (hymenes: Supplementary Fig. 9D–F) present in Bacillariaceae, and no CAS species have fibulae. The possession of two chloroplasts positioned fore and aft in most CAS cells is shared with Bacillariaceae, but it does not

discriminate between the possibilities of CAS being part of the ingroup or instead a closely related outgroup. One intriguing similarity between the Bacillariaceae and the CAS genus *Achnanthes* is that the silica deposition vesicle, containing the nascent valve, is moved bodily across the cell during valve formation (Pickett-Heaps et al., 1990), so that the sternum or raphe-sternum lies on one side of the valve rather than centrally. However, this does not happen in all CAS genera (the raphe is central in *Craspedostauros* and *Staurotropis*). Overall, there are as yet no strong arguments against the monophyly of the fibulate Bacillariaceae from molecular or morphological data, and one argument for it (possession of fibulae!). We therefore consider that it is unproven, and on balance unlikely, that the CAS genera belong within the Bacillariaceae, but this need to be tested further by deeper sampling of the genome (for instance using whole chloroplast genomes) and formal analysis of CAS and Bacillariaceae morphology.

The programme of work outlined above is unlikely to be completed quickly. However, although we do not make any formal proposals for a new classification here, we can identify some of the constraints that should apply during any future taxonomic revision. One is stability of names. In their analysis of Surirellales and Rhopalodiales, in which they showed that several existing genera were not monophyletic, Ruck et al. (2016) noted that "non-monophyly at the genus level requires decisions and trade-offs that balance sinking some generic names into others, or creating (sometimes many) new names" and they set a "goal of retaining as many old names as possible." We agree with this approach. In the Bacillariaceae, however, minimizing name changes will be particularly problematic, because *Nitzschia* species are distributed among several major (=speciose) clades. In Table 2 we summarize a few of the ways in which the Bacillariaceae, except for the position of the CAS genera, will be confirmed by further sampling of taxa and genes.

• Option A: This is the most extreme option and would combine all Bacillariaceae into one genus and attempt to conserve the name *Nitzschia* against the earlier *Bacillaria*. If this was done, the majority of names in the Bacillariaceae would remain as they are now because, compared to *Nitzschia* (with its 867 accepted species names: Guiry, 2019), the

other genera of Bacillariaceae are all relatively small (even Pseudo-nitzschia and Hantzschia, with c. 60 and c. 100 species respectively: op. cit.). The advantages of option A would be (1) that there would have to be a relatively small number of new names to accommodate other Bacillariaceae in Nitzschia (and in fact many Pseudo-nitzschia species already have names in *Nitzschia*) and (2) a simple morphological definition of the genus – a combination of fibulate raphe system, fore-and-aft chloroplasts, and hymenate pore occlusions would characterize the vast majority of species (Fig. 1, 9D-F). However, option A would create an even larger Nitzschia than the monster it already is and would lead eventually, given the likely increase of species numbers through discovery and revision (cf. Mann and Vanormelingen, 2013), to a genus containing several thousand species. This would make Nitzschia one of the largest genera of photosynthetic eukaryotes (even now, only 22 genera of angiosperms contain more species than Nitzschia: Frodin, 2004). Further disadvantages would be the loss of several accepted genera – Bacillaria, Pseudo-nitzschia, Fragilariopsis, Psammodictyon, Simonsenia, Cylindrotheca and Hantzschia – which form well-supported monophyletic groups with morphological autapomorphies and, in several cases, somewhat similar ecology. Altering the status of Pseudo-nitzschia in particular would be very disruptive because of its importance in causing harmful algal blooms and hence an enormous body of research literature 'tied' to the name.

- Option B represents another way to avoid extensive reassignment of existing *Nitzschia* species to other genera. It is predicated on *Bacillaria* being a basal branch off the Bacillariaceae phylogeny, as several of our trees indicate. This would again require the abandonment of most genera of the Bacillariaceae.
- Options C and D achieve a conciliation with the molecular data by erecting new genera (or resurrecting and redefining old names) for some of the clades or subclades. Option C would probably be the worst of the four we identify in Table 2, since it would neither avoid the extensive renaming of *Nitzschia* species, nor maintain the current concepts of *Pseudo-nitzschia* and *Psammodictyon*.
- Option D would maintain currently recognized genera, including *Pseudo-nitzschia* and *Fragilariopsis*, but would require drastic changes in *Nitzschia* itself. It would also require major redefinition of *Tryblionella* (restricting this to the *Apiculatae* of Grunow) and of

Denticula, which could perhaps be used for clade 8B. It should be remembered too that the number of generic groupings listed for option D is a minimum, since the better sampled single-gene trees (SSU and *rbcL*) suggest the existence of several further nearbasal branches, e.g. 'group Z' in the *rbcL* tree (comprising *N. umbonata*, *N. lorenziana* and *N.* cf. *palea* TCC886: Fig. 4 and Supplementary Fig. 2), and '*Bacillaria* sp.' SH349.These groups, like *Cymbellonitzschia*, may not contain many species, although very recently Mucko et al. (2020, in press) have described a new species (*Nitzschia inordinata*) that is related to '*Bacillaria*' SH349. The two species have a similar valve and raphe structure (our unpublished data for SH349) but *N. inordinata* has sigmoid frustules (SH349 is straight: An et al. 2017).

Kociolek and Williams (2015) suggested that diatomists have been overcautious in erecting new genera, noting that 64000 fish taxa are grouped into 12000 genera, whereas roughly the same number of diatom taxa are grouped into only 1200 genera. This comparison is arguably not a good basis for guiding taxonomic decisions in diatoms, because in fish there are many easily recognizable morphological characteristics available for classification and identification (see also below, 'Cryptic clades'). Nevertheless, we do favour splitting *Nitzschia* (e.g. option D), despite the large number of new nomenclatural combinations it will require, because it will allow long-established genera, such as *Pseudo-nitzschia*, *Fragilariopsis*, *Cylindrotheca* and *Hantzschia*, to be retained. In addition, although the new genera required (to accommodate each of clades 4A, 4B-II, 5A, 6 and 8A or 8A-I and 8A-II, and other groupings for which there is as yet limited or no robust support) may not possess any morphological synapomorphies, they may in time be found to possess unique features of primary or secondary metabolism, once it becomes routine to determine the metabolome of isolates or to estimate metabolic potential from genomes.

4.3. A strategy for a future revision

Obtaining representatives of the unsampled morphological groups. The obvious next step towards revising the Bacillariaceae is to isolate and sequence members of unsampled morphological groups. As mentioned previously, these include Grunow's sections *Circumsutae*, *Pseudotryblionella*, *Pseudo-amphiprora*, *Perrya*, *Scalares* and *Insignes*, which are predominantly marine or brackish epipelic diatoms. Other sections that are rather poorly sampled include *Tryblionella* and *Grunowia* as defined by Grunow, and there is a general problem, that tropical diversity has been sampled much less than temperate diversity.

Sampling hidden diversity. Choosing clones for sequencing based only on morphology will likely miss significant aspects of biodiversity in the Bacillariaceae. This is illustrated by the example given in section 3.2, concerning morphological similarities in LM and SEM (Fig. 5) between *Nitzschia palea sensu stricto* (clade 6B), *N.* cf. *palea* BC0799 (clade 6B, but outside *N. palea sensu stricto*) and *N.* cf. *palea* clone TCC886 (group Z in *rbcL* and *rbcL*–SSU), or between the different lineages of "*N. inconspicua*", which is a paraphyletic 'species' (Rovira et al., 2015, confirmed by the present paper: Figs 3, 4). Or again, it is unlikely that it could ever have been suspected from morphology *Nitzschia umbonata* branches from a deep node of the Bacillariaceae (Fig. 4): *N. umbonata* has been an unquestioned member of the *Dubiae* group from 1880 onwards (Cleve and Grunow, 1880, as *N. thermalis;* Krammer and Lange-Bertalot, 1988), but in the *rbcL* tree other *Dubiae* belong far from *N. umbonata*, in clade 4B. In this respect, metabarcoding (increasingly used for biomonitoring and biodiversity surveys) may be helpful, by identifying unexpected diversity and discovering localities for targeted isolation and sequencing.

Markers to be sequenced. The lack of robust support for any of the basal nodes within the Bacillariaceae, even in the four-gene analysis, suggests that a wider sampling of the genome may be needed before the deeper relationships can be established. Other chloroplast genes (*psaA*, *psaB*, *psbA*, and *atpB*) have phylogenetic information profiles much more closely resembling that of *rbcL* and *psbC*, suggesting that the plastome should be explored further as a source of the necessary data (Theriot et al., 2015). *Within* each of the main clades (i.e. in each of the genera and putative genera in option D of Table 2) the present range of genes may be sufficient to solve most taxonomic problems. Indeed, the *rbcL*+nLSU combination seems to approach the four-gene set in terms of resolution and support and could be an economic way to characterize and place new isolates. The use of nSSU needs comment: while providing some information on species-level discrimination (hence its value as a barcode marker for broad characterizations of eukaryote diversity), nSSU has very low *phylogenetic* signal over the entire length of the sequence (especially when compared to *psbC* and *rbcL* sequences) across the entire diatom tree, especially for closely related diatoms; its main attractive property as a phylogenetic (rather than barcode) marker is that phylogenetic signal rises slowly and steadily to deeper reaches in the tree

(Theriot et al., 2015). Conversely, *psbC* and *rbcL* have a great amount of phylogenetic signal across the diatom tree, especially towards the tips of the tree (Theriot et al., 2015).

Morphological characterization. In itself, a well-supported molecular phylogeny is not particularly informative, unless the focus of the study is how genes evolve. In most cases, what makes a phylogeny interesting is what it implies about how the properties of the organisms have evolved – their morphology, ecology, metabolism, etc – but, as we have already noted, for many of the sequences in Bacillariaceae in GenBank, there is little information about the diatom from which they were obtained, apart from a species or genus name. It is important, therefore, that new sequences for phylogeny reconstruction are accompanied by ancillary data on organisms' properties, including as full a documentation as possible of morphology. For the Bacillariaceae it would be helpful to expand the list of characters that diatomists routinely survey. In particular, our data (e.g. Figs 4, 6–8) suggest that details of the raphe canal and the structure of the girdle deserve more attention.

To that end, we advocate reconsideration of all morphological features of these diatoms from a phylogenetic perspective. That is, we advocate that those attempting phylogenetics of these diatoms cautiously abandon traditional views of characters. For example, shape is not a single character, but is a compilation of curvatures along the length of the frustule. Many features should be re-examined from the simple perspective that similarity is sufficient to propose homology, to be tested against congruence among characters (Patterson, 1988). Where this approach has been taken in the Bacillariaceae (in admittedly a very limited attempt), the results have been surprisingly congruent (Lobban et al., 2019). It has also produced reasonably congruent results in the EARS group (Ruck and Kociolek, 2005; Ruck and Theriot, 2011; Ruck et al., 2016). Among *Aulacoseira* species, a combination of molecular data, qualitative morphological data, and quantitative morphological data often complemented, rather than conflicted with each other (Edgar and Theriot, 2004). The utility of morphometric data in Bacillariaceae phylogeny has not yet been explored.

4.4. Cryptic clades

Having drawn attention earlier to what we believe are promising new sources of morphological data (section 3.4), we note that, for several of the major clades (2, 4, 5, 6 and 8) and subclades

(4B, 6B, 8A and 8B) within the Bacillariaceae, there seem to be no morphological characters that are common to *all* the known members of the group and absent in all other groups. In some of these clades, however, particular morphological characters are present in *most* of the species included and are found nowhere else (i.e. they are most likely to be derived characters), but they have apparently been lost or modified secondarily in a few. Examples are clades 2 (the presence of conopea characterizes most members but *N. sublinearis*, *N. alicae* and *N. heufleriana* have apparently lost them) and subclade 8C-II (almost all 8C-II species form stepped colonies but *Pseudo-nitzschia americana* does not: Lundholm et al., 2002b). In other clades or subclades (4, 4B, 5, 6, 6B, 8A, 8B), however, the prevalent valve morphology and life-form do not separate the clade from other clades and there is no evidence that any morphological synapomorphy has ever been present: the clade is 'cryptic'.

Cryptic clades have also been reported in groups that are much more character-rich than diatoms (e.g. in Leguminosae and Rhamnaceae within the angiosperms: Wojciechowski et al., 1993; Richardson et al., 2000), though diligent study sometimes reveals that some initially 'cryptic' clades do in fact possess morphological or anatomical apomorphies. For example, Pennington and Gemeinholzer (2000) discovered new fruit-wall characters that separated some, though not all, of the clades of Andira species (Leguminosae) that had previously seemed to be cryptic. Such discoveries are less likely in diatoms and other unicellular organisms because of the much more limited list of morphological characters that are available. Indeed, in the Bacillariaceae, the only potentially rich source of characters that has not been fully tapped is the girdle: our observations suggest that girdle characters may help define and characterize some clades and subclades (for example, clade 8A-I), but there is as yet too little information to be sure. If future studies confirm that many Bacillariaceae clades are indeed cryptic, it will imply that any 'key innovations' they possess (a key innovation being "a trait ... that provides access to novel resources and that, as a result, facilitates an increase in the total diversification (species richness) of the parent clade": Rabosky, 2017) are physiological or biochemical, not morphological. An example of such a clade may be the heterotrophic *Nitzschia* species, which are morphologically diverse but may have a single origin (Onyshchenko et al., 2019).

Acknowledgements

AW and ChL acknowledge funding from Polish National Science Centre (NCN) in Cracow [grant no. N2012/04/A/ST10/00544]. Thanks are due to Dr. Przemysław Dąbek, Ewa Górecka and Marta Krzywda, Nickolai Davidovich and Olga Davidovich for isolations and for help with lab work. AW also acknowledges support from Chinese Academy of Sciences President's International Fellowship Initiative (PIFI) and is grateful to Dr. Rinat Gogorev for providing samples from King George Island for isolation. The following research programs supported isolation and sequencing of the diatom strains from the TCC: @speedID, Bibliothèque du vivant (French Barcoding of Life projects), IperRetro (ANR project, France), Mayotte project (AFB France), Diamed, Modelecotox (FNR projects, Luxembourg), L. Kermarrec's PhD grant (Asconit Consultants and ANRT, France), and SYNAQUA Interreg project FR-CH. RT acknowledges support from the CERCA Programme/Generalitat de Catalunya and from a SYNTHESYS project (funded by EU FP7 under the "Capacities" Programme). The Royal Botanic Garden Edinburgh (RBGE) is supported by the Scottish Government's Rural and Environment Science and Analytical Services Division. The *rbcL* sequences of the Edinburgh 'BC' clones were obtained by SS and DGM as part of UK Environment Agency contract SC140024 (see Kelly et al., 2018). DGM and RT thank Frieda Christie for her help and oversight in the electron microscopy facility of RBGE, and Dr Gillian Simpson for some *rbcL* sequences that have remained unpublished for far too long.

Appendix. Supplementary material

Supplementary Table 1. GenBank accessions used to construct the 4-, 2- and single-gene trees. Supplementary Table 2. New sequences obtained for the present study.

- Supplementary Table 3. Bootstrap support values for the main clades and subclades of Bacillariaceae in the concatenated and single-gene trees.
- Supplementary Fig. 1. Changes in the generic and sectional classification of the Bacillariaceae. The classification of Bacillariaceae has developed in a complex way over more than 200 years. We show only the principal changes and have structured the diagram to show the

classification as it existed at four dates: (1) the first formal classification of the Bacillariaceae by Grunow (1862, as the 'Nitzschieae'); (2) the revised system that Grunow developed for his monograph of the family in 1880 (in Cleve and Grunow, 1880); (3) the classification as it existed by Hustedt's death in 1967; and (4) an estimate of the current state (incorporating the infrageneric groupings of Krammer and Lange-Bertalot, 1988, generic changes made by Round et al., 1990, and new genera proposed by various authors since the introduction of scanning electron microscopy). Genera are shown in capitals; sections within *Nitzschia* are shown in lower case type. The date of erection of each genus is given at the first time of mention and entirely fossil genera have been omitted. The order in which the *Nitzschia* sections are listed corresponds closely to the order in Grunow's 1880 monograph (in Cleve and Grunow, 1880), but some adjustments have been made to make the diagram less cluttered.

- Supplementary Fig. 2. Maximum likelihood phylogenetic tree of Bacillariaceae from a concatenated *rbcL*–SSU dataset, with bootstrap supports >70% indicated as grey spots of varying diameter.
- Supplementary Fig. 3. Maximum likelihood phylogenetic tree of Bacillariaceae from a concatenated *rbcL*–LSU dataset.
- Supplementary Fig. 4. Maximum likelihood phylogenetic tree of Bacillariaceae from a singlegene SSU dataset.
- Supplementary Fig. 5. Maximum likelihood phylogenetic tree of Bacillariaceae from a singlegene partial LSU dataset. Apochlorotic species shown white on black.
- Supplementary Fig. 6. Maximum likelihood phylogenetic tree of Bacillariaceae from a singlegene *psbC* dataset.
- Supplementary Fig. 7. Maximum likelihood phylogenetic tree of Bacillariaceae from a singlegene *cox1* dataset. Apochlorotic species shown white on black.
- Supplementary Fig. 8. Non-conopeate species belonging to clade 2 according to the *rbcL* dataset (Fig. 4), SEM. A, B. *Nitzschia heufleriana*, clone BC0307: fractured valve (A), seen with the proximal mantle uppermost (right), and exterior of valve face (B). C. *Nitzschia alicae*,

clone BC0330: exterior of valve face. D. *Nitzschia* aff. *sublinearis*, clone BC0850: exterior of valve face. Scale bars = $1 \mu m$.

- Supplementary Fig. 9. Girdle band and poroid structure in Bacillariaceae, specimens tilted 25°, SEM (except D, TEM). A. *Nitzschia* cf. *aequorea*, clone NIT1004CAT (clade 8): band 1 (valvocopula) with a single row of poroids (arrow). B. *Nitzschia* cf. *lembiformis*, clone R2 (clade 6B): band 1 with two rows of poroids (arrow). C. *Nitzschia* sp., clone BC0317 (clade 6B): band 1 with two rows of poroids (arrow). D. *Fragilariopsis* sp.: hymenes with pores in a hexagonal array. E. *Nitzschia heufleriana*: hymenes with pores in a hexagonal array. F. *Nitzschia draveillensis*: hymenes with pores in a regular scatter (sensu Mann 1981). Scale bars = 1 μm (A, B), 500 nm (C) or 100 nm (E, F).
- Supplementary File 1. Methods for isolation, culturing, DNA extraction and sequencing, and table of metadata for clones sequenced for the present paper.
- Supplementary File 2. Alignment of sequences in 4-gene dataset.
- Supplementary File 3. Alignment of sequences in *rbcL*-SSU dataset.
- Supplementary File 4. Alignment of sequences in *rbcL*-LSU dataset.
- Supplementary File 5. Alignment of sequences in *rbcL* dataset.
- Supplementary File 6. Alignment of sequences in SSU dataset.
- Supplementary File 7. Alignment of sequences in LSU dataset.
- Supplementary File 8. Alignment of sequences in *psbC* dataset.
- Supplementary File 9. Alignment of sequences in cox1 dataset.
- Supplementary File 10. Analysis and discussion of some apparently misidentified species.

References

- An, S.M., Choi, D.H., Lee, J.H., Lee, H., Noh, J.H., 2017. Identification of benthic diatoms isolated from the eastern tidal flats of the Yellow Sea: Comparison between morphological and molecular approaches. *PLoS ONE* 12, e0179422.
- Ashworth, M.P., Lobban, C.S., Witkowski, A., Theriot, E.C., Sabir, M.J., Baeshen, M.N., Hajarah, N.H., Baeshen, N.A., Sabir, J.S., Jansen, R.K., 2017. Molecular and morphological investigations of the stauros-bearing, raphid pennate diatoms (Bacillariophyceae): *Craspedostauros* E.J. Cox, and *Staurotropis* T.B.B. Paddock, and their relationship to the rest of the Mastogloiales. *Protist* 168, 48–70.
- Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D'Souza, L.M., Du, Y., Feng, B.,
 Lin, N., Madabusi, L.V., Müller, K.M., Pande, N., Shang, Z., Yu, N., Gutell, R.R., 2002.
 The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. *BMC Bioinformatics* 3, 2.
- Cantonati, M., Kelly, M.G., Lange-Bertalot, H., 2017. Freshwater benthic diatoms of central Europe: over 800 common species used in ecological assessment. Koeltz Botanical Books, Schmitten-Overreifenberg, Germany.
- Carballeira, R., Trobajo, R., Leira, M., Benito, X., Sato, S., Mann, D.G., 2017. A combined morphological and molecular approach to *Nitzschia varelae* sp. nov., with discussion of symmetry in Bacillariaceae. *Eur. J. Phycol.* 52, 342–359.
- Cleve, P.T., Grunow, A., 1880. Beiträge zur Kenntnis der arctischen Diatomeen. Kongl. Svenska Vetenskaps-Akad. Handl. 17(2), 1–121.
- Conley, D.J., 1997. Riverine contribution of biogenic silica to the oceanic silica budget. *Limnol. Oceanogr.* 42, 774–777.
- Conley, D.J., 2002. Terrestrial ecosystems and the global biogeochemical silica cycle. *Global Biogeochem. Cycles* 16(4), 1121, doi:10.1029/2002GB001894.
- Cox, E.J., 1999. Craspedostauros gen. nov., a new diatom genus for some unusual marine raphid species previously placed in Stauroneis Ehrenberg and Stauronella Mereschkowsky. Eur. J. Phycol. 34, 131–147.

- del Campo, J., Kolisko, M., Boscaro, V., Santoferrara, L.F., Nenarokov, S., Massana, R., Guillou L., Simpson, A., Berney, C., de Vargas, C., Brown, M.W., Keeling, P.J., Parfrey, L.W., 2018. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. *PLOS Biology* 16, e2005849.
- Edgar, L.A., Pickett-Heaps, J.D., 1984., Diatom locomotion. In: Round, F.E., Chapman, D.J. (Eds.), *Progress in Phycological Research*, vol. 3, pp. 47–88. Biopress, Bristol.
- Edgar, S.M., Theriot, E.C., 2004. Phylogeny of *Aulacoseira* (Bacillariophyta) based on morphology and molecules. *J. Phycol.* 40, 772–788.
- Frankovich, T.A., Ashworth, M.P., Sullivan, M.J., Theriot, E.C., Stacy, N.I., 2018. Epizoic and apochlorotic *Tursiocola* species (Bacillariophyta) from the skin of Florida Manatees (*Trichechus manatus latirostris*). *Protist* 169, 539–568.
- Frodin, D.G., 2004. History and concepts of big plant genera. Taxon 53, 753-776.
- Gaul, U., Geissler, U., Henderson, M., Mahoney, R., Reimer, C.W., 1993. Bibliography on the fine-structure of diatom frustules (Bacillariophyceae). *Proc. Acad. Nat. Sci. Philadelphia* 144, 69–238.
- Gmelin, J.F., 1788. Carolia Linne Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (ed. 13) 1 (6):
 Vermes Infusoria, pp. 3021–3910. Georg Emanuel Beer, Lipsiae [Leipzig].
- Grunow, A., 1862. Die österreichischen Diatomeen nebst Anschluss einiger neuen Arten von anderen Lokalitäten und einer kritischen Übersicht der bisher bekannten Gattungen und Arten. Zweite Folge. Familie Nitzschieae. Verh. Zool.-Bot. Ges. Wien 12, 545–588.
- Guiry, M.D. in Guiry, M.D., Guiry, G.M., 2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 22 October 2019.
- Hasle, G.R., 1964. Nitzschia and Fragilariopsis species studied in the light and electron microscopes I. Some marine species of the groups Nitzschiella and Lanceolatae. Skrifter Norske Videnskaps-Akad. Oslo. I. Mat.-Naturv. Klasse, new series 16, 1–48.
- Hehenberger, E., Burki, F., Kolisko, M., Keeling, P.J., 2016. Functional relationship between a dinoflagellate host and its diatom endosymbiont. *Mol. Biol. Evol.* 33, 2376–2390.
- Hellebust, J.A., Lewin, J., 1977. Heterotrophic nutrition. In: Werner, D. (Ed.) *The biology of diatoms*. Blackwell Scientific Publications, Oxford, pp. 169–197.
- Henderson, M.V., Reimer, C.W., 2003. Bibliography on the fine structure of diatom frustules (Bacillariophyceae. II. (+ Deletions, addenda and corrigenda for Bibliography I). In: Witkowski, A. (Ed.) *Diatom Monographs*, volume 3 (A.R.G. Gantner, Ruggell, Liechtenstein.
- Hlúbiková, D., Blanco, S., Falasco, E., Gomà, J., Hoffmann, L., Ector, L., 2009. Nitzschia alicae sp. nov. and N. puriformis sp. nov., new diatoms from European rivers and comparison with the type material of N. sublinearis and N. pura. J. Phycol. 45, 742–760.
- Huang, Y.-M., Yang, X.-H., Lan, L.-B., Zhan, J.-T., Luo, H., Jiang, L.-M., 2017. Studies on the diversity of marine microalgae and the strains with high polysaccharides, lipids and proteins along Zhanjiang coastal areas. *Acta Hydrobiol. Sinica* 41, 1080–1090. [In Chinese, with English abstract]
- Hustedt, F., 1927–66. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In Dr. L.
 Rabenhorsts Kryptogamenflora von Deutschland, Österreich und der Schweiz, vol. 7.
 Akademische Verlagsgesellschaft, Leipzig.
- Hustedt, F., 1929. Untersuchungen über den Bau der Diatomeen, VII–VIII. Ber. Deutsch. Bot. Ges. 47, 101–110.
- Hustedt, F., 1930. Bacillariophyta (Diatomeae). In: Pascher, A. (Ed.) *Die Süsswasser-flora Mitteleuropas*, vol. 10, ed. 2. G. Fischer, Jena. 466 pp.
- Hustedt, F., 1937–9. Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra nach dem Material der Deutschen Limnologischen Sunda-Expedition. *Arch. Hydrobiol.*, Supplement 15, 137–177, 187–295, 393–506, 638–790; Supplement 16, 1–155, 274–294.
- Hustedt, F., 1949. Süsswasser-Diatomeen aus dem Albert-Nationalpark in Belgisch-Kongo.
 Exploration du Parc National Albert, Mission H. Damas (1935–1936). Institut des Parcs Nationaux du Congo Belge, Bruxelles.

- Hustedt, F., 1956. Diatomeen aus dem Lago de Maracaibo in Venezuela. *Ergebn. Deutschen Venezuela-Exped.* 1, 93–140.
- Kamikawa, R., Yubuki, N., Yoshida, M., Taira, M., Nakamura, N., Ishida, K., Leander, B.S., Miyashita, H., Hashimoto, T., Mayama, S., Inagaki, Y., 2015. Multiple losses of photosynthesis in *Nitzschia* (Bacillariophyceae). *Phycol. Res.* 63, 19–28.
- Karsten, G., 1928. Bacillariophyta (Diatomeae. In: *Die natürlichen Pflanzenfamilien*, ed. 2 (Ed by A. Engler), vol. 2, pp. 105–303. Engelmann, Leipzig.
- Kelly, M., Boonham, N., Juggins, S., Kille, P., Mann, D., Pass, D., Sapp, M., Sato, S., Glover,
 R., 2018. A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers. SC140024/R, Environment Agency, Bristol. ISBN: 978-1-84911-406-6 available at <a href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/684493/A_DNA_based_metabarcoding_approach_to_assets_diatom_communiti

es in rivers - report.pdf

- Kim, B.-S., Witkowski, A., Park, J.-G., Li, C., Trobajo, R., Mann, D.G., Kim, S.-Y., Ashworth, M., Bąk, M., Gastineau, R., 2019. Taxonomy and diversity of a little-known diatom genus *Simonsenia* (Bacillariaceae) in the marine littoral: novel taxa from the Yellow Sea and the Gulf of Mexico. *Plant Ecol. Evol.* 152, 248–261.
- Kitton, F., 1874. New diatoms. Monthly Microsc. J. 12: 218–220.
- Kociolek, J.P., Williams, D.M., 2015. How to define a diatom genus? Notes on the creation and recognition of taxa, and a call for revisionary studies of diatoms. *Acta Bot. Croat.* 74, 195–210.
- Krammer, K., Lange-Bertalot, H., 1988. Bacillariophyceae 2. Teil: Bacillariaceae,
 Epithemiaceae, Surirellaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.)
 Süβwasserflora von Mitteleuropa, vol. 2/2. G Fischer, Stuttgart, New York. 596 pp.
- Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. *Mol. Biol. Evol.* 33, 1870–1874.
- Lee, J.J., Reimer, C.W., Correia, M., Morales, J., 2000. A revised description of the *Nitzschia frustulum* var. *symbiotica* Lee and Reimer emend. complex, the most common of the

endosymbiotic diatoms in larger foraminifera. *Micropaleontology* 46, Supplement 1 (Advances in the Biology of Foraminifera), 170–181.

- Letunic, I., Bork, P., 2016. Interactive Tree Of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res.* 44(W1), W242–5.
- Lim, H.C., Tan, S.N., Teng, S.T., Lundholm, N., Orive, E., David, H., Quijano-Scheggia, S., Leong, S.C.Y., Wolf, M., Bates, S.S., Lim, P.T., Leaw, C.P., 2018. Phylogeny and species delineation in the marine diatom *Pseudo-nitzschia* (Bacillariophyta) using *cox*1, LSU, and ITS2 rRNA genes: a perspective in character evolution. *J. Phycol.* 54, 234–248.
- Lobban, C.S., Ashworth, M.P., Calaor, J.J.M., Theriot, E.C., 2019. Extreme diversity in finegrained morphology reveals fourteen new species of conopeate *Nitzschia* (Bacillariophyta: Bacillariales). *Phytotaxa* 401, 199–238.
- Lundholm, N., Daugbjerg, N., Moestrup, Ø., 2002a. Phylogeny of the Bacillariaceae with emphasis on the genus *Pseudo-nitzschia* (Bacillarophyceae) based on partial LSU rDNA. *Eur. J. Phycol.* 37, 115–134.
- Lundholm, N., Hasle, G.R., Fryxell, G.A., Hargraves, P.E., 2002b. Morphology, phylogeny and taxonomy of species within the *Pseudo-nitzschia americana* complex (Bacillariophyceae) with descriptions of two new species, *Pseudo-nitzschia brasiliana* and *Pseudo-nitzschia linea*. *Phycologia* 41, 480–497.
- Mann, D.G., 1978. *Studies in the family Nitzschiaceae (Bacillariophyta.* Ph.D. Dissertation. University of Bristol. Available at <u>https://rbg-</u> web2.rbge.org.uk/algae/publications mann thesis.html
- Mann, D.G., 1986. *Nitzschia* subgenus *Nitzschia* (Notes for a monograph of the Bacillariaceae 2.
 In: Ricard, M. (Ed.), *Proceedings of the 8th International Diatom Symposium*, 215–226.
 O. Koeltz, Koenigstein.
- Mann, D.G., 1999. The species concept in diatoms (Phycological Reviews 18). *Phycologia* 38, 437–495.
- Mann, D.G., Trobajo, R., 2014. Symmetry and sex in Bacillariaceae (Bacillariophyta), with descriptions of three new *Nitzschia* species. *Eur. J. Phycol.* 49, 276–297.

- Mann, D.G., Vanormelingen, P., 2013. An inordinate fondness? The number, distributions and origins of diatom species. *J. Euk. Microbiol.* 60, 414–420.
- Medlin, L.K., Priddle, J. (Eds.), 1990. *Polar marine diatoms*. British Antarctic Survey, Natural Environmental Council, Cambridge. 214 pages
- Medlin, L.K., Elood, H.J., Stickel, S., Sogin, M.L., 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. *Gene* 71, 491–499.
- Mucko, M., Bosak, S., Mann, D.G., Trobajo, R., Wetzel, C.E., Štefanić, P.P., Ljubešić, Z. (2020, in press). Polyphasic approach to the study of the genus *Nitzschia* (Bacillariophyta): three new planktonic species from the Adriatic Sea. *Journal of Phycology*
- Müller, O.F., 1786. Animalcula infusioria fluviatilia et marina. N. Möller, Havniae [Copenhagen].
- Onyshchenko, A., Ruck, E.C., Nakov, T., Alverson, A.J., 2019. A single loss of photosynthesis in the diatom order Bacillariales (Bacillariophyta). *Amer. J. Bot.* 106, 560–572.
- Paddock, T.B.B., Sims, P.A., 1980. Observations on the marine diatom genus *Auricula* and two new genera *Undatella* and *Proboscidea*. *Bacillaria* 3, 161–196.
- Pantocsek, J. (1902) A Balaton kovamoszatai vagy Bacillariái [The Lake Balaton diatoms or Bacillarieae]. In: A Balaton tudományos tanulmányozásának eredményei [The results of the scientific study of the Lake Balaton], pp. 1–143. Hornyánsky Könyvnyomdája, Budapest.
- Patterson, C., 1988. Homology in classical and molecular biology. Mol. Biol. Evol. 5, 603-625.
- Pennington, R.T., Gemeinholzer, B., 2000. Cryptic clades, fruit wall morphology and biology of *Andira* (Leguminosae: Papilionideae). *Bot. J. Linn. Soc.* 134, 267–286.
- Pickett-Heaps, J.D., Schmid, A.-M.M., Edgar, L.A., 1990. The cell biology of diatom valve formation. *Prog. Phycol. Res.* 7, 1–168.
- Piredda, R., Claverie, J.-M., Decelle, J., de Vargas, C., Dunthorn, M., Edvardsen, B., Eikrem,W., Forster, D., Kooistra, W.H.C.F., Logares, R., Massana, R., Montresor, M., Not, F.,Ogata, H., Pawlowski, J., Romac, S., Sarno, D., Stoeck, T. and Zingone, A. 2018. Diatom

diversity through HTS-metabarcoding in coastal European seas. *Scientific Reports* 8, 18059.

