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ABSTRACT 
Using a conceptual hydrological green roof model developed in Sheffield, UK, this article 

explores the potential hydrological performance characteristics of a green roof in Malaysia. 

The conceptual rainfallrunoff model was created from data collected on an extensive green 

roof test bed outfitted with a commercial green roof system. The model related the roof’s 

performance to the hydrological processes, the roof’s physical characteristics and the local 

climatic conditions. The developed model used both hydrological flux modelling and 

reservoir routing techniques to evaluate the performance of rainfall retention (volumetric 

control) and detention (temporal delay), respectively (Stovin et al., 2013; Vesuviano et al., 

2014). Utilising the generic conceptual model, data from Batu Pahat, Malaysia was used to 

predict retention. The same physical configuration of the Sheffield test bed was assumed. An 

11-year rainfall record was used to explore the likely effectiveness of a similarly configured 

green roof in a Malaysian environment, both on an annual basis and in response to specific 

storm events. The simulation results indicated a similarly configured roof in a Malaysian 

climate could reduce runoff by 84% on a per-event basis and achieved a 51% overall 

volumetric retention. This was comparable to UK findings despite the disparities in climate. 
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INTRODUCTION 
An extensive green roof is a lightweight roofing system comprising an underlying drainage 

layer and a layer of lightweight growing media covered with a vegetated layer.  A green roof 

is a type of sustainable drainage system (SUDS) and is also a recognized method of source 

control, reducing and attenuating storm runoff in order to replicate natural catchment 

processes (CIRIA, 2014).  During a rainfall event the key hydrological mechanisms operating 

within the green roof are the interception and storage of rainfall by the plant layer, infiltration 

and storage/attenuation in the substrate and reservoir storage in the drainage layer.  During 

dry inter-event periods, moisture will be returned to the atmosphere via evapotranspiration 

(ET).  The ET rate describes the combined effects of evaporation from the substrate and 

transpiration from the plants. 

 

Studies of full-scale green roof installations consistently show that high – though quite 

variable – levels of stormwater retention can be achieved, but the precise performance 

characteristics vary depending on the construction and local climatic conditions of the green 

roofs.  There is an identified need for generic, process-based, modelling tools that are able to 
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predict performance at high temporal resolutions for drainage engineering applications.  

Several authors e.g. Villarreal & Bengtsson (2005), Jarrett and Berghage (2008),  Miller 

(2003), Berghage et al. (2007) and Palla et al. (2008) all recognize the importance of 

including ET in green roof runoff modelling.  

 

Most empirical green roof studies are based upon roofs located in seasonal climates, the 

majority of research being undertaken in the UK, Europe, USA, Australia and New Zealand. 

These countries experience seasonal changes in temperature and rainfall and the differences 

from season to season can be quite high (Voyde et al. 2010; Stovin et al. 2013; Wadzuk et al. 

2013). Green roof research in tropical countries has been growing with recent developments 

from Singapore, Malaysia and Thailand. There are many key areas currently being 

investigated such as energy, thermal, urban farming (Rashid & Ahmed, 2011; Hui, 2011; Qin 

et al., 2012) and stormwater management (Qin et al. 2012).  An evaluation study by Fauzi et 

al., (2013) on green roofs in building projects show that Malaysian stormwater studies are 

still lacking as opposed to those on thermal and energy efficiency (Ismail et al. 2011), 

landscape (Johari et al. 2011) purposes and carbon sequestration (Ismail et al. 2012; Rahman 

et al. 2013). However, a stormwater study on green roof test beds in Singapore has shown 

promising results where the test beds reduced a typical rainfall event with maximum intensity 

of 1 mm/min to 11.4% of total runoff and peak flow by 65% (Qin et al. 2013). Vergroesen & 

Joshi (2010) found that for similar daily rainfall depths on three consecutive days, various 

reductions in runoff volume (13.6% to 98.8%) and peak flow (41.9 to 98.9%) were attained. 

A preliminary study of green roof performance in Malaysia by Kasmin & Musa (2012) 

showed that retention varied between 50-100% for rainfall events with an ADWP of less than 

15 hours. Several studies have emphasized that the runoff performance from green roofs is 

dependent on both antecedent conditions and rainfall intensity. For a tropical country like 

Singapore or Malaysia, these conditions are defined by a tropical climate with no significant 

seasonal changes (Vergroesen & Joshi 2010; NEA 2012; Qin et al. 2012), the impacts of 

which are to be studied. 

 

Local climatic conditions are assumed to affect the performance of a green roof. If rainfall 

depths are high then the proportion of the rain that a specific roof is able to retain will tend to 

be reduced compared to the same roof in a climate that experiences smaller rainfall depths. 

