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Abstract. Fluid-Structure Interaction engages with complex geometry especially in biomechanical 

problem. In order to solve critical case studies such as cardiovascular diseases, we need the 

structure to be flexible and interact with the surrounding fluids. Thus, to simulate such systems, we 

have to consider both fluid and structure two-way interactions. An extra attention is needed to 

develop FSI algorithm in biomechanic problem, namely the algorithm to solve the governing 

equations, the coupling between the fluid and structural parameter and finally the algorithm for 

solving the grid connectivity. In this article, we will review essential works that have been done in 

FSI for biomechanic. Works on Navier–Stokes equations as the basis of the fluid solver and the 

equation of motion together with the finite element methods for the structure solver are thoroughly 

discussed. Important issues on the interface between structure and fluid solvers, discretised via 

Arbitrary Lagrangian–Eulerian grid are also pointed out. The aim is to provide a crystal clear 

understanding on how to develop an efficient algorithm to solve biomechanical Fluid-Structure 

Interaction problems in a matrix based programming platform.  

Introduction 

Nowadays, fluid–structure interaction models are increasingly used in biomedical engineering 

applications. The one of challenging fluid–structure problems that can be found in the human body 

involves the cardiovascular system. However, the widely studied are cardiovascular and heart valve 

disease [1]. Solving and measuring these diseases in a direct way is impossible because they 

engages with complex geometry and flow thus to investigate problem involved in the complex 

interaction between fluids and solids, numerical techniques may be used to assess them [2,3]. 

This paper extensively reviewed FSI computational techniques based on numerical methods to 

solve FSI problems involving interaction between fluids and solids for biomechanical application. 

Basically, the numerical procedures to solve these FSI problems may be classified into two 

approaches: the monolithic approach and the partitioned approach. The monolithic approach treats 

the fluid and structure dynamics in the same mathematical structure to create a single system 

equation for the whole problem, which is solved simultaneously by a unified algorithm. The 

interfacial conditions are implicit in the solution procedure. On the other hand, the partitioned 

approach treats the fluid and the structure as two computational fields which can be solved 

separately with their respective numerical algorithm and mesh discretization. The interfacial 

conditions are used explicitly to communicate information between the fluid and structure solutions 

[4,5]. Therefore, the best approach that will be used in solving problem for biomechanics 

application is partitioned approach. This is due to the complex geometry and flow in the human 

body. 

A further general classification of the FSI solution procedures is based upon the treatment of 

meshes: the conforming mesh methods and non-conforming mesh methods. The conforming mesh 

method consider the interface conditions as physical boundary conditions, which treat the interface 

location as part of the solution, and requires meshes that conform to the interface. Owing to the 
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movement and/or deformation of the solid structure, re-meshing (or mesh-updating) is needed as the 

solution. In contrast, the non-conforming mesh methods treat the boundary location and the related 

interface conditions as constraints imposed on the model equations so that non-conforming meshes 

can be utilized [2]. As a result for the problem involving the biomechanical application, the non-

conforming mesh method is suitable to apply. This is because the fluid and solid equations for this 

method can be conveniently solved independently from each other with their respective grids, and 

re-meshing is not necessary. 

An important consideration when simulating fluid flow problem by any numerical method is the 

choice of an appropriate kinematical description and this selection have three distinct types of 

description of motion: 1) the Lagrangian description, 2) the Eulerian description and 3) the ALE 

description. Lagrangian algorithms are mainly used in structural mechanics which each individual 

node of the computational mesh follows the associated material particle during the motion. The 

Lagrangian description allows an easy tracking of free surfaces and interfaces between different 

materials. Its weakness is its inability to follow large distortions of the computational domain 

without recourse to frequent remeshing operations. Eulerian algorithms are widely used in fluid 

dynamics problem. This is difference with the Lagrangian method where it does not suffer from 

mesh distortion, because the mesh is spatially fixed during the simulation. However, it is more 

difficult to take into account the history of the material, as the element mesh is not connected to it. 