- Rabenhorst, L., 1864. Flora europaea algarum aquae dulcis et submarinae. Sectio I. Algas diatomaceas complectens, cum figuris generum omnium xylographice impressis. Eduard Kummer, Leipzig.
- Rabosky, D.L., 2017. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. *Phil. Trans. Roy. Soc.* B372, 20160417.
- Reimann, B.E.F., Lewin, J.C., 1964. The diatom genus *Cylindrotheca* Rabenhorst. J. Roy. Microsc. Soc., series 3, 83, 283–296.
- Richardson, J.E., Fay, M.F., Cronk, Q.C., Bowman, D., Chase, M.W., 2000. A phylogenetic analysis of Rhamnaceae using *rbcL* and trnL-F plastid DNA sequences. *Amer. J. Bot.* 87: 1309–1324.
- Rimet, F., Kermarrec, L., Bouchez, A., Hoffmann, L., Ector, L., Medlin, L.K., 2011. Molecular phylogeny of the family Bacillariaceae based on 18S rDNA sequences: focus on freshwater *Nitzschia* of the section *Lanceolatae*. *Diatom Res.* 26, 273–291.
- Rimet, F., Gusev, E., Kahlert, M., Kelly, M.G., Kulikovskiy, M., Maltsev, Y., Mann, D.G.,
 Pfannkuchen, M., Trobajo, R., Vasselon, V., Zimmermann, J., Bouchez, A., 2019.
 Diat.barcode, an open-access curated barcode library for diatoms. *Sci. Rep.* 9, 15116.
- Ross, R., Cox, E.J., Karayeva, N.I., Mann, D.G., Paddock, T.B.B., Simonsen, R., Sims, P.A., 1979. An amended terminology for the siliceous components of the diatom cell. *Nova Hedwigia, Beih.* 64, 513–533.
- Round, F.E., Crawford, R.M., Mann, D.G., 1990. *The diatoms. Biology and morphology of the genera*. Cambridge University Press, Cambridge.
- Rovira, L., Trobajo, R., Sato, S., Ibáñez, C., Mann, D.G., 2015. Genetic and physiological diversity in the diatom *Nitzschia inconspicua*. J. Euk. Microbiol. 62, 815–832.
- Ruck, E.C., Kociolek, J.P., 2004. Preliminary phylogeny of the family Surirellaceae (Bacillariophyta). *Bibl. Diatomol.* 50, 1–236.

- Ruck, E.C., Theriot, E.C., 2011. Origin and evolution of the canal raphe system in diatoms. *Protist* 162, 723–737.
- Ruck, E.C., Nakov, T., Alverson, A.J., Theriot, E.C., 2016. Phylogeny, ecology, morphological evolution, and reclassification of the diatom orders Surirellales and Rhopalodiales. *Mol. Phyl. Evol.* 103, 155–171.
- Sato, S., Nagumo, T., Mann, D.G., 2013. Morphology and life history of *Amphora commutata* (Bacillariophyta) I: the vegetative cell and phylogenetic position. *Phycologia* 52, 225– 238.
- Schmidt, H.A., 2004. TAXNAMECONVERT, version 2.4. Distributed by the author. Available from http://www.cibiv.at/software/taxnameconvert/.
- Sims, P.A., Paddock, T.B.B., 1982. The fenestral fibula: a new structure in the diatoms. *Bacillaria* 5, 7–42.
- Stepanek, J.G., Kociolek, J.P., 2014. Molecular phylogeny of *Amphora* sensu lato (Bacillariophyta): an investigation into the monophyly and classification of the amphoroid diatoms. *Protist* 165, 177–195.
- Stepanek, J.G., Hamsher, S.E., Mayama, S., Jewson, D.H., Kociolek, J.P., 2016. Observations of two marine members of the genus *Cymbellonitzschia* (Bacillariophyta) from Tokyo Bay, Japan, with the description of the new species *Cymbellonitzschia banzuensis*. *Phycol. Res.* 64, 26–34.
- Theriot, E.C., Ashworth, M., Ruck, E., Nakov, T., Jansen, R.K., 2010. A preliminary multigene phylogeny of the diatoms (Bacillariophyta): challenges for future research. *Plant Ecol. Evol.* 143, 278–296.
- Theriot, E.C., Ashworth, M.P., Nakov, N., Ruck, E., Jansen, R.K., 2015. Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. *Mol. Phylogenet. Evol.* 89, 28–36.
- Trainer, V.L., Bates, S.S., Lundholm, N., Thessen, A.E., Cochlan, W.P., Adams, N.P., Trick, C.G., 2012. *Pseudo-nitzschia* physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. *Harmful Algae* 14, 271–300.

- Trobajo, R., Mann, D.G., Chepurnov, V.A., Clavero, E., Cox, E.J., 2006. Taxonomy, life cycle, and auxosporulation of *Nitzschia fonticola* (Bacillariophyta). *J. Phycol.* 42: 1353–1372.
- Trobajo, R., Clavero, E., Chepurnov, V.A., Sabbe, K., Mann, D.G., Ishihara, S., Cox, E.J., 2009.
 Morphological, genetic, and mating diversity within the widespread bioindicator
 Nitzschia palea (Bacillariophyceae). *Phycologia* 48, 443–459.
- Trobajo, R., Rovira, L., Ector, L., Wetzel, C.E., Kelly, M., Mann, D.G., 2013. Morphology and identity of some ecologically important small *Nitzschia* species. *Diatom Res.* 28: 37–59.
- VanLandingham, S.L., 1978. Catalogue of the fossil and recent genera and species of diatoms and their synonyms. Part VI. Neidium through Rhoicosigma. J. Cramer, Vaduz. pp. 2964–3605.
- Witkowski, A., Gomes, A., Mann, D.G., Trobajo, R., Li, C., Barka, F., Gusev, E., Dąbek, P., Grzonka, J., Kurzydłowski, K.J., Zgłobicka, I., Harrison, M., Boski, T., 2015. *Simonsenia aveniformis* sp. nov. (Bacillariophyceae), molecular phylogeny and systematics of the genus, and a new type of canal raphe system. *Sci. Rep.* 5, 17115.
- Witkowski, A., Li, C., Zgłobicka, I., Yu, S.-X., Ashworth, M., Dabek, P., Qin, S., Tang, C.,
 Krzywda, M., Ruppel, M., Theriot, E.C., Jansen, R.K., Car, A., Płociński, T., Wang, Y.C., Sabir, J.S.M., Daniszewska-Kowalczyk, G., Kierzek, A., Hajrah, N.H., 2016.
 Multigene assessment of biodiversity of diatom (Bacillariophyceae) assemblages from
 the littoral zone of the Bohai and Yellow Seas in Yantai Region of northeast China with
 some remarks on ubiquitous taxa. J. Coast. Res. 74 (Special Issue), 166–195.
- Wojciechowski, M.F., Sanderson, M.J., Baldwin, B.G., Donoghue, M.J., 1993. Monophyly of aneuploid Astragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Amer. J. Bot. 80, 711–722.
- Yamada, N., Bolton, J.J., Trobajo, R., Mann, D.G., Dąbek, P., Witkowski, A., Onuma, R.,
 Horiguchi, T., Kroth, P.G., 2019. Discovery of a kleptoplastic dinotom' dinofagellate and the unique nuclear dynamics of converting kleptoplastids to permanent plastids. *Sci. Rep.* 9, 10474.

- Zielinski, U., Gersonde, R., 1997. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*129, 213–250.
- Zimmermann, J., Jahn, R., Gemeinholzer, B., 2011. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. *Org. Divers. Evol.* 11: 173.

Table 1. The characters used by Grunow (in Cleve and Grunow, 1880) to distinguish 24 sections of *Nitzschia*. Each section had a unique combination of character states, though very few individual character states were restricted to a single section and there was no attempt to distinguish between plesiomorphic and apomorphic states. A key to the character states is given below. In many cases (indicated by ("?") Grunow did not comment about the character state for a particular section; this was probably because the character state was implicit (e.g. frustules that are not sigmoid, nor curved, nor asymmetrical are straight), or because the character did not help to distinguish that section from otherwise similar groups. The colours have no significance except to help make the pattern of variation more obvious.

Key to character states:

- Keel: +++ = strongly eccentric; ++ = eccentric; + = slightly eccentric; 0 = central; $0^* =$ central and sharply angled (vaulted) at the raphe.
- Longitudinal fold: **yes** = present (strongly or weakly developed); **no** = absent (explicitly stated by Grunow); ? = not specified.
- Symmetry: **sigmoid**, **asymmetrical**, straight, or curved (the last only in *Nitzschiella*: information comes from Grunow's species descriptions rather than in the group description). In the case of sections with 'straight' cells, Grunow did not specify that they were straight, but this can be inferred from the absence of other indications.
- Central constriction of the outline: ++ = strongly developed; + = slightly developed or with only a central nick along one margin; absent; ? = not specified.
- Fibulae: ++++ = some fibulae extended across the whole width of the valve; +++ = fibulae strongly extended transapically, but not reaching the distal margin; +++* = fibulae appearing as dashed or dotted transapical lines; ++ = fibulae somewhat extended transapically; + = fibulae clearly visible; i = fibulae indistinctly visible; i/+ = fibulae indistinctly visible or clearly visible.
- Central nodule: yes = present; no = absent; [no] = absence noted for one of the two species included but no information given for the other; ? = not specified.
- Striae: decussate (the areolae forming diagonal as well as transapical rows); continuous (striae continuous across the valve); interrupted (striae interrupted or less noticeable along a longitudinal fold); fine (striae particularly difficult to resolve or invisible); speckled = valve surface with irregularly scattered dots ("unregelmässig punktirter Oberfläche": Grunow in Cleve and Grunow, 1880, p. 77) as well as fine striae.
- Other: X = keel (raphe) accompanied by parallel lines, one on either side; Y = raphe deflected towards the distal side at the centre; Z = valves with long narrow extensions

	Keel position	Longitudinal fold	Shape/Symmetry	Central constriction	Fibula morphology	Central nodule	Striae	Other
Tryblionella	+++	yes	straight	?	i	?	?	
Panduriformes	+++	yes	straight	++	i/+	?	decussate	
Apiculatae	+++	yes	straight	absent/+	i/+	?	interrupted	
Pseudo-tryblionella	+++	yes	straight	?	+	?	continuous	
Circumsutae	+++	yes	straight	?	+	yes	speckled	
Dubiae	++	no	straight	+/++	?	?	?	
Bilobatae	+	no	straight	+/++	?	?	?	
Pseudo-amphiprora	0*	no	straight	++	+	yes	?	
Perrya	0*	?	straight	absent	++/+++*	[no]	?	
Epithemioideae	+++	?	straight	?	++++	?	?	
Grunowia	+++	?	straight	?	+++	?	?	
Scalares	++	?	straight	?	+++	?	?	
Insignes	+	?	sigmoid/straight	?	++++	?	?	
Bacillaria	0	?	straight	?	+	?	?	
Vivaces	++	?	asymmetrical	absent	+	no	?	
Spathulatae	0	?	sigmoid/straight	?	?	no	fine	x
Dissipatae	+	?	straight	?	?	no	fine	
Sigmoideae	0	no	sigmoid	?	+	no	?	
Sigmata	++	no	sigmoid	?	+	no	?	
Obtusae	+++	?	sigmoid	?	+	yes	?	Y
Spectabiles	+++	no	asymmetrical	?	++	?	?	
Lineares	++	no	straight	absent/+	+	?	?	
Lanceolatae	+++	no	straight	?	+	?	?	
Nitzschiella	+++	?	straight/curved	?	?	?	?	Z

Table 2. Some possible ways (options A–D) to revise the Bacillariaceae to create monophyletic genera, based on the main clades in the 4-gene and *rbcL* molecular phylogenies (Figs 3 and 4). The single and two-gene trees suggest the existence of several further clades that would need to be classified as separate genera in options C and D. The genera considered here are those whose relationship seems well established from the molecular data (i.e. either there is strong support in one or more molecular tree). Excluded from the Table are the genera that have not yet been sequenced (e.g. *Gomphonitzschia, Gomphotheca, Alveus, Giffenia*). These comprise few species and so will have little impact on nomenclature, whether they are maintained or sunk into larger groupings. Also excluded are a few genera (e.g. *Simonsenia, Cymbellonitzschia*) for which molecular data exist but whose positions are unclear and which may lie outside the eight main clades.

Bold type indicates a genus that would retain more or less the same circumscription in that particular revision (A–D) as it currently has (cf. Round et al. 1990); non-bold type indicates a genus that would differ very substantially from the present concept, in both definition and content.

Molecular clades (Figs 3 and 4)	Α	В	С	D	
clade 1		Bacillaria	Bacillaria	Bacillaria	
clade 2		Nitzschia	Nitzschia	Nitzschia	
clade 3			Hantzschia	Hantzschia	
clade 4A			NEW ²	NEW? ²	
clade 4B-I			Deammadiatuan	Psammodictyon	
clade 4B-II			Psammodictyon	NEW	
clade 5A	Nitzschia ¹		Trublionalla ³	NEW	
clade 5B			Tryblionella	Tryblionella ³	
clade 6A			Nitzsehielle 22	NEW	
clade 6B			Nitzschienu?	Nitzschiella? ²	
clade 7			Cylindrotheca	Cylindrotheca	
clade 8A-I				NEW	
clade 8A-II			IN E VV	NEW	
clade 8B			Denticula ³	Denticula ³	
clade 8C-I			Decudo nitzechia	Fragilariopsis	
clade 8C-II			PSeudo-Mitzschiu	Pseudo-nitzschia	

¹ Given the impact on names, it seems likely that the International Botanical Congress would accept conservation of *Nitzschia* against the earlier *Bacillaria*, if there was a consensus among diatomists that a single genus was the best option.

² *Nitzschiella* has not been typified. It was described by Rabenhorst (1864), who included in it species belonging to clades 4A, 6B, and 7. If it is typified with *N. acicularis*, the name could be available for clade 6 or subclade 6B; if typified with *N. longissima* it could be available for clade 4A. However, either possibility will require the type material of each species to be studied in detail to confirm that it is consistent with the current usage of the name.

³ Any plausible use of the names *Denticula* and *Tryblionella* in a revised classification will require a major change in the circumscription of the genus.

Figure captions

- Fig. 1. Bacillariaceae. A. Bacillaria paxillifera, SEM: the valve (in internal valve view) is straight and has an almost central raphe system. B. Nitzschia dubia, clone TA37: straight valve with constricted centre (white arrow), where the central raphe endings are located. C. Nitzschia pusilla, clone BC0333, LM. The only features visible are the linear-lanceolate outline and the line of fibulae along one side of the valve. D, E. *Nitzschia pusilla*, clone BC0333, external and internal views, SEM. The raphe is strongly eccentric and lies on a distinct raised 'keel' (arrow in D), subtended internally by fibulae (E). SEM reveals the delicate uniseriate striae of tiny round poroids. F-H. Living cells of Tryblionella apiculata (F), Nitzschia flexa (G) and Cylindrotheca closterium with two chloroplasts, one towards each end of the cell ('fore and aft' arrangement), with the nucleus lying in between. I. Nitzschia heufleriana, clone BC0307: fractured specimen tilted 55° illustrating aspects of valve structure in Bacillariaceae, SEM. Beneath the raphe slit (white arrow) is a cylindrical raphe canal (rc) subtended internally by fibulae (e.g. f). The valve face (vf) and the deep proximal mantle (pm) lie at an acute angle to each other, forming a vault with the raphe canal at its apex; the raphe and raphe canal form the 'keel' of the valve. On the far side from the raphe and proximal mantle there is a much shallower distal mantle (dm). The raphe canal wall (rcw) bears a single row of poroids (e.g. black arrows) linking the raphe canal to the exterior. J. Nitzschia pusilla, clone BC0333: fractured valve, seen from the inside, SEM. The raphe canal is separated from the valve face (vf) by a line of fibulae (e.g. arrows). Scale bars 5 µm (A, B, F–H) or 1 µm (C–E, I, G).
- Fig. 2. Bacillariaceae valve morphology (including features used by Grunow in his classification of 1880), SEM. A. *Nitzschia* cf. *perminuta*: the raphe lacks a central nodule, running uninterrupted from one pole to the other; note also that the valve face is flat. B. *Nitzschia disputata*: fibulae extended transapically across the valve face (contrast Fig. 1E, I). C. *Tryblionella debilis*, clone BC0502: the valve face of the wide valve is undulate transapically and the striae are interrupted by a plain axial area (white arrow). Note also that there is a marginal ridge (black arrow) on the side opposite the raphe. D. *Tryblionella* cf. *compressa*, clone NIT1007CAT: valve face undulate as in *T. debilis* but without a plain area; again, a marginal ridge is present (black arrow). E. *Tryblionella apiculata*, clone s0863: centre of valve, distal aspect,

showing the folded valve face, including a plain axial area (white arrow) interrupting the multiseriate striae, and a very shallow marginal ridge (black arrow). F. *Psammodictyon constrictum*: detail of valve centre, proximal aspect, showing central raphe endings, folded (undulate) valve face, and chambered (loculate) areolae in the distal part of the valve face, creating transapical and diagonally orientated (decussate) striae. Scale bars = 2 μ m.

- Fig. 3. Maximum-likelihood four-gene (SSU, LSU, *rbcL* and *psbC*) phylogeny of Bacillariaceae, with bootstrap supports >70% indicated as grey spots of varying diameter: the widest diameter indicates 100%. A. Eight main, well supported clades of Bacillariaceae are evident, numbered 1 to 8. An asterisk within clade 6B marks a subclade of species referred to in the text (section 3.4, last paragraph), with particularly delicate, fine structure. B. The existing genera of Bacillariaceae (colour shading) are shown on the tree. *Nitzschia* (pale blue) is paraphyletic with respect to all other genera except *Bacillaria*, while one group of nonfibulate diatoms (the CAS genera *Craspedostauros, Achnanthes* and *Staurotropis*) are apparently nested within the Bacillariaceae. However, there is no support for any of the basal nodes.
- Fig. 4. Maximum-likelihood *rbcL* phylogeny of Bacillariaceae, with bootstrap supports >70% indicated as grey spots of varying diameter: the widest diameter indicates 100%. The eight main clades of the 4-gene tree are coloured as in Fig. 3 and the asterisk in clade 6B marks the same subclade of finely structured species as is identified in Fig. 3. In addition, the Grunowian section or genus is given for each terminal taxon (which therefore also indicates the distributions of the characters listed in Table 1) and the distributions of selected characters are plotted in concentric circles around the tree: the legends for each concentric ring are given, in centrifugal order (A–E). Genera that postdate Grunow's classification are indicated by square brackets. Original images supporting morphological data for many of our own clones (Supplementary Table 2) are available at <u>https://rbg-</u>

web2.rbge.org.uk/algae/research/Bacillariaceae images.html .

Fig. 5. *Nitzschia palea* and *palea*-like species. A–I, valves in valve view, LM, all to the same scale. A, B. *Nitzschia* cf. *palea*, clone BC0799. C, D. *Nitzschia palea*, clone BC0605: note the difference in the appearance and density of the fibulae in these two specimens. E–I. *Nitzschia palea*, clones BC0786, BC0375, BC0670, BC0373 and BC0234, respectively. J. *Nitzschia* cf. *palea*, clone TCC886. K–N. Valve exterior near

the centre, SEM. K. *Nitzschia* cf. *palea*, clone BC0799, with two longitudinal rows of poroids in the raphe canal. L. *Nitzschia palea*, clone India, also with two longitudinal rows of poroids in the raphe canal. M. *Nitzschia palea*, clone Belgium 2, mostly with one poroid in the raphe canal opposite each valve face stria, but occasionally with two (arrows). N. *Nitzschia* cf. *palea*, clone TCC886, with one or two poroids in the raphe canal opposite each valve face stria. Scale bars = 5 μ m (A–J) or 500 nm (K–N).

- Fig. 6. Raphe canal structure and porosity in Bacillariaceae. A, B, broken valves, C–H, intact valves in external view, tilted 25° (except A). A. Nitzschia sigmoidea, clone BC0787: the raphe canal bears several longitudinal rows of poroids (black and white arrowheads) and is accompanied on either side by a plain silica flap, the 'conopeum' (arrow; contrast N. heufleriana, Fig. 1G). B. Pseudo-nitzschia multiseries, with multiseriate striae and a nonporous raphe canal (arrow). C. Nitzschia inconspicua, with a single longitudinal row of poroids in the raphe canal, one for each uniseriate transapical stria. D. Nitzschia amphibia, clone BC0503, with a single longitudinal row of poroids in the raphe canal, but with two poroids opposite each valve face stria. Note also the cribra in the poroids. E. Nitzschia cf. perminuta, with two longitudinal rows of poroids, the one further from the raphe with a single poroid opposite each valve face stria (white arrow), the one nearer the raphe with two (black arrow); i.e. at this position each stria is biseriate. F. Nitzschia palea, clone Brazil, mostly with a single poroid in the raphe canal opposite each valve face stria, but sometimes with two (arrows). G. Nitzschia cf. romana, clone BC0650, with biseriate transapical striae within in the raphe canal, the poroids here being arranged in three ill-defined longitudinal rows. H. Nitzschia cf. sigma, clone NIT1013ABR, with c. 4-5 raphe canal poroids opposite each valve face stria. Scale bars = 500 nm, except A, 5 μ m.
- Fig. 7. Fibulae and external ornamentation, SEM; specimens tilted 25°. A–C. The fibula morphologies plotted in Fig. 4. A. *Nitzschia* cf. *microcephala*, clone L56, with short shallow fibulae (linked by a slight longitudinal ridge). B. *Nitzschia linearis*, clone BC0083: fibulae extended along the transapical ribs of the valve face (see also Fig. 2B). C. *Tryblionella debilis*, clone BC0502, specimen fractured through one of the broad fibulae: the valve striae continue onto and across the fibulae. D–H. External ornamentation in clade 4B. D. *Nitzschia linearis*, clone BC0273 (clade 4B-Iia): distal mantle with small round warts and band 1 with vermiform markings. E. *Psammodictyon constrictum* (clade 4B-I): centre of epitheca showing all bands

covered with small round warts. F. *Nitzschia* sp., clone s0819 (clade 4B-IIa), with small round warts on the girdle bands. G. *Nitzschia amphibia*, clone BC0486: sparse warts (e.g. arrows) on bands 1 and 3 (cf. Fig. 4D). H. *Denticula kuetzingii*, sparse warts on bands 1 and 3. Scale bars = 1 μ m.

Fig. 8. Girdle structure of selected Bacillariaceae; each image is a photomontage (hence no scale bars are given), created by cropping SEM photos to isolate the epitheca, adjusting dimensions to compensate for tilt in the original photograph, and reorientating to promote comparability; the original photographs are available from the corresponding author on request but are included in the sets at https://rbgweb2.rbge.org.uk/algae/research/Bacillariaceae images.html. A. Nitzschia sigmoidea, clone BC0787, with five graded, porose bands. B. Nitzschia linearis, clone BC0083, with five or six graded bands (the more advalvar have a single row of poroids, often hidden by the adjacent band). C. Bacillaria paxillifera, clone BAC901CAT, with five ±graded porose bands. D. Nitzschia amphibia, Bristol 138 material, with a 'serial repeat' girdle: bands 1 and 3 are wide (band 1 with a single line of poroids), 2 and 4 (arrows) very narrow. E. Denticula kuetzingii, also with a 'serial repeat girdle: bands 1 (nonporous) and 3 wide, 2 and 4 (arrows) very narrow. F. Nitzschia soratensis, with a complex girdle: bands 1 and 4 are wide, each with a single row of round poroids; bands 2 and 3 (arrows), nonporous and narrow. G. Nitzschia cf. fonticola, clone NIT337TM: girdle as in *N. soratensis*, except that band 4 bears strongly elongate poroids. H. Nitzschia inconspicua, clone L62, with serial repeat girdle (cf. D, E). I. Nitzschia cf. microcephala, clone L56, with serial repeat girdle in which band 3 is scarcely wider than band 2. J. Psammodictyon constrictum: complex girdle with several ranks of poroids on band 1, which is much wider than the others, and a line of smaller elongate poroids on band 5. K. Nitzschia sigma, complex girdle, with a wide band 1 with a single row of poroids, graded nonporous bands 2-4 (4 arrowed), and a wide band 5 with a single row of elongate poroids. L. Hantzschia amphioxys agg. (modified from Mann, 1978, fig. 640), with a graded girdle of mostly porous bands (band 7 arrowed).

rbcL, *psbC*, nLSU, nSSU, *cox1*

₃udo-nitzschia

70/

Cylindrotheca

Fragilariopsis

Diatoms:

S genera

Hantzschia

Psammodictyon

OUTGROUPS

Bacillaria

Bacillariaceae: 8 major clades *Nitzschia*: non-monophyletic

clade 8C-j

clade 8B

clade 8A-I

-1ade 8A-11

clade AB.

Tryblionella-

Denticula

Nitzschia

'megagenus' (800+ spp)

divided into sections by Grunow (1880)

Tryblionella-II

several clades are 'cryptic'

clade 3

OUTGROUP

CASO

no morphological synapomorphies

some new SEM characters useful,

0.00

e.g. girdle structure

Sel Sel

clade Y

clade 6B

Nitzschia varelae clade 6B

Highlights

- First multigene phylogeny of Bacillariaceae
- Major conflicts with existing morphology-based classification
- Non-monophyly of the most speciose diatom genus, Nitzschia
- Several major clades are 'cryptic'
- Options discussed for achieving a comprehensive new classification

Psammodictyon

G

F

Ξ

1

.....

.....

.....

30000

....

....

....

...

Α

D

Η

clade 6B

Supplementary Table 1. GenBank sequences used in the six analyses (four-gene, SSU+*rbcL*, LSU+*rbcL*, *rbcL*, *sSU*, LSU, *psbC* and *cox1*).

GenBank #	Taxon and clone	Gene	Use of sequence	
AB020222	Cylindrotheca closterium CCMP339	cox1	cox1	
AB020225	Nitzschia pusilla CCMP558	cox1	cox1	
AB085830	Eunotia formica var. sumatrana A 0045	SSU	SSU	
AB085831	Eunotia monodon var. asiatica A 0046	SSU	SSU	
AB085832	Eunotia pectinalis A 0047	SSU	SSU	
AB183591	Bacillariophyta sp. MBIC10099	SSU	SSU	
AB183668	Nitzschia sp. MBIC11128	SSU	SSU	
AB195669	Galeidinium rugatum ENDOSYMBIONT	rbcL	rbcL	
AB218885	Nitzschia navis-varingica BCEA 03-4-2	LSU	LSU	
AB218886	Nitzschia navis-varingica BLEC 03-1-2	LSU	LSU	
AB271108	Durinskia capensis ENDOSYMBIONT	rbcL	rbcL	
AB430616	Nitzschia dubiiformis s0311	SSU	four-gene, SSU+ <i>rbcL</i> , SSU	
AB430617	Psammodictyon constrictum s0309	SSU	four-gene, SSU+ <i>rbcL</i> , SSU	
AB430656	Nitzschia dubiiformis s0311	LSU	four-gene, LSU+ <i>rbcL</i> , LSU	
AB430657	Psammodictyon constrictum s0309	LSU	four-gene, LSU+ <i>rbcL</i> , LSU	
AB430696	Nitzschia dubiiformis s0311	rbcL	four-gene, LSU+ <i>rbcL</i> , SSU+ <i>rbcL</i> , <i>rbcL</i>	
AB430697	Psammodictyon constrictum s0309	rbcL	four-gene, LSU+ <i>rbcL</i> , SSU+ <i>rbcL</i> , <i>rbcL</i>	
AB899686	Nitzschia sp. IriSm01	LSU	LSU	
AB899687	Nitzschia sp. Irils01	LSU	LSU	
AB899692	Nitzschia sp. IriSs06	LSU	LSU	
AB899693	Nitzschia sp. 14	LSU	LSU	
AB899696	Nitzschia sp. M1	LSU	LSU	
AB899698	Nitzschia sp. O2	LSU	LSU	
AB899699	Nitzschia sp. IriSm02	LSU	LSU	
AB899700	Nitzschia sp. IriSL01	LSU	LSU	
AB899702	Nitzschia sp. A4	LSU	LSU	
AB899705	Nitzschia sp. D2	LSU	LSU	
AF289049	Cylindrotheca closterium	LSU	LSU	
AF374482	Thalassiosira antarctica	SSU	SSU	
AF416759	Pseudo-nitzschia pseudodelicatissima SZN-B34	LSU	LSU	
AF416760	Pseudo-nitzschia pseudodelicatissima SZN-B35	LSU	LSU	
AF417639	Pseudo-nitzschia inflatula No7	LSU	LSU	
AF417640	Pseudo-nitzschia pseudodelicatissima P-11	LSU	LSU	
----------	---	-----	---------------	
AF417643	Pseudo-nitzschia cf. subpacifica P-28	LSU	LSU	
AF417646	Pseudo-nitzschia subfraudulenta rensubfrau	LSU	LSU	
AF417649	Pseudo-nitzschia micropora VPB-B3	LSU	LSU	
AF417657	Fragilariopsis cylindrus 2-E-F	LSU	LSU	
AF417659	Fragilariopsis curta 1-A	LSU	LSU	
AF417660	Fragilariopsis vanheurckii 3-18	LSU	LSU	
AF417661	Nitzschia communis M1762	LSU	LSU	
AF417664	Nitzschia cf. agnita STH14	LSU	LSU	
AF417665	Cylindrotheca fusiformis UTEX2083	LSU	LSU	
AF417666	Cylindrotheca closterium K-520	LSU	LSU	
AF417667	Nitzschia lecointei 5-21	LSU	LSU	
AF417668	Nitzschia fusiformis STH19	LSU	LSU	
AF417669	Nitzschia cf. vitrea UTEX2033	LSU	LSU	
AF417670	Nitzschia alba M1354	LSU	LSU	
AF417672	Nitzschia pellucida 99NG1-16	LSU	LSU	
AF417673	Nitzschia laevis M1285	LSU	LSU	
AF417674	Nitzschia navis-varingica VHL987	LSU	LSU	
AF417676	Nitzschia cf. promare CCMP1116	LSU	LSU+rbcL, LSU	
AF417677	Hantzschia amphioxys UTEX657	LSU	LSU	
AF417678	Bacillaria paxillifer Tenerife7	LSU	LSU	
AF440767	Pseudo-nitzschia delicatissima NWFSC 002	LSU	LSU	
AF440773	Pseudo-nitzschia pseudodelicatissima NWFSC 040	LSU	LSU	
AF440777	Pseudo-nitzschia cf. heimii NWFSC 059	LSU	LSU	
AF469672	Pseudo-nitzschia brasiliana Brasil 8	LSU	LSU	
AF525665	Fragilariopsis sublineata	SSU	SSU	
AJ535145	Eunotia sp. M16	SSU	SSU	
AJ535146	Eunotia cf. pectinalis f minor L474	SSU	SSU	
AJ535163	Undatella sp. p446	SSU	SSU	
AJ535164	Nitzschia frustulum p345	SSU	SSU	
AJ866995	Eunotia bilunaris EBIL1	SSU	SSU	
AJ867003	Nitzschia palea NPAL6	SSU	SSU	
AJ867013	Nitzschia linearis NLIN3	SSU	SSU	
AJ867018	Nitzschia dissipata NDIS1	SSU	SSU	
AJ867019	Nitzschia supralitorea NZSU1	SSU	SSU	
AJ867020	Nitzschia cf. supralitorea NZSU2	SSU	SSU	

AJ867021	Nitzschia inconspicua NINC1	SSU	SSU
AJ867277	Nitzschia amphibia FDCC L602	SSU	SSU
AJ867278	Nitzschia communis FDCC L408	SSU	SSU
AJ867279	Nitzschia sigma FDCC L1546	SSU	SSU
AJ867280	Nitzschia vitrea FDCC L1276	SSU	SSU
AM182191	Nitzschia fonticola A-RT24	LSU	LSU+rbcL
AM182193	Nitzschia fonticola C-RT26	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM182194	Nitzschia amphibia amphibia-RT5	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM182195	Nitzschia inconspicua incons-RT10	LSU	LSU
AM182196	Nitzschia supralitorea supralit-RT11	LSU	LSU
AM183228	Nitzschia palea Jp013-ND3	LSU	LSU+ <i>rbcL</i> , LSU
AM183229	Nitzschia palea Jp014-ND4	LSU	LSU+ <i>rbcL</i> , LSU
AM183230	Nitzschia palea Jp030-K12	LSU	LSU+ <i>rbcL</i> , LSU
AM183231	Nitzschia palea Jp030-K12	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM183232	Nitzschia palea Jp052-FU6	LSU	LSU+ <i>rbcL</i> , LSU
AM183233	Nitzschia palea Mayama	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM183235	Nitzschia palea SLA [SriLanka1]	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM183236	Nitzschia palea SLB [SriLanka2]	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM183238	Nitzschia palea Nil	LSU	LSU
AM183239	Nitzschia palea PY	LSU	LSU+ <i>rbcL</i> , LSU
AM183240	Nitzschia palea BB2b	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM183242	Nitzschia palea Aitor5	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM183245	Nitzschia palea Nit B2	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM183246	Nitzschia palea Nit C	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM183247	Nitzschia palea Nit B4	LSU	four-gene
AM183248	Nitzschia palea Victor 02-9E	LSU	four-gene
AM183586	Nitzschia cf. bulnheimiana AG	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
AM235380	Pseudo-nitzschia multiseries Nparl	SSU	SSU
AM235381	Pseudo-nitzschia multiseries TKA 2-28	SSU	SSU
AM235382	Pseudo-nitzschia multiseries POMX	SSU	SSU
AM501963	Eunotia sp. AT-73Gel02	SSU	SSU
AM502001	Eunotia implicata AT-219 07	SSU	SSU
AM502040	Eunotia formica AT-111Gel09	SSU	SSU
AM710428	Eunotia formica AT-111Gel09	rbcL	LSU+ <i>rbcL</i>
AM710429	Eunotia sp. AT-73Gel02	rbcL	LSU+rbcL
AM710468	Eunotia implicata AT-219.07	rbcL	LSU+rbcL
AM710517	Eunotia formica AT-111Gel09	LSU	LSU+rbcL, LSU