Temperature, wind speed and other meteorological factors affect ET and also therefore affect 

roof retention. Hotter climates experience higher ET rates, so retention capacity can be 

restored more quickly, resulting in greater available storage at the start of an event. These 

relationships are complex, making interpolation from existing research from other climatic 

regions difficult. 

 

 

MATERIAL AND METHODS 
Stovin et al. (2013) developed the conceptual hydrological flux model as part of efforts to 

explore variations in green roof performance across the varying climate of the UK. This study 

adds an international perspective by considering a greatly different climatic setting. An 

established test plot roof installed with a commercial extensive green roof system at the 

University of Sheffield has been used to collect data on stormwater response. Following 

previous model calibration under UK climatic conditions (Kasmin, et al. 2010), the same test 

plot and conceptual model is assumed to be used for the simulation of the Malaysian climate.  

 

Figure 1 presents the conceptual model of substrate moisture flux. The substrate’s maximum 

water-holding capacity (WHCmax) defines the condition when the substrate can hold no more 
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moisture under gravity (i.e. field capacity). The moisture content at any given time will lie 

somewhere between field capacity and a minimum practical moisture content, which may 

vary in response to ambient conditions. This minimum moisture content may be considered to 

define the depth of non-plant-available moisture, or the permanent wilting point (PWP) 

(Stovin et al. 2013). Standard laboratory tests exist for the determination of field capacity in 

green roof substrates (FLL, 2008). 

 

The difference between WHCmax and PWP determines the maximum stormwater retention (or 

storage) capacity of the green roof (Smax), which is clearly finite. The value of Smax will 

depend on green roof configuration. However, empirical data presented by Stovin et al. 

(2012) suggests a typical value for Smax on an extensive green roof with 80 mm substrate of 

20 mm. In a rainfall event, the substrate will retain rainfall (P) until the point when field 

capacity is reached. If further moisture is added to the system, runoff (R) will occur. In 

reality, due to substrate heterogeneity, runoff may be initiated slightly before field capacity is 

reached; this may have a minor impact on the timing of runoff (detention), but can be 

neglected in the context of the present model. It should be noted that, as green roof substrates 

typically have very high hydraulic conductivities, surface runoff is not expected to occur. 

Excess runoff will drain vertically down through the substrate and leave the roof via the 

underlying drainage layer, where it will be temporarily detained. Between rainfall events, the 

roof’s storage capacity will be restored via ET. ET rates vary both seasonally and daily, 

depending upon meteorological conditions, plant species and condition, as well as the 

substrate’s moisture content. 

 

Modelling ET rates in green roof systems 

Potential Evapotranspiration (PET) is the expected rate of evapotranspiration associated with 

a crop under well-watered conditions. If access to soil moisture becomes restricted, actual ET 

rates fall below the PET. PET is normally estimated based on temperature-based approaches, 

energy-based approaches or combination approaches, which have varying levels of input data 

requirements. Although complex equations, such as Penmann Monteith (Razaei, 2005), have 

been used for PET estimation as input for rainfall runoff models (Oudin et al. 2005), the 

temperature-based Thornthwaite model was also shown to perform well (Kasmin et al. 2010). 

The Thornthwaite equation requires only the local temperature profile in order to estimate ET 

for short close set vegetation with an adequate water supply (Wilson, 1990). Kasmin et al., 

(2010) suggested that a modified form of the Thornthwaite formula led to modelled runoff 

results that were comparable with monitored green roof runoff.  

 

 

P  Precipitation (mm/hr) 

ET Evapotranspiration (mm/hr) 

R Runoff (subsurface) (mm/hr) 

WHCmax Maximum water holding capacity (mm) 

(equivalent to field capacity) 

PWP Permanent wilting point 

Smax Maximum substrate retention capacity (mm) 

 

Figure 1. Schematic diagram of the hydrological response of rainfall retention. (Stovin et al. 

2013). 
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Zhao et al. (2013) used the Soil Moisture Extraction Function (SMEF) model for estimating 

actual ET under conditions of restricted moisture availability. The basic form of the SMEF 

method describes ET as a function of PET multiplied by the ratio of actual moisture content 

to the field capacity of the substrate. In accordance with the description of the conceptual 

hydrological flux model, it may be suggested that Smax should replace the field capacity term 

in the denominator, which leads to a temporal decay model in the form: 
 

max

1

tPET ET
S

S t
t

                              (1) 

 

While there is a need to further refine PET and actual ET prediction methods for green roof 

systems, Stovin et al. (2013) also presented evidence that supports a generic modelling 

approach based on the use of the Thornthwaite formula to predict PET and the application of 

the basic SMEF model to account for the decay in ET that occurs in response to restricted 

substrate moisture. 

