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Abstract. In this paper, we have improved the limitations of our previous Richardson’s extrapolation spreadsheet calculator 
for computing differentiations numerically. These limitations are the value of D(0,0) keyed in by users using 3-point central 
difference formula, and the fact that the previous spreadsheet calculator can only calculate the approximate definite 
differentiation up to level 4 x 4.  If the function to be differentiated is complicated, calculating D(0,0) using 3-point central
difference formula can be tedious as parentheses should be put in a proper order when writing the calculation command. 
Otherwise, the calculation command may lead to a wrong answer. In this improved Richardson’s extrapolation spreadsheet 
calculator, we redesigned the Richardson’s extrapolation spreadsheet calculator, where users are only required to give the 
value of x, the function to be differentiated f(x), and the step size h value without writing the command to obtain D(0,0). 
Consequently, the calculations will be done automatically to approximate the definite differentiation up to level 10 x 10. 
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INTRODUCTION 

In real-world problems, applications of the rate of change have been well-defined. For examples, flow rate in a 
tank, productivity of an industrial process and marginal revenue of a manufacturing company.  In fact, calculating 
the rate of change requires the knowledge of differentiation, which is an interesting topic in numerical analysis. 
Since the physical problems are complex, the exact differentiation is impossible to obtain. In such situations, an 
approximation of the definite differentiation is important to provide a practical solution. Richardson’s extrapolation 
[1], [2], which is one of the powerful approaches in numerical differentiation, improves the rate of convergence of a 
sequence in numerical differentiation.     

Implementation of Richardson’s extrapolation via mathematical software or any computational tool leads to a 
desired definite differentiation.  According to the works of [3-11], Excel spreadsheet shows the ability of calculating 
for a wide range of numerical methods.  In addition, the application of Excel spreadsheet in implementing 
Richardson’s extrapolation for numerical differentiation has been developed in [12] recently.  However, previous 
Richardson’s extrapolation Excel spreadsheet calculator is limited to level four in calculating the numerical 
differentiation and the initial value D(0, 0) of approximation to the derivative of a function is required to be keyed in 
by users using 3-point central difference formula.  

RICHARDSON’S EXTRAPOLATION

There are two ways to improve derivative estimates when employing finite divided differences; decreasing the 
step size or using a higher-order formula that employs more points.  A third approach, based on Richardson’s 
extrapolation which uses two derivatives, estimates a more accurate approximation. [13] 
For a given function of ,f  approximations ,D  to the derivative of f  at a specified value of ,x can be computed for 
a chosen value of ,h  using Richardson’s extrapolation method as follows: [14] 
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The iteration process (1) is repeated until ( , ) ( , 1)D J J D J J or ( , ) ( 1, 1)D J J D J J for a 

specified value of .   The value of ( , )D J J  then approximates ( )f x  at this level. 

Richardson’s extrapolation table for K  from 1 to 4 is shown in Table (1). 

Table (1). Richardson’s Extrapolation table for level K  values from 1 to 4. 

J Jh K
0 1 2 3 4 

( ,0)D J ( ,1)D J ( ,2)D J ( ,3)D J ( ,4)D J
0 0h (0,0)D     
1 1h (1,0)D (1,1)D
2 2h (2,0)D (2,1)D (2,2)D
3 3h (3,0)D (3,1)D (3,2)D (3,3)D
4 4h (4,0)D (4,1)D (4,2)D (4,3)D (4,4)D

NUMERICAL EXAMPLE 

In this section, a numerical example to be solved by Richardson’s extrapolation is provided. 

Question 

The velocity of a falling parachutist is given by ( ) (1 ),
c t
mgmv t e

c
where 29.81m/s , 80kgg m  and 10kg/s.c   At time 0s,t  the initial velocity is 0 m/s at the origin.  
By using Richardson’s extrapolation,  

a) find the acceleration of the parachutist at time 10st  with 0.5.h
b) find the absolute error if the exact acceleration is  

     ( ) .
c t
ma t ge

Solution 
Given 29.81m/s , 80kgg m  and 10kg/s.c Let ( )f t  be the velocity function, ( ),v t  then 

8( ) ( ) (1 ) 9.81(8) 1 .
c tt
mgmf t v t e e

c

Thus acceleration function is given by ( ) ( ) ( )a t f t v t  can be approximated by Richardson’s extrapolation at 
10t with 0.5.h

The numerical solution of this example is shown in Figure 1 in Section 4, where (10)a  is approximately 
2.810612056.
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CONCLUSION

An improved Richardson’s extrapolation spreadsheet calculator has been developed to approximate the derivative of 
the given function at a chosen point with a step size .h   The Excel commands that calculate Richardson’s 
extrapolation values are given in the previous section and the layout of the spreadsheet calculator is shown in Figure 
1.  The spreadsheet calculator is very user-friendly. It provides an alternative tool for approximating the numerical 
differentiation by Richardson’s extrapolation.  It can be used as a marking scheme for educators and students who 
need full solutions.  Moreover, it reduces calculation time and is hoped to increase students’ learning ability. 
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