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Abstract The concept of entropy conservation, stability, and consistency is applied to sys-

tems of hyperbolic equations to create new flux functions for the scalar and systems of
conservation laws. Firstty, Burgers' equation is modelled, followed by the Navier-Stokes

equations. The new models are compared with the pre-existing entropy consistent fluxes at

selected viscosity levels; it is found that the system flux requires additional entropy produc-

tion at low viscosities, but not at higher viscosity values. Initial results herein demonstrate

that the accuracy of the first order systems approach are comparable to the results produced

by the original entropy-consistent Navier-Stokes flux.

Keywords Shock capturing , Navier-Stokes flux ' Entropy consistency '

Entropy production . First-order systems

I Introduction

Even now, diffusion via entropy generation is still an underdeveloped facet of the shock

capturing scheme. Since the elucidation of the entropy stability concept in Tadmor I I 71, the

deployment of entropy control as an additional constraint to the goveming equations of fluid

flow has been widespread. These include the work of Fjordholm et al. [2,3'5]. Amongst the

various schemes that apply such a method, the entropy consistent flux formulation available

originally in Roe [6] (revisited in Ismail t7]) and further extended in Ismail and Roe [8]
remains an interesting proposition for its low cost and stability, as shown subsequently in
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Kitamura et al. [9]. However, this flux function still has room for improvement, since the

amount of entropy actually generated particularly when solving the Navier-Stokes equations

may differ from the entropy production predicted by the Euler ffux as found in Mohammed

and Ismail [1]. Therein, it is shown that the entropy*stability term alone is sufficient for
most physical viscosity values, and that the entropy consistency (third term) is only needed

for relatively low viscosity values (high Reynolds number flow). Despite this, it would make

sense to continue the search for a 'tuer' means of modelling difttsion, using more of physical

viscosity such as in Tadmor and Zhong [l8, 19] to facilitate entropy generation and less

dependent on artificial viscosity methods.

1.1 Entropy Conservation, Entropy-Stability and Entropy-Consistency

Following [8], for any hyperbolic system of conservation laws satisfying:

Qffv=$

or in integral form

there is an additional entropy U consfiaint satisfying

Ut*F'a0
with the integral form

6go, - Fd1 <a g\
J

The inequality is to cater for discontinuous flow where entropy is produced. Note that entropy

is conserved for smooth flows thus equality is achieved. For ideal gas dynamics, the entropy
pair (U,F) that can be used for both the Euler and Navier-Stokes equations [6] only if
U = -*,F = -# wheres =lnp-ylnpisthephysicalentropy.Thenegativesign
in U is i mathematicAl convention to ensure that the entropy satisfying Eq. (3) is decreasing

which is the opposite to the nature of physical entropy. Alternatively, the entropy production

in a domain ,f2 with boundary 0{2 can be written as

for which U = 0 implies entropy conservation and that U < 0 denotes entropy is decreasing

(or entropy-stable).
In a discrete form of the goveming equations, the conservation laws of Eq. (2) must

be satisfied and that zero enropy production must be observed for smooth flows. A discrete

approach satisfying this proposition is deemed as an entropy-{onserved method' On the other

hand, a discrete method solving W.Q) is defined as entropy-stable if it always produces a

decreasing entropy production. Entropy-stability however, only guarantees that the discrete

approach produces the correct sign of entropy production but not necessarily the correct

amount. If a discrete approach produces the "correct'' amount of entropy generation, then it
is defined as an entropy-consistent method. Achieving entropy-conservation and entropy-

stability are quite straightforward since they are both enforced locally within a cell as will
be shown in Sects. 2 and3. Unfortunately, that is not the case for entropy-consistency since

shocks will be captured oyer several cells and the required total entropy have to be generated

over more than one cell, Unlike entropy conservation, the problem is no longer local thus

t' <"a' - fdt) = o

u = | toru, 
q F*)dxdt = fooeo'- Fdt) (5)

(1)

(2)

(3)
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it is quite hard in general to determine the precise amount of entropy generation. Too much

of entropy generation would cause a smearing of the discontinuous profile while too little
entropy production would give rise to oscillatory behavior around the discontinuity. To the

authors' best knowledge, there is yet a solid analytical relation between entxopy production

and shock quality although some form of approximation model has been done for the inviscid

approach in Ismail and Roe [8]. Thus, all we seek is just a "sensible" shock profile and that

much of the work herein relies on numerical experiment to achieve entropy--consistency.

