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Abstract. This paper presents the simulation study of voltage clamp technique that enables to 

analyze current-voltage (I-V) characteristics of ion currents based on Luo-Rudy Phase-I (LR-I) 

model by using a Field Programmable Gate Array (FPGA). Here, the I-V relationship presents the 

characterization of each ion channel by a relation between membrane voltage, Vm and resulting 

channel current. In addition, the voltage clamp technique also allows the detection of single channel 

currents in biological membranes and is known to be applicable in identifying variety of 

electrophysiological problems in the cellular level. As computational modeling needs a vast amount 

of simulation time, a real-time hardware implementation using FPGA could be the solution as it 

provides high configurability and performance, and able to executes in parallel mode operation for 

high-performance real-time systems. For rapid prototyping, MATLAB Simulink software that 

provides a link with the FPGA has been used to design the algorithm. Simulink HDL Coder capable 

to convert the designed MATLAB Simulink blocks into hardware description language (HDL). As a 

result, the MATLAB Simulink successfully simulates the voltage clamp of the LR-I excitation 

model and identifies the I-V characteristics of the ionic currents through Xilinx Virtex-6 

XC6VLX240T development board. According to the results of I-V characteristics for six ionic 

currents in the LR-I model, a fast inward sodium current (INa), a slow inward current (Isi), a time-

dependent potassium current (IK), a time-independent potassium current (IK1), a time-independent 

plateau potassium current (IKp) and a background current (Ib), there are two types of current; time-

dependent and time-independent. The time-independent currents which are the IK1, IKp and Ib have a 

steady-state I-V relationship and the time-dependent currents which are the INa, Isi and IK often 

referred to as having a transient I-V relationship but is asymptotic to the steady-state I-V 

relationship.  

Introduction 

Voltage clamp technique allows the detection of single channel currents in biological membranes 

and is known to be applicable in identifying variety of electrophysiological problems in the cellular 

level. During the implementation of the voltage clamp to the cell, the membrane potential is kept at 

a controlled value which is typically at several constant levels with stepwise changes to record the 

transmembrane current [1]. This technique has contributed to the understanding of the electrical 

behavior of the current-voltage (I-V) characteristics of the ionic currents [2,3,4]. Here, the I-V 

relationship presents the characterization of each ion channel by a relation between membrane 
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voltage, Vm and resulting channel current. Due to a tedious and an expensive procedure of the 

voltage clamp experiment, a simulation approach of the voltage clamp is more preferred as it is 

easier and cost effective. However, simulating the dynamics of cellular models requires a significant 

amount of computational processing time which would increase a time required for computer 

simulation of the models [2]. In addition, the voltage clamp method needs to be developed by real-

time system because it requires the real-time evaluation and injection of simulated membrane 

current. In order to solve the problems, the real-time hardware implementation is needed to model 

the I-V on ionic currents. 

In [5,6,7] Real-time analog-digital hybrid model has been developed in order to perform I-V 

relationship of six ionic currents which are a fast inward sodium current (INa), a slow inward current 

(Isi), a time-dependent potassium current (IK), a time-independent potassium current (IK1), a time-

independent plateau potassium current (IKp) and a background current (Ib) based on the Luo-Rudy 

Phase-I (LR-I) model [8] for hardware implementation. However, one of the ionic currents, which is 

a fast sodium inward current, INa was not quantitatively comparable because the INa produced by 

hybrid model relatively smaller than the LR-I model since it was developed by analog circuit. 

Therefore, digital implementation of Field Programmable Gate Array (FPGA) is one of the solutions 

needed to solve the analog problem because it is capable to run in real-time simulation, and it can be 

adapted to any changes in design by dynamic reconfiguration. FPGA could be the solution as it 

provides high configurability and performance and also executable in parallel mode operation 

[9,10]. Thus, a main objective of this paper is to design the quantitative description of the six ionic 

currents of the LR-I model of single biophysical cellular membrane for voltage clamp simulation by 

using the FPGA. 

 The structure of this paper is as follows. Discussion on the methodology with an overview of the 

proposed system applications is presents in next section. Research findings are presented on the 

next section. Finally, concluding remarks are given in the last section of this paper.  

Design Methodology  

In this research, voltage clamp simulation is developed based on the LR-I model [8]. The 

LR-I is developed to model the generation of cardiac excitation for mammalian ventricular cell. 

This model is chosen because it well described the six ionic currents that retain enough structure of 

basic currents involved in cardiac excitation to reproduce exact AP morphologies [11] and is 

flexible enough that the parameters can be fitted to replicate accurately the properties and dynamics 

of other complex ionic models as well as experimental data [12-13] such as action potential 

duration (APD), thresholds for excitation, upstroke velocities, minimum APD before reaching 

conduction block, and phase-locking response characteristics to current stimulations. Based on the 

previous work, the LR-I algorithm has been done for FPGA hardware implementation [14-15]. The 

work is designed by using the MATLAB Simulink that gives an opportunity for obtaining Hardware 

Description Language (HDL) code without handwriting of the HDL code and by using an automatic 

code generation process [10].  

