
J Sol-Gel Sci Technol (2015) 73:655-659

DOI 10. 1007/s 1097 l{15-3615-6

Hydrothermal growth of bilayered rutile-phased TiO2 nanorods/
micro-sizeTiOz flower in highly acidic solution for dye-sensitized
solar cell

M. K. Ahmad. V. M. Mohan'K. Murakami

Received: 2l June 2}l4t Accepted: 2 January 2015/Published online: 20 January 2015

@ Springer Science+Business Media New York 2015

Abstract Aligned rutile-phased TiO2 (r-TNRs) nanorods

and micro-size rutile-phased TiO2 flowers (r-TFs) films

were prepared on fluorinedoped tin oxide (FIO) substrate

using highly acidic solution by two steps of hydrothermal
process. The hydrothermal process was done at 150'C in
5 h for the first step and 2 h for the second step. These

films were used as a photoelectrode in dye-sensitized solar

cell (DSC) application. Aligned r-TNRs and r-TFs were

prepared using one-step and two-step hydrothermal pro-

cesses, respectively. At the end of second step hydrother-

mal process, micro-size rutile-phased TiO2 flowers (r-TFs)

were observed on top of r-TNRs (FTO/r-TNRs/r-TFs).

Power conversion efficiencies for both aligned r-TNRs and

r-TNRs/r-TFs were compared. From the results, DSC made

of r-TNRs only produced energy conversion efficiency of
1.52 Va and DSC made of r-TNRs/r-TFs gave excellent

energy conversion efficiency (fi of 4.27 7o.
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1 Introduction

Since 1991 when the DSC was first reported by Grdtzel's
group, it has been widely studied due to the low cost of
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manufacturing and simple preparation process [], 2]. There

were many researchers who intended to produce various

types of DSCs [3J including the rutile-phased TiOTbased

DSC [4, 5]. However, there was no report in rutile-based

DSC which has a bilayered structure such as the rutile-
phased TiO2 flowers (r-TFs) layer on top of the aligned

r-TNRs layer.

Conventionally, one-dimensional (lD) TiO2-aligned

nanostructure such as nanorods can be prepared using

anodization electrochemical of titanium [6, 7], template-

assistant approaches [8,9], direct oxidation ofTi substrate

[0J, metal--organic chemical vapor deposition [l I' l2] and

hydrothermal synthesis [13, 14]. Among these methods,

hydrothermal synthesis is a simple method because of its
easy preparation and cost effective. Therefore, hydrother-

mal process is a promising approach to prepare well-

aligned TiO2 nanostructures in large scale. Although lD
TiO2-aligned nanostructures material has been extensi vely

studied, the preparation of TiO2 nanorods and flower-like

TiO2 structups on substrates via hydrothermal method was

rarely reported.

Feng et al. [15] fabricated TiO2 nanorod films grown on

glass substrates using a low-temperature hydrothermal

method. Kakiuchi et al. [16] reported the preparation of
rutile TiO2 rods on glass substrates at low temperature of
unmodified glass substrates through heterogeneous nucle-

ation in hydrothermal solution. However, because the used

substrates were amorphous, TiO2 crystal nucleus from the

precursor solution formed irregularly on the substrates.

Therefore, aligned TiO2 nanorods have grown randomly

with poor orientation. Liu et al. [l7l have synthesized

oriented, single-crystalline rutile-phased TiO2 nanorods on

unmodified fluorine-doped tin oxide conductive glass

(FTO) substrates using titanium butoxide as precursor by

hydrothermal method. However, it was difficult to achieve
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controllable growth of TiO2 nanorods, and it has been

proven that this method cannot be used on other substrates

in order to grow oriented TiO2 nanorods. In our previous

works, both aligned TiO2 nanords and flower-like TiO2
structure were grown on FTO substrate at the same time
using hydrothermal method [18, l9l.

We investigated the advantages of bilayer structure

which were prepared by highly acidic solution in hydro-
thermal method at low temperature. The novelty of the

study is the combination of both r-TNRs and r-TFs in the

construction of rutile-based DSC. We previously reported

our success in producing these two types of nanostructures

with a power conversion efficiency of 3.1 I Vo {191. In this
study, we would like to report a two-step production of
r-TNRs and r-TFs, whereby a r-TNRs layer is initially
produced followed by a layer of r-TFs on top of it. We have

optimized the parameter involved. By combining the two

types of TiO2 nanostructure in a rutile-based DSC, the

amount of dye absorbed onto the surface of TiO2 nano-

structure was significantly improved, improving the per-

formance of rutile-based DSC.