AM710518	Eunotia sp. AT-73Gel02	LSU	LSU+rbcL, LSU
AM710557	Eunotia implicata AT-219.07	LSU	LSU+rbcL, LSU
AM909631	Nitzschia capitellata strain 262	LSU	four-gene
AP018505	Nitzschia sp. PL3-2	genome	cox1
AP018507	Nitzschia sp. PL1-4	genome	cox1
AP018509	Nitzschia sp. NIES-3576	genome	cox1
AP018510	Nitzschia sp. NIES-3581	genome	cox1
AP018512	Nitzschia palea NIES-2729	genome	cox1
AY081136	Pseudo-nitzschia galaxiae Mex 23	LSU	LSU
AY081137	Pseudo-nitzschia galaxiae Sydney 4	LSU	LSU
AY221947	Pseudo-nitzschia multiseries CLN125	SSU	SSU
AY485457	Cylindrotheca fusiformis CCMP339	SSU	SSU
AY485458	Nitzschia thermalis HP	SSU	SSU
AY485467	Fragilariopsis cylindrus CCMP1102	SSU	SSU+rbcL
AY550126	Pseudo-nitzschia pseudodelicatissima SZN- B109	LSU	LSU
AY550127	Pseudo-nitzschia pseudodelicatissima SZN- B112	LSU	LSU
AY571744	Eunotia minor E3318	rbcL	rbcL
AY764136	Pseudo-nitzschia arenysensis 14V	LSU	LSU
AY866415	CyIndrotheca closterium MGB0402	rbcL	SSU+rbcL, rbcL
AY866416	CyIndrotheca closterium MGB0401	rbcL	SSU+rbcL
AY866417	CyIndrotheca closterium MGB0401	SSU	SSU+rbcL, SSU
AY866418	Cylndrotheca closterium MGB0402	SSU	SSU+rbcL, SSU
AY881967	Nitzschia longissima	rbcL	SSU+rbcL, rbcL
AY881968	Nitzschia longissima	SSU	SSU+rbcL, SSU
DQ019445	Cylindrotheca closterium MGB0501	rbcL	SSU+rbcL, rbcL
DQ019446	Cylindrotheca closterium MGB0501	SSU	SSU+rbcL, SSU
DQ082738	Cylindrotheca closterium MGB0502	SSU	SSU+rbcL, SSU
DQ082739	Cylindrotheca closterium MGB0503	SSU	SSU
DQ082740	Cylindrotheca closterium MGB0504	SSU	SSU
DQ082741	Cylindrotheca closterium MGB0505	SSU	SSU+rbcL, SSU
DQ082742	Cylindrotheca closterium MGB0506	SSU	SSU+rbcL, SSU
DQ082743	Cylindrotheca closterium MGB0502	rbcL	SSU+rbcL
DQ082744	Cylindrotheca closterium MGB0503	rbcL	SSU+rbcL, rbcL
DQ082745	Cylindrotheca closterium MGB0504	rbcL	SSU+rbcL
DQ082746	Cylindrotheca closterium MGB0505	rbcL	SSU+rbcL, rbcL

DQ082747	Cylindrotheca closterium MGB0506	rbcL	SSU+rbcL, rbcL
DQ143045	Cylindrotheca closterium JZB-28	rbcL	SSU+rbcL
DQ143046	Cylindrotheca closterium JZB-3A	rbcL	SSU+rbcL, rbcL
DQ143047	Cylindrotheca closterium JZB-3C	rbcL	SSU+rbcL, rbcL
DQ178392	Cylindrotheca closterium JZB-3A	SSU	SSU+rbcL
DQ178393	Cylindrotheca closterium JZB-3C	SSU	SSU+rbcL, SSU
DQ178394	Cylindrotheca closterium JZB-28	SSU	SSU+ <i>rbcL</i> , SSU
DQ813808	Pseudo-nitzschia pseudodelicatissima AL-15	LSU	LSU+ <i>rbcL</i> , LSU
DQ813811	Pseudo-nitzschia arenysensis AL-24	LSU	LSU+rbcL
DQ813812	Pseudo-nitzschia caciantha AL-56	LSU	LSU+ <i>rbcL</i> , LSU
DQ813813	Pseudo-nitzschia dolorosa AL-59	LSU	LSU+rbcL, LSU
DQ813814	Pseudo-nitzschia mannii AL-101	LSU	LSU+rbcL, LSU
DQ813816	Pseudo-nitzschia mannii P4	LSU	LSU
DQ813817	Pseudo-nitzschia pseudodelicatissima AL-15	LSU	LSU+ <i>rbcL</i> , LSU
DQ813818	Pseudo-nitzschia delicatissima AL-22	rbcL	rbcL
DQ813819	Pseudo-nitzschia arenysensis AL-24	rbcL	SSU+rbcL, LSU+rbcL, rbcL
DQ813820	Pseudo-nitzschia cuspidata AL-28	rbcL	SSU+rbcL, rbcL
DQ813821	Pseudo-nitzschia caciantha AL-56	rbcL	SSU+rbcL, LSU+rbcL, rbcL
DQ813822	Pseudo-nitzschia dolorosa AL-59	rbcL	LSU+rbcL, rbcL
DQ813823	Pseudo-nitzschia arenysensis AL-64	rbcL	rbcL
DQ813824	Pseudo-nitzschia mannii AL-101	rbcL	LSU+rbcL, rbcL
DQ813825	Pseudo-nitzschia calliantha AL-117	rbcL	SSU+rbcL, rbcL
DR026462	Fragilariopsis cylindrus FcylESTa38f08.s1	SSU	SSU
EF140623	Fragilariopsis curta 3	SSU	SSU
EF140624	Fragilariopsis cylindrus 3	SSU	SSU
EF164960	Eunotia sp. EUN392T	cox1	cox1
EF417282	Uncultured organism from Habroleptoides confusa	LSU	LSU
EF423498	Nitzschia cf. pusilla CCMP558 [Nitzschia frustulum]	rbcL	LSU+rbcL, rbcL
EF423499	Fragilariopsis cylindrus E8C2	rbcL	rbcL
EF423500	Fragilariopsis kerguelensis E13B2	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
EF423501	Fragilariopsis kerguelensis PA_P6B3	rbcL	rbcL
EF423502	Pseudo-nitzschia fraudulenta AL50	rbcL	SSU+rbcL, rbcL
EF423504	Pseudo-nitzschia americana FBJun06.6	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
EF423505	Pseudo-nitzschia multistriata 19A	rbcL	rbcL

EF423506	Pseudo-nitzschia pungens FBA1D5	rbcL	rbcL
EF423507	Pseudo-nitzschia pungens FBA2A11	rbcL	SSU+rbcL
EF423508	Pseudo-nitzschia turgiduloides 7A1	rbcL	rbcL
EF423509	Pseudo-nitzschia galaxiae FB06.17	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
EF423510	Pseudo-nitzschia galaxiae SM60	rbcL	rbcL
EF423511	Pseudo-nitzschia galaxiae SM1	rbcL	rbcL
EF423512	Pseudo-nitzschia galaxiae SM3	rbcL	rbcL
EF423513	Pseudo-nitzschia galaxiae SM55	rbcL	rbcL
EF423514	Pseudo-nitzschia galaxiae SM54	rbcL	rbcL
EF423515	Pseudo-nitzschia galaxiae AL8	rbcL	rbcL
EF423516	Pseudo-nitzschia delicatissima AY11	rbcL	rbcL
EF432521	Bacillariophyta sp. SL64/78c	SSU	SSU
EF432527	Bacillariophyta sp. W5-1	SSU	SSU
EF506606	Pseudo-nitzschia galaxiae SM10	LSU	LSU
EF506608	Pseudo-nitzschia decipiens Mex13	LSU	LSU
EF520304	Fragilariopsis cylindrus E8C2	psbC	psbC
EF520305	Fragilariopsis kerguelensis E13B2	psbC	four-gene, <i>psbC</i>
EF520306	Fragilariopsis kerguelensis 6B3	psbC	psbC
EF520307	Pseudo-nitzschia turgiduloides 7A1	psbC	psbC
EF520308	Pseudo-nitzschia calliantha AL11	psbC	psbC
EF520309	Pseudo-nitzschia calliantha AL112	psbC	psbC
EF520311	Pseudo-nitzschia calliantha AL117	psbC	psbC
EF520312	Pseudo-nitzschia caciantha AL43	psbC	psbC
EF520313	Pseudo-nitzschia fraudulenta AL50	psbC	psbC
EF520314	Pseudo-nitzschia fraudulenta BB19	psbC	psbC
EF520315	Pseudo-nitzschia cuspidata AL28	psbC	psbC
EF520316	Pseudo-nitzschia pseudodelicatissima AL20	psbC	psbC
EF520317	Pseudo-nitzschia sp. CLA1.D4	psbC	psbC
EF520318	Pseudo-nitzschia sp. CLA1.D2	psbC	four-gene
EF520319	Pseudo-nitzschia pungens FBA1B2	psbC	psbC
EF520320	Pseudo-nitzschia pungens FBA2.A11	psbC	psbC
EF520321	Pseudo-nitzschia americana FBJUN06	psbC	four-gene, <i>psbC</i>
EF520322	Pseudo-nitzschia multistriata DD1	psbC	psbC
EF520323	Pseudo-nitzschia multistriata DD4	psbC	psbC
EF520324	Pseudo-nitzschia multistriata DD22	psbC	psbC
EF520325	Pseudo-nitzschia multistriata 279	psbC	psbC
EF520326	Pseudo-nitzschia galaxiae FB06	psbC	four-gene, <i>psbC</i>

EF520328	Pseudo-nitzschia galaxiae CLA1.D5	psbC	psbC
EF520329	Pseudo-nitzschia dolorosa AL59	psbC	psbC
EF520330	Pseudo-nitzschia delicatissima AL38	psbC	psbC
EF520331	Pseudo-nitzschia delicatissima CLA1.A1	psbC	four-gene, <i>psbC</i>
EF520332	Pseudo-nitzschia delicatissima AY7	psbC	psbC
EF520333	Pseudo-nitzschia fraudulenta AL75	rbcL	rbcL
EF520334	Pseudo-nitzschia multistriata CLA1.B3	rbcL	rbcL
EF520335	Pseudo-nitzschia multistriata DD22	rbcL	rbcL
EF520337	Pseudo-nitzschia multistriata 279	rbcL	rbcL
EF520338	Pseudo-nitzschia sp. CLA1.D2	rbcL	four-gene, LSU+ <i>rbcL</i> , <i>rbcL</i>
EF520339	Pseudo-nitzschia sp. CLA1.D4	rbcL	rbcL
EF520340	Pseudo-nitzschia delicatissima CLA1.A1	rbcL	four-gene, LSU+ <i>rbcL</i> , <i>rbcL</i>
EF520341	Pseudo-nitzschia delicatissima CLA1.A2	rbcL	rbcL
EF522108	Pseudo-nitzschia americana FBJUN06.1.6	LSU	four-gene, LSU+ <i>rbcL</i>
EF522112	Pseudo-nitzschia galaxiae MOZ06.1.A3	LSU	LSU
EF522113	Pseudo-nitzschia galaxiae FB06.1.17	LSU	four-gene
EF522114	Pseudo-nitzschia delicatissima CLA1.A1	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
EF522115	Pseudo-nitzschia sp. CLA1.D2	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
EF531709	Pseudo-nitzschia turgiduloides 124C	LSU	LSU
EF566016	Pseudo-nitzschia delicatissima AR1	LSU	LSU+ <i>rbcL</i> , LSU
EF642975	Pseudo-nitzschia fraudulenta AR3	LSU	LSU
EU090031	Nitzschia sp. AnM0026	SSU	SSU
EU090049	Nitzschia sp. AnM0026	rbcL	rbcL
FJ002104	Cylindrotheca closterium C27	rbcL	rbcL
FJ002125	Psammodictyon panduriforme C24	rbcL	rbcL
FJ002138	Fragilariopsis cylindrus C50	rbcL	SSU+rbcL
FJ150714	Pseudo-nitzschia calliantha ICMB-109	LSU	LSU+rbcL
FJ150720	Pseudo-nitzschia pungens ICMB-143	LSU	LSU+rbcL
FJ150732	Pseudo-nitzschia galaxiae ICMB-174	LSU	LSU+rbcL
FJ150734	Pseudo-nitzschia brasiliana ICMB-176	LSU	LSU+rbcL
FJ150735	Pseudo-nitzschia multistriata CM2	LSU	LSU+rbcL
FJ150737	Pseudo-nitzschia galaxiae ICMB-177	LSU	LSU+rbcL
FJ150740	Pseudo-nitzschia brasiliana ICMB-172	rbcL	SSU+rbcL
FJ150751	Pseudo-nitzschia galaxiae ICMB-174	rbcL	LSU+rbcL
FJ150752	Pseudo-nitzschia brasiliana ICMB-175	rbcL	rbcL
FJ150753	Pseudo-nitzschia brasiliana ICMB-176	rbcL	LSU+rbcL
FJ150754	Pseudo-nitzschia galaxiae ICMB-177	rbcL	LSU+rbcL

FJ150757	Pseudo-nitzschia multistriata CM2	rbcL	LSU+rbcL
FJ150758	Pseudo-nitzschia calliantha ICMB-109	rbcL	LSU+rbcL, rbcL
FJ150759	Pseudo-nitzschia pungens ICMB-143	rbcL	LSU+rbcL, rbcL
FJ150764	Pseudo-nitzschia delicatissima AR1	rbcL	LSU+rbcL
FJ214163	Nitzschia cf. pusilla ND 53	LSU	LSU
FJ489631	Pseudo-nitzschia linea ICMB-156	rbcL	LSU+rbcL
FJ489633	Pseudo-nitzschia linea ICMB-156	LSU	LSU+ <i>rbcL</i> , LSU
FM207547	Pseudo-nitzschia pungens NA108	rbcL	rbcL
FM207548	Pseudo-nitzschia pungens NA213	rbcL	rbcL
FN557017	Nitzschia palea Brazil	rbcL	rbcL
FN557018	Nitzschia palea Japan A1	rbcL	rbcL
FN557019	Nitzschia palea Japan B1	rbcL	LSU+rbcL
FN557020	Nitzschia palea Japan E	rbcL	LSU+rbcL, rbcL
FN557021	Nitzschia palea Paraguay	rbcL	LSU+rbcL
FN557022	Nitzschia palea Spain A3	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
FN557023	Nitzschia palea Spain A4	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
FN557025	Nitzschia palea Spain C	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
FN557026	Nitzschia palea Belgium1	rbcL	four-gene, SSU+rbcL, rbcL
FN557029	Nitzschia palea Belgium4	rbcL	LSU+rbcL
FN557030	Nitzschia capitellata capitellata Scot1	rbcL	four-gene, LSU+ <i>rbcL</i>
FN557031	Nitzschia capitellata capitellata Scot2	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i>
FN557032	Nitzschia capitellata capitellata Spain	rbcL	four-gene, SSU+ <i>rbcL</i>
FN557033	Nitzschia sigmoidea sigmoidea RBGE	rbcL	rbcL
FN557039	Nitzschia palea Brazil	cox1	cox1
FN557042	Nitzschia palea Japan F	cox1	cox1
FN557043	Nitzschia palea Japan E	cox1	cox1
FN557045	Nitzschia palea New Scot2	cox1	cox1
FN557046	Nitzschia palea New Spain1	cox1	cox1
FN557048	Nitzschia palea Paraguay	cox1	cox1
FN557049	Nitzschia palea Spain A3	cox1	cox1
FN557052	Nitzschia palea Spain C	cox1	cox1
FN557053	Nitzschia palea Japan B2	cox1	cox1
FN557054	Nitzschia palea Japan C	cox1	cox1
FN557055	Nitzschia palea Japan D	cox1	cox1
FN557057	Nitzschia palea Egypt	cox1	cox1

FN557058	Nitzschia palea SriLanka1	cox1	cox1
FN557059	Nitzschia palea UK	cox1	cox1
FN557060	Nitzschia cf. fonticola cf. fonticola 1	cox1	cox1
FN557061	Nitzschia cf. fonticola cf. fonticola 2	cox1	cox1
FN557062	Nitzschia cf. recta cf. recta	cox1	cox1
FN557063	Nitzschia palea SriLanka2	cox1	cox1
FR865501	Nitzschia epithemioides CCAP 1052/18	SSU	SSU
FR865513	Psammodictyon sp. CCAP 1062/1	SSU	SSU
GAKA01002849	Nitzschia sp. ChengR-2013 comp7_c0_seq1	SSU	SSU
GAPN01000170	Cylindrotheca closterium mira_c170	SSU	SSU
GAPN01002192	Cylindrotheca closterium mira_c2195	SSU	SSU
GAPN01006912	Cylindrotheca closterium mira_rep_c6950	SSU	SSU
GQ246179	Nitzschia sp. MD1	SSU	SSU
GQ396799	Nitzschia sp. DMST	SSU	SSU
GQ468529	Cylindrotheca closterium KMMCC:B-9	SSU	SSU
GQ468534	Cylindrotheca closterium KMMCC:B-88	SSU	SSU
GQ468535	Cylindrotheca closterium KMMCC:B-110	SSU	SSU
GQ468536	Cylindrotheca closterium KMMCC:B-119	SSU	SSU
GQ468539	Cylindrotheca closterium KMMCC:B-181	SSU	SSU
GQ468542	Cylindrotheca closterium KMMCC:B-361	SSU	SSU
GQ468545	Cylindrotheca closterium KMMCC:B-552	SSU	SSU
GQ844253	Cylindrotheca fusiformis CCMP344	cox1	cox1
GQ844270	Pseudo-nitzschia delicatissima DIAT223-07	cox1	cox1
GU254065	Pseudo-nitzschia brasiliana MMDL50424	LSU	LSU
GU373961	Pseudo-nitzschia australis SPC21	SSU	SSU
GU373964	Pseudo-nitzschia multiseries CCMP1660	SSU	SSU+ <i>rbcL</i> , SSU
GU373965	Pseudo-nitzschia pseudodelicatissima SPC22	SSU	SSU
GU373968	Pseudo-nitzschia pungens CL205	SSU	SSU
GU373969	Pseudo-nitzschia seriata CCMP1440	SSU	SSU
GU373970	Pseudo-nitzschia sp. CCMP1309	SSU	SSU
GU591327	Durinskia baltica CS-38 ENDOSYMBIONT	rbcL	SSU+rbcL, rbcL, psbC
GU591328	Kryptoperidinium foliaceum CCMP1326	rbcL	SSU+rbcL, rbcL, psbC
GU732414	Nitzschia cf. pusilla YSW06	LSU	LSU
GU734794	Neodenticula seminae Broad-2001	LSU	LSU
GU734795	Neodenticula seminae Narrow-SP	LSU	LSU
HE798209	Nitzschia lembiformis R1	LSU	four+gene, LSU

HF675061	Nitzschia cf. ardua L44	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL, rbcL</i>
HF675062	Nitzschia cf. aequorea DM1004CAT	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675063	Nitzschia cf. bulnheimiana AG	rbcL	four-gene, LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675065	Nitzschia cf. fonticola cf. fonticola 2	rbcL	LSU+rbcL
HF675066	Nitzschia fonticola A-RT24	rbcL	LSU+rbcL
HF675068	Nitzschia fonticola C-RT26	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675069	Nitzschia frustulum Nit24	rbcL	rbcL
HF675071	Nitzschia inconspicua G1_1	rbcL	rbcL
HF675072	Nitzschia inconspicua G1_2	rbcL	four-gene, SSU+ <i>rbcL</i>
HF675073	Nitzschia inconspicua G1_3	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i>
HF675074	Nitzschia inconspicua G2_1	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675075	Nitzschia inconspicua G2_2	rbcL	four-gene, SSU+ <i>rbcL</i>
HF675076	Nitzschia inconspicua G2_3	rbcL	LSU+rbcL
HF675080	Nitzschia inconspicua G3_1	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675081	Nitzschia inconspicua G3_2	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i>
HF675082	Nitzschia inconspicua G3_3	rbcL	four-gene, SSU+ <i>rbcL</i>
HF675083	Nitzschia inconspicua G3_4	rbcL	four-gene, SSU+ <i>rbcL</i>
HF675084	Nitzschia inconspicua G4_1	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675085	Nitzschia inconspicua G4_2	rbcL	four-gene, SSU+ <i>rbcL</i>
HF675087	Nitzschia inconspicua G5_1	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675088	Nitzschia inconspicua G5_2	rbcL	four-gene, SSU+ <i>rbcL</i>
HF675089	Nitzschia inconspicua G5-3	rbcL	LSU+rbcL
HF675102	Nitzschia inconspicua G6_1	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675103	Nitzschia cf. microcephala L56	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675104	Nitzschia palea L15	rbcL	rbcL
HF675107	Nitzschia palea laia46	rbcL	rbcL
HF675108	Nitzschia pusilla L1	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675109	Nitzschia pusilla L3	rbcL	four-gene, SSU+ <i>rbcL</i>
HF675110	Nitzschia pusilla L25	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675111	Nitzschia soratensis DM1009MK	rbcL	four-gene, SSU+ <i>rbcL</i>

HF675112	Nitzschia soratensis DM1008MK	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675116	Nitzschia sp. s0819	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675117	Tryblionella sp. s0863	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675118	Nitzschia amphibia amphibia-RT5	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL, rbcL</i>
HF675119	Nitzschia cf. pusilla Nit44	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675120	Nitzschia palea Spain A1	rbcL	rbcL
HF675121	Nitzschia palea SriLanka1	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675122	Nitzschia palea SriLanka2	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF675123	Nitzschia palea Japan F	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i>
HF675124	Nitzschia palea Spain A2	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL, rbcL</i>
HF675125	Nitzschia palea Japan D	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
HF675127	Nitzschia palea New Spain2	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL, rbcL</i>
HF675128	Nitzschia palea New Scot2	rbcL	LSU+rbcL, rbcL
HF675129	Nitzschia cf. pusilla CCMP558	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HF679146	Nitzschia cf. aequorea Nit1004CAT	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679147	Nitzschia cf. ardua L44	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679148	Nitzschia capitellata capitellata Scot1	LSU	four-gene
HF679149	Nitzschia capitellata capitellata Scot2	LSU	four-gene, LSU
HF679151	Nitzschia cf. fonticola cf. fonticola 2	LSU	LSU+ <i>rbcL</i> , LSU
HF679152	Nitzschia inconspicua G1_2	LSU	four-gene
HF679153	Nitzschia inconspicua G1_3	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679154	Nitzschia inconspicua G2_1	LSU	four-gene
HF679155	Nitzschia inconspicua G2_2	LSU	four-gene
HF679156	Nitzschia inconspicua G2_3	LSU	LSU+ <i>rbcL</i> , LSU
HF679160	Nitzschia inconspicua G3_2	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679161	Nitzschia inconspicua G3_3	LSU	four-gene
HF679163	Nitzschia inconspicua G4_1	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679164	Nitzschia inconspicua G4_2	LSU	four-gene
HF679166	Nitzschia inconspicua G5_1	LSU	four-gene
HF679167	Nitzschia inconspicua G5_2	LSU	four-gene
HF679168	Nitzschia inconspicua G5_3	LSU	LSU+rbcL
HF679175	Nitzschia inconspicua G5_11	LSU	LSU

HF679184	Nitzschia inconspicua G6_1	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679185	Nitzschia inconspicua G7_1	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679186	Nitzschia cf. microcephala L56	LSU	four-gene
HF679190	Nitzschia palea L18	LSU	LSU
HF679192	Nitzschia palea New Spain 1	LSU	LSU
HF679193	Nitzschia pusilla L1	LSU	four-gene
HF679195	Nitzschia pusilla L3	LSU	four-gene
HF679196	Nitzschia pusilla L25	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679197	Nitzschia soratensis DM1008MK	LSU	four-gene
HF679198	Nitzschia soratensis DM1009MK	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HF679199	Nitzschia cf. pusilla Nit 44	LSU	four-gene, LSU
HF679201	Nitzschia palea New Spain2	LSU	four-gene, LSU+ <i>rbcL</i>
HF679202	Nitzschia palea Belgium 4	LSU	LSU+rbcL, LSU
HF679203	Nitzschia palea New Scot2	LSU	LSU+rbcL, LSU
HF679204	Nitzschia cf. pusilla CCMP558	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
HM627325	Koernerella recticostata	psbC	psbC
HM805020	Bacillaria cf. paxillifer BA14c	SSU	SSU
HM805036	Nitzschia cf. fonticola BA34	SSU	SSU
HM805040	Nitzschia microcephala BA85	SSU	SSU
HQ111378	Pseudo-nitzschia brasiliana PnPm07	LSU	LSU
HQ111396	Pseudo-nitzschia dolorosa PnKk08	LSU	LSU
HQ317078	Nitzschia cf. promare CCMP:1116	cox1	cox1
HQ317079	Nitzschia sp. BOLD:AAX5147	cox1	cox1
HQ317080	Fragilariopsis curta CCMP:553	cox1	cox1
HQ317081	Fragilariopsis cylindrus CCMP:557	cox1	cox1
HQ317084	Nitzschia sp. CCMP581	cox1	cox1
HQ317085	Nitzschia sp. CCMP1532	cox1	cox1
HQ317086	Nitzschia sp. CCMP2533	cox1	cox1
HQ317087	Pseudo-nitzschia subcurvata CCMP:1431	cox1	cox1
HQ337558	Nitzschia cf. incrustans CCMP:1086	rbcL	LSU+rbcL
HQ337561	Nitzschia cf. promare CCMP:1116	rbcL	LSU+rbcL
HQ337572	Nitzschia laevis CCMP:559	rbcL	LSU+rbcL
HQ337573	Tryblionella compressa CCMP:561	rbcL	LSU+rbcL
HQ396820	Nitzschia cf. incrustans CCMP:1086	LSU	LSU+ <i>rbcL</i> , LSU
HQ396835	Nitzschia laevis CCMP:559	LSU	LSU+rbcL
HQ396837	Tryblionella compressa CCMP:561	LSU	LSU+rbcL, LSU
HQ656837	Cylindrotheca closterium PCC:610	rbcL	rbcL

HQ912279	Eunotia glacialis UTEX FD46	psbC	four-gene, <i>psbC</i>
HQ912282	Nitzschia filiformis UTEX FD267	psbC	four-gene, <i>psbC</i>
HQ912287	Achnanthes coarctata UTEX FD185	psbC	four-gene, <i>psbC</i>
HQ912292	Eunotia bilunaris UTEX FD412	psbC	four-gene, <i>psbC</i>
HQ912293	Tryblionella apiculata UTEX FD465	psbC	four-gene, <i>psbC</i>
HQ912303	Denticula kuetzingii UTEX FD135	psbC	four-gene, <i>psbC</i>
HQ912320	Bacillaria paxillifera UTEX FD468	psbC	four-gene, <i>psbC</i>
HQ912329	Eunotia pectinalis NIES461	psbC	four-gene, <i>psbC</i>
HQ912338	Cylindrotheca closterium CCMP1855	psbC	four-gene
HQ912376	Hantzschia amphioxys var. major A4	psbC	four-gene, <i>psbC</i>
HQ912390	Hantzschia amphioxys var. major A4	rbcL	four-gene, SSU+rbcL, rbcL
HQ912404	Hantzschia amphioxys var. major A4	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
HQ912450	Eunotia glacialis UTEX FD46	rbcL	four-gene
HQ912453	Nitzschia filiformis UTEX FD267	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HQ912458	Achnanthes coarctata UTEX FD185	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HQ912463	Eunotia bilunaris UTEX FD412	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HQ912464	Tryblionella apiculata UTEX FD465	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HQ912474	Denticula kuetzingii UTEX FD135	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HQ912491	Bacillaria paxillifera UTEX FD468	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HQ912500	Eunotia pectinalis NIES461	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HQ912509	Cylindrotheca closterium CCMP1855	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
HQ912586	Eunotia glacialis UTEX FD46	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
HQ912589	Nitzschia filiformis UTEX FD267	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
HQ912594	Achnanthes coarctata UTEX FD185	SSU	four-gene, SSU+ <i>rbcL</i>
HQ912599	Eunotia bilunaris UTEX FD412	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
HQ912600	Tryblionella apiculata UTEX FD465	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
HQ912610	Denticula kuetzingii UTEX FD135	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
HQ912627	Bacillaria paxillifera UTEX FD468	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
HQ912636	Eunotia pectinalis NIES461	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
HQ912645	Cylindrotheca closterium CCMP1855	SSU	four-gene, SSU+ <i>rbcL</i>
JF790980	"Cymbella cistuliformis" 1113	SSU	SSU
JF790983	"Cymbella cistuliformis" 1120	SSU	SSU
JF794052	Nitzschia sp. RCC2276	SSU	SSU
JN050293	Pseudo-nitzschia calliantha NL2	LSU	LSU
JN050296	Pseudo-nitzschia fryxelliana NWFSC 241	LSU	LSU+ <i>rbcL</i> , LSU
JN050298	Pseudo-nitzschia hasleana NWFSC 186	LSU	LSU+rbcL
JN050300	Pseudo-nitzschia lineola NWFSC 188	LSU	LSU

JN050301	Pseudo-nitzschia cf. turgidula NWFSC 255	LSU	LSU
JN050302	Pseudo-nitzschia fryxelliana NWFSC 241	rbcL	LSU+rbcL, rbcL
JN050304	Pseudo-nitzschia hasleana NWFSC 186	rbcL	LSU+rbcL, rbcL
JN050306	Pseudo-nitzschia cuspidata NWFSC 194	cox1	cox1
JN050307	Pseudo-nitzschia cuspidata Sydney1	cox1	cox1
JN050308	Pseudo-nitzschia fryxelliana NWFSC 241	cox1	cox1
JN050310	Pseudo-nitzschia hasleana NWFSC 186	cox1	cox1
JN050311	Pseudo-nitzschia hasleana NWFSC 252	cox1	cox1
JN050312	Pseudo-nitzschia lineola NWFSC 188	cox1	cox1
JN091716	Pseudo-nitzschia calliantha NWFSC185	SSU	SSU+rbcL
JN378735	Durinskia baltica ENDOSYMBIONT	cox1	cox1
JN599166	Pseudo-nitzschia australis 10249 10AB	SSU	SSU
JQ582669	Nitzschia frigida NF11	SSU	SSU
JQ776550	Pseudo-nitzschia calliantha CAWD114	LSU	LSU
JQ995391	Pseudo-nitzschia sp. MALINA_E10N1	LSU	LSU
JQ995403	Cylindrotheca closterium RCC1985	LSU	LSU
JQ995416	Pseudo-nitzschia arctica RCC2002	LSU	LSU+rbcL
JQ995421	Pseudo-nitzschia sp. RCC2008	LSU	LSU
JQ995450	Nitzschia sp. RCC2276	LSU	LSU
JX316762	Hantzschia sp. CCAP 1030/1	SSU	SSU
JX970999	Cylindrotheca closterium lineage V Mid15	rbcL	rbcL
JX971000	Cylindrotheca closterium lineage V D8	rbcL	rbcL
JX971011	Cylindrotheca sp. lineage IV OS1	rbcL	rbcL
JX971016	Cylindrotheca sp. lineage III OS9b	rbcL	rbcL
KC017445	Pseudo-nitzschia micropora PS90	LSU	LSU
KC017452	Pseudo-nitzschia calliantha TURB	LSU	LSU
KC017454	Pseudo-nitzschia cuspidata MER	LSU	LSU
KC017455	Pseudo-nitzschia delicatissima CHA	LSU	LSU
KC017456	Pseudo-nitzschia delicatissima CHB	LSU	LSU
KC017457	Pseudo-nitzschia fraudulenta PH25F	LSU	LSU
KC017458	Pseudo-nitzschia multiseries COOG	LSU	LSU
KC017459	Pseudo-nitzschia multistriata PH25D	LSU	LSU
KC017461	Pseudo-nitzschia americana PH25	LSU	LSU
KC017462	Pseudo-nitzschia pungens DR	LSU	LSU
KC147533	Pseudo-nitzschia circumpora PnSb58	LSU	LSU
KC147534	Pseudo-nitzschia batesiana PnTb19	LSU	LSU
KC147537	Pseudo-nitzschia fukuyoi PnTb72	LSU	LSU