 

Model implementation 

At each time step, t, actual ET is modelled as a function of PET and substrate moisture 

content, S. Runoff is calculated depending on ET, the rainfall depth, P and S:  
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Substrate moisture content is then updated: 
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The model has been implemented at an hourly time step. A subdaily time-step is required to 

characterise the system’s performance in response to individual storm events that are 

typically shorter in duration than one day. Note that, although in reality ET rates may vary 

according to a diurnal cycle, this is neglected in the model. The hourly PET value is assumed 

to be a constant hourly rate equivalent to the relevant monthly Thornthwaite PET rate. This 

simplifying assumption is justified by an appreciation that ET rates are low (in the order of 

0.1 mm/h) compared with storm event rainfall intensities (1-10 mm/h). It is the cumulative 

effect of ET over several days prior to a storm event that impacts on the green roof’s runoff 

retention performance. The model has been implemented in MATLAB (2007). It should be 

noted that, perhaps contrary to expectations, this process-based continuous simulation 

approach does not require excessive computational resources. It takes less than 8 s to process 

an 11-year hourly rainfall time-series on a standard computer (Intel i7, 3.4 GHz). 

 

Input climate data 

Malaysia is a country with an equatorial climate, where in 2010 55% of the lived in the urban 

areas of Peninsular Malaysia (FAO, 2014). Peninsular Malaysia is divided into an eastern and 

western region by the Titiwangsa mountain range. Both regions have coastal areas, as well as 

various combinations of floodplains, highlands and lowlands (Suhaila & Jemain, 2007). The 

weather of Peninsular Malaysia is warm and humid all year round with temperatures ranging 

from 21
o
C to 32

o
C (Wong et al. 2009). The climate of Peninsular Malaysia is characterized 

by four rainy seasons, namely two monsoon seasons: the southwest monsoon (SWM) from 

May to August and northeast monsoon (NEM) from November to February; and two inter-

monsoon seasons, the transitional periods between the monsoon seasons, normally in March 
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to April and September to October (Suhaila et al. 2010; Suhaila & Jemain, 2007). In general, 

SWM events are less intense than NEM events. Additional heavy rainfall normally occurs 

between monsoon seasons in the form of convective rains where the west coast generally sees 

more rainfall than the east (Suhaila et al. 2010). 

 

Malaysia receives around 2000 mm to 4000 mm rainfall annually between November-March 

and May-September. Since 1988 the mean flood discharge of the Klang River has increased 

from 148 m
3
/s to 440 m

3
/s (Mohd Fauzi, 2013). This increase in discharge coincides with the 

tremendous urbanization of its catchment area. Rivers all across Malaysia whose catchment 

areas are undergoing various degrees of urbanization are seen to exhibit a similar trend 

(Mohd Fauzi, 2013). The implementation of sustainable drainage systems is critically needed 

to help protect Malaysia’s continuing development from the threat of flooding. 

 

The data used in this paper is from Batu Pahat in southern Malaysia. Batu Pahat is one of the 

districts on Johor with a latitude of 1° 52' 0" N and longitude of 102° 59' 0" E. Batu Pahat has 

experienced extreme flood events with an ARI larger than 100-yr between December 2006 

and January 2007 (Mohd Fauzi, 2013). Continuous 11 year rainfall and temperature data 

records were obtained from the Department of Irrigation and Drainage; and the Malaysian 

Meteorological Department, respectively. Figure 2 shows the average monthly rainfall, 

temperature and PET for the 11-year record. The region experienced an average monthly 

temperature of between 25-28
o
C, and average monthly rainfall varied from 35 to 100 mm. 

 

Data Analysis 

Based on the conceptual water balance-based retention model, estimation on the runoff 

values have been determined using two input data; the daily rainfall time-series and the 

monthly PET rates. Runoff from the green roof was modelled using identical assumptions to 

those presented in Stovin et al. (2013). The roof was assumed to have a maximum storage 

capacity of 20 mm. Actual ET was modelled as a function of PET and soil moisture content, 

to reflect the fact that ET rates will fall when moisture supply is restricted. 
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Figure 2. Left: Map of Peninsular Malaysia showing the geographical regions (Suhaila & 

Jemain, 2007). Right: The average monthly climate profile for Batu Pahat. 
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All the rainfall data was read into MATLAB to identified the data gaps. Some data between 

2005 and 2007 was missing due to the malfunction of the rain gauge at the Batu Pahat station. 

Where gaps were identified in the data the missing data was replaced with zeros. This leads 

to underestimations in total rainfall and runoff values but conserves the temporal 

characteristics of individual storm events and dry periods. The data was then aggregated into 

hourly time-steps using MATLAB, for comparability with Stovin et al. (2013). It should be 

noted that higher temporal resolutions than this are not required for retention analyses, which 

depend on (longer-term) ET processes. 

