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Abstract  

The particle interface has been known to play a critical role in conventional composites. Nevertheless, the understanding of the 

role of interface in mechanical and thermal properties of polymer nanocomposites remains in its infancy. Similar to the previous 

study, two different designs of interface modification—molecular entanglement and chemical reaction—were adopted by using 

three variants surfactants, i.e. ethanolamine (denoted eth), Jeffamine M2070 (m27) and Jeffamine XTJ502 (xtj). Epoxy 

nanocomposites were prepared via solution compounding with 0.46–1.87 vol% of the modified clay. To that end, the interface 

strength was measured by tensile test, fracture toughness and dynamic mechanical analysis. The results found that a consistent 

increase in Tgs with increases in clay fractions. With 1.16 vol% layer clays, the critical strain energy release rate G1c of neat 

epoxy improved from 188.6 to 405.3 kJ/m, 115% improvement and stiffness enhanced from 2.69 to 3.54 GPa, 31 % 

improvement. This result proved that the chemical reaction of amino-groups of xtj-clay with epoxy created a strong interface, 

thus resulting in a large enhancement of mechanical properties, fracture toughness and thermal dynamic properties. 

© 2015 The Authors. Published by Elsevier B.V. 

Selection and Peer-review under responsibility of the Scientific Committee of MIMEC2015. 
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1. Introduction 

It is a well-known fact that silicate layers (clays) have given tremendous impact on a variety of properties without 

sacrificing the advantages of polymer matrix, such as increase in modulus, strength, toughness, crack resistance and 
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gas barrier ability, and decrease in flammability; these improvements are caused by the large specific are of 

nanolayers. In my perspective, the improvements can be further optimized if the clay layers are individually 

dispersed in the polymer with improved interface strength. That is why interface-modified, layered nanocomposites 

are always preferred as an alternative to overcome conventional composite imperfections in diverse applications. 

Epoxy resins are one of the thermosetting polymers extensively used in industries. However, brittleness is the 

inherent problem for these highly crosslinked resins, and thus toughening attracted a great deal of interest. Clay 

features low cost, high strength (0.2 TPa in stiffness and 1 GPa in fracture strength) and large specific area [1,2], 

which act as a potential candidate in development of high-performance of epoxy. In general, there are two means in 

fabrication of polymer/clay nanocomposites: (i) intercalation—where the clay layers expand for polymer insertion 

and (ii) exfoliation—where the clay layers break-up to form single nanolayers in matrix. Early attempt by Lan et al. 

[3] made a breakthrough in clay exfoliation by using alkylammonium salts as surfactants. As a result, 10 Å-thick 

layers of clay were dispersed in the epoxy matrix. Since then, extensive studies have been conducted on exfoliation 

of epoxy/clay nanocomposites. A new route for disorderly exfoliated nanocomposites has been proposed by Ma et 

al. [4] using a diamine hardener to modify the clay, followed by grafting the modified clay with epoxy molecules. 

These fascinating studies have created much interest in the modification clay and its effect on the nanocomposites. 

Although the exfoliated epoxy/clay nanocomposites are always preferred due to a markedly higher increment in 

mechanical performance compared to intercalated and conventional composites [5,6], the mechanisms of clay-epoxy 

interfaces are still not well understood and need much studies. The effect of interface on structure-property relation 

such as morphology, mechanical and dynamic properties remains rather vague. Brown et al. [7] reported the use of 

hydroxyl-substituted quaternary ammonium surfactants to form a strong interaction by hydrogen bonding with the 

epoxy, but unfortunately no fracture toughness measurement was made. A similar study by Wang et al. [8] showed 

the effect of interfacial interaction on properties of the epoxy clay nanocomposites by using a silane coupling agent 

and hexyltriphenylphosphonium bromide. None of these studies however, has provided sufficient information in 

relation to the effect of different interface strength on structure-property relationship of epoxy/clay nanocomposites. 

Motivated by these matters, this project was carried out by developing a series of epoxy nanocomposites based 

on reinforcing clay with different levels of interface strength. The effect of interface on the morphology structure is 

presented in part 1 of the manuscript [9]; while the effects on mechanical properties, fracture toughness and thermal 

properties are discussed here. Through this work, an understanding of the interface effect on layered polymer 

nanocomposites is obtained. 

2. Materials Preparation 

The materials used for this study are epoxy DGEBA with EEW 182-196 g/equiv hardener Jeffamine J230, clay 

with a cation exchange capacity (CEC) of 85 mequiv/100 g,  surfactant ethanolamine, Jeffamine M2070 and 

Jeffamine XTJ502. The modification of clay surface and preparation of nanocomposites were described in ref. [9]. 

Since the fraction used in preparing nanocomposite was weight fractions, eqn. 1 was applied to convert weight 

fractions (wt%) to volume fractions (vol%). Table 1 shows the relations between wt% and vol%. 
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where, 𝜌 is the density, w is the weight fraction and subscripts m and f refer to matrix and filler, respectively.  

Table 1. Conversion from weight to volume fraction. 

Weight fraction (wt%) Density of clay (g/cm3) Density of epoxy (g/cm3) Volume fraction (vol%) 

1 2.4 1.1 0.46 

2.5 2.4 1.1 1.16 

4 2.4 1.1 1.87 
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3. Characterizations 

The mechanical properties of nanocomposites were measured using the Instron 5567 tensile testing machine 

equipped with a 10 kN load cell and Bluehill data acquisition software. The tensile test was conducted according to 

ASTM D-638 at a crosshead speed of 0.5 mm/min and the extension was recorded by a 100 mm gauge length 

extensometer. The tensile properties of each sample were obtained from the average values of at least five 

specimens. 