KC147544	Pseudo-nitzschia lundholmiae PnTb48	LSU	LSU
КС309473	Achnanthes sp. MPA-2013 SanNic1Achnan	SSU	four-gene, SSU+ <i>rbcL</i>
КС309474	Achnanthes sp. MPA-2013 ECT3883Achnan	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КС309475	Achnanthes sp. MPA-2013 ECT3911Achnan	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КС309476	Achnanthes sp. MPA-2013 ECT3684Achnan	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КС309480	Eunotia sp. MPA-2013 ECT3676Eunotia	SSU	four-gene, SSU+ <i>rbcL</i>
KC309545	Achnanthes sp. MPA-2013 SanNic1Achnan	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KC309546	Achnanthes sp. MPA-2013 ECT3883Achnan	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KC309547	Achnanthes sp. MPA-2013 ECT3911Achnan	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KC309548	Achnanthes sp. MPA-2013 ECT3684Achnan	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KC309552	Eunotia sp. MPA-2013 ECT3676Eunotia	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KC309617	Achnanthes sp. MPA-2013 SanNic1Achnan	psbC	four-gene, <i>psbC</i>
KC309618	Achnanthes sp. MPA-2013 ECT3883Achnan	psbC	four-gene, <i>psbC</i>
KC309619	Achnanthes sp. MPA-2013 ECT3911Achnan	psbC	four-gene, <i>psbC</i>
КС309620	Achnanthes sp. MPA-2013 ECT3684Achnan	psbC	four-gene, <i>psbC</i>
KC309623	Eunotia sp. MPA-2013 ECT3676Eunotia	psbC	four-gene, <i>psbC</i>
KC509522	Cylindrotheca closterium CCMP1855	genome	rbcL, psbC
KC736602	Nitzschia acidoclinata TCC537	rbcL	SSU+rbcL
KC736604	Nitzschia costei TCC521 ex N. cf. frustulum	rbcL	SSU+rbcL, rbcL
KC736604 KC736605	Nitzschia costei TCC521 ex N. cf. frustulum Nitzschia draveillensis TCC700	rbcL rbcL	SSU+rbcL, rbcL SSU+rbcL, rbcL
KC736604 KC736605 KC736606	Nitzschia costei TCC521 ex N. cf. frustulum Nitzschia draveillensis TCC700 Nitzschia inconspicua TCC481	rbcL rbcL rbcL	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL
KC736604 KC736605 KC736606 KC736607	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487	rbcL rbcL rbcL rbcL	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL SSU+rbcL, rbcL
KC736604 KC736605 KC736606 KC736607 KC736608	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516	rbcL rbcL rbcL rbcL rbcL	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435	rbcL rbcL rbcL rbcL rbcL rbcL	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609 KC736610	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570	rbcL rbcL rbcL rbcL rbcL rbcL rbcL	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609 KC736610 KC736611	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583	rbcL rbcL rbcL rbcL rbcL rbcL rbcL rbcL	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU+rbcL
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609 KC736610 KC736611 KC736632	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC537	rbcL rbcL rbcL rbcL rbcL rbcL rbcL rbcL	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU+rbcL four-gene, SSU+rbcL
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609 KC736610 KC736611 KC736632 KC736633	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC543	rbcL rbcL rbcL rbcL rbcL rbcL rbcL SSU SSU	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU+rbcL four-gene, SSU+rbcL SSU
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609 KC736610 KC736632 KC736633 KC736634	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC537Nitzschia acidoclinata TCC543Nitzschia costei TCC521 ex N. cf. frustulum	rbcL rbcL rbcL rbcL rbcL rbcL rbcL SSU SSU SSU	SSU+rbcL, rbcL SSU+rbcL, rbcL rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU+rbcL four-gene, SSU+rbcL SSU SSU+rbcL, SSU+rbcL
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609 KC736610 KC736632 KC736633 KC736634 KC736635	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC543Nitzschia acidoclinata TCC543Nitzschia draveillensis TCC700	rbcL rbcL rbcL rbcL rbcL rbcL rbcL SSU SSU SSU SSU SSU	SSU+ <i>rbcL</i> , <i>rbcL</i> SSU+ <i>rbcL</i> , <i>rbcL</i> SSU+ <i>rbcL</i> , <i>rbcL</i> SSU+ <i>rbcL</i> , <i>rbcL</i> four-gene, SSU+ <i>rbcL</i> four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i> SSU+ <i>rbcL</i> SSU SSU+ <i>rbcL</i> , SSU+ <i>rbcL</i> four-gene, SSU+ <i>rbcL</i> SSU
KC736604 KC736605 KC736607 KC736608 KC736609 KC736610 KC736632 KC736633 KC736634 KC736635 KC736636	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC543Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC487	rbcL rbcL rbcL rbcL rbcL rbcL rbcL SSU SSU SSU SSU SSU SSU	SSU+ <i>rbcL</i> , <i>rbcL</i> SSU+ <i>rbcL</i> , <i>rbcL</i> SSU+ <i>rbcL</i> , <i>rbcL</i> SSU+ <i>rbcL</i> , <i>rbcL</i> four-gene, SSU+ <i>rbcL</i> four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i> SSU+ <i>rbcL</i> SSU SSU+ <i>rbcL</i> , SSU+ <i>rbcL</i> four-gene, SSU+ <i>rbcL</i> four-gene, SSU+ <i>rbcL</i> , SSU
KC736604 KC736605 KC736607 KC736608 KC736609 KC736610 KC736632 KC736633 KC736634 KC736635 KC736637	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC537Nitzschia acidoclinata TCC543Nitzschia draveillensis TCC700Nitzschia draveillensis TCC700Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516	rbcL rbcL rbcL rbcL rbcL rbcL rbcL SSU SSU SSU SSU SSU SSU SSU SSU	SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU SSU+rbcL, SSU+rbcL SSU SSU+rbcL, SSU+rbcL four-gene, SSU+rbcL, SSU four-gene, SSU+rbcL, SSU
KC736604 KC736605 KC736607 KC736608 KC736609 KC736610 KC736632 KC736633 KC736634 KC736635 KC736637 KC736638	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC543Nitzschia acidoclinata TCC543Nitzschia draveillensis TCC700Nitzschia lorenziana TCC516Nitzschia palea TCC521 ex N. cf. frustulumNitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia lorenziana TCC516	rbcL rbcL rbcL rbcL rbcL rbcL rbcL SSU SSU SSU SSU SSU SSU SSU SS	SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU SSU+rbcL SSU SSU+rbcL, SSU+rbcL four-gene, SSU+rbcL, SSU four-gene, SSU+rbcL, SSU SSU+rbcL
KC736604 KC736605 KC736607 KC736608 KC736609 KC736610 KC736632 KC736633 KC736634 KC736635 KC736637 KC736638 KC736639	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC543Nitzschia acidoclinata TCC543Nitzschia draveillensis TCC700Nitzschia lorenziana TCC516Nitzschia palea TCC521 ex N. cf. frustulumNitzschia lorenziana TCC543Nitzschia draveillensis TCC700Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570	rbcL rbcL rbcL rbcL rbcL rbcL rbcL SSU SSU SSU SSU SSU SSU SSU SS	SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU SSU+rbcL, SSU+rbcL SSU SSU+rbcL, SSU+rbcL four-gene, SSU+rbcL, SSU four-gene, SSU+rbcL, SSU SSU+rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609 KC736610 KC736631 KC736633 KC736633 KC736634 KC736635 KC736636 KC736637 KC736638 KC736639 KC736640	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC543Nitzschia acidoclinata TCC543Nitzschia draveillensis TCC700Nitzschia lorenziana TCC516Nitzschia palea TCC521 ex N. cf. frustulumNitzschia lorenziana TCC543Nitzschia draveillensis TCC700Nitzschia lorenziana TCC516Nitzschia palea TCC570Nitzschia palea TCC570Nitzschia palea TCC535Nitzschia palea TCC543	rbcL rbcL rbcL rbcL rbcL rbcL rbcL SSU SSU SSU SSU SSU SSU SSU SS	SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU+rbcL SSU SSU+rbcL, SSU+rbcL four-gene, SSU+rbcL, SSU four-gene, SSU+rbcL, SSU SSU+rbcL four-gene, SSU+rbcL SSU+rbcL SSU+rbcL SSU+rbcL
KC736604 KC736605 KC736606 KC736607 KC736608 KC736609 KC736610 KC736631 KC736633 KC736633 KC736634 KC736635 KC736636 KC736637 KC736638 KC736639 KC736640 KC736648	Nitzschia costei TCC521 ex N. cf. frustulumNitzschia draveillensis TCC700Nitzschia inconspicua TCC481Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia palea TCC435Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC543Nitzschia acidoclinata TCC543Nitzschia draveillensis TCC700Nitzschia inconspicua TCC487Nitzschia lorenziana TCC516Nitzschia acidoclinata TCC543Nitzschia acidoclinata TCC543Nitzschia acidoclinata TCC543Nitzschia acidoclinata TCC543Nitzschia draveillensis TCC700Nitzschia inconspicua TCC487Nitzschia palea TCC570Nitzschia palea TCC570Nitzschia palea TCC570Nitzschia palea TCC570Nitzschia palea TCC570Nitzschia palea TCC583Nitzschia acidoclinata TCC543	rbcL rbcL rbcL rbcL rbcL rbcL rbcL sSU SSU	SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL SSU+rbcL, rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL, rbcL SSU+rbcL SSU SSU+rbcL, SSU+rbcL four-gene, SSU+rbcL, SSU four-gene, SSU+rbcL, SSU SSU+rbcL four-gene, SSU+rbcL SSU+rbcL four-gene, SSU+rbcL four-gene, SSU+rbcL SSU+rbcL four-gene, SSU+rbcL SSU+rbcL

KC736650	Nitzschia palea TCC435	cox1	cox1
KC736651	Nitzschia palea TCC570	cox1	cox1
КС759159	Nitzschia microcephala Som	SSU	SSU
KC801036	Pseudo-nitzschia arenysensis SZN-B487	rbcL	rbcL
КС801037	Pseudo-nitzschia cf. delicatissima SZN-B507	rbcL	LSU+rbcL, rbcL
KC801039	Pseudo-nitzschia pseudodelicatissima SZN- B317	rbcL	rbcL
KC801040	Pseudo-nitzschia multiseries NWFSC-316	rbcL	SSU+rbcL
KC801041	Pseudo-nitzschia cf. delicatissima SZN-B507	LSU	LSU+ <i>rbcL</i> , LSU
KC832999	Fragilariopsis kerguelensis MM_E13B2	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
KF006838	Pseudo-nitzschia subpacifica Pn252-07E7	LSU	LSU
KF177695	Bacillariophyta sp. 1 MAB-2013 GSP108-1	SSU	SSU
KF177708	Bacillariophyta sp. 1 MAB-2013 GSP127-1	SSU	SSU
KF177730	Bacillariophyta sp. MAB-2013 GSP162-1	SSU	SSU
KF177731	Bacillariophyta sp. MAB-2013 GSP163-1	SSU	SSU
KF17772	Bacillariophyta sp. MAB-2013 GSPBP-1	SSU	SSU
KF177774	Navicula pulchripora UTEX 2604	SSU	SSU
KF17775	Nitzschia laevis UTEX 2047	SSU	SSU
KF241715	Pseudo-nitzschia multistriata SZN-B531	LSU	LSU
KF417684	Nitzschia dissipata 05DB2_22	SSU	SSU
KF417685	Nitzschia fonticola Wb1b1	SSU	SSU
KF417686	Nitzschia fonticola 05DB3_20	SSU	SSU
KF417687	Nitzschia palea TPA1	SSU	SSU
KF417688	Nitzschia pusilla QB21	SSU	SSU
KF482043	Pseudo-nitzschia kodamae PnPd31	LSU	LSU
KF482045	Pseudo-nitzschia kodamae PnPd36	LSU	LSU
KF482046	Pseudo-nitzschia kodamae PnPd39	LSU	LSU
KF482048	Pseudo-nitzschia caciantha PnSL03	LSU	LSU
KF482049	Pseudo-nitzschia caciantha PnSL05	LSU	LSU
KF733443	Eunotia naegelii UTEX FD354	genome	rbcL, psbC
KF955284	Nitzschia bizertensis BD2	LSU	LSU
KF955285	Nitzschia bizertensis BD2	SSU	SSU
KF959639	Nitzschia palea TCC139-2	rbcL	SSU+rbcL
KF959653	Nitzschia palea TCC139-2	SSU	SSU+rbcL
KJ463434	Amphora laevissima 7314-AMPH085	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KJ463436	Amphora obtusa_var_crassa 6951-AMPH070	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KJ463464	Amphora laevissima 7314-AMPH085	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>

KJ463466	Amphora obtusa_var_crassa 6951-AMPH070	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KJ463494	Amphora laevissima 7314-AMPH085	psbC	four-gene, <i>psbC</i>
KJ463496	Amphora obtusa_var_crassa 6951-AMPH070	psbC	four-gene, <i>psbC</i>
KJ542393	Nitzschia palea TCC531	LSU	LSU+rbcL
KJ542395	Nitzschia palea TCC563	LSU	LSU+rbcL, LSU
KJ542397	Nitzschia palea TCC570	LSU	four-gene
KJ542400	Nitzschia palea TCC480	LSU	LSU+ <i>rbcL</i> , LSU
KJ542401	Nitzschia palea TCC486	LSU	LSU+ <i>rbcL</i> , LSU
KJ542402	Nitzschia palea TCC476	LSU	LSU+ <i>rbcL</i> , LSU
KJ542411	Nitzschia palea TCC703	LSU	LSU+ <i>rbcL</i> , LSU
KJ542412	Nitzschia palea TCC468	LSU	LSU+ <i>rbcL</i> , LSU
KJ542413	Nitzschia palea TCC456	LSU	LSU+rbcL
KJ542414	Nitzschia palea TCC435	LSU	four-gene
KJ542416	Nitzschia palea DM1010	LSU	LSU+ <i>rbcL</i> , LSU
KJ542420	Nitzschia palea TCC620	LSU	LSU+ <i>rbcL</i> , LSU
KJ542426	Nitzschia palea TCC603	LSU	LSU+rbcL
KJ542428	Nitzschia palea TCC588	LSU	LSU+rbcL
KJ542429	Nitzschia palea R12	LSU	four-gene
KJ542431	Nitzschia palea TCC139-1	LSU	LSU+ <i>rbcL</i> , LSU
KJ542452	Nitzschia palea TCC603	cox1	cox1
KJ542457	Nitzschia palea TCC531	rbcL	LSU+rbcL
KJ542460	Nitzschia palea TCC563	rbcL	LSU+rbcL, rbcL
KJ542465	Nitzschia palea TCC480	rbcL	LSU+rbcL, rbcL
KJ542468	Nitzschia palea TCC476	rbcL	LSU+rbcL, rbcL
KJ542483	Nitzschia palea TCC703	rbcL	LSU+rbcL, rbcL
KJ542484	Nitzschia palea TCC468	rbcL	LSU+rbcL, rbcL
KJ542485	Nitzschia palea TCC456	rbcL	LSU+rbcL
KJ542486	Nitzschia palea TCC425	rbcL	LSU+rbcL, rbcL
KJ542489	Nitzschia palea DM1010	rbcL	LSU+rbcL
KJ542493	Nitzschia palea TCC620	rbcL	LSU+rbcL
KJ542494	Nitzschia palea TCC623	rbcL	rbcL
KJ542499	Nitzschia palea TCC603	rbcL	LSU+rbcL, rbcL
KJ542501	Nitzschia palea TCC588	rbcL	LSU+rbcL, rbcL
KJ542502	Nitzschia palea R12	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KJ542504	Nitzschia palea Japan A2	rbcL	rbcL
KJ542505	Nitzschia palea Japan B2	rbcL	LSU+rbcL, rbcL
KJ542506	Nitzschia palea Japan C	rbcL	LSU+rbcL

KJ542515	Nitzschia palea SriLanka1	rbcL	LSU+rbcL
KJ542516	Nitzschia palea SriLanka2	rbcL	LSU+rbcL
KJ542517	Nitzschia palea BB2b	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
КЈ542519	Nitzschia palea TCC 139-1	rbcL	SSU+rbcL
KJ577899	Nitzschia martiana TN-2014 3VIII07N.martyana [as Navicula]	rbcL	rbcL
KJ577933	Nitzschia martiana TN-2014 3VIII07N.martyana [as Navicula]	psbC	psbC
КЈ608078	Pseudo-nitzschia galaxiae SZN-B606	SSU	four-gene, SSU+ <i>rbcL</i>
КЈ671730	Cylindrotheca closterium 10	cox1	cox1
KJ671736	Nitzschia longissima 33	cox1	cox1
KJ671737	Psammodictyon panduriforme L	cox1	cox1
KJ671739	Pseudo-nitzschia sp. A2ni	cox1	cox1
KJ866907	Pseudo-nitzschia granii UNC1102	SSU	SSU+rbcL, SSU+rbcL
KJ866919	Fragilariopsis kerguelensis L26-C5	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KJ961684	Eunotia sp. 2A LKM-2015	SSU	SSU
KJ961686	Eunotia sp. 8 LKM-2015	SSU	SSU
KJ961687	Eunotia sp. 17	SSU	SSU
KJ961688	Eunotia sp. 5	SSU	SSU
KJ961689	Eunotia sp. 13	SSU	SSU
КЈ961690	Eunotia sp. 6 LKM-2015	SSU	SSU
KJ961692	Eunotia sp. 116	SSU	SSU
КЈ961694	Eunophora sp. 107	SSU	SSU
KJ961695	Eunotia sp. 18	SSU	SSU
KJ961696	Eunotia sp. 44	SSU	SSU
KJ961697	Eunotia sp. 41	SSU	SSU
КЈ961699	Eunotia sp. 30	SSU	SSU
КЈ961700	Actinella sp. 111	SSU	SSU
КЈ961701	Actinella sp. 99	SSU	SSU
КЈ961706	Eunotia sp. 60	SSU	SSU
КЈ961707	Eunotia sp. 62	SSU	SSU
КЈ961709	Eunotia sp. 63	SSU	SSU
KM116079	Hantzschia sp. LFS-2014 D03	SSU	SSU
KM116080	Hantzschia sp. LFS-2014 D04	SSU	SSU
KM116081	Hantzschia amphioxys var. major D06	SSU	SSU
KM116083	Hantzschia amphioxys var. major D08	SSU	SSU
KM116084	Hantzschia elongata D11	SSU	SSU

KM116085	Hantzschia amphioxys FLA02	SSU	SSU
KM116086	Hantzschia amphioxys FLA03	SSU	SSU
KM116087	Hantzschia amphioxys FLA04	SSU	SSU
KM116088	Hantzschia amphioxys E01	SSU	SSU
KM116089	Hantzschia amphioxys A06	SSU	SSU
KM116090	Hantzschia amphioxys A07	SSU	SSU
KM116091	Hantzschia amphioxys A08	SSU	SSU
KM116092	Hantzschia amphioxys E06	SSU	SSU
KM116093	Hantzschia amphioxys E07	SSU	SSU
KM116094	Hantzschia sigma F01	SSU	SSU
KM116101	Hantzschia spectabilis E08	SSU	SSU
KM116105	Nitzschia commutata B02	SSU	SSU
KM116106	Hantzschia amphioxys f. muelleri FLA05	SSU	SSU
KM116107	Hantzschia amphioxys FLA06	SSU	SSU
KM116110	Hantzschia sp. FLA09	SSU	SSU
KM116111	Hantzschia sp. FLA10	SSU	SSU
KM116112	Hantzschia sp. FLA11	SSU	SSU
KM386874	Pseudo-nitzschia brasiliana CCMA405	SSU	SSU
КМ387719	Nitzschia cf. communis T6-NC11	SSU	SSU
KM400622	Pseudo-nitzschia sabit PnPd76	LSU	LSU
KM400623	Pseudo-nitzschia sabit PnPd75	LSU	LSU
KM407565	Hantzschia sp. Ant005-E01	LSU	LSU
KM407568	Hantzschia amphioxys Ant025-E04	LSU	LSU
KM407571	Hantzschia amphioxys UTEX-FD339-E07	LSU	LSU
KM407572	Hantzschia amphioxys UTEX-FD339-E08	LSU	LSU
KM407574	Hantzschia elongata UTEX-FD421-E10	LSU	LSU
KM407578	Hantzschia amphioxys var. major UTEX-FD348- F02	LSU	LSU
KM407579	Hantzschia amphioxys var. major UTEX-FD348- F03	LSU	LSU
КМ407583	Hantzschia sigma UTEX-FD313-F11	LSU	LSU
КМ407587	Hantzschia spectabilis UTEX-FD269-G06	LSU	LSU
KM407588	Hantzschia spectabilis UTEX-FD269-G07	LSU	LSU
КМ407589	Hantzschia spectabilis UTEX-FD269-G08	LSU	LSU
KM999113	Nitzschia cf. sigmoidea KEL-2015 JAR89_G2Run12	rbcL	rbcL
KM999114	Hantzschia elongata JAR79_D8Run13	rbcL	rbcL
КМ999115	Eunotia sp. KEL 2015 JAR78_D2Run13	rbcL	rbcL

КР099755	Uncultured Nitzschia a70	LSU	LSU
KP101078	Pseudo-nitzschia plurisecta Ner-A1	cox1	cox1
KP101081	Pseudo-nitzschia abrensis Ner-J2	cox1	cox1
KP288520	Pseudo-nitzschia sabit Ps102	cox1	cox1
KP288521	Pseudo-nitzschia sabit Ps277	cox1	cox1
KP288522	Pseudo-nitzschia sabit Ps283	cox1	cox1
KP337356	Pseudo-nitzschia decipiens PnKk38	LSU	LSU
KP708987	Pseudo-nitzschia arenysensis PnKk40	SSU	SSU+ <i>rbcL,</i> SSU
KP708989	Pseudo-nitzschia batesiana PnTb19	SSU	SSU
KP708990	Pseudo-nitzschia brasiliana PnSm07	SSU	SSU+rbcL
KP708992	Pseudo-nitzschia caciantha PnSL05	SSU	SSU+rbcL
KP708993	Pseudo-nitzschia circumpora PnPd27	SSU	SSU
KP708995	Pseudo-nitzschia cuspidata PnPd29	SSU	SSU+ <i>rbcL</i> , SSU
KP708996	Pseudo-nitzschia decipiens PnKk38	SSU	SSU
KP708999	Pseudo-nitzschia fukuyoi PnTb39	SSU	SSU
КР709000	Pseudo-nitzschia kodamae PnPd31	SSU	SSU
KP709002	Pseudo-nitzschia lundholmiae PnTb28	SSU	SSU
KP709003	Pseudo-nitzschia micropora PnKk14	SSU	SSU
КР709004	Pseudo-nitzschia pungens PnKd05	SSU	SSU+rbcL
КР709006	Pseudo-nitzschia sabit PnPd83	SSU	SSU
KP750173	Pseudo-nitzschia multistriata Ps143	cox1	cox1
KP750174	Pseudo-nitzschia multistriata Ps91	cox1	cox1
KP750176	Pseudo-nitzschia brasiliana Ps148	cox1	cox1
KP750177	Pseudo-nitzschia delicatissima Ps101	cox1	cox1
KP941049	Pseudo-nitzschia brasiliana Ps148	LSU	LSU
KP941050	Pseudo-nitzschia delicatissima Ps101	LSU	LSU
KR048205	Simonsenia aveniformis	rbcL	rbcL
KR709240	Pseudo-nitzschia multiseries	genome	rbcL, psbC
KR871383	Pseudo-nitzschia pungens PnKL16	cox1	cox1
KR871387	Pseudo-nitzschia pungens PnSb63	cox1	cox1
KR871388	Pseudo-nitzschia brasiliana PnSm07	cox1	cox1
KR871390	Pseudo-nitzschia batesiana PnTb19	cox1	cox1
KR871391	Pseudo-nitzschia fukuyoi PnTb25	cox1	cox1
KT072921	Nitzschia fonticola TCC533	rbcL	four-gene, SSU+ <i>rbcL</i>
KT072924	Nitzschia capitellata TCC579	rbcL	SSU+rbcL
KT072926	Nitzschia cf. pusilla TCC586	rbcL	four-gene, SSU+ <i>rbcL</i>

КТ072967	Nitzschia inconspicua TCC510 ex N hantzschiana	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КТ072971	Nitzschia acidoclinata TCC538	SSU	four-gene, SSU+ <i>rbcL</i>
КТ072978	Nitzschia capitellata TCC579	SSU	SSU+rbcL, SSU
КТ072985	Nitzschia palea TCC609	SSU	SSU
KT189135	Pseudo-nitzschia hasleana 208	LSU	LSU
KT189138	Pseudo-nitzschia fraudulenta 339b	LSU	LSU
KT288116	Eunotia cf. mucophila PV-2015 LB2	rbcL	rbcL
KT288118	Eunotia cf. mucophila PV-2015 BST1	rbcL	rbcL
KT288119	Eunotia cf. mucophila PV-2015 BST10	rbcL	rbcL
КТ288120	Eunotia cf. mucophila PV-2015 JP11	rbcL	rbcL
KT288121	Eunotia bilunaris labile DM33-5	rbcL	rbcL
КТ288122	Eunotia bilunaris labile DM33-9	rbcL	rbcL
КТ288123	Eunotia bilunaris labile DM33-18	rbcL	rbcL
КТ288124	Eunotia bilunaris labile DM33_08_2	rbcL	rbcL
KT288125	Eunotia bilunaris labile WAR_60	rbcL	rbcL
КТ288127	Eunotia bilunaris slender DM33-15	rbcL	rbcL
KT288130	Eunotia bilunaris slender DM33-17	rbcL	rbcL
KT288131	Eunotia bilunaris robust DM33-1	rbcL	rbcL
KT288132	Eunotia bilunaris robust DM33-3	rbcL	rbcL
КТ288135	Eunotia bilunaris robust DM22-5	rbcL	rbcL
КТ288136	Eunotia bilunaris robust DM22-12	rbcL	rbcL
KT288141	Eunotia bilunaris robust WAR_63	rbcL	rbcL
КТ288142	Eunotia bilunaris robust ROUS_1	rbcL	rbcL
KT288148	Eunotia bilunaris robust LADm_24	rbcL	rbcL
КТ288152	Eunotia cf. latitaenia PV-2015 LADm_23	rbcL	rbcL
КТ288155	Eunotia cf. latitaenia PV-2015 LADm_57	rbcL	rbcL
КТ288157	Eunotia cf. latitaenia PV-2015 LADm_62	rbcL	rbcL
КТ693309	Cymbellonitzschia banzuensis 10928-CN01	rbcL	SSU+rbcL, rbcL
КТ693310	Cymbellonitzschia banzuensis 10928-CN01	SSU	SSU+ <i>rbcL</i> , SSU
КТ808257	Pseudo-nitzschia arctica RCC2002	rbcL	LSU+rbcL
КТ860972	Nitzschia sp. RCC466	SSU	SSU
КТ860982	Nitzschia sp. RCC826	SSU	SSU
КТ861012	Nitzschia sp. RCC2934	SSU	SSU
KT861018	Psammodictyon sp. RCC3091	SSU	SSU
KT861227	Nitzschia sp. RCC80	SSU	SSU
КТ886104	Nitzschia sp. KAS622	SSU	SSU

КТ943601	Achnanthes sp. SZCZCH113	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КТ943602	Achnanthes sp. SZCZM119	SSU	four-gene, SSU+ <i>rbcL</i>
КТ943615	Achnanthes sp. SZCZCH113	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
КТ943616	Achnanthes sp. SZCZM119	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
КТ943626	Achnanthes sp. SZCZCH113	psbC	four-gene, <i>psbC</i>
КТ943627	Achnanthes sp. SZCZM119	psbC	four-gene, <i>psbC</i>
КТ943638	Tryblionella gaoana SZCZCH97	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КТ943639	Nitzschia aurariae SZCZCH966	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КТ943640	Nitzschia valdestriata SZCZCH969	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КТ943641	Nitzschia cf. volvendirostrata SZCZCH845	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КТ943642	Nitzschia traheaformis SZCZCH970	SSU	four-gene, SSU+ <i>rbcL</i>
КТ943643	Nitzschia traheaformis SZCZCH971	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КТ943644	Nitzschia traheaformis SZCZCH972	SSU	four-gene, SSU+ <i>rbcL</i>
КТ943648	Amphora vixvisibilis SZCZCH967	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KT943651	Nitzschia sp. SZCZCH658	SSU	SSU
КТ943663	Nitzschia aurariae SZCZCH966	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
КТ943664	Nitzschia valdestriata SZCZCH969	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
КТ943665	Nitzschia cf. volvendirostrata SZCZCH845	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
КТ943666	Nitzschia traheaformis SZCZCH970 [Nitzschia cf. dubiiformis]	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
КТ943667	Nitzschia traheaformis SZCZCH971 [Nitzschia cf. dubiiformis]	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i>
КТ943668	Nitzschia traheaformis SZCZCH972 [Nitzschia cf. dubiiformis]	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
КТ943670	Amphora vixvisibilis SZCZCH967	rbcL	four-gene, SSU+rbcL, rbcL
КТ943675	Nitzschia nanodissipata SZCZCH974	rbcL	rbcL
КТ943683	Tryblionella gaoana SZCZCH97	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
КТ943697	Tryblionella gaoana SZCZCH97	psbC	four-gene
КТ943698	Nitzschia aurariae SZCZCH966	psbC	four-gene, <i>psbC</i>
КТ943699	Nitzschia valdestriata SZCZCH969	psbC	four-gene, <i>psbC</i>
КТ943700	Nitzschia cf. volvendirostrata SZCZCH845 [Nitzschia sp.]	psbC	four-gene, <i>psbC</i>
КТ943701	Nitzschia traheaformis SZCZCH970 [Nitzschia cf. dubiiformis]	psbC	four-gene, <i>psbC</i>
КТ943702	Nitzschia traheaformis SZCZCH971 [Nitzschia cf. dubiiformis]	psbC	four-gene
KT943706	Amphora vixvisibilis SZCZCH967	psbC	four-gene, <i>psbC</i>
КТ943712	Nitzschia nanodissipata SZCZCH974	psbC	psbC

KU179112	Nitzschia volvendirostrata KSA0039	rbcL	rbcL
KU179114	Nitzschia volvendirostrata SZCZP36	rbcL	rbcL
KU179115	Nitzschia sp. SZCZM117	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KU179116	Nitzschia sp. KSA0035	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KU179128	Nitzschia sp. KSA0035	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KU179129	Nitzschia sp. SZCZM117	SSU	four-gene, SSU+ <i>rbcL</i>
KU179141	Nitzschia volvendirostrata SZCZP36	psbC	psbC
KU179141	Nitzschia volvendirostrata KSA0039	psbC	psbC
KU179142	Nitzschia sp. SZCZM117	psbC	four-gene, <i>psbC</i>
KU179143	Nitzschia sp. KSA0035	psbC	four-gene, <i>psbC</i>
KU183494	Pseudo-nitzschia granii RCC:2006	rbcL	SSU+rbcL
KU212806	Pseudonitzschia arctica P2F2	LSU	LSU
KU561119	Nitzschia ovalis DHmm1W3	SSU	SSU
KU561133	Nitzschia palea Xmm20S5	SSU	SSU
KU561134	Nitzschia ovalis Xmm12S2	SSU	SSU
KU561139	Nitzschia dubiiformis Xmm11S4	SSU	SSU
KU561152	Nitzschia microcephala Xmm1251	SSU	SSU
KU561172	Bacillaria cf. paxillifera XY-2016 Xmm24S4	SSU	SSU
KU561184	Nitzschia ovalis Xmm10W3	SSU	SSU
KU561195	Nitzschia capitellata Xmm16S2	SSU	SSU
KU561204	Cylindrotheca closterium Xmm18W1	SSU	SSU
KU561207	Cylindrotheca closterium Xmm37S2	SSU	SSU
KU561219	Psammodictyon constrictum Xmm23S3	SSU	SSU
KX229689	Pseudo-nitzschia americana UNC1412	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KX229690	Pseudo-nitzschia fraudulenta UNC1413	SSU	SSU+ <i>rbcL,</i> SSU
KX290859	Pseudo-nitzschia americana 427b	LSU	LSU
KX290867	Pseudo-nitzschia arenysensis 221b	LSU	LSU
KX290871	Pseudo-nitzschia australis HAB-400	LSU	LSU
KX290877	Pseudo-nitzschia cuspidata 133b	LSU	LSU
KX290881	Pseudo-nitzschia fraudulenta HAB-369	LSU	LSU
KX290883	Pseudo-nitzschia hasleana 8b	LSU	LSU
KX290895	Pseudo-nitzschia pungens 3b	LSU	LSU
КХ290900	Pseudo-nitzschia seriata HAB-312	LSU	LSU
KX290903	Pseudo-nitzschia sp. A HAB-2017 HAB-484	LSU	LSU
KX290907	Pseudo-nitzschia sp. B HAB-2017 235b	LSU	LSU
KX290913	Pseudo-nitzschia sp. C HAB-2017 HAB-137	LSU	LSU
KX572912	Pseudo-nitzschia abrensis PnMi178	cox1	cox1