2 Experimental

Fluorine-doped SnOz (FTO) with a thickness of 1.0 pm

coated on glass was used as a substrate. Ethanol, acetone,

hydrochloric acid (HCl) and titanium butoxide (TBOT)
(WAKO chemical) were used for the preparation of solu-

tion using deionized (DI) water. The FTO-coated glass was

cut into the desired dimension of l0 mm x 25 mm and

cleaned by sonicating method in acetone, ethanol and DI
wat€r with the volume ratios of 1:1:1 for 30 min followed
by drying in the air. Synthesis of the film on the FTO
substrate was performed according to the previous study

with some improvement [6]. For the r-TNRs layer, the

chemical solution for hydrothermal process was prepared

by dissolving 120 ml of concentrated HCI (36.5-38 Vo) in a

120 ml of DI water. The mixture was vigorously stined for
5 min and then 6.0 ml of TBOT was added by drop wise

using capillary tube. After stirring for l0 min, the solution
was put into a steel-made autoclave with Teflon-made liner
(300 ml) for hydrothermal process in which the FTO glass

substrates were put with a conducting FTO surface facing

upward. The hydrothermal process was performed at

150'C for 5 h. After this first hydrothermal process, the

autoclave was taken out from oven and cooled down to
room temperature. The prepared samples were rinsed with
DI water for 5 min and dried at room temperature.

For the r-TFs overlayer, the solution was prepared by

mixing 80 ml of DI water and 8 ml of HCl. The solution

was stirred for 5 min and then 2.84 g of cetyltrimethyl-

ammonium bromide (CTAB) was added as a surfactant.
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Finally, 1.5 ml of TBOT was added by drop wise into the

solution. This solution was stirred for 10 min and then put

into 300 ml Teflon-made autoclave together with substrates

on which the r-TNRs layers were already prepared in the

first step of hydrothermal process. The substrates were put

into the autoclave with the r-TNRs side facing upward. The

second hydrothermal process was done at 150'C for 2 h.

After the hydrothermal process, the samples were rinsed

with DI water and annealed at 450 oC for 30 min. Finally,

the DSCs were fabricated using the films as photoelectrode.

Surface morphology, cross section and thickness of the

prepared TiO2 films were observed by using field-emission

scanning electron microscopy (FE-SEM, JEOL JSM-6320D

at accelerating voltage of 20 kV. X-ray diffraction (XRD,

Rigaku RINT Ultima III) was performed with Cu Ka radi-

ation (,1 : 1.5418 A). The XRD patterns were measured in
the 20 range from 20o to 50" with 2olmin scanning speed to

investigate the crystal phases of TiO2 films.
Photocurrent versus voltage (I-V) characteristics and

incident photon to current efficiency were measured by

using solar simulator (JASCO CEP-25 BX) under 1.5 AM.
The prepared TiO2 photoelectrode with an area of 0.25 cm2

was immersed into 3 mM of N719 dye for about 14 h at

room temperature. The Pt counter electrode with mirror
finish was prepared by the sputtering method and used as

counter electrode. In order to complete the assembly of the

DSC, dimethyl-propyl-benzimidiazole iodide (DPMII)
electrolyte was used and prepared from 0.6 M of 1,2-

dimethyl-3-propylimidazolium iodide, 0.1 M of lithium
iodide, 0.5 M of 4+ert-butylpyridine' 0.1 M of guanidine

thiocyanate, 0.85 ml of acetonitrile, 0.5 ml of valeronitrile

and 0.05 M of lodine. The electrolyte was inserted between

the Pt electrode and the dye-coated r-TNRs/r-TFs electrode

to form a sandwich-rype clamped cell.

3 Results and discussion

XRD patterns of the r-TNRs layer and r-TNRs/r-TFs

bilayer are shown in Fig. l. The result shows three peaks

detected at 27.40o,36.Mo and 43.90' corresponding to
(1 10), (101) and (110) planes of the rutile phase (PDF No'

98-000-0090). The main peak was the (110) plane. Any

additional peaks were not detected except the peaks orig-

inated from the FTO layer. There were slight increases in

att peak intensities for the r-TNRs/r-TFs bilayer because

the crystallinity of the layer was improved by the annealing

treatment. It was confirmed from the result that the both

prepared TiO2 films were rutile.
The surface morphologies of r-TNRs layer and r-TNRs/

r-TFs are shown in Fig.2. Fig. 2a shows the high-magni-

fication SEM image of layer surface, which reveals that the

layer was composed of dense nanorods which were square
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much amount of nanoflowers on the well-aligned nanords,
and that the total thickness of bilayer was 20 pm. The

bilayer film structure was favorable for dye adsorption due

to its very high surface area. It is also expected that the

DSC fabricated using bilayer film as a photoelectrode can

improve its photovoltaic performance.