1.2 Advantages of the First-Order System

A major obstacle in incorporating physical viscosity lies in the nature of its high-order

relationship with other conserved variables. This leads to a difficulty ofthe inviscid part ofthe
governing equation having a hyperbolic basis, and the viscous part with its parabolic affinity.

An answer for this quandary is tackled through the deployment of first-order system fluxes, as

shown in Nishikawa [ 2]. This line of thought has been continued through a series of article s

in Nishikawa U 3-151, amongst others. The advantages of this method include having a fully
hypertolized advection-diffirsion model (i.e. leading to explicit time integration methods)

and a faster rate of convergence, leading to relatively cheap costs. However, this method does

have a limitation in that for transient problems, the additional hyperbolic equations which

govem the viscosity would need to achieve steady-state before marching forward in time,

and thus would require sub-iterations for each time step.

ln this paper, the authors will attempt to combine the ideas of enkopy-stability (and

consistency) with the concept of the first-order system, wjth the hope of harnessing the best

of both methods. The newly synthesized fluxes are then applied to steady problems to observe

the evolution of entropy in the pseudo-transient computation towards the steady state.

2 System Flux for Burgers'Equadon

Consider the goveming equation for advection and diffusion:

ur -f ft : DU;r: (6)

A subset of this is the Burgers' equation, in which u and f are scalars:

To discretize an entfopy con$istent flux based on this equation, a mapping from the con-

served variables to the corresponding entropy equation is sought.

2.1 Entropy Conservative Flux

Following the work of Ismail and Roe [8], the inviscid part of the equation is discretized

using a semi-discrete finite volume method, such that

where /r*1 * f" are the fluxes to be evaluated at the respective interfaces. In a dual-cell

system, ihi6 equation can be viewed from a residual distribution approach thus split into two

parts:

Q sp.i"gu.

ut * fx : uilxx, t, = (+) .

(#), Ax: - (ri*+ - ri-+)

(7)

(8)
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h,+:=ft-f*

, oun .*o^t = f* - fn (9b)

The variable lr is the length of each cell, while the subscripts Z and R denotes the left and

right states respectively. In order to establish enfiopy conservation, a convex entropy function

U(r) is introduced, along with its associated enfopy variable u, and an entropy flux F(U)
satisfying Eq.(4). We define (J = u2, u = #, and F : lu3, and substinrte the original

variables in Eq. (9) with these terms, yielding:

ht#-=at(fr-f*)

h-Y= un("f* -.fn)

To determine the change of entropy within each cell, the sum of both par6 of Eq. ( l0) is
required:

!<orr, * hnIlil : @rfr - vnfil * @p - u)f*
ar' -

(9a)

(l0a)

(l0b)

(r2)

(l5a)

(l5b)

Q springer

: -lufl + [u]"f" (1 l)

where [u] = uR u1. Similarly, the total enbopy change predicted by the entropy conser-

vation law would be:

Ir is not guaranteed that each local entropy flux would always add up to the global entropy

change. For the correct physics of entropy to remain true, the change of the discrete fluxes

in Eq. (11) should at least be a match to the fluxes in Eq. (12), and the difference between

the two quantities must be accounled for in the form of the entropy production U as stated

in Eq. (5) il61:

u = lFl+ (tul,f. - tu"fl). (13)

fi<nru, * hnltil - Ft - Fp : -[Fl.

f* = fJ -)Aut+rlttatt)tul

= ri - f,aut 
* otrolt)#tul

To get a conservative flux, /* can be chosen so that the local and sysrcm entropy fluxes

balanci out exactly. For Burgers' equation, f : Lu',producing the entropy conserved ffux

f: r."
f; = ;(u2y 

+ upul + uzp) (14)

2.2 Entropy--stable and Entropy{onsistent Fluxes

However, as mentioned in Sect. l.l, only having conservation may not be enough, since

entropy would naturally occur for all irreversible processes. Hence, more are built into the

flux, leading to the entropy consistent form recommended in Ismail and Roe [8J:
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Using Eq. (13), the entropy generation thus becomes

.lduU: -z(lal+allall)fiful'< 0. (16)

In this equation, Z is the arithmetic averaging of velocity at the interface having left and right
cell values, whilst cr is an analytically determined parameter [8]. Notice that the production

term is made up of components that are invariably positive. Considering its entropy conser-

vative nature, the fact that the entropy production would always have the correct sign means

the flux definitely satisfies the enhopy inequality of Eq. (a). The flux is deemed entropy con-

sistent by virtue ofproducing enough entropy, both artificially generated by the inviscid flux
and physically sourced by the discrete viscous part ofBurgers' equation usually via central

differencing. Thus, the overall entropy production for the flux ofEq. (15) depends only on

the physical and numerical viscosities:

u : -)aat+arat)#wf - fiuu,t
1- --du--" n --,1: -r(lal + atal)fitu)' - 124*r[rl' (17)

The diffirsive term is constructed based on a generalized expression for physical viscosity
(from Eq. 7), which is then discretized and multiplied by [v] to map it as entropy production.