КХ572913	Pseudo-nitzschia batesiana PnTb19	cox1	cox1
КХ572914	Pseudo-nitzschia batesiana PnMi32	cox1	cox1
КХ572915	Pseudo-nitzschia batesiana PnMi44	cox1	cox1
КХ572916	Pseudo-nitzschia kodamae PnMi04	cox1	cox1
КХ572920	Pseudo-nitzschia brasiliana PnPd34	cox1	cox1
КХ572922	Pseudo-nitzschia caciantha PnSL05	cox1	cox1
КХ572923	Pseudo-nitzschia circumpora PnPd27	cox1	cox1
КХ572924	Pseudo-nitzschia circumpora PnPd28	cox1	cox1
КХ572925	Pseudo-nitzschia cuspidata NWFSC189	cox1	cox1
КХ572927	Pseudo-nitzschia cuspidata PnPd29	cox1	cox1
КХ572928	Pseudo-nitzschia decipiens PnKk38	cox1	cox1
KX572932	Pseudo-nitzschia fukuyoi PnTb25	cox1	cox1
KX572933	Pseudo-nitzschia fukuyoi PnTb31	cox1	cox1
KX572935	Pseudo-nitzschia subpacifica PnMi16	cox1	cox1
KX572937	Pseudo-nitzschia lundholmiae PnTb10	cox1	cox1
КХ572941	Pseudo-nitzschia pseudodelicatissima P-11	cox1	cox1
KX572942	Pseudo-nitzschia subfraudulenta PnMi71	cox1	cox1
KX572944	Pseudo-nitzschia subfraudulenta PnMi162	cox1	cox1
KX572946	Pseudo-nitzschia micropora PnKk14	cox1	cox1
KX575709	Bacillaria paxillifera RVSN23	SSU	SSU
KX889092	Nitzschia cf. paleacea BC0483	rbcL	LSU+rbcL, rbcL
KX889093	Nitzschia varelae NIT952CAT	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL, rbcL</i>
KX889094	Nitzschia lembiformis R2	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
KX889095	Nitzschia acicularis R20	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
КХ889105	Nitzschia cf. paleacea BC0483	LSU	LSU+ <i>rbcL</i> , LSU
KX889109	Nitzschia cf. sigma NIT1013ABR	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
KX889110	Nitzschia acicularis Nit56	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
KX889112	Nitzschia varelae NIT952CAT	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
KX981791	Craspedostauros alyoubyi UTKSA0083	psbC	four-gene, <i>psbC</i>
KX981792	Craspedostauros paradoxa GU44BK-1 keeledHcpA25	psbC	four-gene, <i>psbC</i>
KX981793	Craspedostauros cfneoconstrictus CCMP1120	psbC	four-gene, <i>psbC</i>
KX981795	Diploneis sp. Coz1 peanut penn1	psbC	four-gene, <i>psbC</i>
KX981798	Pleurosigma sp. UTKSA0019	psbC	four-gene, psbC
KX981801	Cylindrotheca sp. UTKSA0079	psbC	psbC

КХ981802	Cylindrotheca sp. UTKSA0082	psbC	psbC
КХ981803	Nitzschia sp. KSA0120	psbC	psbC
KX981804	Nitzschia sp. 9vi08- 5F BToxNitz	psbC	psbC
KX981805	Psammodictyon constrictum GU7X-7 peanut5	psbC	psbC
КХ981806	Staurotropis khiyamii UTKSA0047	psbC	four-gene, <i>psbC</i>
KX981807	Staurotropis americana Coz4 cfUnd-5	psbC	four-gene, <i>psbC</i>
KX981808	Staurotropis americana FishPassMangrove staurosA1	psbC	four-gene, <i>psbC</i>
KX981814	Craspedostauros alyoubyi UTKSA0083	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KX981815	Craspedostauros amphoroides CCMP797	rbcL	rbcL
KX981816	Craspedostauros paradoxa GU44BK-1 keeledHcpA25	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KX981817	Craspedostauros cf. neoconstrictus CCMP1120	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KX981819	Diploneis sp. Coz1 peanut penn1	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KX981822	Pleurosigma sp. UTKSA0019	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KX981824	Trachyneis sp. SantaRosaCor green Nav3	rbcL	rbcL
KX981826	CyIndrotheca sp. UTKSA0079	rbcL	SSU+rbcL, rbcL
КХ981827	CyIndrotheca sp. UTKSA0082	rbcL	SSU+rbcL, rbcL
КХ981828	Nitzschia sp. KSA0120	rbcL	SSU+rbcL, rbcL
КХ981829	Nitzschia sp. 9vi08-5F BToxNitz	rbcL	SSU+rbcL, rbcL
КХ981830	Psammodictyon constrictum GU7X-7 peanut5	rbcL	SSU+rbcL, rbcL
KX981831	Undatella quadrata 19vi08-1A Und	rbcL	SSU+rbcL, rbcL
КХ981832	Staurotropis khiyamii UTKSA0047	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KX981833	Staurotropis americana Coz4 cfUnd_5	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KX981834	Staurotropis americana FishPassMangrove staurosA1	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
KX981839	Diploneis sp. Coz1 peanut penn1	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KX981840	Pleurosigma sp. UTKSA0019	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KX981847	CyIndrotheca sp. UTKSA0079	SSU	SSU+ <i>rbcL</i> , SSU
KX981848	CyIndrotheca sp. UTKSA0082	SSU	SSU+rbcL
KX981849	Nitzschia sp. KSA0120	SSU	SSU+rbcL
KX981850	Nitzschia sp. 9vi08-5F BToxNitz	SSU	SSU+rbcL
KX981851	Psammodictyon constrictum GU7X-7 peanut5	SSU	SSU+rbcL
KX981852	Undatella quadrata 19vi08-1A Und	SSU	SSU+rbcL
KX981853	Staurotropis khiyamii UTKSA0047	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KX981854	Staurotropis americana Coz4 cfUnd-5	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
KX981855	Staurotropis americana FishPassMangrove staurosA1	SSU	four-gene, SSU+ <i>rbcL</i> , SSU

KX981857	Craspedostauros alyoubyi UTKSA0083	SSU	four-gene, SSU+ <i>rbcL</i>
KX981858	Craspedostauros paradoxa GU44BK-1 keeledHcpA25	SSU	four-gene, SSU+ <i>rbcL</i>
КХ981860	Craspedostauros cf. neoconstrictus CCMP1120	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
КҮЗ20312	Cylndrotheca closterium TA256	rbcL	SSU+rbcL, rbcL
КҮЗ20313	CyIndrotheca gracilis TA46	rbcL	SSU+rbcL, rbcL
КҮЗ20314	Cylndrotheca sp. TA198	rbcL	SSU+rbcL, rbcL
КҮЗ20315	Bacillaria paxillifera EW234	rbcL	SSU+rbcL, rbcL
KY320316	Bacillaria sp. SH349	rbcL	SSU+rbcL, rbcL
KY320317	Nitzschia liebetruthii TA353	rbcL	SSU+rbcL, rbcL
KY320318	Nitzschia bergii TA139	rbcL	SSU+rbcL, rbcL
КҮЗ20319	Nitzschia cf. paleacea TA406	rbcL	SSU+rbcL, rbcL
КҮЗ20320	Nitzschia dubia TA37	rbcL	SSU+rbcL, rbcL
KY320321	Nitzschia dubiiformis SH366	rbcL	rbcL
КҮЗ20322	Nitzschia paleaeformis TA394	rbcL	SSU+rbcL, rbcL
КҮЗ20323	Nitzschia pusilla TA45	rbcL	SSU+rbcL, rbcL
KY320324	Nitzschia sigma TA377	rbcL	SSU+rbcL, rbcL
КҮЗ20325	Nitzschia sigmaformis TA311	rbcL	SSU+rbcL, rbcL
KY320326	Nitzschia sp. Dillu16	rbcL	SSU+rbcL, rbcL
KY320327	Nitzschia sp. TA61	rbcL	SSU+rbcL, rbcL
КҮЗ20328	Nitzschia pellucida EW229	rbcL	rbcL
КҮЗ20329	Nitzschia pusilla TA420	rbcL	SSU+rbcL, rbcL
КҮЗ20330	Nitzschia aequorea Dillu38	rbcL	SSU+rbcL, rbcL
КҮЗ20331	Nitzschia ligowskii TA426	rbcL	SSU+rbcL, rbcL
КҮЗ20332	Nitzschia dissipata TA44	rbcL	SSU+rbcL, rbcL
КҮЗ20333	Nitzschia dissipata TA192	rbcL	SSU+rbcL, rbcL
КҮЗ20334	Tryblionella apiculata TA-85	rbcL	SSU+rbcL, rbcL
КҮЗ20337	Nitzschia sigma TA341	rbcL	SSU+rbcL, rbcL
КҮЗ20338	Nitzschia sp. TA409	rbcL	SSU+rbcL, rbcL
КҮЗ20373	CyIndrotheca closterium TA256	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20374	CyIndrotheca gracilis TA46	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20375	CyIndrotheca sp. TA198	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20376	Bacillaria paxillifera EW234	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20377	Bacillaria sp. SH349	SSU	SSU+ <i>rbcL</i> , SSU
KY320378	Nitzschia liebetruthii TA353	SSU	SSU+ <i>rbcL</i> , SSU
KY320379	Nitzschia bergii TA139	SSU	SSU+ <i>rbcL</i> , SSU
KY320380	Nitzschia cf. paleacea TA406	SSU	SSU+ <i>rbcL</i> , SSU

KY320381	Nitzschia dubia TA37	SSU	SSU+rbcL, SSU
КҮЗ20382	Nitzschia dubiiformis SH366	SSU	SSU
КҮЗ20383	Nitzschia paleaeformis TA394	SSU	SSU+rbcL, SSU
КҮЗ20384	Nitzschia pusilla TA-45	SSU	SSU+rbcL, SSU
КҮЗ20385	Nitzschia sigma TA377	SSU	SSU+rbcL, SSU
КҮЗ20386	Nitzschia sigmaformis TA311	SSU	SSU+rbcL, SSU
КҮЗ20387	Nitzschia sp. Dillu16	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20388	Nitzschia sp. TA61	SSU	SSU+rbcL, SSU
КҮЗ20389	Nitzschia pellucida EW229	SSU	SSU+ <i>rbcL,</i> SSU
KY320390	Nitzschia pusilla TA420	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20391	Nitzschia aequorea Dillu38	SSU	SSU+ <i>rbcL,</i> SSU
КҮЗ20392	Nitzschia ligowskii TA426	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20393	Nitzschia dissipata TA44	SSU	SSU+ <i>rbcL</i> , SSU
KY320394	Nitzschia dissipata TA192	SSU	SSU+ <i>rbcL</i> , SSU
KY320395	Nitzschia sigma TA341	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20396	Nitzschia sp. TA409	SSU	SSU+ <i>rbcL</i> , SSU
КҮЗ20397	Tryblionella apiculata TA-85	SSU	SSU+ <i>rbcL</i> , SSU
КҮ799138	Nitzschia palea TCC851	rbcL	SSU+rbcL
КҮ799139	Nitzschia palea TCC852	rbcL	SSU+rbcL
КҮ799140	Nitzschia palea TCC855	rbcL	SSU+rbcL
КҮ799146	Nitzschia pusilla TCC896	rbcL	SSU+rbcL, rbcL
КҮ863472	Nitzschia palea TCC139-1	SSU	SSU+rbcL
KY863474	Nitzschia palea TCC851	SSU	SSU+rbcL
KY863475	Nitzschia palea TCC852	SSU	SSU+rbcL
KY863477	Nitzschia palea TCC855	SSU	SSU+rbcL
KY863478	Nitzschia cf. pusilla TCC894	SSU	SSU+ <i>rbcL</i>
KY863479	Nitzschia pusilla TCC896	SSU	SSU+ <i>rbcL</i>
KY863480	Nitzschia cf. pusilla TCC898	SSU	SSU+ <i>rbcL</i>
KY863493	Nitzschia cf. pusilla TCC894	rbcL	SSU+ <i>rbcL</i>
KY863494	Nitzschia cf. pusilla TCC898	rbcL	SSU+rbcL
LC054952	Nitzschia sp. NY060	SSU	SSU
LC126284	Nitzschia sp. TS-2016b	SSU	SSU
LC189151	Fragilariopsis cylindrus NIES-3887	SSU	SSU
LC192325	Durinskia kwazulunatalensis Cx18 ENDOSYMBIONT	rbcL	SSU+rbcL, rbcL
LC192326	Durinskia kwazulunatalensis HG181 ENDOSYMBIONT	rbcL	rbcL

LC192327	Durinskia kwazulunatalensis Cx22 ENDOSYMBIONT	rbcL	SSU+rbcL
LC192328	Dinophyta sp. HG180 ENDOSYMBIONT	rbcL	SSU+rbcL, rbcL
LC192329	Dinophyta sp. HG204 ENDOSYMBIONT	rbcL	SSU+rbcL, rbcL
LC192331	Durinskia capensis Kommetjie 6-B ENDOSYMBIONT	rbcL	rbcL
LC192332	Durinskia capensis Kommetjie 2-B ENDOSYMBIONT	rbcL	rbcL
LC192333	Durinskia capensis Kommetjie 2-A ENDOSYMBIONT	rbcL	SSU+rbcL, rbcL
LC192334	Durinskia capensis Kommetjie 6-A ENDOSYMBIONT	rbcL	rbcL
LC192335	Durinskia cf. baltica HG171 ENDOSYMBIONT	rbcL	rbcL
LC192336	Durinskia cf. baltica HG265 ENDOSYMBIONT	rbcL	rbcL
LC192337	Durinskia kwazulunatalensis Cx22 ENDOSYMBIONT	SSU	SSU+rbcL
LC192338	Durinskia kwazulunatalensis Cx18 ENDOSYMBIONT	SSU	SSU+rbcL
LC192339	Dinophyta sp. HG180 ENDOSYMBIONT	SSU	SSU+rbcL
LC192340	Dinophyta sp. HG204 ENDOSYMBIONT	SSU	SSU+rbcL
LC192342	Durinskia capensis Kommetjie 2-A ENDOSYMBIONT	SSU	SSU+rbcL
LC192343	Durinskia baltica CS-38 ENDOSYMBIONT	SSU	SSU+rbcL
M59080	Cylindrotheca sp.	rbcL	rbcL
M87325	Bacillaria paxillifer	SSU	SSU
M87326	Cylindrotheca closterium	SSU	SSU
M87334	Nitzschia apiculata	SSU	SSU
MF374776	Pseudo-nitzschia simulans MC940	LSU	LSU
MF374778	Pseudo-nitzschia simulans MC3038	LSU	LSU
MF997422	Nitzschia alba CCMP2426	genome	cox1
MG182051	Nitzschia sp. Nitz4	genome	cox1
MG271845	Cylindrotheca closterium CCMP1855	genome	cox1
MG271846	Eunotia naegelii UTEX FD354	genome	cox1
MH297491	Nitzschia palea Wise	genome	cox1
MH794250	Simonsenia paucistriata SZCZCH839	rbcL	rbcL
MH794251	Simonsenia paucistriata SZCZCH839	psbC	psbC
NC_027265	Pseudo-nitzschia multiseries	genome	cox1
U18240	Pseudo-nitzschia pungens F310	SSU	SSU
U18241	Pseudo-nitzschia multiseries tka2	SSU	SSU

U412621	Pseudo-nitzschia pungens	LSU	LSU
U413901	Pseudo-nitzschia americana	LSU	LSU
Y10566	Peridinium balticum ENDOSYMBIONT	SSU	SSU
Y10567	Peridinium foliaceum ENDOSYMBIONT	SSU	SSU, ,

Supplementary Table 2. Sequences newly deposited in GenBank (**bold**) and sequences taken from public sources other than GenBank (Roman). The *Hantzschia* clones with clone names in the format HANT*xxx*-11 were obtained from the public data portal of the BOLD database (<u>http://www.boldsystems.org/index.php/Public_BINSearch?searchtype=records</u>).

Taxon and clone name	Clone name	GenBank #	Sequence	Gene	Use of sequence
		Constant	author		
Bacillaria sp. BAC901CAT	BAC901CAT	MN750428	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Bacillaria sp. BAC901CAT	BAC901CAT	MN734007	C. Li	psbC	four-gene, <i>psbC</i>
Bacillaria sp. BAC901CAT	BAC901CAT	MN734075	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Bacillaria sp. BAC901CAT	BAC901CAT	MN750450	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Bacillaria sp. SZCZP613	SZCZP613	MN944012	C. Li	LSU	four-gene
Bacillaria sp. SZCZP613	SZCZP613	MN920690	C. Li	psbC	four-gene, <i>psbC</i>
Bacillaria sp. SZCZP613	SZCZP613	MN920681	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
Bacillaria sp. SZCZP613	SZCZP613	MN944000	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Cylindrotheca sp. SZCZCH50	SZCZCH50	MN944004	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Cylindrotheca sp. SZCZCH50	SZCZCH50	MN920684	C. Li	psbC	four-gene, <i>psbC</i>
Cylindrotheca sp. SZCZCH50	SZCZCH50	MN920674	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Cylindrotheca sp. SZCZCH50	SZCZCH50	MN943995	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Cylindrotheca sp. SZCZCH690	SZCZCH690	MN944005	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Cylindrotheca sp. SZCZCH690	SZCZCH690	MN920685	C. Li	psbC	four-gene, <i>psbC</i>
Cylindrotheca sp. SZCZCH690	SZCZCH690	MN920676	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Cylindrotheca sp. SZCZCH690	SZCZCH690	MN943996	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Hantzschia abundans HANT024-11	HANT024-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU
Hantzschia abundans HANT024-11	HANT024-11	[BOLD]		rbcL	LSU+rbcL, rbcL

Hantzschia abundans HANT025-11	HANT025-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU
Hantzschia abundans HANT025-11	HANT025-11	[BOLD]		rbcL	LSU+ <i>rbcL</i>
Hantzschia abundans HANT026-11	HANT026-11	[BOLD]		rbcL	rbcL
Hantzschia amphioxys HANT011-11	HANT011-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU
Hantzschia amphioxys HANT011-11	HANT011-11	[BOLD]		rbcL	LSU+rbcL, rbcL
Hantzschia amphioxys HANT017-11	HANT017-11	[BOLD database]		LSU	LSU+ <i>rbcL,</i> LSU
Hantzschia amphioxys HANT017-11	HANT017-11	[BOLD]		rbcL	LSU+rbcL, rbcL
Hantzschia amphioxys HANT018-11	HANT018-11	[BOLD database]		LSU	LSU+ <i>rbcL,</i> LSU
Hantzschia amphioxys HANT018-11	HANT018-11	[BOLD]		rbcL	LSU+ <i>rbcL</i> , <i>rbcL</i>
Hantzschia amphioxys HANT019-11	HANT019-11	[BOLD]		rbcL	rbcL
Hantzschia amphioxys HANT028-11	HANT028-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU
Hantzschia amphioxys HANT028-11	HANT028-11	[BOLD]		rbcL	LSU+ <i>rbcL, rbcL</i>
Hantzschia amphioxys TCC901	тсс901	MN696780	F. Rimet	rbcL	rbcL
Hantzschia amphioxys TCC901	тсс901	MN696729	F. Rimet	SSU	SSU
Hantzschia cf. amphioxys HANT012-11	HANT012-11	[BOLD database]		LSU	LSU+ <i>rbcL,</i> LSU
Hantzschia cf. amphioxys HANT012-11	HANT012-11	[BOLD]		rbcL	LSU+rbcL, rbcL
Hantzschia cf. amphioxys HANT013-11	HANT013-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU
Hantzschia cf. amphioxys HANT013-11	HANT013-11	[BOLD]		rbcL	LSU+rbcL, rbcL
Hantzschia cf. amphioxys HANT015-11	HANT015-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU

Hantzschia cf. amphioxys HANT015-11	HANT015-11	[BOLD]		rbcL	LSU+ <i>rbcL</i> , <i>rbcL</i>
Hantzschia sp HANT009-11	HANT009-11	[BOLD]		rbcL	rbcL
Hantzschia sp. HANT001-11	HANT001-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU
Hantzschia sp. HANT001-11	HANT001-11	[BOLD]		rbcL	LSU+ <i>rbcL</i> , <i>rbcL</i>
Hantzschia sp. HANT002-11	HANT002-11	[BOLD database]		LSU	LSU+ <i>rbcL,</i> LSU
Hantzschia sp. HANT002-11	HANT002-11	[BOLD]		rbcL	LSU+ <i>rbcL</i> , <i>rbcL</i>
Hantzschia sp. HANT005-11	HANT005-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU
Hantzschia sp. HANT005-11	HANT005-11	[BOLD]		rbcL	LSU+ <i>rbcL</i> , <i>rbcL</i>
Hantzschia sp. HANT006-11	HANT006-11	[BOLD database]		LSU	LSU+ <i>rbcL</i> , LSU
Hantzschia sp. HANT006-11	HANT006-11	[BOLD]		rbcL	LSU+ <i>rbcL</i> , <i>rbcL</i>
Hantzschia sp. HANT021-11	HANT021-11	[BOLD database]		LSU	LSU+ <i>rbcL,</i> LSU
Hantzschia sp. HANT021-11	HANT021-11	[BOLD]		rbcL	LSU+ <i>rbcL</i> , <i>rbcL</i>
Hantzschia vivax TCC940	тсс940	MN696730	F. Rimet	SSU	SSU
Nitzschia acicularis Nit56	Nit56	MN734045	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia acicularis Nit56	Nit56	MN734084	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia acicularis Nit56	Nit56	MN750489	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia acicularis R20	R20	MN750438	R. Trobajo	LSU	four-gene
Nitzschia acicularis R20	R20	MN734050	C. Li	psbC	four-gene
Nitzschia acicularis R20	R20	MN750494	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia acicularis TCC375	ТСС375	MN696690	F. Rimet	SSU	SSU
Nitzschia acidoclinata BC0098	BC0098	MN718753	S. Sato	rbcL	rbcL

Nitzschia acidoclinata BC0619	BC0619	MN725797	R. Hollands	LSU	LSU+ <i>rbcL,</i> LSU
Nitzschia acidoclinata BC0619	BC0619	MN718774	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia acidoclinata TCC537	тсс537	MN696740	F. Rimet	LSU	four-gene
Nitzschia acidoclinata TCC538	тсс538	MN696741	F. Rimet	LSU	four-gene
Nitzschia acidoclinata TCC538	тсс538	MN696763	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia acidoclinata TCC560	тсс560	MN696743	F. Rimet	LSU	four-gene
Nitzschia acidoclinata TCC560	тсс560	MN696765	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia acidoclinata TCC560	тсс560	MN696711	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia acidoclinata TCC619	тсс619	MN696749	F. Rimet	LSU	four-gene
Nitzschia acidoclinata TCC619	тсс619	MN696770	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia acidoclinata TCC619	тсс619	MN696720	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia aff. sublinearis BC0850	BC0850	MN718797	S. Sato	rbcL	rbcL
Nitzschia alicae BC0330	BC0330	MN718762	S. Sato	rbcL	rbcL
Nitzschia amphibia BC0486	BC0486	MN718768	S. Sato	rbcL	rbcL
Nitzschia amphibia BC0503	BC0503	MN725796	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia amphibia BC0503	BC0503	MN718771	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia amphibia BC0701	BC0701	MN725803	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia amphibia BC0701	BC0701	MN718781	S. Sato	rbcL	LSU+ <i>rbcL</i>
Nitzschia amphibia RT5 [Nit239]	RT5 [Nit239]	MN734051	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia amphibia RT5 [Nit239]	RT5 [Nit239]	MN750495	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia capitellata BC0713	BC0713	MN725805	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia capitellata BC0713	BC0713	MN718783	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia capitellata capitellata-Scot1	capitellata- Scot1	MN734010	C. Li	psbC	four-gene, <i>psbC</i>

Nitzschia capitellata capitellata-Scot1	capitellata- Scot1	MN750453	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia capitellata capitellata-Scot2	capitellata- Scot2	MN734011	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia capitellata capitellata-Scot2	capitellata- Scot2	MN750454	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia capitellata capitellata-Spain	capitellata- Spain	MN734012	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia capitellata capitellata-Spain	capitellata- Spain	MN750455	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. aequorea NIT1004CAT	NIT1004CAT	MN734034	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. aequorea NIT1004CAT	NIT1004CAT	MN750480	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia cf. ardua L44	L44	MN734030	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. ardua L44	L44	MN750476	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. bulnheimiana AG	AG	MN750449	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. dissipata var. media BC0470	BC0470	MN725794	R. Hollands	LSU	four-gene
Nitzschia cf. dissipata var. media BC0470	BC0470	MN718802	M.P. Ashworth	psbC	four-gene, <i>psbC</i>
Nitzschia cf. dissipata var. media BC0470	BC0470	MN718767	S. Sato	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia cf. dissipata var. media BC0470	BC0470	MN750422	M.P. Ashworth	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. dissipata var. media BC0649	BC0649	MN725798	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia cf. dissipata var. media BC0649	BC0649	MN718775	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia cf. dissipata var. media BC0866	BC0866	MN725816	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia cf. dissipata var. media BC0866	BC0866	MN718798	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia cf. fonticola BC0053	BC0053	MN718749	S. Sato	rbcL	rbcL

Nitzschia cf. gracilis Nit51	Nit51	MN734043	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. gracilis Nit51	Nit51	MN734082	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia cf. gracilis Nit51	Nit51	MN750487	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. hantzschiana NIT337TM	NIT337TM	MN734074	G.E. Simpson	rbcL	rbcL
Nitzschia cf. longissima Cylin clos	Cylin clos	MN734068	G.E. Simpson	rbcL	rbcL
Nitzschia cf. palea BC0799	BC0799	MN725812	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia cf. palea BC0799	BC0799	MN718792	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia cf. palea TCC886	тсс886	MN696778	F. Rimet	rbcL	SSU+rbcL, rbcL
Nitzschia cf. palea TCC886	тсс886	MN696727	F. Rimet	SSU	SSU+ <i>rbcL,</i> SSU
Nitzschia cf. perminuta BC0730	BC0730	MN725806	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia cf. perminuta BC0730	BC0730	MN718784	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia cf. perminuta BC0838	BC0838	MN725815	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia cf. perminuta BC0838	BC0838	MN718795	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia cf. pumila Nit57	Nit57	MN750434	R. Trobajo	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia cf. pumila Nit57	Nit57	MN734085	C. Li	rbcL	LSU+rbcL, rbcL
Nitzschia cf. pusilla BC0333	BC0333	MN725792	R. Hollands	LSU	LSU+ <i>rbcL,</i> LSU
Nitzschia cf. pusilla BC0333	BC0333	MN718763	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia cf. pusilla CCMP558	CCMP558	MN734013	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. pusilla CCMP558	CCMP558	MN750456	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia cf. pusilla L1	L1	MN734027	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. pusilla L1	L1	MN750473	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. pusilla L25	L25	MN734028	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. pusilla L25	L25	MN750474	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. pusilla L3	L3	MN734029	C. Li	psbC	four-gene, <i>psbC</i>

Nitzschia cf. pusilla L3	L3	MN750475	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. pusilla NIT1003CAT	NIT1003CAT	MN750429	R. Trobajo	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia cf. pusilla NIT1003CAT	NIT1003CAT	MN734033	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. pusilla NIT1003CAT	NIT1003CAT	MN734077	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia cf. pusilla NIT1003CAT	NIT1003CAT	MN750479	C. Li	SSU	four-gene, SSU
Nitzschia cf. pusilla Nit44	Nit44	MN734041	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. pusilla Nit44	Nit44	MN750485	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia cf. pusilla NIT945CAT	NIT945CAT	MN750435	C. Li	LSU	LSU
Nitzschia cf. pusilla TCC396	тссз96	MN696700	F. Rimet	SSU	SSU
Nitzschia cf. pusilla TCC586	тсс586	MN696747	F. Rimet	LSU	four-gene
Nitzschia cf. pusilla TCC586	тсс586	MN696717	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia cf. pusilla TCC665	TCC665	MN696751	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia cf. pusilla TCC665	TCC665	MN696772	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia cf. pusilla TCC665	TCC665	MN696723	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia cf. pusilla TCC900	тсс900	MN696779	F. Rimet	rbcL	SSU+rbcL
Nitzschia cf. pusilla TCC900	тсс900	MN696728	F. Rimet	SSU	SSU+ <i>rbcL</i> , SSU
Nitzschia cf. recta BC0769	BC0769	MN725808	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia cf. recta BC0769	BC0769	MN718786	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia cf. recta BC0795	BC0795	MN725811	R. Hollands	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia cf. recta BC0795	BC0795	MN718804	M.P. Ashworth	psbC	four-gene, <i>psbC</i>
Nitzschia cf. recta BC0795	BC0795	MN718791	S. Sato	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia cf. recta BC0795	BC0795	MN750424	M.P. Ashworth	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. romana BC0650	BC0650	MN725799	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU

Nitzschia cf. romana BC0650	BC0650	MN718776	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia cf. sigma BC0308	BC0308	MN718759	S. Sato	rbcL	rbcL
Nitzschia cf. sigma NIT1013ABR	NIT1013ABR	MN734038	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia cf. sigma NIT1013ABR	NIT1013ABR	MN734080	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia cf. sigma NIT1013ABR	NIT1013ABR	MN750484	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia cf. soratensis BC0501	BC0501	MN725795	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia cf. soratensis BC0501	BC0501	MN718769	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia communis TCC853	тсс853	MN696775	F. Rimet	rbcL	rbcL
Nitzschia costei BC0469	BC0469	MN725793	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia costei BC0469	BC0469	MN718766	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia costei TCC521	TCC521	MN696738	F. Rimet	LSU	four-gene
Nitzschia costei TCC550	тсс550	MN696742	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia costei TCC550	тсс550	MN696764	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia costei TCC550	тсс550	MN696710	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia dissipata TCC378	тсс378	MN696691	F. Rimet	SSU	SSU
Nitzschia dissipata TCC632	TCC632	MN696750	F. Rimet	LSU	four-gene
Nitzschia dissipata TCC632	TCC632	MN696771	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia dissipata TCC632	TCC632	MN696722	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia dissipata TCC707	тсс707	MN696753	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia dissipata TCC707	тсс707	MN696773	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia dissipata TCC707	тсс707	MN696724	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia dissipata var. media TCC876	TCC876	MN696725	F. Rimet	SSU	SSU
Nitzschia draveillensis BC0325	BC0325	MN725791	R. Hollands	LSU	LSU+ <i>rbcL,</i> LSU
Nitzschia draveillensis BC0325	BC0325	MN718761	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia draveillensis Nit50	Nit50	MN750432	R. Trobajo	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
----------------------------------	------------	----------	------------	------	--
Nitzschia draveillensis Nit50	Nit50	MN734042	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia draveillensis Nit50	Nit50	MN734081	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia draveillensis Nit50	Nit50	MN750486	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia draveillensis TCC700	тсс700	MN696752	F. Rimet	LSU	four-gene
Nitzschia fonticola C	С	MN734009	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia fonticola C	С	MN750452	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia fonticola TCC380	тссз80	MN696692	F. Rimet	SSU	SSU
Nitzschia fonticola TCC533	тсс533	MN696739	F. Rimet	LSU	four-gene
Nitzschia fonticola TCC533	TCC533	MN696709	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia frustulum Nit24	Nit24	MN734039	C. Li	psbC	psbC
Nitzschia frustulum Nit25	Nit25	MN734040	C. Li	psbC	psbC
Nitzschia gracilis TCC576	тсс576	MN696746	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia gracilis TCC576	тсс576	MN696768	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia gracilis TCC576	тсс576	MN696715	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia heufleriana BC0307	BC0307	MN718758	S. Sato	rbcL	rbcL
Nitzschia inconspicua G1_2 [L54]	G1_2 [L54]	MN734014	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G1_2 [L54]	G1_2 [L54]	MN750457	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G1_3 [L55]	G1_3 [L55]	MN734015	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G1_3 [L55]	G1_3 [L55]	MN750458	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G2_1 [L46]	G2_1 [L46]	MN734016	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G2_1 [L46]	G2_1 [L46]	MN750459	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G2_2 [L47]	G2_2 [L47]	MN734017	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G2_2 [L47]	G2_2 [L47]	MN750460	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>

Nitzschia inconspicua G3_1 [L53]	G3_1 [L53]	MN734018	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G3_1 [L53]	G3_1 [L53]	MN750461	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G3_2 [L58]	G3_2 [L58]	MN750462	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G3_3 [L61]	G3_3 [L61]	MN734019	C. Li	psbC	four-gene
Nitzschia inconspicua G3_3 [L61]	G3_3 [L61]	MN750463	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia inconspicua G3_4 [L62]	G3_4 [L62]	MN734020	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G3_4 [L62]	G3_4 [L62]	MN750464	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G4_1 [L44]	G4_1 [L44]	MN734021	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G4_1 [L44]	G4_1 [L44]	MN750465	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G4_2 [L5]	G4_2 [L5]	MN750466	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G5_1 [NIT1002CAT]	G5_1 [NIT1002CAT]	MN734022	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G5_1 [NIT1002CAT]	G5_1 [NIT1002CAT]	MN750467	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G5_2 [NIT1005CAT]	G5_2 [NIT1005CAT]	MN734023	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G5_2 [NIT1005CAT]	G5_2 [NIT1005CAT]	MN750468	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G6_1 [NIT950CAT]	G6_1 [NIT950CAT]	MN734024	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia inconspicua G6_1 [NIT950CAT]	G6_1 [NIT950CAT]	MN750469	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua G7_1 [NIT948CAT]	G7_1 [NIT948CAT]	MN734076	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia inconspicua G7_1 [NIT948CAT]	G7_1 [NIT948CAT]	MN750470	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua TCC474	ТСС474	MN696733	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i> , LSU