The critical stress intensity factor (known as fracture toughness, K1c) and critical strain energy release rate 

(known as fracture energy, G1c) were characterized by a compact tension (CT) sample by an Instron 5567 testing 

machine according to the ASTM D-5045. A notch of 15 mm was made by a band saw on one edge of the specimen. 

An instantly propagated sharp crack was then introduced by tapping a fresh razor blade to the samples. Again, the 

fracture toughness properties were obtained by averaging the values of five specimens for each sample. 

Dynamic mechanical analysis (DMA) tests were performed on a Dynamic Mechanical Analyzer 2980 at 1 Hz. A 

DMA specimen is rectangular with a dimension of 3.0 × 6.0 × 40.0 mm. A single cantilever clamp with a supporting 

span of 20 mm was used to clamp the specimen. 

4. Results and discussion 

4.1. Mechanical strength 

Fig. 1 shows the Young’s moduli and tensile strength of neat epoxy and its nanocomposites. Young’s modulus 

markedly increases with filler fractions, while the tensile strength reduces. The significant improvement in stiffness 

is explained by restriction of polymer chain mobility through transferring stress because the much stiffer nanolayers 

share a portion of load by mainly shearing. The drop in tensile strength can be explained by the fact that the stiff 

matrix such as brittle epoxy would hardly improve the strength [10,11] in comparison to layered additive in 

elastomeric matrix [12]. The formation of layer stacking with increase of clay content (as supported by XRD results 

in Fig. 2 in ref. [9]) further decrease tensile strength of nanocomposites due to a phase separation introduces 

between the clay layers and epoxy. 

 

 

Fig. 1. (a) Young’s modulus and (b) Tensile strength of epoxy/clay nanocomposites. 

Of these nanocomposites, epoxy/xtj-clay shows the largest improvement in Young’s modulus and lowest 

reduction in tensile strength. The 1.87 vol% of xtj-clay increase the modulus by 31% from 2.69 GPa to 3.54 GPa, 

while at the same weight concentration, the modulus of epoxy/m27-clay and epoxy/eth-clay only increase by 15% 

and 13%, respectively. This is because the long chain molecules of xtj with its high molecular-weight of 2000 g/mol 

not only enables physical entanglement with epoxy molecules, but provides a covalent bonding with the molecules 

[13]. By contrast, eth-clay and m27-clay are modified by eth of short-chained molecules and m27 of long chain 

molecules, respectively, both of which have only one reactive site reacting with nanolayers but not with matrix. 
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4.2. Fracture Toughness 

In Fig. 2, the nanocomposites demonstrate higher fracture toughness K1c and energy release rate G1c than neat 

epoxy. In all nanocomposites, the toughness enhances with increases in clay fractions until 1.16 vol%, and then 

reduces slightly. Thus, 1.16 vol% may present the optimum loading of clay in matrix, where nanolayers are well 

dispersed in matrix and have most chances to interact with epoxy matrix. At 0.46 vol%, nanolayers are must isolated 

in matrix, thereby providing a slight enhancement to the fracture toughness. By contrast, nanolayers create more 

clusters at 1.87 vol% (as proved by XRD in Fig. 2 and SEM in Figs. 4-6 in  in ref. [9]), leading to less enhancements 

of fracture toughness. 

 

 

Fig. 2. Fracture toughness and energy release rate of epoxy nanocomposites. 

4.3. Thermal dynamic analysis 

Table 2 summarizes the dynamic mechanical properties of neat epoxy and it nanocomposites over a wide range 

temperature of 50–120°C. The properties were measured in terms of the glass transition temperature (Tg)—which is 

taken at the maximum of tan δ curve, corresponding to the molecular chain relaxation. 

Table 2. Glass transition temperatures of epoxy/clay nanocomposites. 

 Clay content (vol%) Tg (°C) 

Neat epoxy 0 93.7 

eth-clay/epoxy 0.46 101.1 

 1.16 92.8 

 1.87 102.4 

m27-clay/epoxy 0.46 96.6 

 1.16 96.3 

 1.87 100.9 

xtj-clay/epoxy 0.46 97.2 

 1.16 99.6 

 1.87 100.4 

 

The observed increases in Tg agree with previous studies [11,14], thus proving that a large surface area of 1-nm 

thickness clay layer produced a significant effect on restricting the matrix chain movement through the Tg region. 

Albeit increments observed for most nanocomposites, there are relatively slight reductions observed for the 
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epoxy/eth-clay at 1.16 vol%. It is assumed that the reduction probably caused by variations of curing condition and 

excess surfactants left by modification [15], although great care was paid in fabrication. Of these nanocomposites, 

the epoxy xtj-clay produces a stable and consistent result of Tgs—which increased with the clay loading, although 

the highest Tg was achieved at 1.87 vol% epoxy/eth-clay. 

This result indicates that: (1) the presence of the grafted long-chain molecules surfactants onto clay layers, such 

as m27 and xtj does not compromise Tg at all, (2) the strong interaction exerted by xtj-clay with epoxy matrix 

resulting in the restriction of the molecular motion in the resin, therefore increased Tgs values gradually. 

5. Conclusion 

This paper introduced the epoxy/clay nanocomposites of three levels of interface strength, and discussed the 

effects of interface strength on the mechanical and thermal dynamic properties of nanocomposites. It was found that 

the molecular entanglement of the grafted long-chain molecules with matrix help the interaction of epoxy molecules 

and promote the nanolayer exfoliation, leading to highly improved mechanical properties; the highest interface 

strength was produced by combination of the molecular entanglement and the chemical bonding that bridges matrix 

with nanolayers, as where the highest improvement in modulus and fracture toughness were observed. The xtj-clay 

produced a stable, consistent increase in Tgs with increases in clay fractions. All nanocomposites demonstrated 

maximum toughness values at a clay loading of 1.16 vol%. 
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