 

ET was predicted at each time step based on PET and the current level of moisture available 

in the substrate moisture store (Stovin et al. 2013). Use of the Thornthwaite formula to 

predict PET for 2004 gave predicted PET values of between 3.99 and 5.30 mm/day, with a 

mean value of 4.55 mm/day, hence the PET was estimated to be constant at 4.55 mm/day. 

This assumption is justified by the extremely constant climatic conditions experienced 

throughout the year, with monthly mean temperatures varying only between 25-28 °C. The 

rainfall-runoff record was discretised into storm events (1192 in total), based on an inter-

event dry period of 6 hours. Various performance statistics have been derived for all events 

and for significant events. In this case the ‘significant events’ are simply taken to be the 11 

largest rainfall events, i.e. approximately 1 in 1 year return period events. 

 

 

RESULTS AND DISCUSSION 
Table 1 highlights the characteristics of rainfall, runoff and retention depth for the simulated 

green roof in Batu Pahat area. For 11.4 years rainfall data, 1192 rainfall events were observed 

with a maximum event rainfall of 147 mm over 44 hours with intensity of 3.3 mm/hr. Mean 

rainfall intensity for the Batu Pahat area was 2.3 mm/hr. Those events identified as significant 

may represent the type of rainfall that could produce flash floods in urban areas, and have a 

return period of approximately 1 in 1 year. Figure 3 shows the full modelled runoff response 

for the first year of data. It can be seen that the volumetric retention exceeds 60% in this case, 

which is higher than the mean volumetric retention of 51%.  

 

During simulation, ET is assumed to continue during storm events, it is therefore possible for 

retention depths in excess of the defined retention capacity (in this case 20 mm) to occur. For 

example, an event lasting 44 hours will have almost 29 mm maximum possible retention if 

the moisture store is empty at the start of the event and ET is 4.55 mm/day. This explains 

why a maximum retention depth in excess of 20 mm has been recorded. 

 

Table 1: Retention performance characteristics for Batu Pahat Station. 

   Duration 

(Hours) 

Rainfall 

depth 

(mm) 

Runoff 

depth 

(mm) 

Retention 

depth 

(mm) 

Retention 

proportion 

All Events 

[1192] 

Mean 3.54 10.38 5.09 5.29 0.84 

Median 2.00 4.60 0.00 3.87 1.00 

Maximum 44.00 147.00 142.92 26.40 1.00 

Minimum 1.00 0.10 0.00 0.10 0.03 

Significant 

Events  

[11] 

Mean 16.36 104.72 91.29 13.42 0.13 

Median 9.00 96.00 85.28 11.16 0.13 

Maximum 44.00 147.00 142.92 26.40 0.23 

Minimum 5.00 76.80 65.64 4.08 0.03 
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The mean retention proportion of 0.84 is very high. This reflects the predominance of 

relatively small rainfall events (mean rainfall depth 10.38 mm), combined with the high ET 

rates that deliver 4.55 mm retention capacity per day. i.e. the daily recharge is close to 50% 

of the average storm depth. The median retention proportion of 1 indicates that there are a 

large number of small events which it is easy for the roof to fully retain. As indicated in 

Figure 3, the rainfall series is characterised by many relatively small events and fewer large 

events. 1% of events  > 70 mm; 10% events > 28.5 mm; 50% of events > 4.6 mm.  

 

Stovin et al. (2013) noted that for all four UK locations the per-event retention was greater 

than the overall volumetric retention. This is also evident in the Malaysian data. The observed 

spread between the per-event and per-significant-event data is very high in the Malaysian 

data. This reinforces the fact that the effectiveness of green roofs in major rainfall events is 

limited by the roof’s finite capacity. Per-event and overall retention is most comparable to the 

East Midlands region of the UK, but with more than double the annual rainfall. 

 

 

CONCLUSION 
The ability to simulate the application of an 11 year Malaysian rainfall record to the Sheffield 

test bed has shown the potential effectiveness of a similarly configured roof within a 

Malaysian environment. The application of the UK-derived conceptual hydrological flux 

model highlights the usefulness of a generic model for determining green roof performance. 

Whilst the model used here is limited to simulating the Sheffield test bed, further efforts to 

generalise green roof models will aid drainage engineers in determining runoff for a range of 

roof specifications in a variety of locations and climates. The simulation showed that a 

Malaysian climate is capable of supporting elevated ET rates when compared to the UK. This 

increase in ET enables faster regeneration of the roof’s storage capacity and so the initial 

available storage for each event is increased, leading to a mean per-event retention of 84%. 

However the heavy convective rainfall events may still exceed the available storage within 

the roof and create runoff, as seen from the significant events where mean per-event retention 

was just 13%. The total volumetric reduction of 51% over the 11 year simulation represents a 

significant reduction in rainfall runoff.  
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Figure 3. Left: Cumulative rainfall and runoff profiles for the first year of data in Batu Pahat. 

Right: Rainfall event frequency. 
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