Nitzschia inconspicua TCC474	TCC474	MN696758	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia inconspicua TCC474	TCC474	MN696705	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia inconspicua TCC487	TCC487	MN696734	F. Rimet	LSU	four-gene
Nitzschia inconspicua TCC488	TCC488	MN696735	F. Rimet	LSU	four-gene
Nitzschia inconspicua TCC488	TCC488	MN696760	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia inconspicua TCC488	TCC488	MN696706	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia inconspicua TCC498	TCC498	MN696736	F. Rimet	LSU	four-gene
Nitzschia inconspicua TCC498	TCC498	MN696761	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia inconspicua TCC498	TCC498	MN696707	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia inconspicua TCC510	TCC510	MN696737	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia inconspicua TCC510	TCC510	MN696762	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia inconspicua TCC571	TCC571	MN696744	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i>
Nitzschia inconspicua TCC571	TCC571	MN696766	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia inconspicua TCC571	TCC571	MN696713	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia lembiformis R2	R2	MN750437	C. Li	LSU	LSU+ <i>rbcL</i>
Nitzschia lembiformis R2	R2	MN734049	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia lembiformis R2	R2	MN750493	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia linearis BC0083	BC0083	MN725785	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia linearis BC0083	BC0083	MN718751	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia linearis BC0273	BC0273	MN725789	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia linearis BC0273	BC0273	MN718756	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia linearis BC0669	BC0669	MN718777	S. Sato	rbcL	rbcL
Nitzschia linearis BC0696	BC0696	MN725802	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia linearis BC0696	BC0696	MN718780	S. Sato	rbcL	LSU+ <i>rbcL</i>

Nitzschia linearis BC0712	BC0712	MN725804	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia linearis BC0712	BC0712	MN718782	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia linearis BC0815	BC0815	MN725814	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia linearis BC0815	BC0815	MN718794	S. Sato	rbcL	LSU+rbcL
Nitzschia linearis BC0897	BC0897	MN718799	S. Sato	rbcL	rbcL
Nitzschia linearis Nit53	Nit53	MN750433	R. Trobajo	LSU	four-gene
Nitzschia linearis Nit53	Nit53	MN734044	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia linearis Nit53	Nit53	MN734083	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia linearis Nit53	Nit53	MN750488	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia linearis TCC386	тссз86	MN696696	F. Rimet	SSU	SSU
Nitzschia linearis TCC387	TCC387	MN696697	F. Rimet	SSU	SSU
Nitzschia linearis TCC512	TCC512	MN696708	F. Rimet	SSU	SSU
Nitzschia microcephala L56	L56	MN734031	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia microcephala L56	L56	MN750477	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia microcephala R10	R10	MN750436	R. Trobajo	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia microcephala R10	R10	MN734047	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia microcephala R10	R10	MN734086	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i>
Nitzschia microcephala R10	R10	MN750491	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia palea BC0039	BC0039	MN725784	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0039	BC0039	MN718748	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia palea BC0095	BC0095	MN725786	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0095	BC0095	MN718752	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia palea BC0234	BC0234	MN725787	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0234	BC0234	MN718754	S. Sato	rbcL	LSU+rbcL, rbcL

Nitzschia palea BC0240	BC0240	MN725788	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0240	BC0240	MN718755	S. Sato	rbcL	LSU+ <i>rbcL</i>
Nitzschia palea BC0277	BC0277	MN725790	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0277	BC0277	MN718757	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia palea BC0373	BC0373	MN718764	S. Sato	rbcL	rbcL
Nitzschia palea BC0375	BC0375	MN718765	S. Sato	rbcL	rbcL
Nitzschia palea BC0603	BC0603	MN718772	S. Sato	rbcL	rbcL
Nitzschia palea BC0605	BC0605	MN718773	S. Sato	rbcL	rbcL
Nitzschia palea BC0670	BC0670	MN725800	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0670	BC0670	MN718778	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia palea BC0748	BC0748	MN725807	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0748	BC0748	MN718785	S. Sato	rbcL	LSU+ <i>rbcL, rbcL</i>
Nitzschia palea BC0774	BC0774	MN718787	S. Sato	rbcL	rbcL
Nitzschia palea BC0776	BC0776	MN725809	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0776	BC0776	MN718788	S. Sato	rbcL	LSU+ <i>rbcL</i>
Nitzschia palea BC0786	BC0786	MN718789	S. Sato	rbcL	rbcL
Nitzschia palea BC0848	BC0848	MN718796	S. Sato	rbcL	rbcL
Nitzschia palea BC0905	BC0905	MN718800	S. Sato	rbcL	rbcL
Nitzschia palea BC0912	BC0912	MN725817	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea BC0912	BC0912	MN718801	S. Sato	rbcL	LSU+ <i>rbcL, rbcL</i>
Nitzschia palea Belgium-1	Belgium-1	MN734008	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea Belgium-1	Belgium-1	MN750451	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia palea Japan D	Japan D	MN734025	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea Japan D	Japan D	MN750471	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU

Nitzschia palea Japan F	Japan F	MN734026	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea Japan F	Japan F	MN750472	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia palea New Spain2	New Spain2	MN734032	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea New Spain2	New Spain2	MN750478	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia palea NIT1011KEL	NIT1011KEL	MN750430	R. Trobajo	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea NIT1011KEL	NIT1011KEL	MN734078	R. Trobajo	rbcL	LSU+rbcL
Nitzschia palea NIT329TM	NIT329TM	MN734072	G.E. Simpson	rbcL	rbcL
Nitzschia palea R12	R12	MN734048	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea R12	R12	MN750492	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia palea R8	R8	MN750439	R. Trobajo	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea R8	R8	MN734087	R. Trobajo	rbcL	LSU+rbcL, rbcL
Nitzschia palea Spain A2	Spain A2	MN750499	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia palea Spain A3	Spain A3	MN734055	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea Spain A3	Spain A3	MN750500	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia palea Spain A4	Spain A4	MN734056	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea Spain A4	Spain A4	MN750501	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia palea Spain C	Spain C	MN734057	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea Spain C	Spain C	MN750502	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia palea SriLanka1 [SLA]	SriLanka1 [SLA]	MN750503	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia palea SriLanka2 [SLB]	SriLanka2 [SLB]	MN734058	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea SriLanka2 [SLB]	SriLanka2 [SLB]	MN750504	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia palea TCC139-2	TCC139-2	MN696731	F. Rimet	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea TCC394	TCC394	MN696698	F. Rimet	SSU	SSU
Nitzschia palea TCC395	TCC395	MN696699	F. Rimet	SSU	SSU

Nitzschia palea TCC397	тссз97	MN696701	F. Rimet	SSU	SSU
Nitzschia palea TCC403	TCC403	MN696702	F. Rimet	SSU	SSU
Nitzschia palea TCC425	TCC425	MN696732	F. Rimet	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea TCC468	TCC468	MN696704	F. Rimet	SSU	SSU
Nitzschia palea TCC486	TCC486	MN696759	F. Rimet	rbcL	LSU+rbcL, rbcL
Nitzschia palea TCC563	TCC563	MN696712	F. Rimet	SSU	SSU
Nitzschia palea TCC577	TCC577	MN696716	F. Rimet	SSU	SSU
Nitzschia palea TCC600	тсс600	MN696718	F. Rimet	SSU	SSU
Nitzschia palea TCC620	тсс620	MN696721	F. Rimet	SSU	SSU
Nitzschia palea TCC767	тсс767	MN696774	F. Rimet	rbcL	rbcL
Nitzschia palea TCC854	TCC854	MN696776	F. Rimet	rbcL	rbcL
Nitzschia palea TCC945	TCC945	MN696754	F. Rimet	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia palea TCC945	TCC945	MN696782	F. Rimet	rbcL	LSU+rbcL, rbcL
Nitzschia palea UK [Nit7=BB2b]	UK [Nit7=BB2b]	MN734066	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia palea UK [Nit7=BB2b]	UK [Nit7=BB2b]	MN750512	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia paleacea BC0675	BC0675	MN725801	R. Hollands	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia paleacea BC0675	BC0675	MN718779	S. Sato	rbcL	LSU+ <i>rbcL</i>
Nitzschia paleacea BC0806	BC0806	MN725813	R. Hollands	LSU	LSU+ <i>rbcL,</i> LSU
Nitzschia paleacea BC0806	BC0806	MN718793	S. Sato	rbcL	LSU+rbcL, rbcL
Nitzschia paleaeformis TCC382	TCC382	MN696693	F. Rimet	SSU	SSU
Nitzschia perminuta TCC885	TCC885	MN696777	F. Rimet	rbcL	SSU+rbcL, rbcL
Nitzschia perminuta TCC885	TCC885	MN696726	F. Rimet	SSU	SSU+ <i>rbcL</i> , SSU
Nitzschia pusilla TCC384	TCC384	MN696694	F. Rimet	SSU	SSU
Nitzschia pusilla TCC385	TCC385	MN696695	F. Rimet	SSU	SSU

Nitzschia rectilonga SZCZE431	SZCZE431	MN944010	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia rectilonga SZCZE431	SZCZE431	MN920688	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia rectilonga SZCZE431	SZCZE431	MN920679	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia rectilonga SZCZE431	SZCZE431	MN943999	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia reskoi TCC949	тсс949	MN696756	F. Rimet	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia reskoi TCC949	тсс949	MN696784	F. Rimet	rbcL	LSU+rbcL, rbcL
Nitzschia sigmoidea BC0787	BC0787	MN725810	R. Hollands	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia sigmoidea BC0787	BC0787	MN718803	M.P. Ashworth	psbC	four-gene, <i>psbC</i>
Nitzschia sigmoidea BC0787	BC0787	MN718790	S. Sato	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia sigmoidea BC0787	BC0787	MN750423	M.P. Ashworth	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia soratensis NIT1008KEL	NIT1008KEL	MN734035	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia soratensis NIT1008KEL	NIT1008KEL	MN750481	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia soratensis NIT1009KEL	NIT1009KEL	MN734036	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia soratensis NIT1009KEL	NIT1009KEL	MN750482	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia sp. BC0076	BC0076	MN718750	S. Sato	rbcL	rbcL
Nitzschia sp. BC0317	BC0317	MN718760	S. Sato	rbcL	rbcL
Nitzschia sp. NIT1012CAT	NIT1012CAT	MN750431	R. Trobajo	LSU	four-gene
Nitzschia sp. NIT1012CAT	NIT1012CAT	MN734037	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia sp. NIT1012CAT	NIT1012CAT	MN734079	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i>
Nitzschia sp. NIT1012CAT	NIT1012CAT	MN750483	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Nitzschia sp. NIT330TM	NIT330TM	MN734073	G.E. Simpson	rbcL	rbcL
Nitzschia sp. s0819	s0819	MN734052	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia sp. s0819	s0819	MN750496	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU

Nitzschia sp. s0826	s0826	MN734053	C. Li	psbC	psbC
Nitzschia sp. s0826	s0826	MN750497	C. Li	SSU	SSU
Nitzschia sp. SZCZCH1090	SZCZCH1090	MN944003	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia sp. SZCZCH1090	SZCZCH1090	MN920683	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia sp. SZCZCH1090	SZCZCH1090	MN920673	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia sp. SZCZCH1090	SZCZCH1090	MN943994	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia sp. SZCZCH54	SZCZCH54	MN920675	C. Li	rbcL	rbcL
Nitzschia sp. SZCZP71	SZCZP71	MN944013	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia sp. SZCZP71	SZCZP71	MN920691	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia sp. SZCZP71	SZCZP71	MN920682	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i>
Nitzschia sp. SZCZP71	SZCZP71	MN944001	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia supralitorea NIT145D	NIT145D	MN734070	G.E. Simpson	rbcL	rbcL
Nitzschia supralitorea TCC404	тсс404	MN696703	F. Rimet	SSU	SSU
Nitzschia supralitorea TCC606	тсс606	MN696748	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia supralitorea TCC606	тсс606	MN696769	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia supralitorea TCC606	тсс606	MN696719	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia supralitorea TCC944	тсс944	MN696781	F. Rimet	rbcL	rbcL
Nitzschia supralitorea TCC946	тсс946	MN696755	F. Rimet	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia supralitorea TCC946	тсс946	MN696783	F. Rimet	rbcL	LSU+rbcL, rbcL
Nitzschia supralitorea TCC950	тсс950	MN696757	F. Rimet	LSU	LSU+ <i>rbcL</i> , LSU
Nitzschia supralitorea TCC950	тсс950	MN696785	F. Rimet	rbcL	LSU+rbcL, rbcL
Nitzschia traheaformis SZCZCH971	SZCZCH971	MN944007	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Nitzschia traheaformis SZCZCH972	SZCZCH972	MN920686	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia tubicola TCC575	TCC575	MN696745	F. Rimet	LSU	four-gene, LSU+ <i>rbcL</i> , LSU

Nitzschia tubicola TCC575	TCC575	MN696767	F. Rimet	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Nitzschia tubicola TCC575	TCC575	MN696714	F. Rimet	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Nitzschia umbonata NIT327TM	NIT327TM	MN734071	G.E. Simpson	rbcL	rbcL
Nitzschia varelae NIT952CAT	NIT952CAT	MN734046	C. Li	psbC	four-gene, <i>psbC</i>
Nitzschia varelae NIT952CAT	NIT952CAT	MN750490	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Psammodictyon sp. Corsica	Corsica	MN734067	G.E. Simpson	rbcL	rbcL
Psammodictyon sp. Gillian	Gillian	MN734069	G.E. Simpson	rbcL	rbcL
Psammodictyon sp. SZCZE328	SZCZE328	MN944008	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Psammodictyon sp. SZCZE328	SZCZE328	MN920687	C. Li	psbC	four-gene, <i>psbC</i>
Psammodictyon sp. SZCZE328	SZCZE328	MN920677	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Psammodictyon sp. SZCZE328	SZCZE328	MN943997	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Psammodictyon sp. SZCZE331	SZCZE331	MN944009	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Psammodictyon sp. SZCZE331	SZCZE331	MN920678	C. Li	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Psammodictyon sp. SZCZE331	SZCZE331	MN943998	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Psammodictyon sp. SZCZE459	SZCZE459	MN944011	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Psammodictyon sp. SZCZE459	SZCZE459	MN920689	C. Li	psbC	four-gene, <i>psbC</i>
Psammodictyon sp. SZCZE459	SZCZE459	MN920680	C. Li	rbcL	four-gene, LSU+ <i>rbcL</i> , <i>rbcL</i>
Tryblionella apiculata TRY946CAT	TRY946CAT	MN750443	R. Trobajo	LSU	four-gene, LSU+ <i>rbcL</i>
Tryblionella apiculata TRY946CAT	TRY946CAT	MN734061	C. Li	psbC	four-gene, <i>psbC</i>
Tryblionella apiculata TRY946CAT	TRY946CAT	MN734089	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Tryblionella apiculata TRY946CAT	TRY946CAT	MN750507	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Tryblionella apiculata TRY947CAT	TRY947CAT	MN750444	R. Trobajo	LSU	four-gene
Tryblionella apiculata TRY947CAT	TRY947CAT	MN734062	C. Li	psbC	four-gene
Tryblionella apiculata TRY947CAT	TRY947CAT	MN734090	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i>

Tryblionella apiculata TRY947CAT	TRY947CAT	MN750508	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Tryblionella apiculata TRY949CAT	TRY949CAT	MN750445	C. Li	LSU	LSU
Tryblionella cf. compressa TRY1006CAT	TRY1006CAT	MN750441	R. Trobajo	LSU	four-gene, LSU
Tryblionella cf. compressa TRY1006CAT	TRY1006CAT	MN734059	C. Li	psbC	four-gene, <i>psbC</i>
Tryblionella cf. compressa TRY1006CAT	TRY1006CAT	MN750505	C. Li	SSU	four-gene, SSU
Tryblionella cf. compressa TRY1007CAT	TRY1007CAT	MN750442	R. Trobajo	LSU	four-gene, LSU+ <i>rbcL</i>
Tryblionella cf. compressa TRY1007CAT	TRY1007CAT	MN734060	C. Li	psbC	four-gene, <i>psbC</i>
Tryblionella cf. compressa TRY1007CAT	TRY1007CAT	MN734088	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Tryblionella cf. compressa TRY1007CAT	TRY1007CAT	MN750506	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Tryblionella debilis BC0502	BC0502	MN718770	S. Sato	rbcL	rbcL
Tryblionella gaoana SZCZCH97	SZCZCH97	MN944006	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Tryblionella hungarica TRY951CAT	TRY951CAT	MN750446	R. Trobajo	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Tryblionella hungarica TRY951CAT	TRY951CAT	MN734063	C. Li	psbC	four-gene, <i>psbC</i>
Tryblionella hungarica TRY951CAT	TRY951CAT	MN734091	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Tryblionella hungarica TRY951CAT	TRY951CAT	MN750509	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Tryblionella hungarica TRY981CAT	TRY981CAT	MN750447	R. Trobajo	LSU	four-gene, LSU+ <i>rbcL</i> , LSU
Tryblionella hungarica TRY981CAT	TRY981CAT	MN734064	C. Li	psbC	four-gene, <i>psbC</i>
Tryblionella hungarica TRY981CAT	TRY981CAT	MN734092	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i> , LSU+ <i>rbcL</i> , <i>rbcL</i>
Tryblionella hungarica TRY981CAT	TRY981CAT	MN750510	C. Li	SSU	four-gene, SSU+ <i>rbcL</i> , SSU
Tryblionella hungarica TRY986CAT	TRY986CAT	MN750448	R. Trobajo	LSU	four-gene
Tryblionella hungarica TRY986CAT	TRY986CAT	MN734065	C. Li	psbC	four-gene, <i>psbC</i>
Tryblionella hungarica TRY986CAT	TRY986CAT	MN734093	R. Trobajo	rbcL	four-gene, SSU+ <i>rbcL</i>
Tryblionella hungarica TRY986CAT	TRY986CAT	MN750511	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>
Tryblionella sp. s0863	s0863	MN750440	C. Li	LSU	four-gene, LSU+ <i>rbcL</i> , LSU

Tryblionella sp. s0863	s0863	MN734054	C. Li	psbC	four-gene, <i>psbC</i>
Tryblionella sp. s0863	s0863	MN750498	C. Li	SSU	four-gene, SSU+ <i>rbcL</i>

Supplementary Table 3. Bootstrap support values for the main clades and subclades of Bacillariaceae in the concatenated and single-gene trees (Figs 3, 4, Supplementary Figs 2–7). **Bold** = support >70%, Roman = 50% < support < 70%, [Roman] = support < 50%, – = clade not present, singleton = only one terminal represented.

Clade/subclade	4-gene	rbcL–SSU	rbcL–LSU	rbcL	SSU	LSU	psbC	cox1
1	100	81	singleton	89	78	90	71	-
2	100	99	100	98	[11]	100	72	singleton
3	singleton	singleton	100	100	98	100	singleton	-
4	92	-	[47]	[30]	-	-	_	-
4A	singleton	100	singleton	100	97	singleton	100	-
4B	100	100	94	98	84	95	75	65
4B-I	100	100	100	100	100	99	-	-
4B-II	100	58	81	-	-	[17]	96	[45]
5	88	-	84	-	-	69	-	-
5A	singleton	singleton	singleton	[20]	89	singleton	-	-
5B	100	99	100	99	96	100	[44]	-
6	89	-	[36]	-	-	-	[2]	-
6A	singleton	99	singleton	97	-	singleton	singleton	-
6B	98	94	98	93	[7]	[27]	[4]	[38]
7	100	99	83	97	58	[37]	90	77
8	99	65	100	86	97	98	81	81
8A	88	-	50	[45]	[49]	_	-	-
8A-I	100	100	100	96	100	97	94	99
8A-II	100	100	100	98	99	95	93	-
8B	99	76	88	[46]	[24]	-	86	99
8C	100	86	100	98	100	98	95	86
8C-I	singleton	99	singleton	99	82	-	100	100
8C-II	100	100	100	99	41	-	-	59

SUPPLEMENTARY FILE 1. Materials and methods

1. Isolation and culturing

1.1. *Szczecin*: Material was collected from a variety of substrata (sand, sediment, rock, macrophytes, seaweeds, and 20-µm plankton net hauls) in marine habitats in widely separated regions (Table 1). Samples were placed in 10 ml plastic tubes and a few milliliters of f/2 culture medium (Guillard, 1975) added to help keep diatoms alive during transport to the laboratory. Subsequently, enrichment cultures were established by transferring part of each sample to Petri dishes (50-mm diameter) with f/2 medium. Three weeks to one month later, single cells were isolated by pipette into a small volume of f/2 culture medium and washed by three or four serial transfers into fresh f/2 medium. The culture was then placed close to a north-facing window or in a batch incubator at 18°C under a 16:8 h light:dark (L:D) cycle, illuminated with 50 µmol photons m⁻ 2 s⁻¹of white light.

1.2. Edinburgh: Samples from freshwater, brackish and marine habitats (source localities are given in Table 1 here and also in the metadata in GenBank: see Supplementary Table 2 for accessions) were placed in 50 mm Petri dishes, sometimes diluted with medium (WC medium for freshwater diatoms, R medium for marine diatoms, and mixtures of the two for brackish diatoms [for the composition of WC medium, see Guillard & Lorenzen, 1972; for R medium, see Roshchin, 1994; Chepurnov & Mann, 1997]). Individual cells of diatoms were isolated by micropipette or by streaking on 2–3% agar plates; with streaked material, single cells were sometimes isolated immediately by pipette from the agar surface, but in other cases plates were incubated for 2-4 weeks and cells transferred from discrete small colonies of clonal cells. Micropipette isolations were made with either a Zeiss inverted microscope or a stereomicroscope. With the inverted microscope, higher magnifications (of up to $400\times$) were possible and preliminary identifications could sometimes be made. Selected cells were transferred into small volumes of medium in the wells of 96-well plates. For freshwaters, a general-purpose freshwater medium was initially used (WC medium with silicate, adjusted to pH 7:). However, trials indicated that this was unsuitable for diatoms from more oligotrophic and acid habitats. For these, modified WC medium was used, containing lower N and/or P (one-tenth of the usual WC additions), or a modified Grundgloeodinium II medium (von Stosch & Fecher, 1979), in which the SiO₂ used in the original formulation was replaced with the sodium metasilicate addition of WC medium. After a few days of incubation, the health and clonality of each culture was confirmed under an inverted microscope. Successfully established clonal cultures were then grown in 90 mm Petri dishes for DNA extraction and preparation for voucher slides. Clones were grown at 15-22°C under cool-white fluorescent light on a 14:10 h L:D cycle at a photon flux density of 5–20 μ mol photons m⁻² s⁻¹.

1.3. *Thonon culture collection (TCC)*: Samples from various freshwater habitats (source localities are given in Table 1 and in the spreadsheets available at <u>https://www6.inrae.fr/carrtel-collection_eng/Barcoding-database/Database-download</u>) were sampled and placed in 50 ml sterile flasks and then were stored in a cool place (5°C). Then, in the lab, drops were introduced in 12-well microplate with a mixture of synthetic (same modified WC medium as in Edinburgh) and water from the field (previously sterilized on a 0.2 µm filter for Schott bottles). Then they were allowed to grow for a few days. After this period, the microplates were observed on inverted microscope (up to $400\times$). Then cells were isolated with micropipettes and put in new 12-well microplates with modified WC medium. They were allowed to grow for a few days more and then were checked for health and clonality. Successfully established clonal cultures were then grown in 50 ml flasks (20°C, 14:10h L:D, under cool-white fluorescent light).

2. DNA preparation and sequencing

2.1. Harvesting

2.1.1. *Szczecin*: The cultured cells were examined under light microscopy to check their growth condition within one month after isolation. For well-growing clones, 1.5 ml of suspension was harvested and centrifuged for 20 min at 5000 rpm using a Centrifuge 5424R (Eppendorf, Germany). The supernatant was discarded and the pellet rinsed twice with sterile distilled water to remove residual salts.

2.1.2. *Edinburgh*: Where necessary, cells from exponentially growing cultures were brought into suspension by gently scraping them off the bottom of Petri dishes using short pieces of sterile silicone rubber tubing. A few ml of suspension were centrifuged to concentrate the diatoms into a pellet, which was then washed twice with sterile distilled water to remove residual salts.

2.1.3. *Thonon Culture Collection*: After the cultures were grown in sterile 50 ml fasks, they were then registered in the TCC after sufficient some material could be kept (untreated material kept at -80°C, treated material in 10 ml vials and microscopic slides). Each culture received a unique TCC number which is searchable at: <u>https://www6.inra.fr/carrtel-collection_eng/Culture-search</u>

2.2. DNA extraction

2.2.1. *Szczecin*: For high density cultures, 200 μ l of 10% (g/ml) SDS (Bio-rad, Japan) and one sterile metal bead (4mm diameter) were added to pellets of harvested cells and this solution was mixed using a shaker (Retsch, Poland) at frequency 20 s⁻¹ for 30 s to 1 min. Genomic DNA was then extracted using High Pure PCR Template Preparation Kit (Roche, Mannheim, Germany) following the protocol for isolation of nucleic acids from bacteria or yeasts given by the manufacturer. As for low-density cultures, genomic DNA was obtained with Chelex method: a few cells were harvested, centrifuged, the supernatant discarded, and 150 ml of 10% (m/v) Chelex® 100 Resin (Bio-Rad, USA) added to the pellet. The mixture was then heated for 20 min at 95° C using a Thermomixer comfort (Eppendorf, Germany), followed by centrifugation for 20 min at 4000 rpm at 10°C. The supernatant was transferred to a new 1.5 ml Eppendorf tube (Eppendorf, Germany) and used as the DNA template for PCR.

2.2.2. *Edinburgh*: DNA was extracted from each pellet using using a DNeasy Plant Kit (Qiagen, Crawley, UK), or a high-throughput genomic DNA extraction instrument QIAxtractor (Qiagen).

2.2.3. *Thonon Culture Collection*: Two protocols were used, either the same extraction kit was used as Edinburgh (DNeasy Plant Kit), or the GenEluteTM-LPA (Sigma–Aldrich) protocol

2.3. PCR amplification

Four target DNA markers were used: nuclear-encoded small subunit (nSSU) and partial large subunit (nLSU) ribosomal DNAs, and chloroplast-encoded *rbcL* and *psbC*. Sequences of *cox1* were obtained from GenBank. The expected sizes of the PCR products were 1600–1700 bp (SSU rDNA), 1400–1500 bp (*rbcL*), 1100–1200 bp (*psbC*), and 500–600 bp (nLSU).

2.3.1. *Szczecin*. The PCR and sequencing primers are listed in Table 2. The volume of each PCR was 25 μ L: 3 μ L DNA template; 2.5 μ L 10x Dream Taq buffer (includes 20 mM MgCl₂); 1 μ L Ultrapure dNTPs Set (5 mM each dATP, dCTP, dGTP, dTTP); 0.5 μ L each primer (10 μ M); 0.15 μ L Dream Taq DNA polymerase (5 U/ μ L); and sterile ddH₂O to a final volume of 25 μ L. PCR conditions for SSU were as follows: 94°C for 2 min, 35 cycles of {94°C for 15 s, 55°C for 15 s,

72°C for 1 min 35 seconds}, and a final extension at 72°C for 7 min. PCR conditions for *psbC* and *rbcL* were the same as with SSU but with 53°C for annealing temperature and 1 min 15 seconds extension time. If the first PCR reaction failed, a second PCR reaction was performed with the first PCR product as the template (diluted 10 times) using another pair of primers (Table 2), with annealing temperatures of 58°C, 53°C and 45°C respectively for SSU, *rbcL* and *psbC*. PCR conditions for LSU were: 95°C for 3 min, 35 cycles of {95°C for 15 s, 43°C for 15 s, 72°C for 45 seconds}, and a final extension at 72°C for 7 min. The presence of amplification products was verified with 1% agarose (Maximus, Poland) gel in an electrophoresis chamber model 40-1214 (Peqlab Biotechnologie GmbH, Germany) and imaged and visualized by G: BOX (SYNGENE). Successful reactions were purified using a Exonuclease I & Polar-BAP (EURx, Gdańsk, Poland) protocol, then sent to oligo.pl DNA Sequencing Laboratory IBB PAS, Warsaw, Poland for Sanger sequencing with use of BigDye Terminator v. 3.1 chemistry and ABI3730 xl sequencer.

2.3.2. *Edinburgh*: For *rbcL*, the forward and reverse primers used (Table 3) were the ones reported by Jones et al. (2005), DPrbcL1 and DPrbcL7, which amplified a region of ~1400 bp, covering the *rbcL* gene. The PCR reaction for the amplification of *rbcL* was in 25µl volumes containing 10ng DNA, 1 mM deoxynucleotides (dNTPs), 1× Roche diagnostics PCR reaction buffer (Roche Diagnostics GmbH, Mannheim, Germany), 1 unit Taq DNA polymerase (Roche) and 0.5 μ M of each primer. The PCR cycling comprised an initial denaturing phase for 3 minutes (94°C), followed by 30–40 cycles of 94°C for 1 minute, 55°C for 1 minute and 72°C for 1.5 minutes, with a final extension of 72°C for 5 minutes.

The quantity and length of the PCR products were examined by agarose gel electrophoresis against known standards. PCR products were purified using ExoSAP-IT (USB Corporation, Ohio, USA). Sequencing was conducted in 10µl volumes using 0.32 µM of PCR primer or sequencing primers NDrbcL5: CTCAACCATTYATGCG and DrbcL11: CTGTGTAACCCATWAC (Jones et al. 2005), 1µl of BigDye v3.1 and 2µl of sequencing reaction buffer (Applied Biosystems). Sequencing PCR conditions were 25 cycles of 95°C for 30 seconds, 50°C for 20 seconds and 60°C for 4 minutes. Excess dye-labelled nucleotides were removed using the Performa DTR V3 clean-up system (EdgeBio) and sequence products were run on an ABI 3730 DNA sequencer (Applied Biosystems) at the University of Edinburgh.

Sequencing reads were edited and assembled using SeqMan (DNASTAR, Madison, WI). Each *rbcL* region was sequenced by 4 reads (using primers DPrbcL1, DPrbcL7, NDrbcL5 and DrbcL11) and the whole region was sequenced by at least 2 overlapping reads.

2.3.3. *Thonon Culture Collection*: Methodology for PCR amplification is detailed in Table 4 (Rimet et al. 2011, Kermarrec et al. 2013): 5 gene fragments were amplified: D1–D2 region of the LSU rDNA gene, ITS1-5.8S-ITS2, partial rbcL and cox1 genes and 18S. All PCRs were performed using the primers listed in Table 4, and according to the authors' specifications in a PCR thermal cycler (T personal, Biometra, Göttingen, Germany). Additional internal sequencing primers were used to retrieve the complete sequences of rbcL and 18S (Table 4). Sanger sequencing was performed by Beckman Coulter Genomics (Takeley, United Kingdom), GATC (Konstanz, Germany), and Genoscope (Evry, France).

2.4. Alignment, trimming and phylogenetic analysis

SSU sequences were aligned by the SSUalign program (Nawrocki, 2009), with the covariance model based on the 10 diatoms included with the program download and supplemented with secondary structure models from 23 additional diatoms from the CRW website (Cannone et al.,

2002) available from E.C. Theriot. LSU sequences were manually aligned against secondary structure models available from the CRW website. Protein encoding chloroplast genes were aligned using MUSCLE in Seaview 4.0 (Edgar, 2004; Gouy et al., 2010). SSU and LSU data were partitioned into paired and unpaired sites. Protein encoding genes were partitioned into 1st, 2nd, and 3rd codon positions. Phylogenetic analyses run using the GTR+G model under maximum likelihood using RAxML ver. 8.2.9 (Stamatakis, 2014) compiled as the pthread-AVX version on an Intel i7 based processor in Linux Mint 18. Twenty replicates were run each with 500 rapid BS replicates with ML optimization. Bootstrap support was assessed using the BS replicates from the run producing the optimal ML score.

For single-gene maximum likelihood (ML) analyses of rbcL and psbC and the concatenated rbcL–LSU analysis, ambiguously aligned sites with a posterior probability less than 0.95 were removed. Protein-encoding sequences were trimmed at both ends in case the sites were highly gappy (e.g. ca > 70% of OTUs had gaps) and phylogenetically uninformative. The alignments were partitioned into different codon positions (for rbcL and psbC), or paired and unpaired in the secondary structure model (for rDNA). Phylogenetic trees were conducted using GTRCAT model, with 10,000 bootstrap replicates using rapid Bootstrap analysis in RAxML 8.2 (Stamatakis, 2014). The best-scoring ML tree was chosen as the final tree and bootstrap values were added to the nodes.

3. Extra references not used in the main text:

- Alverson, A.J., Jansen, R.K., Theriot, E.C., 2007. Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. *Mol. Phyl. Evol.* 45: 193–210.
- Chepurnov, V.A., Mann, D.G., 1997. Variation in the sexual behaviour of natural clones of *Achnanthes longipes* (Bacillariophyta). *Eur. J. Phycol.* 32: 147–154.
- Daugbjerg, N., Andersen, R.A., 1997. A molecular phylogeny of the heterokont algae based on analyses of chloroplast-encoded *rbcL* sequence data. *J. Phycol.* 33: 1031–1041.
- Edgar, R.C.. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucl Acids Res.* 2004; 32: 1792–1797. https://doi.org/10.1093/nar/gkh340
- Elwood, H.J., Olsen, G.J., Sogin, M.L., 1985. The small subunit ribosomal DNA gene sequences from the hypotrichous ciliates *Oxytricha nova* and *Stylonichia pustulata*. *Mol. Biol. Evol.* 2: 399–410.
- Evans, K.M., Wortley, A.H., Mann, D.G., 2007. An assessment of potential diatom "barcode" genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in *Sellaphora* (Bacillariophyta). *Protist* 158: 349–364
- Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27: 221–224. https://doi.org/ 10.1093/molbev/msp259
- Guillard, R.R.L., 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W.L. and Chanley M.H (Eds.) *Culture of Marine Invertebrate Animals*, pp 26–60. Plenum Press, New York, USA.
- Guillard, R.R.L., Lorenzen, C.L., 1972. Yellow-green algae with chlorophyllide c. J. Phycol. 8: 10–14.
- Jones, H.M., Simpson, G.E., Stickle, A.J. & Mann, D.G. (2005). Life history and systematics of

Petroneis (Bacillariophyta), with special reference to British waters. *European Journal of Phycology* 40: 61–87.