Again U ( 0, satisfying the entropy inequality.

2.3 Firstorder Hyperbolic System

The Burgers' equation can be written in the alternative form of a first-order system:

urffa=q
Thc vectors are defined as:

(18)

(le)
'= [; ], ,=l*3,i0), n:l-frr,)

with d = #.m" quartity fi. is the relaxation time. The eigenvalues for the system of
equations satisfying (18) and (19) are

4=fl,o1 l/ r:----\=L;;l'xr'z=z\u+,|u'z*oE) Qo)

representing the characteristic waves speeds for z, d . These eigenvalues can be stat€d as:

^ tl f.-;--lu-\ - tl r-----:i\
tq : i(ar + 

u/(zr)2 
* on) . )'2: i\', - tlurl' * oE) Qr)

where we have inroduced two velocities (u 1 , n2) for discretization purposes as will be shown

later in this subsection. Note that for u = 0, the eigenvalues reduces to just one nonzero

quantity (lr = u) which represents the pure transport of the inviscid Burgers equation.

The right eigenvectors R are defined as:

* : 
[ 
-^ir -^i, 

]
(22)

The value of 4. is proportional O $, nahence would have a low but flnite value to reflect

proximity to equilibrium conditions'for diffirsion, as opposed to frozen (high relaxation time).

Q sptitg"t
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After doing some rnanipulation of Tr, [13] presented an alternative set of eigenvalues and

eigenvectors based on the local Reynolds number and relaxation length (Z'). However, from

now onwards we shall assume that T, is a constant number set !o unity. This assumption

will only remain valid for steady computations, as the accuracy of the hyperbolic system in

modelling the original equation relies on the condition that the relaxation time is sufrcient\
small [l2].

From this model, the aim is to obtain an entropy consistent flux function in the same vein

as the scalar Burgers' equation. To achieve this, we need to define an entropy function that

has some measure of *total energy" based on the primary variable z and its auxiliary tetm d.

We seek to control this "total energy" through the concept ofentropy conservation, entropy

stabilityandentropyconsistency.Basedontheworkof [6],wedefineanenropypair(U, F):

617

au al aF

--=-0u 3u 0u
(23)

(u)

(27)

Q spting.t

where

U =Ui *(Jr:: 12 +rdz, F = Fi * Fv - 2vud: (?o)

(2s)au fzult=7;:lzual

satisfying the enftopy constraint given in Eq. 4. The entropy par (U, F) are purposefully

chosen to be convex functions so as to allow for one-to-one mapping. For u = 0, this

governing entropy equation will collapse into the original entropy equation for the inviscid

Burgers' equation. The entropy variables are now defined as:

The total flux at the interface combines both the inviscid flux ir and the viscous flux i" in
a discrete form that is originally derived in Barth fll and modified to its current variation in

Ismail and Roe [8]:

r = r, +i, - |nriSrfr'r'r Q6)

where the accented '^' variables represent discrete averaged quantities. The expression at the

tait end of the right hand side of F4. (26) is the dissipation matrix, whose job is to maintain

the stability via proper entropy generation for the flux'
The scaling parameterS is adiagonal matrix to the convertthenumerical diffirsion basedon

the wave-characteristics RzlR-ldu into a numerical diffusionbased on theentropy-variables

v, which is entropy-stable. The idea originally came from Barth [1].At the differential level

RzlR-ldu = RSRrdv is true as proven in Roe [16] and most recently in $ordholm et

al. t4l. S is merely a multiplier to ensure proper mapping of numerical diffusion based on

conserved variables to entropy-variables is analytically colrect; the system's eigenvalues

and eigenvectors remain unchanged even with its addition [4]. Note that for a smooth flow
the numerical difftrsion based on the entropy-variables similarly behaves to diffirsion using

the conserve*-variables. The two approaches differ when the flow is non-smooth, and this

is critical in terms of achieving proper entropy generation in which the entropy-variables

approach is more physical. The scaling parameter S is:

$:
x1+, i, i"+,--2v(ir-iz)2+e 2u(i1-12)2*e
,rlolv Ai+v

---2u(ir-ir)2+e 2v(11'l)2+e
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A very small coefficient e : 1.0 x 10-10 has been added to the denominators to prevent

the function from dividing by zero.