Figure 3 shows incident photon to current conversion

efficiency (IPCE) spectra of the DSCs fabricated using the

aligned r-TNRs and aligned r-TNRs/r-TFs bilayer as a
photoelectrode. The conversion of photons to elecffons of
the two photo anodes was observed in the wavelength

range between 400 nm and 8ff) nm with a maximum
conversion at 530 nm. The r-TNRs/r-TFs bilayered pho-

toelectrode gave higher IPCE value over the whole spectral

range mainly due to a larger amount of dye adsorption.

IPCE is a measure of how efficiently our solar cell converts

incident light into electrical energy at a given wavelength.

In other words, IPCE measures how many electrons are

excited when a light is illuminated to the solar cell. When

light is illuminated to DSC, dye molecules will absorb the

light and electrons in the dye molecules will be excited.

When DSC with only nanorods was illuminated, the

highest percentage of IPCE was 0.13 7o. However, when

DSC with bilayered photoelectrode was illuminated, the

highest percentage of IPCE was 0.6 Vo. We can see that,

there is an increment of about 0.47 Vo, This increment is

due to improvement in the amount of excited electrons

20 25 30 35 I ,flt 50

2e(degree)

Fig. I XRD patterns of the r-TNRs layer and the r-TNRVT-TFs
bilayer

and diameters range between 50 and 300 nm. It was also

observed that the nanorods were well vertically oriented

and uniformly deposited on the FTO layer as shown in
Fig. 2b. Thickness of the aligned r-TNRs layer is found to
be 3 pm. Figure 2d confirms that the r-TFs layer was

grcwn on the top of aligned r-TNRs layer through the two-

step hydrothermal process. The size of each nanoflower
was found to be about I pm in diameter, and each nano-

flower was assembled by many nanorods joining with one

end as shown in the magnified SEM image (Fig. 2c).

Surface morphology of the r-TNRs/r-TFs bilayer also

revealed that the bilayer was very porous and composed of

Fig. 2 SEM images of a the top view of aligned r-TNRs layer, b its cross section, c top view of the r-TNRVT-TFs bilayer and d its cross section
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fig.3 IPCE ryectra of the DSC fabricated using aligrcd r-TNRs
layer, r-TNRVT-TFs bilayer and anatase-phased TiO2 as a

photoelecEode

when the DSC is illuminated with light. The large amount

of excited elecfions is contributed by the large amount of
dye molecules absorbed onto the r-TFs of the DSC with
bilayered photoelectrode.

In the IPCE spectrum of DSC based on the r-TNRs/r-
TFs bilayer, some sort of hump can be se€n in tle wave-

length between 600 and 650 nm as shown in Fig. 3. It
cannot be seen in the spectrum for r-TNRs layer. This
phenomenon might be explained by a light scattering effect
which enhances the light harvesting in the layer. The

nanoflowers can become light scatterers due to their size of
I pm.

Photocurrent*voltage characteristics of the DSC fabri-

cated using aligned r-TNRs layer and r'TNRVT-TFs bilayer

as a photoelectrode are shown in Fig. 4 under the simulated

one sunlight with intensity of 100 mW cm-2. The photo-

voltaic properties such as short-circuit current density (Jsc),

open-circuit voltage (Voc), the fill factor (FF) and energy

conversion efficiency (4) were summarized in Table l. The

Jsc for the r-TNRs/r-TFs bilayered photoelectrode

increased drastically to 11.29 mA./cm2 from 2.98 mNcmz
for the aligned r-TNRs singleJayered photoelectrode. In
the case of r-TNRsir-TFs bilayered photoelectrode, the

specific surface area and the porosity of film were

increased by the existence of r-TFs layer as shown in
Fig. l, and the dye adsorption in the film was enhanced.