- Kermarrec L., Bouchez A., Rimet F., Humbert J.F., 2013. First evidence of the existence of semicryptic species and of a phylogeographic structure in the *Gomphonema parvulum* (Kützing) Kützing complex (Bacillariophyta). *Protist* 164: 686–705.
- Lanfear, R, Calcott B, Ho SYW, Guindon S., 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Mol. Biol. Evol.*, 29:1695–1701. https://doi.org/ 10.1093/molbev/mss020
- Medlin, L., Elwood, H.J., Stickel, S., Sogin, M.L., 1988. The characterization of enzymatically amplified eurakyotic 16S-like rRNA-coding regions. *Gene* 71: 491–499.
- Nawrocki, E.P., 2009. *Structural RNA homology search and alignment using covariance models*. Ph.D. thesis, Washington University in Saint Louis, School of Medicine.
- Nunn, G., Theisen, B., Christensen, B., Arctander, P., 1996. Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J. Mol. Evol. 42: 211–223.
- Roshchin, A.M. (1994) Zhiznennye tsikly diatomovykh vodoroslej. Naukova Dumka, Kiev, 170 pp.
- Ruck, E.C., Theriot, E.C., 2011. Origin and evolution of the canal raphe system in diatoms. *Protist* 162: 723–737.
- Saunders, G.W., 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. *Phil. Trans. R. Soc. Lond., B Biol Sci.* 360:1879–1888. doi:10.1098/rstb.2005.1719
- Scholin, C.A., Herzog, M., Sogin, M., Anderson, D.M., 1994. Identification of group- and strainspecific genetic markers for globally distributed Alexandrium (Dinophyceae). II sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 30: 999–1011.
- Stamatakis, A., 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Stosch, H.A. von, Fecher, K., 1979. 'Internal thecae' of *Eunotia soleirolii* (Bacillariophyceae): development, structure and function as resting spores. *J. Phycol.* 15: 233–243.

Table 1. Source localities and isolation information for clones from which new sequences were obtained for this paper. ND = no data. For the GenBankaccession numbers of the new sequences, see Supplementary Table 2. Details of Thonon Culture Collection (TCC) clones are given in the spreadsheetsavailable at https://www6.inrae.fr/carrtel-collection eng/Barcoding-database/Database-download

Clone	Identity	Type of sample	Source locality	Latitude	Longitude	Isolated by			
Szczecin clones									
SZCZCH1090	Nitzschia sp.	shallow water sediment	Chałupy, Puck Bay, Baltic Sea, Poland	54° 45′ 31″ N	18 30' 34" E	C. Li			
SZCZCH50	<i>Cylindrotheca</i> sp.	sediment	Haian Bay, Xuwen county, SE Guangdong, China	ND	ND	C. Li			
SZCZCH54	<i>Nitzschia</i> sp.	sediment	Haian Bay, Xuwen county, SE Guangdong, China	ND	ND	C. Li			
SZCZCH690	<i>Cylindrotheca</i> sp.	plankton net	Fish Pass, Corpus Christi, Gulf of Mexico, USA	27° 40′ 48″ N	91° 10′ 22.8″ W	C. Li			
SZCZCH97	Tryblionella gaoana	shallow water sediment	Chang Dao Island, Bohai Sea, China	37° 57.17′ N	120° 44.04′ E	C. Li			
SZCZCH970	Nitzschia traheaformis	water sample	Laizhou Bay, Bohai Sea, China ¹	37° 27.362′ N	121° 42.215′ E	C. Li			
SZCZCH971	Nitzschia traheaformis	water sample	Laizhou Bay, Bohai Sea, China ¹	37° 27.362′ N	121° 42.215′ E	C. Li			

SZCZCH972	Nitzschia traheaformis	shallow water sediment	Laizhou Bay, Bohai Sea, China ¹	37° 27.362′ N	121° 42.215′ E	C. Li
SZCZCH966	Nitzschia aurariae	exposed microbial mat	Muping, Yantai, Yellow Sea, China ¹	37° 27′ 19.37″ N	121° 42′ 7.27″ E	C. Li
SZCZCH969	Nitzschia aurariae	sand	Muping, Yantai, Yellow Sea, China ¹	37° 27′ 19.37″ N	121° 42′ 7.27″ E	C. Li
SZCZCH845	Nitzschia cf. volvendirostrata	sand	Yantai, Moon Bay, public beach Yellow Sea, China ¹	ND	ND	C. Li
SZCZCH967	Amphora vixvisibilis	fine sand	Muping, Yantai, Yellow Sea, China ¹	37° 27′ 19.37″ N	121° 42′ 7.27″ E	C. Li
SZCZCH658	<i>Nitzschia</i> sp.	sea cucumber aquaculture sediment	Yantai, Yellow Sea, China ¹	37° 26′ 7″ N	121° 32′ 59″ E	C. Li
SZCZCH113	Achnanthes sp.	beach	Gdańsk Bay, Baltic Sea	54° 20' 44" N	18° 52′ 36″ E	C. Li
SZCZCH974	Nitzschia nanodissipata	water sample	Laizhou Bay, Bohai Sea, China ¹	37° 27.362′ N	121° 42.215′ E	C. Li
SZCZE328	Psammodictyon sp.	seaweeds	Nosy Be, NW Madagascar	13°24.834' S	48° 20.048′ E	E. Górecka
SZCZE331	Psammodictyon sp.	rock scrape	Nosy Be, NW Madagascar	13° 29.083′ S	48°14.223' E	E. Górecka
SZCZE431	Nitzschia rectilonga	sediment	Corpus Christii, Gulf of Mexico, USA	ND	ND	N. Davidovich

SZCZE459	Psammodictyon sp.	rock scrape	Nosy Be, NW Madagascar	13° 24.081′ S	48° 12.449′ E	E. Górecka		
SZCZM117	<i>Nitzschia</i> sp.	sediment	King George Island, Antarctic Peninsula	c. 58° 55′ W	c. 62° 12′ S	M. Krzywda		
SZCZP613	<i>Bacillaria</i> sp.	beach	Azores, Sao Miguel, Ponta Delgada	37° 44'14.86" N	25° 40′ 12.56″ W	P. Dąbek		
SZCZP71	<i>Nitzschia</i> sp.	sediment from shallow water	Sandwich Harbour, lagoon, Namibia	23° 21′ 332″ S	14° 29.800″ E	P. Dąbek		
SZCZP36	Nitzschia volvendirostrata	sand from sublittoral	Indian Ocean, Mozambique coast, Tofo Sand	24° 55′ 18″ S	35° 30′ 25″ E	P. Dąbek		
SZCZM119	Achnanthes sp.	seaweed fragments, Chlorophyta	Portugal, Tejo Estuary, Alcochete beach	38° 44′ 31.69″ N	8° 59′ 44.44″ W	M. Krzywda		
KSA0039	Nitzschia volvendirostrata	ND	Durrah, Saudi Arabia Red Sea coast ¹	21° 93.58′ N	38° 94.51′ E	M. Ashworth		
KSA0035	<i>Nitzschia</i> sp.	ND	Markaz Al Shoiabah (Al Qatan resort) Saudi Arabia Red Sea coast ¹	20° 50.474' N	39° 24.046′ E	M. Ashworth		
'Edinburgh' clones, including clones isolated for previous studies (Trobajo et al. 2006, 2009, 2010; Rovira 2015; Kelly et al. 2020), with clone synonyms where applicable [in square brackets, column 1]								
AG [AG1=Argentina	Nitzschia cf.	ND	Pond, Estancia el	26° 17′ 8.95″ S	58° 49′ 46.2″ W	R. Trobajo		

fru]	bulnheimiana		Bagual, Formosa,			
			Argentina			
			IRTA aquaculture			
DACOULAT [DAC	Bacillaria sp.	lagoon sediment	lagoon, Ebro Delta,	40° 37′ 38.88″ N	0° 39′ 39.26″ E	D.G. Mann
			Catalonia, Spain			
PC0020			Green Cleuch			
	Nitzschia palea	periphyton	streams, Pentland	55.844216 N	-3.311093 E	S. Sato, May 2012
[0591011904]			Hills, Scotland, UK			
PC00F2	Nitzachia af		Green Cleuch			
	fonticola	periphyton	streams, Pentland	55.844216 N	-3.311093 E	S. Sato, May 2012
[053111104]	fonticola		Hills, Scotland, UK			
PC0076			Green Cleuch			
	<i>Nitzschia</i> sp.	periphyton	streams, Pentland	55.844216 N	-3.311093 E	S. Sato, May 2012
			Hills, Scotland, UK			
PC0092			Green Cleuch			
	Nitzschia linearis	periphyton	streams, Pentland	55.844216 N	-3.311093 E	S. Sato, May 2012
[0851111-07]			Hills, Scotland, UK			
RCOODE			Green Cleuch			
	Nitzschia palea	periphyton	streams, Pentland	55.844216 N	-3.311093 E	S. Sato, May 2012
[095101[P09]			Hills, Scotland, UK			
PC0008	Nitzschia		Green Cleuch			
	Nilzscillu	periphyton	streams, Pentland	55.844216N	-3.311093 E	S. Sato, May 2012
[098111109]	aciaocimata		Hills, Scotland, UK			
DC0224			Allt a 'Bhalachain			
BCU234	Nitzschia palea	periphyton	stream, Argyll &	56.206051 N	-4.790649 E	S. Sato, May 2012
			Bute, Scotland, UK,			
PC0240			United			
	Nitzschia palea	periphyton	Kingdom:Scotland,	56.206051 N	-4.790649 E	S. Sato, May 2012
			Argyll & Bute, Allt a			

			'Bhalachain,			
DC0272			River Almond,			
BCU273	Nitzschia linearis	periphyton	Edinburgh,	55.973614 N	-3.31066 E	S. Sato, June 2012
[273101000]			Scotland, UK			
PC0277			River Almond,			
	Nitzschia palea	periphyton	Edinburgh,	55.973614 N	-3.31066 E	S. Sato, June 2012
			Scotland, UK			
PC0207	Nitzachia		River Almond,			
	hauflariana	periphyton	Edinburgh,	55.973614 N	-3.31066 E	S. Sato, June 2012
[30/NitC0/]	neujienana		Scotland, UK			
PC0209			River Almond,			
	Nitzschia cf. sigma	periphyton	Edinburgh,	55.973614 N	-3.31066 E	S. Sato, June 2012
[308NitC07]			Scotland, UK			
PC0217			Water of Leith,			
	Nitzschia sp.	periphyton	Currie, Edinburgh,	55.895467 N	-3.308024 E	S. Sato, June 2012
			Scotland, UK			
DC0225	Nitzachia		Water of Leith,			
	dravoillonsis	periphyton	Currie, Edinburgh,	55.895467 N	-3.308024 E	S. Sato, June 2012
	uruvemensis		Scotland, UK			
PC0220			Water of Leith,			
BC0330	Nitzschia alicae	periphyton	Currie, Edinburgh,	55.895467 N	-3.308024 E	S. Sato, June 2012
			Scotland, UK			
PC0222			Water of Leith,			
DCU355 [222Ni+\N/02]	Nitzschia pusilla	periphyton	Currie, Edinburgh,	55.895467 N	-3.308024 E	S. Sato, June 2012
[555]\[[][02]			Scotland, UK			
PC0272			Water of Leith,			
[272Ni+\A/01]	Nitzschia palea	periphyton	Currie, Edinburgh,	55.895467 N	-3.308024 E	S. Sato, June 2012
			Scotland, UK			
BC0375	Nitzschia palea	periphyton	Water of Leith,	55.895467 N	-3.308024 E	S. Sato, June 2012

[375NitW01]			Currie, Edinburgh,			
			Scotland, UK			
			The main pond,			
PC0460		sodimont and	Royal Botanic			
	Nitzschia costei	perinhyton	Garden Edinburgh,	55.965416 N	-3.206233 E	S. Sato, June 2012
		penphyton	Edinburgh,			
			Scotland, UK			
			The main pond,			
BC0470	<i>Nitzschia</i> cf.	sediment and periphyton	Royal Botanic			
[470Ni+R03]	dissipata var. media		Garden Edinburgh,	55.965416 N	-3.206233 E	S. Sato, June 2012
			Edinburgh,			
			Scotland, UK			
	Nitzschia amphibia	sediment and periphyton	The main pond,			
BC0486			Royal Botanic			
[486NitR03]			Garden Edinburgh,	55.965416 N	-3.206233 E	S. Sato, June 2012
			Edinburgh,			
			Scotland, UK			
			Artificial stream,			
BC0501	Nitzschia cf		Royal Botanic			
[501NitR04]	soratensis	periphyton	Garden Edinburgh,	55.964232 N	-3.205196 E	S. Sato, June 2012
	301 01211313		Edinburgh,			
			Scotland, UK			
			Artificial stream,			
BC0502			Royal Botanic			
[502TryB04]	Tryblionella debilis	periphyton	Garden Edinburgh,	55.964232 N	-3.205196 E	S. Sato, June 2012
[502119104]			Edinburgh,			
			Scotland, UK			
BC0503	Nitzschia amphihia	nerinhyton	Artificial stream,	55 964232 N	-3 205196 F	S Sato June 2012
[503NitR04]		periphyton	Royal Botanic	55.504252 N	-3.203130 E	5. 50(0, JULE 2012

			Garden Edinburgh,			
			Edinburgh,			
			Scotland, UK			
			River Browney,			
BC0603	Nitzachia nalaz	n o vin huton	Sunderland Bridge,		1 5000000 5	C Cata luna 2012
[603NitK02]	Nitzschia palea	periphyton	Co. Durham,	54.737885 N	-1.5860622 E	5. Sato, June 2012
			England, UK			
			River Browney,			
BC0605		a subaba da a	Sunderland Bridge,	F 4 707005 N	4 5000000 5	C. Cata, June 2012
[605NitK02]	Nitzschia palea	periphyton	Co. Durham,	54.737885 N	-1.5860622 E	S. Sato, June 2012
			England, UK			
DC0C10	Nitzachia		River Tay, Pitlochry,			
BC0619	Nitzschia	periphyton	Perth & Kinross,	56.70746 N	-3.750611 E	S. Sato, July 2012
[619NITP11]	aciaociinata		Scotland, UK			
	Nitzachia of		River Dever,			
BC0649	Nitzschia ci.	a subaba da a	Bransbury,	54 477750 N	1 200 4012 5	S. Sato, September
[649NitK07]	media	peripnyton	Hampshire,	51.177756 N	-1.5964015 E	2012
			England, UK			
			River Dever,			
BC0650	<i>Nitzschia</i> cf.	n o vin huton	Bransbury,		1 2004012 5	S. Sato, September
[650NitK07]	romana	periphyton	Hampshire,	51.1///58 N	-1.3984013 E	2012
			England, UK			
			River Anton,			
BC0669	Nitzachia linaguia	n o vin huton	Andover,			S. Sato, September
[669NitK09]	Nitzschia linearis	periphyton	Hampshire,	51.215530 N	-1.4795755 E	2012
			England, UK			
BC0670			River Anton,			C Cata Contomber
	Nitzschia palea	periphyton	Andover,	51.215536 N	-1.4795755 E	S. Sato, September
[670NitK09]			Hampshire,			2012

			England, UK			
			River Anton,			
BC0675	<i>Nitzschia</i> cf.	nerinhyton	Andover,	51 215526 N	-1 1705755 F	S. Sato, September
[675NitK09]	paleacea	penphyton	Hampshire,	51.215550 N	-1.4793733 L	2012
			England, UK			
BCO696			River Lambourn,			S Sato Sentember
[696NitK10]	Nitzschia linearis	periphyton	Bagnor, Berkshire,	51.420638 N	-1.3496305 E	2012
			England, UK			2012
			River Kennet,			
BC0701	Nitzschia amphihia	nerinhyton	Stitchcombe Mill,	51 424326 N	-1 6739029 F	S. Sato, September
[701NitK11]		periphyton	Wiltshire, England,	51.424520 N	1.0735025 L	2012
			UK			
			River Wylye,			
BC0712	Nitzschia linearis	nerinhyton	Henford Marsh,	51 193109 N	-2 1752506 F	S. Sato, September
[712NitK13]		penpilycon	Wiltshire, England,		2.1752500 L	2012
			UK			
			River Wylye,			
BC0713	Nitzschia	periphyton	Henford Marsh,	51,193109 N	-2.1752506 F	S. Sato, September
[713NitK13]	capitellata	penpiyton	Wiltshire, England,	511250105 11	212/02000 2	2012
			UK			
			Inveruglas Water,			
BC0730	<i>Nitzschia</i> cf.	periphyton	by Ben Vane, Argyll	55,369836 N	-3.12179 F	S. Sato, September
[730NitB12]	perminuta	penpiyton	& Bute, Scotland,	5515656661	01121/02	2012
			UK			
			The main pond,			
BC0748		sediment and	Royal Botanic	55.964797 N	-3.20623 E	S. Sato, September
[748NitR05]	Nitzschia palea	periphyton	Garden Edinburgh,			2012
[]			Edinburgh,			
			Scotland, UK			

			Wooler Water,			
BC0769	Nitzschia of roota	poriphytop	near Wooler,		2 0174 E	S. Sato, October
[769NitN01]	Witzschild Ci. Tectu	penphyton	Northumbria,	55.5165 N	-2.0174 E	2012
			England, UK			
			Wooler Water,			
BC0774	Nitzachia nalaa	norinhyton	near Wooler,		2 0174 5	S. Sato, October
[774NitN01]	Nitzschia palea	periphyton	Northumbria,	22.2162 N	-2.0174 E	2012
			England, UK			
			Wooler Water,			
BC0776	Nitzschia palea	periphyton	near Wooler,		2 0174 5	S. Sato, October
[776NitN01]			Northumbria,	55.5185 N	-2.0174 E	2012
			England, UK			
			Wooler Water,			
BC0786	Nitzachia nalas	periphyton	near Wooler,	55.5185 N	2 0174 5	S. Sato, October
[786NitN01]			Northumbria,		-2.0174 E	2012
			England, UK			
			Wooler Water,			
BC0787	Nitzachia ciaracidaa	a a si a bu da a	near Wooler,		2 0174 5	S. Sato, October
[787NitN01]	Nitzschia sigmolaea	periphyton	Northumbria,	55.5185 N	-2.0174 E	2012
			England, UK			
			Wooler Water,			
BC0795	Nitzachia of voota	a a via huta a	near Wooler,		2 0174 5	S. Sato, October
[795NitN01]	Nitzschia ci. recta	periphyton	Northumbria,	55.5185 N	-2.0174 E	2012
			England, UK			
			Wooler Water,			
BC0799	Nitzachia of nalog	norinhuton	near Wooler,	55.5185 N	2 0174 5	S. Sato, October
[799NitN02]	Nitzschia ci. palea	periphyton	Northumbria,		-2.0174 E	2012
			England, UK			
BC0806	Nitzschia cf.	periphyton	Wooler Water,	55.5185 N	-2.0174 E	S. Sato, October

[806NitN02]	paleacea		near Wooler,			2012
			Northumbria,			
			England, UK			
			Wooler Water,			
BC0815	Nitzachia linoaria	norinhyton	near Wooler,	EE E19E N	2 0174 5	S. Sato, October
[815NitN02]	Nitzschia inearis	periphyton	Northumbria,	22.2103 IN	-2.0174 E	2012
			England, UK			
			United			
BC0838	<i>Nitzschia</i> cf.	norinhyton	Kingdom:England,		2 044212 5	S. Sato, October
[838NitN05]	perminuta	periphyton	Northumbria,	55.51515 N	-2.044313 E	2012
			Harthope Burn,			
			United			
BC0848	Nitzschia naloa	poriphytop	Kingdom:England,	55 51515 N	2 044212 5	S. Sato, October
[848NitN04]		periphyton	Northumbria,	55.51515 N	-2.044313 E	2012
			Harthope Burn,			
			United			
BC0850	Nitzschia aff.	periphytop	Kingdom:England,	55 51515 N	-2 044212 F	S. Sato, October
[850NitN04]	sublinearis	periphyton	Northumbria,	55.51515 N	-2.044313 E	2012
			Harthope Burn,			
			The main pond,			
BC0866	<i>Nitzschia</i> cf.	sediment and	Royal Botanic			S Sato Sentember
[866NitR05]	dissipata var.	nerinhyton	Garden Edinburgh,	55.964797 N	-3.20623 E	2012
[000111100]	media	periphyton	Edinburgh,			2012
			Scotland, UK			
			The main pond,			
BC0897	Nitzschia linearis	sediment and	Royal Botanic	55.964797 N		S Sato Sentember
[897NitR05]		periphyton	Garden Edinburgh,		-3.20623 E	2012
			Edinburgh,			2012
			Scotland, UK			

BC0905 [905NitR05]	Nitzschia palea	sediment and periphyton	The main pond, Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK	55.964797 N	-3.20623 E	S. Sato, September 2012
BC0912 [912NitR05]	Nitzschia palea	sediment and periphyton	The main pond, Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK	55.964797 N	-3.20623 E	S. Sato, September 2012
Belgium-1 [Victor 02-9E]	Nitzschia palea	ND	Secondary clarifier, wastewater treatment plant, Destelbergen, Ghent, Belgium	51° 3′ N	3° 48′ E	V. Chepurnov
capitellata Scot1 [Nit54]	Nitzschia capitellata	sediment	East shore, Loch of Forfar, Forfar, Scotland, UK	ND	ND	R. Trobajo
capitellata Scot2 [Nit55]	Nitzschia capitellata	sediment	East shore, Loch of Forfar, Forfar, Scotland, UK	ND	ND	R. Trobajo
capitellata Spain [Spain cap=Terri F222=262]	Nitzschia capitellata	periphyton	Terri stream, Cornella de Terri, Girona, Spain	ND	ND	R. Trobajo
CCMP558	Nitzschia cf. pusilla	rock pool	Prospect, Nova Scotia, Canada	45.2° N	64.3° W	J. Lewin and R.A. Lewin
Corsica	Psammodictyon sp.	marine shore	Mediterranean, Corsica, France	ND	ND	D.G. Mann and G.E. Simpson
Cylin clos	Nitzschia cf.	marine	Florida, USA	ND	ND	W.H.C.F Kooistra

	longissima					
	Nitrachia fanticala	poriphytop	artificial stream,		3° 12′ 19.04″ W	R. Trobajo
fonticala C [PT26]			Royal Botanic	55° 57' 51 62" N		
		periphyton	Garden, Edinburgh,	55 57 51.02 N		
			Scotland, UK			
	Nitzschia		Set River, by			
G1_2 [L54]	inconspicus	periphyton	Albagés, Catalonia,	41° 26′ 53.1″ N	0° 46′ 42.0″ E	L. Rovira
	Inconspicua		Spain			
	Nitzschia		Set River, by			
G1_3 [L55]	inconspicus	periphyton	Albagés, Catalonia,	41° 26′ 53.1″ N	0° 46′ 42.0″ E	L. Rovira
	Inconspicua		Spain			
	Nitzschia		Set River, by			
G2_1 [L46]	inconspicua	periphyton	Albagés, Catalonia,	41° 26′ 53.1″ N	0° 46′ 42.0″ E	L. Rovira
			Spain			
	Nitzschia inconspicua	periphyton	Set River, by			
G2_2 [L47]			Albagés, Catalonia,	41° 26′ 53.1″ N	0° 46′ 42.0″ E	L. Rovira
			Spain			
	Nitzschia inconspicua	periphyton	Lower Ebro River,		0° 33′ 17.8″ E	L. Rovira
G3_1 [L53]			by Ascó, Catalonia,	41° 12′ 44.4″ N		
			Spain			
	Nitzachia	periphyton	Lower Ebro River,			
G3_2 [L58]	inconsnicua		by Xerta ,	40° 52′ 58.5″ N	0° 30′ 27.6″ E	L. Rovira
	meonspieda		Catalonia, Spain			
G3_3 [L61]	Nitzschia	periphyton	Lower Ebro River,			
	inconspicus		by Xerta ,	40° 52′ 58.5″ N	0° 30′ 27.6″ E	L. Rovira
	inconspicuu		Catalonia, Spain			
	Nitzschia		Lower Ebro River,			
G3_4 [L62]	inconspicua	periphyton	by Xerta ,	40° 52′ 58.5″ N	0° 30′ 27.6″ E	L. Rovira
			Catalonia, Spain			

	Nitzschia inconspicua	periphyton	Ebro Estuary, Ebro			
G4_1 [L44]			Delta, Catalonia,	40° 43′ 46.34″ N	0° 52′ 8.45″ E	L. Rovira
			Spain			
	Nitaala		Ebro Estuary, Ebro			
G4_2 [L5]	inconcella	periphyton	Delta, Catalonia,	40° 43′ 46.34″ N	0° 52′ 8.45″ E	L. Rovira
	inconspicua		Spain			
G5_1	Nitacohio		La Trinitat salt			
[NIT1002CAT=DM1	inconceicuo	sediment	works, Ebro Delta,	40° 35′ 19.65″ N	0° 41′ 21.69″ E	D.G. Mann
002cat]	inconspicua		Catalonia, Spain			
G5_2	Nitacohio		La Trinitat salt			
[NIT1005CAT=DM1	inconspicus	sediment	works, Ebro Delta,	40° 35′ 19.65″ N	0° 41′ 21.69″ E	D.G. Mann
005cat]]	inconspicua		Catalonia, Spain			
G6_1	Nitzachia	sodimont and	El Clot lagoon, Ebro			
[NIT950CAT=DM95	inconchicup	periphyton	Delta, Catalonia,	40° 38′ 58.4″ N	0° 41′ 27.1″ E	D.G. Mann
0cat]]	inconspicua		Spain			
G7_1	Nitzschia	sodimont and	IRTA aquaculture			
[NIT948CAT=DM94	inconspicua	periphyton	lagoon, Ebro Delta,	40° 37′ 38.88″ N	0° 39′ 39.26″ E	D.G. Mann
8cat]			Catalonia, Spain			
Gillian	Psammodictyon sp.	marine shore	Scotland, UK	ND	ND	D.G. Mann
Japan D [Jp037-	Nitzahia nalaa	norinhuton	Sakura River,	ND	ND	R. Trobajo
O6=265]]	Nitzschia palea	periphyton	Tokyo, Japan	ND		
Japan F	Nitzschia paloa	pariphytan	stream, Okinawa,	ND	ND	R. Trobajo
[Mayama=235]	Nitzschia palea	periphyton	Japan	ND		
			La Trinitat salt			
L1	Nitzschia cf. pusilla	sediment	works, Ebro Delta,	40° 35′ 19.65″ N	0° 41′ 21.69″ E	L. Rovira
			Catalonia, Spain			
			La Trinitat salt			
L25	Nitzschia cf. pusilla	sediment	works, Ebro Delta,	40° 35′ 19.65″ N	0° 41′ 21.69″ E	L. Rovira
			Catalonia, Spain			

			La Trinitat salt			
L3	Nitzschia cf. pusilla	sediment	works, Ebro Delta,	40° 35′ 19.65″ N	0° 41′ 21.69″ E	L. Rovira
			Catalonia, Spain			
			Alfacada Bay, Ebro			
L44	Nitzschia cf. ardua	ND	Delta, Catalonia,	40° 46′ 18.97″ N	0° 46′ 53.80″ E	L. Rovira
			Spain			
	Nitzachia		Lower Ebro River			
L56	Nitzschia	periphyton	(by Flix, Catalonia,	41° 14′ 25.2″ N	0° 33′ 13.0″ E	L. Rovira
	microcephala		Spain)			
New Grein 2			stream, Sant Martí			
New Spain 2	Nitzschia palea	periphyton	Vell, near Girona,	ND	ND	R. Trobajo
[RieraSiviv]			Catalonia, Spain			
NUT1002CAT			La Trinitat salt			
NIT1003CAT	Nitzschia cf. pusilla	saline pond	works, Ebro Delta,	40° 35′ 19.65″ N	0° 41′ 21.69″ E	D.G. Mann
			Catalonia, Spain			
	Nit-ashia af	saline pond	La Trinitat salt			
NIT1004CAT	aequorea		works, Ebro Delta,	40° 35′ 19.65″ N	0° 41′ 21.69″ E	D.G. Mann
			Catalonia, Spain			
			Houselop Beck, Co.			
	Nitzschia soratensis	periphyton	Durham, England,	54° 44′ 22.53″ N	1° 51′ 5.80″ W	D.G. Mann
			UK			
			Houselop Beck, Co.			
	Nitzschia soratensis	periphyton	Durham, England,	54° 44′ 22.53″ N	1° 51′ 5.80″ W	D.G. Mann
			UK			
			Houselop Beck, Co.			
	Nitzschia palea	stream	Durham, England,	54° 44′ 22.53″ N	1° 51′ 5.80″ W	D.G. Mann
			UK			
NIT1012CAT	Nitzachia an	salt marsh	Punta de la Banya,			D.C. Mann
[DM1012]	Nitzschia sp.	sediment	by the SET, Ebro			

			Delta, Catalonia,			
			Spain			
			Aberlady Bay, East			
	Nitzschia cf. sigma	estuarine sediment	Lothian, Scotland,	56° 00′ 54.14″ N	2° 51′ 0.29″ W	D.G. Mann
			UK			
	Nitacabia		Dunsapie Loch,			
NIT145D	NILZSCIIId	sediment	Edinburgh,	55° 56′ 43.41″ N	3° 09′ 11.56″ W	D.G. Mann
	suprantorea		Scotland, UK			
			Es Mercadal			
Nit24	Nitzschia frustulum	periphyton	stream, Menorca,	39° 52′ 19.26″ N	4° 8′ 0.48″ E	R. Trobajo
			Spain			
			Es Mercadal			
Nit25	Nitzschia frustulum	periphyton	stream, Menorca,	39° 52′ 19.26″ N	4° 8′ 0.48″ E	R. Trobajo
			Spain			
			Threipmuir			
	Nitzschia umbonata	sediment	Reservoir, near	55° 51′ 31″ N	3° 19′ 42″ W	D.G. Mann
10113271101			Edinburgh,			
			Scotland, UK			
			Threipmuir			
	Nitzchia paloa	sediment	Reservoir, near	55° 51′ 31″ N	3° 19′ 42″ W	D.G. Mann
10113291101	Nitzschia palea		Edinburgh,			
			Scotland, UK			
			Threipmuir			
NIT330TM	Nitzachia an	sediment	Reservoir, near	55° 51′ 31″ N	3° 19′ 42″ W	D.G. Mann
	Nitzschia sp.		Edinburgh,			
			Scotland, UK			
	Nitacabia of		Threipmuir			
NIT337TM	hantzschiana	sediment	Reservoir, near	55° 51′ 31″ N	3° 19′ 42″ W	D.G. Mann
	nantzschiana		Edinburgh,			

			Scotland, UK			
		sediment	Threipmuir		3° 20′ 17″ W	R. Trobajo
			Reservoir, near	55° 51′ 27″ N		
NIT44	Nitzschia cr. pusilia		Edinburgh,			
			Scotland, UK			
			Threipmuir			
	Nitzschia		Reservoir, near		28 20/ 47// \\	R. Trobajo
NITSU	draveillensis	sediment	Edinburgh,	55°51°27°N	3 20 17 W	
			Scotland, UK			
			Threipmuir			
		sediment	Reservoir, near	55° 51′ 27″ N	3° 20' 17" W	R. Trobajo
NITSI	Nitzschia cf. gracilis		Edinburgh,			
			Scotland, UK			
			Threipmuir			
	Nitzschia linearis	sediment	Reservoir, near	55° 51′ 27″ N	3° 20′ 17″ W	R. Trobajo
NIC53			Edinburgh,			
			Scotland, UK			
			Threipmuir			
	Nitzschia acicularis	sediment	Reservoir, near	55° 51′ 27″ N	3° 20′ 17″ W	R. Trobajo
INILOO			Edinburgh,			
			Scotland, UK			
			Threipmuir			
	Nitzahia of numila	sediment	Reservoir, near	БС° Г1/ Э7// N	3° 20′ 17″ W	D. Trahair
NIt57	Nitzschia ci. pumila		Edinburgh,	55°51°27″ N		R. Trobajo
			Scotland, UK			
NUTOAECAT			Brackish pool,			
	Nitzschia cf. pusilla	sediment	Garxal, Ebro Delta,	40° 43′ 23.7″ N	0° 51′ 18.8″ E	D.G. Mann
[נאפועוט]			Catalonia, Spain			
NIT952CAT	Nitzschia varelae	periphyton	Clot Lagoon, Ebro	40° 39' 20.8" N	0° 40′ 58.9″ E	D.G. Mann

[DM952]			Delta, Catalonia,			
			Spain			
			Drainage channel			
D10	Nitzschia	norinhuton	of Encanyissada	ND		R. Trobajo
RIU	microcephala	periphyton	lagoon, Ebro Delta,			
			Catalonia, Spain			
			Drainage channel			R. Trobajo
D10	Nitzashia palaa	norinhyton	of Encanyissada	ND		
K1Z	Nitzschia palea	periphyton	lagoon, Ebro Delta,	ND		
			Catalonia, Spain			
	Nitzophia		La Trinitat salt			
R2	Initzschia	sediment	works, Ebro Delta,	40° 35′ 19.65″ N	0° 41′ 21.69″ E	R. Trobajo
	lembilormis		Catalonia, Spain			
			Houselop Beck, Co.			
R20	Nitzschia acicularis	periphyton	Durham, England,	54° 44′ 22.53″ N	1° 51′ 5.80″ W	R. Trobajo
			UK			
			Drainage channel			
DO	Nitzahia nalaa	periphyton	of Encanyissada	ND	ND	R. Trobajo
Kð	Nitzschia palea		lagoon, Ebro Delta,			
			Catalonia, Spain			
			artificial stream,			
		periphyton	Royal Botanic		03° 12′ 19.04 W	R. Trobajo
RT5 [Nit 239]	Nitzschia amphibia		Garden Edinburgh,	55° 57′ 51.62″ N		
			Edinburgh,			
			Scotland, UK			
			Trabucador Beach,			
s0819	Nitzschia sp.	sediment	Ebro Delta,	40° 38′ 50.15″ N	0° 46′ 12.56″ E	S. Sato
			Catalonia, Spain)			
s0826	Nitzschia sp.	sediment	Trabucador Beach,	40° 38′ 50.15″ N	0° 46′ 12.56″ E	S. Sato