The discrete inviscid and viscous fluxes are arranged as:

r:[,fr.], i=[_Yi] (28)

where the accent '*' denote the averaged interface values to be determined. Nole that we

have defined two averaged quantities for the velocities (ui, ai).
To achieve entropy conservation, recall how the scalar cell flux in Eq. (l l) is equated to

the tokl flux of Eq. (12). The procedure is now applied to the system's approach, by replacing

the scalar variables with vectors:

lvlrt"-[v.fl:-[F]. (2e)

Note that this is an underdetermined equation hence there will be more than one set of
solutions. However, only one set of solutions are needed to explicitly determine the averaged

quantities. The previous equation when expanded becomes

,,2* ) -
lzul) -2vfuld* -zvldlu)- [r3] + Zv[udi*2vIud): -ilu]l *2vlud!

(tulu|.- tr3l) -t (2utudl -Zv[u!d* -2vtdlui) : -ltu'1. (30)

Using the identify [ab] : AIbl +Etal, tne equation reduces to

tulu?* +2vr;td.l+lIul) -Zu[u]a* -2vtdlui: ltut (u21+u2ux+uh). (31)

By equating the terms on the left hand side !o the right hand side of equation, the inviscid

"nttoiy"ont"*"dfluxformulationisrecovered,ul= \@!+upp|u2*).Andbychoosing
ut = fr and d* = 7 , the whole equation cancels out thus obtaining entropy conserved fluxes

for the inviscid and viscous parts.

t, : 
[ 

* (u2r+uvux*'i) 
], i, =l-:l) (32)

The total entropy production based on the flux discretization ("f*) in Eq. (26) and including

the source terms is

y:1v1?f-tv.fl*tFl*v.q
I -^ ^^ ^r: -it"trfrlrlSln' t"l - zvdz < o

which ensures rhar the entropy defined in W. Q4) is decreasing since the product of the first

term on the right hand side is a positive definite matrix and that the second term (representing

the source terms) is always decreasing. Although the first order system is different from

the conventional approach of advectiondiffusion problem but the former still produces the

proper entropy generation. Define

Arrrr:[ i fl ]
to represent the wave speeds for ECSI method'

S sprag"t

(33)

(34)



J Sci Comput (2015) 63:612-631

To achieve entropy-consistency, one viable approach is to utilize the analytically deter-

mined enfiopy-<onsistent method for Burgers equation recommended by Ismail and Roe [8]:

where herein stated as the ECS2 method.

3 Navier-Stokes System Flux

The first order system is then extended to the Navier-Stokes eguations (without heat) in the

manner prescribed by Nishikawa [4]. Consider the conservation law with source terms:

ur*fx=B
where

6t9

(3s)a""rr= [tr 
+ *tt^r]l 

i, *1,^r,, ]

(36)

U=

B-

l"tr'] 
.[;,]lu

til

f=f;*f,:

40u
t :;lL;-

Jdx
(37)

The heat transfer component is removed to concentrate on the effect of the viscous term. The

scaled viscosity p, and the relaxation time 7y are defined in the following with subscript u

denoting viscous stress: 
4 _ 12 lLu

th = jlt, f, = i, 
ur:| (38)

L is a length scale, whilst u, is the kinematic viscosity. Similar to the Burgers' equation

in the previous section, the length scale and relaxation time mentioned here result in an

approximation of the viscosity term only in steady state. Following Nishikawa [14], the fust

order system for Navier-Stokes equation can be rewritten as

P-r++{=at dx

The matrix P is a local preconditioning for the viscous stress. Since both P and B matri-

ces affect only the auxiliary equations in the system, Eq. (39) can srill be considered as

conservative.
The next step is to construct an entropy function which depends on both the inviscid and

viscous fluxes similar to the strategy used for the Burgers equation. Since U : - pS / (y - l)
is the only entropy function from Euler equations that can be extended to the Navier-Stokes

equations [6] , it is chosen to represent the inviscid fluxes. On the other side, the viscous entropy

functions must be of the form of the viscous stresses (r) and the temperature Sradients (g).

