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Abstract: Radiation effects on two-dimensional MHD Falkner-Skan boundary layer wedge have 

been studied. Analytical solution of nonlinear boundary-layer equations is obtained by modified 

homotopy perturbation method. It is observed that the magnetic field tends to decelerate fluid flow 

whereas radiations and thermal diffusion tend to increase fluid temperature. 
 

Introduction 

The problems arising from a thermal boundary-layer problem in the case of a two-dimensional 

incompressible flow passing over a wedge have been studied. These types of boundary-layer 

problems are expressed in the form of nonlinear third order partial differential equations, which 

cannot be solved directly in a closed form. These equations were first studied in [1]. The solutions 

for the case of the stream-wise pressure gradient parameter   were first analyzed in [2]. The exact 

solutions of the Falkner–Skan boundary layer flow past a wedge placed symmetrically with respect 

to the flow direction was given in [3] . A finite-difference method for solving the Falkner–Skan 

equation was developed in [4]. Even though Falkner-Skan problem is a century old, it is still a topic 

of active current research. Recently, [5] solved the problem of the Falkner-Skan wedge flow by 

HPM-Pade' method. A new exact solutions ware developed in [6] for  two-dimensional MHD 

Falkner–Skan boundary layer flow over a semi-infinite flat plate in the presence of a uniform 

magnetic field. Töpfer’s algorithm and its extension was employed in [7] to solved Blasius and 

Falkner–Skan models. The main objective of the present investigation is to obtain an explicit analytic 

solution of the momentum and energy equations of MHD Falkner-Skan equation with thermal 

radiation using a new modified version of HPM. Here a new modified version of HPM is considered 

with a new set of auxiliary linear operator for both the velocity and temperature fields.  In a recent 

article, [8] solved the non-Newtonian fluid flow problem for third-grade fluid .They used an 

approach similar to the one shown here; however, just the fully developed flow was analyzed. 
 

Formulation of the problem 

Consider the two-dimensional laminar boundary layer flow of a viscous incompressible electrically 

conducting fluid over a wedge. A constant magnetic field 0B is applied in the y -direction and there is 

no external electric field. The induced magnetic field is neglected under the assumption of small 

magnetic Reynolds number. The temperature of the wall, wT , is uniform and constant and is greater 

than the free stream temperature, T . Assumed that the free stream velocity U , is also uniform and 

constant. Further, assuming that the temperature changes resulting from viscous dissipation are 

small, the continuity equation and the boundary-layer equations may be expressed as: 
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where u  and v  are the velocity components in the x and y -directions respectively,  xU  is the 

reference velocity at the edge of boundary layer and is a function of  ,x   is the fluid density,    is 

the kinematic viscosity,  is the electrical conductivity, pc is the specific heat at constant 

temperature, k is the thermal conductivity of the fluid,T is the temperature in the vicinity of the 

wedge and q is the radiative heat flux. For an optically thick fluid [9] , we can adopt Rosseland 

approximation, for radiative flux vector  q . The radiative flux vector q  under Rosseland 

approximation becomes  
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where  is the Stefan--Boltzmann constant and k  is the mean absorption coefficient. By Taylors' 

series about hT  , 4T  can be written as 
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Bu using Eqs. (4) and (5),  Eq. (3)  becomes 

.
3

16
2

2

23

























































y

u

y

T

k

T
k

y

T
v

x

T
uc h

p 


               (6) 

The boundary conditions are as follows 
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where U  is the mean stream velocity, L  is the length of the wedge, m is the Falkner-Skan power-

law parameter, and x  is measured from the tip of the wedge. Introducing the stream function  yx,  
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and similarity variable: 
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The resulting similarity equations from Eqs. (2) and (6) are 
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The boundary condition (7)  now give 

.at      0    and   1

,0at   1   and   0















d

df

d

d

d

df
f

                 (12) 

where M is the magnetic parameter, Re is the Reynolds number, Pr is the Prandtl number, Ec is the 

Eckert number and Rd  is the radiation parameter. 



 

New modified Homotopy perturbation solutions 

In this section, we will apply a new modified version of HPM to a nonlinear ordinary differential 

equation Eqs. (10) and (11). We introduce new set of auxiliary linear operator for a better accuracy 

We choose a new set of the auxiliary linear operators fL  and L  in the form given below 
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We choose the auxiliary function  qfH ,  and  qH ,  in the form: 
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Consider  
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substituting f and   from Eqs. (17) and (18) into Eqs. (15) and (16) and some simplification and 

rearranging based on powers of  q  -terms, we have: 
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Using Maple symbolic code, the solutions of Eqs. (19)-(24) is 
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Substitution of Eqs. (25)-(30) into Eqs. (17) and (18) yields the second-order approximate solution 

for Eqs. (10) and (11): 

 

Analysis of results 

In order to see the physical insight of the considered problem, the influence of emerging parameters 

on the dimensionless velocity component and temperature are analyzed in this section. Figs. 1 and 2 

demonstrate the influence of magnetic field on velocity component for the case of favourable 

pressure gradient (Fig. 1) and for the adverse pressure gradient (Fig 2). It is revealed from both Figs. 

1 and 2 that velocity component  decreases on increasing magnetic parameter M  in the boundary 

layer region. This implies that magnetic field decelerates fluid velocity. This is due to fact that the 

application of magnetic field to an electrically conducting fluid gives rise to resistive force which is 

known as Lorentz force. This force has tendency to decelerate fluid flow in the boundary layer 

region. It is noted that, the velocity component is more pronounce for the case of adverse pressure 

gradient. Fig. 3 demonstrates the effects of radiation on fluid temperature. It is observed from Fig. 3 

that fluid temperature   increases on increasing radiation parameter Rd  in the boundary layer region 

which implies that radiation tends to enhance fluid temperature for infinite wedge flow. Fig. 4 

illustrates the influence of Prandtl number Pr  on fluid temperature. It is noticed from Fig. 4 that fluid 

temperature   decreases on increasing Pr  in the boundary layer region. Since Pr  signifies the 

relative effects of viscosity to thermal conductivity. This implies that thermal diffusion tends to 

increase fluid temperature for infinite wedge flow. 

 

 

Fig. 1 Effects of M  on 
d

df
 for the favourable 

pressure gradient ( 0 ). 

 

Fig. 2 Effects of M  on 
d

df
 for the adverse 

pressure gradient ( 0 ). 
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Fig. 3 Effects of Rd  on   for the favourable pressure 

gradient ( 0 ) when ,3.0Re Ec  5.0,1Pr  M  

and 1  are fixed.  

 
Fig. 4 Effects of Pr  on   for the favourable 

pressure gradient ( 0 ) when ,3.0Re Ec  

5.0,5.0  MRd  and 1  are fixed. 

 

Conclusions 

The flow and heat transfer arising from a thermal boundary-layer problem in the case of a two-

dimensional incompressible flow passing over a wedge have been studied. The nonlinear analysis is 

computed and results for velocity and temperature distributions are obtained using a new modified 

homotopy perturbation method. The results show that magnetic field tends to decelerate fluid flow 

while thermal diffusion and radiation tends to enhance fluid temperature 
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