Here, for the voltage clamp simulation based on the LR-I, the MATLAB Simulink blocks are 

designed to represent the six ionic currents.  According to the voltage clamp method, the changes of 

six ionic currents can be monitored based on the input of several values of membrane voltage to 

establish the I-V relationship of a certain ionic current. Fig. 1 shows the voltage clamp model for the 

ionic current INa designed using the MATLAB Simulink for FPGA rapid prototyping. Based on the 

Fig. 1, mathematical equations mainly consist of Ordinary Differential Equations (ODEs) in the  

LR-I are designed inside the subsystems. 



 

 
Fig. 1: The designed MATLAB Simulink blocks for the voltage clamp simulation of INa. 

Results 

According to the designed Simulink blocks for the voltage clamp of six ionic currents based on 

the LR-I, the simulation studies are done by applying the input clamped voltages of 80 mV, 60 mV, 

40 mV, 20 mV, 0 mV, -20 mV, -40 mV and -60 mV to each of the six ionic channels, in order to 

produce the I-V characteristic of the ionic currents. From the I-V characteristics obtained, IK1, IKp 

and Ib are classified as the time-independent currents, whereas, INa, IK and Isi are classified as the 

time-dependent currents.  

Time-independent ionic currents. Fig. 2(a) shows the result of the I-V relationship of IK1. The 

LR-I time-independent potassium current, IK1 plays a role to maintain the resting potential as it 

flows at negative potential. The LR-I time-independent plateau potassium current IKp is activated 

during the plateau phase of the action potential along with the other potassium currents to restore 

the cell to its resting state. This current does not flow at low but at high membrane potential. A 

graph of the I-V relationship of IKp for the LR-I model designed by using the MATLAB Simulink is 

depicted in the Fig. 2(b). The background current, Ib in the LR-I, is a composite current representing 

the hodgepodge of other currents left in the cell. The I-V relationship of this current is a linear 

function of membrane potential. Plots of the I-V relationship of Ib is shown in Fig. 2(c). These I-V 

relationships of IK1, IKp and Ib obtained from the MATLAB Simulink are generally comparable to 

the features of LR-I model [8]. 

                       
(a)                                              (b)     (c) 

Fig. 2: Simulated I-V characteristics waveform. Panels (a), (b) and (c) represents corresponding I-V 

of IK1, IKp and Ib, respectively. 

 



 

Time-dependent ionic currents. The fast inward sodium current INa in the LR-I causes the rapid 

upstroke of the action potential. A short time-constant behavior of INa is reproduced by using the 

MATLAB Simulink blocks as shown in Fig. 3(a). Dynamics of INa are analyzed by plotting the ion 

current over time in response to the voltage step inputs as refer to the voltage clamp experiment 

with various clamp voltage from -60 mV to 80 mV by voltage clamp step of 20 mV. The LR-I time-

dependent potassium current IK, is activated by the increase of the membrane potential and it is not 

activated until the cell returns to its resting state. A long time-constant behavior of IK is reproduced 

by using the MATLAB Simulink. The dynamic response of the current to the voltage step shown in 

Fig. 3(b). The slow inward current Isi flows due to the entry of Na
+ 

during the plateau phase. Isi 

changes slowly over time. Fig. 3(c) illustrates the dynamics response of Isi. These I-V relationships 

of INa, IK and Isi from the MATLAB Simulink are generally comparable to the features of LR-I 

model [8]. 

   
                                            (a)                                                                 (b) 

 
(c) 

Fig.3: Luo-Rudy phase I model in response to various intensity of the voltage step (from -60 mV to 

80 mV) for an initial holding voltage of -85 mV. Panels (a), (b) and (c) represents corresponding 

voltage clamp waveform of INa, IK and Isi, respectively. 

Concluding Remarks 

In conclusion, the AP dynamics is successfully designed by using MATLAB Simulink that could 

generate the AP that is quantitatively comparable to the previous LR-I model [8]. This mathematical 

model is designed using MATLAB Simulink in order to implement it on the FPGA since this 

graphical user interfaces have significant link in order to auto-generated HDL code that will be used 

for FPGA board programming afterwards. In order to develop FPGA algorithm design by using 

MATLAB Simulink, several processes have been performed. These include the process of designing 

algorithm using a fixed-point data type in discrete-time system using the Simulink HDL supported 

libraries and applying optimization in setting the value of the fixed-point data type to enhance the 

performance of the designed system according to the speed, power consumption and hardware 

utilities. For future work, the designed model will be implemented on FPGA board for the stand-

alone implementation of the system. 
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