For this paper, we concenn.arc on the effects of viscosity by eliminating the influence of heat

fansfer from the system, meaningthatq = 0. C)verall, these entropy functions are defined as:

(3e)

r r 00 o I
B, "'=l3l? 3 |

Iooofr]

Q springut
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with its fluxes defined as

Ur: t2 * pu2

^ pus
Fi: ----;, Fu: -2uty-r

(J, = - 
PS 

=,y-l (40)

(4r)

where tlte viscous part for entropy measures some form of "energy" of the system. As before,

the enftopy pair (U, F) are convex functions [6]. Howeveq unlike the Burgers equation in
which entropy is viewed as one parameter consisting the summation of inviscid and viscous

parts, the Navier*Stokes entropies are two different entities that are practically untied from
each other. This is due to the philosophy espoused by Nishikawa [14] and adopted in this

paper specifically for the Navier-Stokes model, which is to treat the inviscid and viscous

portions of the equations as two independent entities in an interconnected hyperbolic system.

Thus, defining the function and the fluxes in this way means that each type would only need

to adhere to the entropy conditions of their own respective systems, one for the inviscid
(physical) and the other for the viscous part. As such, both Ui and U, independently satisfy

the entropy inequality, and the constraint ofthe entropy pair theorem given in Eq. (23) from

[6]. Following that, rhe entropy variables and its discrete fluxes are split into two separate

Parts: oui or,t, = lt', v, = #, f :f; *fu g2)

The inviscid variables are defined as:

Yj= (43)

The flux i consists of averaged quantities (denoted by the accent a in general) that are to

be determined by ensuring entropy is conserved, Similar to Eq. (29), en$opy conseryation

requires

l";lrfi - tvr .tl = -[F,] (M)

Using the identity [vi 'f;] - [4] = lpul,the previous equation becomes

lvilrii =fpul (45)

By choosing the averaged quantities as given in'Appendix 1", the discrete inviscid fluxes

conserve the inviscid part of entropy U; as shown in Ismail and Roe [8]. The remaining

averaged quantity for the flux of r is now determined, starting with the viscous entropy

variables and discrete fluxes:

(46)

l-Srli=[";1,k.1

"'=[ {] "=[ :;t1
Q Springer
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The intent here is to control the viscous numerical fluxes to conserve 'entropy' and not to

generate more ofit. As before, the entropy balance is enforced through the expression:

62r

expands to

which gives

Define the arithmefic averaging as 7 and using the identity [c b] : atbl+blal, the equation

[rr|'iu - [v, .fuJ = -[Fu]

- I2u1r* - rzdfiui * [2uc*1*lr'fi";]= r2utt

-futt* - fin ;+l#',;f:o.

- Iulr* - ftrrv; + fturw* 
rlul) = o

(47a)

{47b)

(47c)

(48)

(4e)

(s0)

(51)

t- = tT, ut=il.

Similar to the Burgers' equation model, the complete discrete fluxes would have the form:

r = f; - jn,1.i,S,tt&)r["i] +i, - fn,t,l,S,l(n,)rlv,t.

These dissipation matrices are diagonalizrd from their respective flux Jacobians, which

is obtained by setting A : #.For the viscous fluxes:

[0 0001
^ 3f, I o 0 o-l IA,=ou:lt;_io_"1

Lr -io o J

From A; and Ar, the averaged eigenvalues ii and i, are calculated to be:

[':aeeel t-333 3l
^,:l StrlrSl,Au=l ;;-#gl 62)

L o o o ol Loo o 
=*J

The eigenvalues for the inviscid part consist of the two acoustic waves and an entropy wave

with the viscous eigenvalues indicating two waves of the same magnitude but travelling

in the opposite direction, similar to the eigenvalues in Nishikawa [4].These two non-zero

eigenvalues in the viscous part will contribute to the overall numerical dissipation as in

Eq. (50). The components ofboth sets ofeigenvalues consist ofentropy--€onserved averaged

quantities identical to those defined in Ismail and Roe [8]. Alternatively the eigenvalues can

be chosen to achieve enfropy-consistency following the recommendations from Ismail and

Roe [8], where the ECl and EC2 fluxes therein would be referred to as ECSI and ECS2

when combined with the hyperbolic system flux in this paper:

Q sptitg"t
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rli,rcst-ws =

,l;.Ecsz-lvs =

In the ECS2 flvx, B = 1 * { and a2 = (d^ax - a^in)(max(O, sign(dM^o, - [M]))) *
dmin, whele dmax = 2.0, am;n - *, *d dM^o, = 0.5 It follows that the associated

averaged linearly independent right eigenvectors R; and R, corresponding to the inviscid

and viscous eigenvalues are:

I
a-a

n -aa
0

In the viscous set of eigenvectors, the averaged variables ? and t are "€ntropy-{onserving"
quantities derived from Eq. (49). The inviscid eigenveclors are identical to the one determined

by Ismail and Roe [8 ] , excluding the extra row and column of zero-vectors due to the presence

of the viscous transport equation.