Furthermore, the aligned r-TNRs layer under the r-TFs

layer enhanced the transportation of photo-generated

electrons from the r-TFs layer to the FTO substrate due to

the higher electron mobility property. However, only small

difference was seen in the amount of dye adsorption

between the r-TNRs single layered and the r-TNRs/r-TFs

bilayered photoelectrodes as shown in Table 1, while the

difference in efficiency was very large due to improvement
in current density (Jsc). It is suggested from this result that

the dye molecules were adsorbed into r-TNRs layer both

Q Springer
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Fig. 4 Photocurrent-voltage characteristics of the DSC fabricated
using aligned r-TNRs layer, r-TNRVT-TFs bilayer and anatase-phased

TiO2 as a photoelecrode

chemically and physically. Since the surface of layer was

very flat, it became easy to adsorb more dye molecules on

the chemisorbed dye molecules resulting in a significant

amount of total adsorbed dye molecules.

The Voc was slightly higher for the r-TNRs/r-TFs bi-
layered photoelectrode, which can be explained by a

charge recombination between the film and the dye or the

electrolyte. In the case of r-TNRs single-layered photo-

electrode, larger bare surface areas ofnanorods are faced to

the electrolyte even after the dye sensitization due to the

density of nanorods as shown in Fig. 4b. It became difficult
for the electrolyte to diffuse into r-TNRs layer through the

thick r-TFs layer for the r-TNRslr-TFs bilayer
photoelectrode.

In order to study the advantages of r-TNRs/r-TFs bi-
layered photoelectrode for the DSC application, the pho-

tovoltaic properties were compared with the DSC

fabricated using anatase-phased TiO2 photoelectrode in our

previous study [20]. The IPCE spectra, the I-V character-

istics and the photovoltaic properties were also depicted in
Figs. 3 and 4, and listed in Table l, respectively. It is found

from the result that more dye adsoqption gave higher effi-
ciency of the anatase-phased TiO2 photoelectrode. There

is, however, only small difference in the IPCE spectra,

which did not correspond to the difference in dye adsorp-

tion and suggests a potential availabiliry of the high effi-
ciency DSC based on the rutile-phased TiO2 film. As

clarified in Table l, the DSC fabricated using r-TNRs/r-

TFs bilayered photoelectrode gave the lowest fill factor

mainly originated from the poor electrical contacts between

r-TFs layer and r-TNRs layer. If the contacts are improved

and the fill factor becomes the value similar to other two

DSCs, the efficiency is also improved to become around

6 7o. This suggests that the DSCs fabricated using r-TNRs/

r-TFs bilayered photoelectrode could realize higher per-

formance DSC rhan the anatase-phased TiO2-based DSC

with the same amount of dye adsorption due to the higher
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Table 1 Photovoltaic properties derived fnrm Fig. 4 and those for the DSC based on anatase-phased Ti02 photoelectrode

Sample Jsc (mA cm-2) Fill factor Efficiency (%) Dye adsorption
(mol cm-z)

r-TNRs layer

r-TNRVT-TNFs bilayer

Anatase-phased TiO2

0.74

0.77

0.71

2.98

11.29

14.08

0.68

o.49

0.68

r.52

4.27

6.56

5.55 x l0-8
8.71 x l0-8
1.92 x l\-j

electron mobility property of rutile-phased TiO2. The light
scattering effect was also seen in the IPCE spectra for the

anatase-phased TiO2 photoelectrode because the anatase-

phased TiO2 film was prepared from two kinds of TiO2

particle sizes and composed of fine grains and agglomer-

ated grains. As in our previous results, it gave the same

idea for enhancing the performance of rutile-based DSC

[6]. The result suggests that better dye adsorption will
improve the performance of rutile-based DSC.

4 Conclusion

In this study, we prepared aligned r-TNRs directly on top

of FTO substrate and the r-TFs grown on the top of aligned

r-TNRs by two-step hydrothermal process. The dye

adsorption and light harvesting effect increased due to the

top layer r-TFs and obtaining the good electron mobility
due to the aligned nanorods as base layer. We achieved

short-circuit current intensity of 11.29 mA cm-2 and light
to electricity conversion efficiency of4.27 7o by using very

densed 3-pm-long aligned r-TNRs/r-TFs as the photo

anodes in DSC. The performance of rutile-based DSC was

improved due to the better dye adsorption and light har-

vesting effect from the r-TFs film.
The DSCs fabricated using r-TNRVT-TFs bilayered

photoelectrode could realize the higher performance DSC

than the anatase-phased TiOz-based DSC with better

electrical contacts between r-TFs layer and r-TNRs layer.

The DSC fabricated using these r-TNRs-/r-TFs-based

photoelectrode gave excellent energy conversion efficiency

@) of 4.27 Vo.
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