			Ebro Delta,			
			Catalonia, Spain)			
			Buda Island, Ebro			
s0863	Tryblionella sp.	lagoon sediment	Delta, Catalonia,	40° 41′ 60.00″ N	0° 52′ 0.00″ E	S. Sato
			Spain			
Spain A2 [Nit	Nitzschia paloa	sand	Pond, Cala Castell,		ND	R. Trobajo
B2=238]	Nitzscilla palea	Sanu	Girona, Spain	ND		
Spain A3 [Nit	Nitzachia palaa	cand	Pond, Cala Castell,			P. Trobaia
B4=205]	Nitzscilla palea	Saliu	Girona, Spain	ND	ND	к. тгорајо
Spain A4 [Nit	Nitzachia palaa	cand	Pond, Cala Castell,			P. Trobaia
C=206]	Nitzschia palea	Sanu	Girona, Spain	ND		R. Trobajo
Spain C [Aitor	Nitzachia palaa	norinhuton	Reservoir, Letutxe			P. Trobaia
5=261]	Nitzscilla palea	periphyton	dam, Bilbao, Spain	ND		K. HODAJO
			Puddle, Dambulla			
Sri Lanka1	Nitzschia paloa	norinhyton	Rock Temple,			P. Trobaio
[SLA=219]	Nitzschia palea	periphyton	Dambulla, Central			R. HODAJO
			Province, Sri Lanka			
			Lotus pond,			
Sri Lanka2	Nitzachia nalaa	norinhuton	Dambulla, Central			P. Trobaio
[SLB=234])	Nitzscilla palea	periphyton	Province, Sri			K. HODAJO
			Lanka			
TRV1006CAT	Trubliopolla of	calt march	Alfacs, by the SET,			
		salt marsh	Ebro Delta,	ND	ND	D.G. Mann
	compressa	seament	Catalonia, Spain			
TRV1007CAT	Trubliopolla of	calt march	Alfacs, by the SET,			
[DV1007]		salt marsh	Ebro Delta,	ND	ND	D.G. Mann
	compressa	seament	Catalonia, Spain			
TRY946CAT	Tryblionella	lagoon codiment	IRTA aquaculture	10° 27' 20 00" N	0° 39′ 39.26″ E	D.G. Mann
[DM946]	apiculata	agoon seulment	lagoon, Ebro Delta,	N 00.07 70.00		D.D. IVIdIIII
			Catalonia, Spain			
-----------------	---------------------------	-----------------	---------------------	------------------	-----------------	------------
TRV047CAT	Trublionalla		IRTA aquaculture			
		lagoon sediment	lagoon, Ebro Delta,	40° 37′ 38.88″ N	0° 39′ 39.26″ E	D.G. Mann
	apiculata		Catalonia, Spain			
	Taublionalla		IRTA aquaculture			
IRY951CAT		lagoon sediment	lagoon, Ebro Delta,	40° 37′ 38.88″ N	0° 39′ 39.26″ E	D.G. Mann
	nungarica		Catalonia, Spain			
	Tryblionella hungarica		IRTA aquaculture			
IRY981CAT		lagoon sediment	lagoon, Ebro Delta,	40° 37′ 38.88″ N	0° 39′ 39.26″ E	D.G. Mann
			Catalonia, Spain			
TRYOCCAT	Tableselle		IRTA aquaculture			
IRY986CAT	Tryblionella	lagoon sediment	lagoon, Ebro Delta,	40° 37′ 38.88″ N	0° 39′ 39.26″ E	D.G. Mann
[DM986]	hungarica		Catalonia, Spain			
			Puddle, Burnham			
υκ		periphyton	Beeches,		ND	R. Trobajo
[Nit7=BB2b=287]	Nitzschia palea		Buckinghamshore,	טא ן		
-			UK			

Thonon Culture Collection (TCC) clones

TCC139-2	Nitzschia palea	lake water	Lac Léman, France	46.4005342	6.56538714	A. Berard
			Alzette river,			
TCC375	Nitzschia acicularis	periphyton	Ettelbruck,	49.8483921	6.11001875	F. Rimet
			Luxembourg			
	Nitzschia dissipata	periphyton	Saone river,		4.81014387	F. Rimet
TCC378			Parcieux city,	45.9164281		
			France			
TCC380	Nitzschia fonticola	periphyton	Saone river,	45.9164281	4.81014387	F. Rimet
			Parcieux city,			

			France			
	Nitrochio		Saone river,			
TCC382	NILZSCIIId	periphyton	Parcieux city,	45.9164281	4.81014387	F. Rimet
	paleaerormis		France			
			Rollingerbaach			
TCC384	Nitzschia pusilla	periphyton	river, Rollingen,	49.7420135	6.11036207	F. Rimet
			Luxembourg			
			Rollingerbaach			
TCC385	Nitzschia pusilla	periphyton	river, Rollingen,	49.7420135	6.11036207	F. Rimet
			Luxembourg			
			Sûre river,			
TCC386	Nitzschia linearis	periphyton	Wasserbilig,	49.7136064	6.50380994	F. Rimet
			Luxembourg			
			Rollingerbaach			
TCC387	Nitzschia linearis	periphyton	river, Rollingen,	49.7420135	6.11036207	F. Rimet
			Luxembourg			
			Dniepr river,			
TCC394	Nitzschia palea	periphyton	Obolon, Kiev,	50.4296152	30.5757185	T. Darienko
			Ukraine			
TCC205	Nitzschia nalea	perinhyton	Golosejevo Lake,	50 122222	20 516667	E Pimot
100393		penphyton	Kiev, Ukraine	50.455555	30.310007	T. Millet
			Rollingerbaach			
TCC396	Nitzschia cf. pusilla	periphyton	river, Rollingen,	49.7420135	6.11036207	F. Rimet
			Luxembourg			
			Schlennerbaach			
TCC397	Nitzschia palea	periphyton	river, Hoscheid,	49.9472472	6.08152296	F. Rimet
			Luxembourg			
TCC/02	Nitzchia paloa	poriphytop	Attert river, Colmar	40 9145071	6 00082824	E Pimot
100403	Nitzschia palea	periphyton	Berg, Luxembourg	49.8145071	6.09982834	F. KIMET

	Nitzschia		Alzette river,			E Diment	
TCC404	supralitorea	periphyton	Ettelbruck,	49.8483921	6.11001875	F. Rimet	
	•		Luxembourg				
			downstream site,				
TCC425	Nitzschia palea	periphyton	rivière de Djalimou,	-12,710833	45.055	L. Kermarrec	
100120		penpilyton	lle de Mayotte,	12.7 20000	101000		
			France				
			downstream site,				
TCC/68	Nitzschia nalea	periphytop	rivière de Dembeni,	-12 725556	15 128222	L Kermarrec	
100408		penphyton	lle de Mayotte,	-12.735550	45.158555	L. Kermanec	
			France				
			intermediate site,				
TCCATA	Nitzschia inconspicua	periphyton	rivière de Coconi,	-12.833056	45.134722	l Kermarrec	
100474			lle de Mayotte,			L. Kermanec	
			France				
	Nitzschia palea	periphyton	downstream site,	-12.833056	45.134722		
TCC/96			rivière de Coconi,			L. Kermarrec	
100480			lle de Mayotte,				
			France				
			downstream site,				
TCC407	Nitzschia	a salaha da a	rivière de Coconi,	12 022050	45 404700		
100487	inconspicua	periphyton	lle de Mayotte,	-12.833056	45.134722	L. Kermarrec	
			France				
			downstream site,				
TCC488	Nitzschia		rivière de Coconi,	42.022056	45 40 4700		
	inconspicua	periphyton	lle de Mayotte,	-12.833056	45.134722	L. Kermarrec	
			France				
700400	Nitzschia		upstream site	40.000077	45 0007540		
100498	inconspicua	periphyton	rivière de Kwalé, lle	-12.8008977	45.2037549	L. Kermarrec	

			de Mayotte, France			
	Nitacabia		downstream site,			
TCC510	inconchique	periphyton	rivière de Longoni,	-12.7289593	45.1667261	L. Kermarrec
	inconspicua		France			
			Upstream site,			
TCCE12	Nitzachia linoaria	norinhyton	rivière de	12 72555	AE 120222	L Kormarroe
100512	NILZSCHIA IIIIearis	periphyton	Bouyouni, lle de	-12.755550	45.150555	L. Kermanec
			Mayotte, France			
			Marla, rivière de			
TCC521	Nitzschia costei	periphyton	des Galets, lle de La	-20.9561077	55.2986267	L. Kermarrec
			Réunion, France			
			rivière de Bras des			
TCC533	Nitzschia fonticola	periphyton	étangs site, lle de	-21.1365223	55.4539641	L. Kermarrec
			La Réunion, France			
	Nitacohio		rivière de Bras			
TCC537		periphyton	Caverne, lle de La	-21.0025689	55.5857986	L. Kermarrec
	aciuociinata		Réunion, France			
	Nitzschia		rivière de Bras			
TCC538		periphyton	Caverne, lle de La	-21.0025689	55.5857986	L. Kermarrec
	aciuociinata		Réunion, France			
			grand Galet, rivière			
TCC550	Nitzschia costei	periphyton	de Langevin, lle de	-21.2830131	55.6123903	L. Kermarrec
			La Réunion, France			
	Nitzchia		rivière de Sainte			
TCC560		periphyton	Suzanne, lle de La	-20.9070214	55.6058061	L. Kermarrec
	aciuociinata		Réunion, France			
			rivière de Sainte			
TCC563	Nitzschia palea	periphyton	Suzanne, lle de La	-20.9070214	55.6058061	L. Kermarrec
			Réunion, France			

			Cascade Niagara,				
TCC571	Nitzschia	norinhuton	rivière de Sainte	20 0005 871		I. Kormorroo	
100371	inconspicua	peripriyton	Suzanne, lle de La	-20.9095871	55.0009990	L. Kermanec	
			Réunion, France				
			Cascade Niagara,				
TCCEZE	Nitzachia tubicala	norinhuton	rivière de Sainte	20 0005 971		L Kormarroc	
100575		peripriyton	Suzanne, lle de La	-20.9095871	55.0009990	L. Kermanec	
			Réunion, France				
			site Solvay (Usine),				
TCCE76	Nitzschia gracilis	norinhuton	rivière Le Sanon	10 6202411	6 26750046	L Kormarroc	
100576	Nitzschia graciiis	peripriyton	Dombasle-sur-	40.0203411	6.36750946	L. Kermanec	
			Meurthe, France				
		periphyton	site Solvay (Usine),	48.6283411	6.36750946	L. Kermarrec	
TCC577	Nitzschia palea		rivière Le Sanon				
100377			Dombasle-sur-				
			Meurthe, France				
		zschia cf. pusilla periphyton	Canal de Nantes à	47.4349587	-1.49485016	L. Kermarrec	
TCC586	Nitzschia cf. pusilla		Brest, Nort-sur-				
			Erdre, France				
TCC600	Nitzschia paloa	norinhuton	rivière Isac,	47 5179262	1 0455269	L Kormarroc	
10000		periphyton	Guenrouet, France	47.5178205	-1.9455508	L. Kermanec	
TCC606	Nitzschia	nerinhyton	rivière Le Gier, La	16 1811118	-1 20/12282	L Kermarrec	
10000	supralitorea	periphyton	Valla, France	40.4814418	-1.29413282	L. Kermanec	
TCC610	Nitzschia	pariphytap	rivière Le Gier, La		2 04002024	L Kormarroc	
100019	acidoclinata	peripriyton	Valla, France	45.7554750	3.84982834	L. Kermanec	
TCC620	Nitzschia paloa	norinhuton	rivière Le Gier, La	15 7521726	2 01002021	L Kormarroc	
10020	Nitzschia palea	periphyton	Valla, France	45./534/30	3.84982834	L. Kermarrec	
TCC622	Nitzschia dissinata	nerinhyton	rivière La Saone,	16 122222	1 88851/152	L Kermarroc	
100632	Nitzschia dissipata	periphyton	Fleurville, France	40.433333	4.88851453	L. Kermarrec	

		and the trace	riviere Schiirbech				
100665	Nitzschia cf. pusilla	periphyton	downstream of	49.9093991	5.93432906	L. Kermarrec	
			Esch/Sûre, France				
	Nitzschia		Pisuerga river,				
ТСС700	draveillensis	periphyton	Melgar de	42.4	-4.25514984	L. Kermarrec	
	uravemensis		Fernamental, Spain				
TCC707	Nitzachia dissinata	norinhyton	Valdavia river,	42 417401	4 2007500	E. Diverset	
100/07	NILZSCHIA UISSIPALA	periphyton	Osorno, Spain	42.417491	-4.3097509	r. Rimel	
			estuaire de la				
TCC767	Nitzschia palea	periphyton	Venoge, Lac			A. Rimet	
			Léman, Switzerland				
	Nitzschia						
TCC853	communis	lake water	Azores, Portugal	37.732136	-25.474937	S. Almeida	
TCC854	Nitzschia palea	river water	Miranda, Portugal	41.8342	-8.504449	S. Almeida	
	-		Norrtäljeån river				
TCC876	Nitzschia dissipata var. media	periphyton	near Norrtälje city,	59.75728	18.72059	S. Lacroix	
			Sweden				
			Siggeforasiön lake				
TCC885	Nitzschia	periphyton	near Norrtälie city.	59.757282	18.720598	S. Lacroix	
	perminuta	P P ,	Sweden				
			Siggeforasiön lake				
TCC886	Nitzschia cf. nalea	nerinhyton	near Norrtälie city	59 757282	19 720509	S Lacroix	
10000		peripriyton	Sweden	55.757262	10.720550	J. Laciola	
			field (organic)				
тсс900	Nitzschia cf. pusilla	soil	neid (organic),	48.800745	2.090712	F. Rimet	
			France				
TCC901	Hantzschia	soil	field (organic),	48.800745	2.090712	F. Rimet	
	amphioxys		France				
ТСС940	Hantzschia vivax	roots	Nyéki-szállás lake,	47.6771	16.8328	Edina Lengvel	
		10015	Fertőújlak village,	77.0771	10.0320	Luina Lengyei	

			Fertőd, Hungary			
		Provide State	Sós-ér lake,		40.4466	
TCC044	Nitzschia		Dunatetétlen	46 7999		
100944	supralitorea	seuments	village, Solt,	40.7000.	19.1400	Eulila Leligyei
			Hungary			
			Borsodi-dűlő lake,			
TCC945	Nitzschia palea	sediments	Fertőújlak village,	47.6815	16.8400	Edina Lengyel
			Fertőd, Hungary			
	Nitzschia supralitorea	sediments	Böddi-szék lake,	46.7608	19.1437	Edina Lengyel
TCCOAC			Dunatetétlen			
100940			village, Solt,			
			Hungary			
			Borsodi-dűlő lake,			
TCC949	Nitzschia reskoi	sediments	Fertőújlak village,	47.6815	16.8400	Edina Lengyel
			Fertőd, Hungary			
	Nitzachia		Borsodi-dűlő lake,			
TCC950	NILZSCIIId	roots	Fertőújlak village,	47.6815	16.8400	Edina Lengyel
	supraiitorea		Fertőd, Hungary			

¹ see Witkowski et al. (2016)

	D '	C	•	•	a ·
Table 2.	Primers	tor	sequencing	1n	Szczecin.

Primer name	Primer Sequences (5'–3')	References	
nSSU rDNA			
SSU1+ ^{a, c}	AACCTGGTTGATCCTGCCAGT	Medlin et al. 1988	
SSU11+ ^{b, c}	TGATCCTGCCAGTAGTCATACGCT	Alverson et al. 2007	
SSU515+ ^c	TGGAATGAGAACAATTTAA	Alverson et al. 2007	
SSU1004+ ^c	CGAAGATGATTAGATACCATCG	Alverson et al. 2007	
SSUB– ^a	CCTTCTGCAGGTTCACCTAC	Medlin et al. 1988	
SSU568– ^c	CAGACTTGCCCTCCAATTGA	Alverson et al. 2007	
SSU1672– ^{b, c}	TAGGTGCGACGGGCGGTGT	Ruck & Theriot 2011	
rbcL			
rbcL40+ ^{a, b, c}	GGACTCGAATYAAAAGTGACCG	Ruck & Theriot 2011	
rbcL527+ ^c	AAAACATTCCAAGGTCCTGC	Alverson et al. 2007	
rbcL587– ^c	GTCTAAACCACCTTTTAAMCCTTC	Alverson et al. 2007	
rbcL1255– ^{b, c}	TTGGTGCATTTGACCACAGT	Alverson et al. 2007	
rbcL1444– ^{ac}	GCGAAATCAGCTGTATCTGTWG	Ruck & Theriot 2011	
psbC			
psbC+ ^{a, c}	CACGACCWGAATGCCACCAAT	Alverson et al. 2007	
psbC22+ ^{b, c}	CGTGGTGATACATAGTTA	Ruck & Theriot 2011	
psbC221+ ^c	ACGCATTGTTTCACCACC	Alverson et al. 2007	
psbC— ^{a, c}	ACAGGMTTYGCTTGGTGGAGTGG	Alverson et al. 2007	
psbC857– ^c	CTTTGGTTATGACTGGCGTG	Alverson et al. 2007	
psbC1154 – ^{b, c}	GCDCAYGCTGGYTTAATGG	Ruck & Theriot 2011	
nLSU rDNA (D	1, D2)		
D1R ^{ac}	ACCCGCTGAATTTAAGCATA	Scholin <i>et al</i> . 1994	
D2C ^{ac}	CCTTGGTCCGTGTTTCAAGA	Scholin <i>et al</i> . 1994	

^a Forward and reverse primers for the first PCR amplification

^b Forward and reverse primers for the second PCR amplification when the first PCR amplification fail

^c Primers for sequencing

Primer name	Primers Sequences (5'–3')	References
rbcL		
DPrbcL1+ ^a	AAGGAGAAATHAATGTCT	Jones et al. 2005
DPrbcL7– ^a	AARCAACCTTGTGTAAGTCTC	Jones et al. 2005
DPrbcL5	CTCAACCATTYATGCG	Daugbjerg & Andersen 1997
DPrbcL11	CTGTGTAACCCATWAC	Daugbjerg & Andersen 1997
16F	TTAGAAGATATGCGTATT	Jones et al. 2005
14R	GAATACGCATATCTTCTAAACG	Jones et al. 2005
nlsu rdna (d	1, D2 or D1–D3)	
D1R+ ^a	ACCCGCTGAATTTAAGCATA	Scholin et al. 1994
D3R– ^a	TCGGAGGGAACCAGCTACTA	Nunn et al. 1996
D2C– ^{a, b}	CCTTGGTCCGTGTTTCAAGA	Scholin et al. 1994

 Table 3. The primers for sequencing in Edinburgh.

^a Forward and reverse primers for PCR amplification

^b Primers for sequencing. For later D1–D3 LSU sequences, the D2C sequencing primer was not necessary

Table 4. The primers for sequencing in Thonon. Genes and primers used for the molecular approaches (PCR and sequencing).

	Genes	Name	Primer	References
			Sequence (5'–3')	
PCR	nLSU	D1R	ACC CGC TGA ATT TAA GCA TA	Scholin et al. 1997
		D2C	CCT TGG TCC GTG TTT CAA GA	Scholin et al. 1997
	rbcL	DPrbcL1-F	AAG GAG GAA DHH ATG TCT	Daugbjerg and Andersen 1997
		DPrbcL7-R	AAA SHD CCT TGT GTW AGT YTC	Daugbjerg and Andersen 1997
	cox1	GazF2	CAA CCA YAA AGA TAT WGG TAC	Saunders 2005
		KEdtmR	AAA CTT CWG GRT GAC CAA AAA	Evans et al. 2007
	nSSU	1-F	AAC CTG GTT GAT CCT GCC AGT A	Medlin et al. 1988
		1528-R	CTT CTG CAG GTT CAC CTA C	Medlin et al. 1988
Sequencing	rbcL	NDrbcL6	GTA AAT GGA TGC GTA	Daugbjerg and Andersen 1997
		15R	ACA CCA GAC ATA CGC ATC CA	Jones et al. 2005
		16F	TTA GAA GAT ATG CGT ATT	Elwood et al. 1985
	nSSU	1-F	AAC CTG GTT GAT CCT GCC AGT A	Elwood et al. 1985
		528-F	GCG GTA ATT CCA GCT CCA A	Elwood et al. 1985
		1055-F	GGT GGT GCA TGG CCG TTC TT	Elwood et al. 1985
		536-R	AAT TAC CGC GGC KGC TGG CA	Elwood et al. 1985
		1055-R	ACG GCC ATG CAC CAC CAC CCA T	Elwood et al. 1985
		1528-R	CTT CTG CAG GTT CAC CTA C	Elwood et al. 1985

Supplementary File 10. Analysis of some apparently misidentified species.

'Bacillaria' clones outside clade 1 (including 'Bacillaria II' and 'cf. Bacillaria' clones

The 'Bacillaria cf. paxillifera' clone BA14c has been discussed in the main text. The two other clones of 'Bacillaria II' in the SSU tree (Supplementary Fig. 4) are Xmm24S4 (GenBank KU561172) and RVSN23 (GenBank KX575709). The GenBank data accompanying the Xmm24S4 sequence do not refer to a published paper documenting the clone, but a paper containing photographs of many Xmm clones was published by Huang et al. (2017), postdating the submission of the Xmm24S4 sequence on 15 January 2016. In the 2017 paper there are no photographs labelled as being of clone Xmm24S4, but there is one of "Xmm28S4" (Huang et al. 2017, p. 41) labelled "Bacillaria cf. paxillifer". In contrast, in the SSU phylogeny of their clones (Huang et al. 2017, fig. 2), Xmm28S4 is not mentioned and the only "Bacillaria cf. paxillifer" included is Xmm24S4. We therefore assume that one of the names given may be wrong. The photograph of Xmm 28S4/24S4 shows no feature that would identify the clone as a Bacillaria: two recently divided cells are illustrated, both far too small to be any described *Bacillaria* species and neither having the colonial morphology characteristic of the genus. A BLAST search (megablast, default settings) with KU561172 (clone Xmm24S4) as the query returns the SSU sequences of three "Bacillaria" sequences as close relatives – RVSN23, another Xmm clone (Xmm27S2), and clone BA14c – together with two strains attributed to Nitzschia epithemioides (Xmm24S1 and CCAP/1052/18, both incorrectly named as 'N. epithemoides').

BLAST of the SSU sequence of clone RVSN23 (KX575709), identified as '*Bacillaria paxillifer*', not surprisingly returns the two Xmm '*Bacillaria*' clones Xmm27S2 (KY054943) and Xmm24S4 (KU561172) as the most similar sequences, followed by the Xmm24S1 *Nitzschia epithemioides* clone and *Bacillaria* cf. *paxillifer* BA14c (HM805020). No published information is available concerning the characteristics of clone RVSN23. GenBank records that the sequence was submitted by K. Renugadevi, C. Valli Nachiyar and G. Narendakumar, as part of unpublished bioprospecting research ("Extraction of potential compound from Bacillaria sp."). We wrote to the authors, who informed us (K. Renugadevi, email to D.G. Mann, 4 September 2019) that the clone was identified as *Bacillaria* from the BLAST similarity to sequences in GenBank of clones identified there as *Bacillaria*.

The submission and publication dates of the Xmm24S4 sequence KU561172 (15 January 2016 and 31 January 2017) and the RVSN23 sequence KX575709 (15 July 2016 and 30 January 2017) mean that neither can have influenced the other with respect to identification. However, both postdate the availability in GenBank of the BA14c *Bacillaria* cf. *paxillifer* (submitted 20 July 2010, published 13 July 2011) and this could therefore have influenced both identifications. As we have noted in the main text, however, BA14c does not have the special type of motile colony generally considered characteristic of *Bacillaria*; nor does its valve and girdle structure conform to true *Bacillaria* (e.g. our clone BAC901CAT. Altogether, therefore, there is no compelling evidence to believe that the 'Bacillaria II' clones belong to *Bacillaria*. A further clone (SH349, "*Bacillaria* sp."), whose SSU sequence (GenBank KY320377) is subtended by the same basal node as other *Bacillaria* species but lies outside clade I (Supplementary Fig. 4; see also the *rbcL* and *rbcL*–LSU trees, Fig. 4, Supplementary Fig. 2). Though being identified as '*Bacillaria* sp.' and having a near-central raphe (An et al. 2017, fig. 3g), it lacks motile colonies (Prof. J.H. Noh, personal communication). Clone EW234 ("*Bacillaria paxillifera*"), on the other hand, is placed in clade 1 in the *rbcL*–LSU tree with 81% support. However, its morphology does not agree with that published for three species with motile colonies (*Bacillaria paxillifera*, *B. urve-millerae* and *B. kuseliae*) by Schmid & Jahn (2007), being more attenuated and rostrate at the poles and having denser striation (c. 27 in 10 μ m, rather than a maximum of 24 in 10 μ m in the other three species). It probably represents a new species.

It seems likely, therefore, that the non-monophyly of *Bacillaria* in the SSU tree reflects an implicit change in the definition of *Bacillaria*, from the 20th century definition that emphasized a unique type of motile colony (Karsten 1928, Hustedt 1930, Krammer & Lange-Bertalot 1988) to one that relies principally on sequence similarity (e.g. via BLAST) to whatever *Bacillaria* sequences are already in GenBank, coupled in at least some cases (BA14c and SH349) with the possession of a more or less central raphe (the position of the raphe in the other clones mentioned – Xmm24S4 and RVSN23 – is unknown).

Examples of other misidentified clones: further Xmm clones and clone A2ni ('*Pseudo-nitzschia* sp.')

Further dubious identifications include several others of the Xmm clones studied by Huang et al. (2017). Although it is safe to conclude that the Xmm clones they identified as *Cylindrotheca*, *Nitzschia* or *Psammodictyon* species do indeed belong to the Bacillariaceae, in several cases their positions in the SSU tree conflict markedly with those expected from other data. For example, the sequences given for Xmm clones of *N. epithemioides*, *N. dubiiformis*, *N. capitellata* and *N. palea* all belong to different major clades than the sequences of the same species provided by other workers, and Huang et al.'s photographs of these clones give no confidence that they have been correctly identified (see also the discussion of Xmm and other Cymbella clones discussed below). The same is true of some Xmm clones assigned to other diatom genera, such as three assigned to *Epithemia*: the photographs of these clones do not show *Epithemia* morphology and the sequences themselves clearly identify the clones as related to *Entomoneis*. In contrast, both the photographs provided and the sequences themselves confirm Huang et al.'s (2017) identification of clones Xmm21W1 and Xmm23S3 as species of *Psammodictyon* (Supplementary Fig. 4).

Clone A2ni was identified by Guo et al. (2015) as "*Pseudo-nitzschia* sp." but its *cox1* sequence (KJ671739) is distant from all other *Pseudo-nitzschia* species, which group together in a single clade in the *cox1* tree (Supplementary figure 7), as they do also in the 4-gene, SSU, *rbcL*, *rbcL*–SSU, and *rbcL*–LSU trees (the exception is the LSU tree, where *Pseudo-nitzschia* is paraphyletic with respect to *Fragilariopsis* and *Neodenticula*, though without support). Guo et al.'s SSU and *rbcL* sequences of A2ni were too short to meet our criteria for inclusion in the SSU, SSU-*rbcL* and *rbcL* datasets, but BLAST searches using the SSU and *rbcL* sequences of clone A2ni indicate that they are both

most similar to sequences from clones identified as *Bacillaria* species. Guo et al. (2015) wrote that the species they studied "were identified to the species or genus level by using morphological characters based on observations under light and electron microscopy". Nevertheless, we wonder whether the identification of clone A2ni was influenced by *cox1* BLAST results, which do indeed give *Pseudo-nitzschia hasleana* (GenBank JN050311) as the highest scoring 'hit' (though with only 85% identity). Unfortunately, we received no reply from two emails to the corresponding author of Guo et al. (2015), in which we asked if voucher material from their study was available.

Other striking errors include "*Thalassiosira antarctica*" (AF374482), revealed as a *Fragilariopsis* (SSU tree: Supplementary Fig. 4) and "*Cymbella cistuliformis*" 1113 and 1120 (JF790980 and JF790983), nested among *Nitzschia* species in clade 8A-II (SSU tree: Supplementary Fig. 4). "*Thalassiosira antarctica*" AF374482 is annotated in GenBank (in version AF374482.2, dating from 2002) as "unverified". The sequence was obtained as part of a study of sexually induced genes (*Sig*) in Thalassiosirales, which are thought to be involved in oogamous sexual reproduction (Armbrust & Galindo 2001). Not surprisingly, given that *Fragilariopsis* species are not oogamous, no *Sig* genes could be amplified from the "*T. antarctica*" clone, unlike four out of the five other *Thalassiosira* species studied; also not surprisingly, the nSSU sequence of "*T. antarctica*" (AF374482) was very dissimilar to those of the five true *Thalassiosira* species (*op. cit.*, fig. 3).

For the two "*Cymbella cistuliformis*" SSU sequences (JF790980 and JF790983), it is hard to find an explanation. By the time these sequences were obtained (from cloned DNA: Rocke et al., 2013), the diversity of pennate diatoms was already quite well sampled and it should have been possible to assign sequences to the Bacillariaceae, rather than *Cymbella*. Furthermore, the community from which the clones were obtained – marine picoplankton – is entirely wrong for *Cymbella* but wholly plausible for *Nitzschia*. Unfortunately, the errors associated with JF790980 and JF790983 have proliferated further, with other Bacillariaceae sequences being wrongly assigned to *Cymbella*, presumably on the basis of BLAST returns indicating a similarity to the "*Cymbella cistuliformis*" clones. These further erroneously labelled sequences are two more Xmm clones (Xmm17W3 and Xmm32W3, with SSU sequences KY054947 and KU561171, respectively) and *Cymbella* sp. SMS45 (MT489362). An illustration of Xmm17W3 by Huang et al. (2017, p. 41) does not show any characteristics supporting its classification in *Cymbella*.

Nitzschia palea

Many *Nitzschia palea* clones have been sequenced and most form a well-defined, robustly supported clade, sister to sequences of *N. capitellata*. Discussion of the few clones identified as *N. palea* but lying outside the main clade is included in the main text.

Nitzschia pusilla

Clones identified as *N. pusilla* or *N. cf. pusilla* are scattered across the *rbcL* (Fig. 4) and SSU trees (Supplementary Fig. 4), in 8A-II and several different places in clade 6B. Reinvestigation of this species is needed, to determine which of the clones and

sequences are really *N. pusilla*, i.e. are related to the type, which was studied in LM and TEM by Lange-Bertalot (1976). Several other species (*N. kuetzingiana* and *N. indistincta*, possibly also *N. parvula*, *N. obtusangula* and *N. retusa*) have been synonymized with *pusilla* by Lange-Bertalot (1976) and Krammer & Lange-Bertalot (1988) and these will also need further study, to see if any of them correspond to any of the other, different *pusilla*-like diatoms that have been sequenced. Unfortunately, valve morphology offers even less help in "*N. pusilla*" than in other *Nitzschia* species, because the valves are extremely simple and because of the fineness of the striation, which can be studied (and its density determined) only using electron microscopy. There appears to be no information about the girdle bands or the structure of the raphe canal in the type material of *N. pusilla* or any of the putative synonyms, despite the work of Lange-Bertalot (1976), Mikhailov (1984) and others.

Extra references

- Armbrust, E.V., Galindo., H.M., 2001. Rapid evolution of a sexual reproduction gene in centric diatoms of the genus *Thalassiosira*. *Appl. Env. Microbiol.* 67, 3501– 3513.
- Guo, L., Sui, Z., Zhang, S., Ren, Y., Liu, Y., 2015. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta. *Int. J. Syst. Evol. Microbiol.* 65, 1369–1380.
- Jahn, R. & Schmid, A.-M.M., 2007. Revision of the brackish–freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species. Eur. J. Phycol. 42, 295–312.
- Lange-Bertalot, H., 1976. Eine Revision zur Taxonomie der *Nitzschiae Lanceolatae* Grunow. Die "klassischen" bis 1930 beschriebenen Süßwasserarten Europas. *Nova Hedwigia* 28, 253–308.
- Mikhailov, V.I., 1984. Novye vidy iz roda *Nitzschia* Hass. (Bacillariophyta) v
 pojmennykh vodoemakh reki Kolymy (Species novae generis *Nitzschia* Hass.
 (Bacillariophyta) e Fl. Kolyma). *Novitates Systematicae Plantarum Non Vascularium* (Academia Scientiarum URSS Institutum Botanicum Nomine V.L.
 Komarovii), 21, 26–31.
- Rocke, E., Jing, H., & Liu, H., 2013. Phylogenetic composition and distribution of picoeukaryotes in the hypoxic northwestern coast of the Gulf of Mexico. *MicrobiologyOpen* 2, 130–143. doi:10.1002/mbo3.57