The first two rows of the viscous dissipation matrix will not affect the overall dissipation

since the first two eigenvalues are zero. Thus the viscous scaling matrix are computed such

that only the last fwo rows are determined (the rest are set to zerc,s) satis$ing the differential

relations of R;ldu = SrRf dv, as similarly done for the system of Burgers equations. The

inviscid scaling matrix ,Si are identical to the ones proposed by Ismail and Roe [8] baning

the extra column and row of zeros. Thus:

Si= (56a)

where

(s3)

(s4)

[(t-il+tltu-4]l o o ol
I o a o ol

L ; o(i+il+o|ttu+'ll oJ

lpr,a-h)*azlLu-4ll 0 0 0l
I o i o ol

L 3 3P'+il*uztru+'rlol

l r ol [o+ o o I
tt, ip Sl 

u' = 
L ii, lf,, -:tr,] 

o*'-,=[

ITfll] s ti*iil
.. -fii26 + txt: --T--

tr+*-4"
K3 = :--i--

ot/zQr + l\Kz='--#
4

(s7)

(58)

(5e)

u(F - t)Kd: :a=. (60)

Variables in the terms of K1 * K4 are simple arithmetic averaging of the left and right

states at each interface.
Since entopy is conserved for both the inviscid and viscous variables, entropy production

is generated exclusively from their respective dissipation matrices and their source terms. The

Q sptitg.t
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entropy generation of the system can be det€rmined by analysis on each of its components.

For the inviscid part:

(li : tvitri; - tpu) - |W,l' (E, ta,S, tnll",t) + ', 
. s

= -| (r",trn;1a;s;tf,f r';t)
<0

Meanwhile, for the viscous part:

(J,: fvulri,- [v, .fu] + tr',I - ]v,t'(n,ti,s,tnltv,l) + v, .n $2a)

= -)(t,;rn,ta,S,tflJr rd -rt
<0

(6la)

(6lb)

(61c)

(62b)

(62c)

which guarantees entropy stability for the first-order system of Navier-Stokes equations.

4 Results

Results for the entropy consistent systems approach is compiled in this section. For the

Burgers' equation model, the first-order versions of the entropy consistent fluxes, ECSI

and ECS2, are compared with the original EC flux that has been augmented with a central-

difference viscosity term as a point ofreference. Additionally, the respective exact solutions

are included for the cases of steady-shock and the square wave initial condition. On the

Navier-stokes equations, the first-order ESS system flux is compared with its predecessors

the ES and EC2 fluxes in the steady shock set-up. A wide range of viscosity coefficients

were used for each case, with the Navier-Stokes flux also subjected to variations in Mach

number. Furthermore, results for the system flux combined with ECl and EC2 formulations,

named ECSI-NS and ECS2-NS respectively, are also included. Only a few of the results

are shown for brevity, but they are still representative of the prevalent trends of the flux

behavior.
The calculation for the viscous portion of the system fluxes are done similar to the method

used in Nishikawa [14]. For the conventional ES and EC2 fluxes, the central difference

scheme was used to resolve viscosity terms. Second-order spatial discretization is performed

using limited slope reconstruction, whilst second order time marching is done using the

explicit Runge-Kutta mettrod. A summary of abbreviations of the flux functions is available

in Table l.
The CFL limit for shbilify highly depends on the viscosify-value being used (u).