A second problem is that it is difficult to obtain an accurate description of the free surface and 

interfaces between different materials or different media (e.g., fluid-fluid and fluid-solid interfaces) 

and the free surface must be described in the fixed element mesh [6]. The Arbitrary Lagrangian 

Eulerian (ALE) method is a combination of the best features of both the Lagrangian and the 

Eulerian approaches. Originally, the method was introduced in the context of the finite difference 

method [7]. The ALE method is employed with the finite element method in fluid mechanics and 

fluid dynamics [8,9] and in fluid structure interaction [10]. ALE algorithms are particularly useful 

in flow problems involving large distortions in deforming boundaries.  

Besides that, the numerical techniques for simulating flows with moving boundaries can be 

classified in two broad categories: (1) moving grid methods, mainly the arbitrary Lagrangian–

Eulerian (ALE) approach [11]; and (2) fixed grid methods, such as the immersed boundary (IB) 

method developed by [12]. ALE methods employ a grid that is adapted to and moves and deforms 

with the moving boundary. However, a limitation of the ALE approach stems from the fact that the 

mesh conforms to the moving boundary and as such it needs to be constantly displaced and 

deformed following the motion of the boundary. The mesh moving step could be quite challenging 

and expensive for complicated 3D problems. This situation is further exacerbated in problems 

involving large structural displacements for which frequent remeshing at each time step of the 

simulation. Owning to this limitation, the ALE approach is only valid to FSI problems involving 

relatively small structural displacements. Otherwise, in fixed grid approaches, the entire 

computational domain (including both the fluid and structure domains) is discretized with a single, 

fixed, non-boundary conforming grid system (most commonly a Cartesian mesh is used as the fixed 

background mesh). The effect of a moving immersed boundary (IB) is accounted for by adding 

forcing terms to the governing equations of fluid motion so that the presence of a no-slip boundary 

at the interface can be felt by the surrounding flow. Because of the fixed grid arrangement, such 

methods are inherently applicable to FSI problems involving arbitrarily large structural 

displacements [13]. So, to solve problem involve biomechanical application, both methods are 

suitable to use but the selection of the method is depend on the complexity of cases and the 

deformations of the structural displacements.  

Lastly to develop the FSI algorithm we must clearly to know about the governing equation that 

will be used in biomechanical application. Therefore, to select the equation, the properties of each 

domain must be to identify. In the human body, the properties of the fluid mostly in laminar regime 

only. Due to this reason, Navier–Stokes equations is a efficient equation that will be used as the 

governing equation for the fluid domain [14]. On the other hand, several approaches are commonly 

will be used to derive the governing equations for the structure domain. Among them are Newton’s 
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second law of motion, D’ Alembert’s principle, principle of virtual displacements and the principle 

of conservation of energy [15]. Particularly, this paper will review the solution procedures to 

develop Fluid Structure Interaction (FSI) algorithm in biomechanics application. Nevertheless, this 

FSI algorithm will be consist of fluid, particle and structure dynamics solvers in a matrix based 

programming platform.  

The review is organised as follows. First, the governing equations are given, treating the 

equations for fluid and structure solver. Next, this followed by the constraints concerning the fluid–

structure coupling and the discretisation that will be used to form FSI algorithm. Lastly, the 

discussion and conclusion about this review on FSI solution method for biomechanics application 

will be explained. 

Governing equations 

Based on the solution of method and technique discussed earlier, biomechanics applications are 

suitable to apply these governing equations and the details are described as follows. 

Fluid solver. First, the governing equations that describe the fluid domain are the 3D, unsteady 

incompressible continuity and Navier–Stokes equations, which in compact tensor notation read as 

follows:  

 = 0                                                     (2.1) 

= − + 	
	

                                                  (2.2) 

where ui are the Cartesian velocity components, p is the pressure divided by the density ρ, and Re is 

the Reynolds number of the flow based on a characteristic length and velocity scale in 

biomechanics application. d/dt is the material derivative defined as: 

	 . = 	 . + 	 .                                       (2.3) 

Structure solver. In this biomechanics application, 3D motions of rigid bodies will be 

considered. Generally, the rigid bodies and the system are assumed elastically mounted and have 

damping respectively. The algorithm is general and can be applied to multiple rigid bodies. For the 

sake of convenience but without loss of generality, however, the FSI formulation for a single rigid 

body will be applied. Under these assumptions, the Newton’s equation of motion that governs the 

motion of the structural components can be formulated in the inertial frame of reference in 

generalized form as follows: 

