2nd INTERNATIONAL MATERIALS, INDUSTRIAL AND MANUFACTURING ENGINEERING CONFERENCE

M.A. Abdullah^{1,a}, M.R. Arjmandi^{2,b}, S.S.R. Koloor^{2,c}, K.J. Wong^{2,d} and M.N. Tamin^{2,e} ¹Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia ²Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

^aaimullah@uthm.edu.my, ^bmr.arjmandy@gmail.com, ^cs.s.r.koloor@gmail.com, ^dkjwong@fkm.utm.my, ^etaminmn@fkm.utm.my

Abstract

This paper provides quantitative description of interlaminar damage process in CFRP composite laminates under cyclic shear loading. Quasi-static end-notched flexural (ENF) test on 16-ply CFRP composite laminate beam, $[0]_{16}$ and its complementary validated FE model provide the reference "no-interlaminar damage" condition. Two identical ENF samples were fatigue to 50000 cycles, but at different load amplitude of 90 and 180 N, respectively (Load ratio, R = 0.1) to induce selectively property degradation at the interface crack front region. Subsequent quasi-static ENF tests establish the characteristic of the interlaminar damage degradation. The residual peak load for the fatigued ENF samples is measured at 1048 and 914 N for the load amplitude of 90 and 180 N, respectively. Cyclic interlaminar shear damage is represented by a linear degradation of the residual critical energy release rate, G_{IIC} with the accumulated damage. Reasonably close comparisons of the predicted residual load-displacement responses with measured curves serve to verify the suitability of the assumed bilinear traction-separation law for the cyclic cohesive zone model (CCZM) used.

Keywords: CFRP composite laminate; Interlaminar shear damage; Cyclic cohesive zone model; Finite element simulation

Acknowledgements

This work is funded by the Ministry of Education Malaysia through Flagship Research University Grant No. UTM-00G42 and Fundamental Research Grant No. UTM-4F420.