There are established stability results for the conventional advection-diffusion approach

but peftaps it is sti| in infancy for the hyperbolic-systems approach. Herein we do

not intend to rigorously analyze the stability of the hyperbolic-systems approach' How-

ever, we observed that (for the most part) the CFI used for the system's approach is

about an order of magnitude larger than for the conventional advection-diffrrsion approach

and still stability is achieved. This somewhat demonstrates the advantages of using a

fully hyperbolize advection-diffirsion model, though it is not the main aspect of this

paper.
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Tbble I Abbreviation key of the {lux functions tested

Abbreviation Flux function

I

3

4

5

6

7

8

9

EC

ES

ECI

Ef,.2

ECSI

ECS2

ESS-NS

ECSI-NS

ECS2-NS

EnEopy consistent scheme

Entropy stabl€ scheme

Entropy consistent scheme I
Enfiopy consistent scheme 2

Entropy consistent system I
Entropy consistent system 2

Entropy stable scheme

Entropy consistent system I

Entropy consistent system 2

Burgers'

Navier-.Stotes

Navier-Stokes

Navier-$tokes

Hyp Burgers'

Hyp Burgers'

Hyp Navier-Stokes

Hyp Navier-Stokes

Hyp Navier-Stokes

Ismail and Roe [8]

Ismail and Roe {81

Ismail and Roe [8]

Ismail and Roe [8]

&rs.(26,34)
Eqs. (26,3s)

Eqs. (50,52)

Eqs. (50,53)

Eqs. (50,5a)

5

iiIo
a
a
3a

'.1 {5 0 0.5 |

PoSltion,x
(a)

Fig. I Steady shock solution for ECS fluxes with a u =

-t .0.5 0

Posltlon,r
(b)

l0-2,andbu: l0-l

4.1 Results for Burgers' Equation Model

Steady shock The fluxes are firstly tested on the simple case of steady shock with initial
conditionof: 

[r ifr<oz(x,o)=|", ,"..l; (63)

[-1, if x20
The exact solution, available in Masatsuka [10], is given by:

u: (r -'**) (u)

Results are shown for a viscosity coefficient of l0-2 in Fig. la, and a viscosity of l0-l
in Fig. lb. In these plots, 40 computational cell were used, but the results remain the same

even with finer grid. The boundary conditions on the left and right sides of the domain are

of the non-reflecting type.

For the range of viscosity shown, the system fluxes match closely to the benchmark as well

as the exact solution. As expected, when the viscosity coefficient is increased, the ECS1 an-d

ECS2 fluxes would become proportionally more difftrsive. At the coefficient of u = l0-2,
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-1 -0.5 0 0.5

Poeldon, x

Flg. 2 Solution for squarc wave initial condition for ECS fluxes with u = l0-2

we observe that the ECSI and ECS2 fluxes are marginally less diffrrsive than the EC. Whilst

at the coefficient of u = 10-1, all the considered fluxes produce similar results. This trend

has also been observed in Mohammed and Ismail [11].
The underlying cause that drives these results is in the way each ofthe flux is constnrcted.

The ECSI and ECS2 flux's auxiliary variable that provides diffiision to the system is heavily

dependent on the viscosity coefficient to make its presence felt within the system. At low

viscosities, the low coefficient value means that the auxiliary term has less influence to the

total flux; therefore the ECSI and ECS2 fluxes provide less dissipation and in tum become a

bit closer to the exact solution than the EC flux coupled with a conventional discrete viscosify

term.

Sqwre wave A similar, yet more difficult test for the fluxes is performed via the deployment

of the square wave initial condition, where:

u(r,0) =
if i < lrt < I
if lxl < {{;'

(6s)

For conciseness, results are shown for a viscosity coefficient of 10-2. Grid size and

boundary conditions are also kept as it was (Fig. 2).

The point ofthis test case is ro see whether the fluxes can avoid capnring the non-physical

rarefaction shock, unlike the Roe flux and most otier schemes without entropy control' As

seen in the plots, the ECS1 and ECS2 fluxes behave similarly to the EC flux around the

rarefaction area, which matches the characteristic that we are looking for. The rarefaction fan

for all three fluxes are less steep compared to the solution grven by the exact Riemann solver

in the solid line mostly due to the low CFL number used in the simulation. As for the normal

shock region, the ECS1 and ECS2 fluxes exhibit a similar diffrrsive pattem to the previous

case, with the ECSI flux being the least diffirsive, and the EC flux the most diffrrsive.
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4.2 Results for Navier-Stokes Equation Model

Steady shock Next, the first order system approach is applied in modelling the Navier-Stokes

equations. Similar to Burgers', the flux is initially tested in the case of steady-state shock

with the Rankine-Hugoniot initial condition:

f * ryd---=* =J- I (66a)uo: l"f(Mo) I -.-
L' 

'' -"' Y(Y - tlMA ' zf (Md l
/ , ,r-l\f(Mo):\o;rn- y+t I
2vM? v-l

e(Mo)= fr-;-
u,:[, I - 1----'-+lle' 

L' Y(Y-DM|'2)