+ + 	 = 	 +	                                      (2.4) 

where Qi are the components of the unknown Lagrangian vector Q(t) describing the position of the 

structure. For pure translational motion: Qi is the Cartesian position vector (Qi Xi) of the rigid 

body, M is the mass of the object, C is the damping coefficient, K is the spring stiffness coefficient, 

Fi and  are the components of the force F and 	  acting on the rigid body from the 

surrounding fluid and external sources, respectively. The forces that will be exist in biomechanics 

application such as blood and muscle contraction. For pure rotational motion, Q is the vector with 

components the relative angles of the rigid body (Qi Xi), M represents the moment of inertia, and 

Fi and 	are the moment vectors around the rotation axis arising from fluid-induced and external 

forces, respectively.  
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Fluid–structure coupling. The fluid and structural dynamics are coupled together at the fluid-

structure interface Ƭ by the following boundary conditions: 

= =	 	 	Ƭ                                       (2.5) 

Eq. (2.4) comprises a system of second-order ordinary differential equations. Numerically these 

equations are typically solved by first transforming them into a system of first-order ordinary 

differential equations as follows: 

=	                                                     (2.6)  

+	 	 + 	 = 	
	

                                                 (2.7)  

Discretisation. In tackling the issue include the biomechanics application, the fluid and solid 

domain need to be discretised. Thus, finite-element once of the method that will be used for the 

discretisations for the fluid and solid domain corresponding to fluid–structure coupling and the 

contact law. However, discretisation for the fluid and solid domain in biomechanics application will 

be divided into two types; 1) time discretization 2) space discretization. 

Discussion and Conclusion 

Today have seen a countless number of numerical methods developed for the simulation of FSI 

problem in biomechanical application. These developments are due to the demand from a wide 

range of scientific and engineering disciplines. Meanwhile, the fast improvement of computational 

powers has made large-scale FSI simulations possible and has facilitated many realistic applications 

of these numerical techniques. Owing to the multidisciplinary nature of FSI problems especially in 

biomechanical application, in this review, we have emphasized the numerical procedures used by 

various methods to treat the interface conditions between fluids and structures. 

Firstly, we reviewed is based on the basic numerical procedures to solve FSI problems in 

biomechanical application where monolithic and the partitioned approach must to consider. As 

mention earlier, the monolithic approach treats the fluid and structure dynamics in single numerical 

system for the whole problem in biomechanics application. This approach can potentially achieve 

better accuracy for a biomechanics problem, but it may require substantially more resources and 

expertise to develop and maintain such a specialized code. Conversely, the partitioned approach 

treats the fluid and the structure as two computational fields which can be solved separately with 

their respective mesh discretization and numerical algorithm. This approach is to combine available 

disciplinary (i.e., fluidic and structural) algorithms and cut the code development time by taking 

advantage of the numerical algorithms that have been validated and used for solving many 

complicated problems in biomechanics application. As a result, a successful partitioned method can 

be used to solve FSI problem in biomechanical application with sophisticated fluid and structural 

physics. The challenge of this approach is to arrange the disciplinary algorithms to attain correct 

and effective fluid-structure interaction solution with negligible code adjustment [2]. 

Beside that, to solve FSI problem in biomechanical application, we prefer to use non-conforming 

mesh methods rather than conforming mesh methods owning to their simplicity, efficiency and 

flexibility, as well as their capability to handle complex flows and large structural deformations. 

The Arbitrary Lagrangian Eulerian (ALE) method is a combination of the greatest features of the 

Lagrangian and the Eulerian approaches. Therefore, ALE method is the suitable methodologies that 

will be utilized to take care of FSI problem in biomechanics application. The key idea in the ALE 

formulation is the introduction of a computational mesh which can move with a velocity 

independent of the velocity of the materials particles. With this additional freedom with respect to 

the Eulerian and Lagrangian descriptions, the ALE methods succeeds to a certain extend in 

minimizing the problem encountered in the classical kinematical descriptions, while combining at 

the best their respective advantages [7]. 
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As a conclusion, the solution method for FSI algorithm in biomechanical application must 

consists of three major numerical components: 1) the algorithm for solving the governing equations 

in a domain; 2) the iterative strategy for coupling together between the fluid and structural domains; 

and 3) the algorithm for effectively solving the grid connectivity for FSI problem in biomechanical 

application. 
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