(66b)

(66c)

(66d)
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Mach 7.0 with viscosity of a le - 7,b le - 4, c le - 3,

The system flux (ESS) is then compared to its predecessors, which are the entropy stable

(ES) flux, and the eiltropy consistent fluxes of ECI and EC2 available from Ismail and Roe

l8l. The ES, ECl, an<t EC2 fluxes are originalty derived for the Euler equations; they are

modified here to include central-difference physical viscosity t€rms that account for viscous

stresses, making them essentially Navier-Stokes equation models. Additionally, results for

the ESS flux combined with the ECl and EC2 formulation, designated as ECSI-NS and

ECS2-NS respectively, has also been included. Density plots of the said fluxes is shown in

Fig. 3 for a Mach number of yq = 1.5, Fig. 4 for a Mach number of Ma = 7.0, and Fig. 5

for a Mach number of Ma = 20.0. In Fig. 3b, the exact solution for density is given by

[20] at a viscosity value of 0.00025. A summary of the figures for the results is available in

Table2.
At low Mach number and low to medium viscosities (Fig. 3a-c), the ESS ffux is closer to

the ECI and EC2 fluxes as opposed to the ES flux. The ESS flux exhibit very little undershoot

even at the lowest viscosity setting. The result is significant since the ECI and EC2 have

the third entropy production term built in to them, whilst the ECS flux relies only on the

entropy-stable term to provide diffrrsion. On the other hand, the ESS flux is less diffrrsive

_l
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The pattern becomes a little different as the Mach numbr is increased as in Figs. 4 and 5.

In the said plots, rhe EC2 flux can be seen as being significantly more diffrrsed than the

other ones. This is most probably due to the the additional entropy production of the EC2

flux being dependent on Mach number. The ESS is observed to still have a smatl amount of
undershoot at low viscosity, but the undershoot is a bit less than the ES flux. The undershoot

is gradually decreased as the viscosity coefificient value is increased. At high viscosiry the

ESS flux is comparable to the ECI flux. Again, the ECSI-NS and ECS2-NS fluxes are a

little more diffirsive than ESS, but less so than EC2. Overall, the dependenco on numerical

viscosity to achieve entropy--consistency is less when the physical viscosity is increased.

5 ConcludingRemarks

The first-order hyperbolic systems approach has been incorporated with elements of entropy

stability and consistency to create new flux functions. For the Burgers' equation model, a

new entropy pair has been chosen to include both inviscid and viscous terrns. For the fluxes
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approximating the Navier-Stokes equations, hyperbolic discretization of viscosity lerms is

done separately from inviscid terms so that the physical (or mathematical) entropy still
remains a dominant feature for the overall entropy*stabitity andentropy-{onsistency control.
The additional enfopy function for the viscous terms are created to ensure some form of
entropy-stability is also achieved for hyperbolic discretization ofthe physical viscosity. The

new fluxes haye been shown to provide comparable results to older methods for a range of
viscosity levels. However, the Navier-Stokes fluxes are still incomplete due to the omission

ofheat ftansfer effects. Due to their respective signs, the entropy generation from heat transfer

would oppose that of the rest of the system, affecting the entropy stabi[ty and consistency of
the system as a whole. Thus, considerable work is still required to explore the fuIl potential

of this approach.
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Appendix 1: Entmpy Conserving Flux

The entropy conserving flux fi from Eq. (50) satisfies

{li =lpul
and is calculated based on averaged quantities of

F : 1.0* u/3.0 * u * u/5.0 * u * u * u/7.0

(67)

f;(ur, un) - (68)

To determine the averaged quantities, we firstly define zr : J-i, ,, = JF, 4 = JVF-

The averaged quantities are composed from functions of arithmetic mean a : ff and

logarithmic mean as defined in'Appendix 2"' Based on Eq' (67)' the quantities used in the

flux are as follows

I uofi^o,f
L pfi'H I

ir=?, i:{rzlt, it=?, fz=zr-zl
_ ^.!u=(ry)', u:#,*t

+#.+? (6e)

Appendix 2: Logarithmic Mean

Lntg : ff . oefine atn1L, R'1: W#where/n(() = 2(l+ + *fi# + iffi +

+{i# + oG\).To calculate the logarithmic mean we use the following subroutine:

l. Setthefollowing: q:*, f =#, u:f *f
2.If (u <e)

(70)
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3. Else

thus

F = tn(()/2.0/(f)

aIo1L,R1=!!#, e =lo-2
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