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A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to
obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal
control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences
between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are
integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation
problem to establish amatching scheme. During the calculation procedure, the iterative solution is updated in order to approximate
the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater
treatment problem is studied and the results show the efficiency of the approach proposed.

1. Introduction

Many real world problems can be formulated as the stochastic
dynamical systems [1–3]. In presence of the random noises,
the exact state trajectory is impossible to be obtained. The
output sequence, which ismeasured from the process plant, is
also disturbed unavoidably. Since the fluctuation behavior of
the output sequence would be the actual outcome, obtaining
such outcome from a mathematical model is a challenging
task. In stochastic system, estimation, identification, and
adaptive control are the general techniques [4]. Particularly,
the Kalman filtering theory and the extended Kalman filter
give a great impact in studying stochastic systems, both for
linear and nonlinear cases [5–8]. The data-driven method
that could be applied in the fault diagnosis provides an
efficient identification approach for stochastic systems. Using
the process data to identify the parameters without knowing
the actual processmodel is one of the advantages inmodeling
stochastic systems [9]. In addition, the stochastic switching
systems, subject to random abrupt changes in their dynamics,

attract the researchers to design,model, control, and optimize
the stochastic systems [10, 11].

The use of stochastic systems, therefore, plays the impor-
tant role in the real world applications. The development of
solution methods and the corresponding practical analysis
are contributed to the stochastic research communities,
ranging from engineering to business. From the literature,
the applications of stochastic system have been well defined;
see, for example, power management [12], portfolio selec-
tion [13], financial market debt crises [14], insurance with
bankruptcy return [15], annuity contracts [16], natural gas
networks [17], brain-machine interface operation [18], multi-
degree-of-freedom systems [19], fleet composition problem
[20], fault diagnosis [21], network control system [22], and
stochastic switching system [23–25].

In this paper, we propose a computational approach for
optimal control of the nonlinear stochastic dynamical system
in discrete time. Our aim is to obtain the optimal output
solution of the original optimal control problem from a
mathematical model. In doing so, a model-based optimal
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control problem is simplified from the original optimal
control problem. Furthermore, the adjusted parameters are
introduced into the model used. In this way, the differences
between the real systemand themodel used can be computed.
Thus, system optimization and parameter estimation are
integrated interactively. On the other hand, the output, which
is measured from the real plant, is fed back into the param-
eter estimation problem. This operation is implemented to
establish a matching scheme, in turn, updating the optimal
solution of the model used at each iteration step. Notice that
the application of this operation, which is the advantage of
the algorithm proposed, is in contrast to the works discussed
in [26–28], where the real output is fed back into the system
optimization problem. When convergence is achieved, the
iterative solution approximates to the true optimal solution of
the original optimal control problem, in spite ofmodel-reality
differences. Hence, the efficiency of the approach proposed is
highly recommended.

The rest of the paper is organized as follows. In Section 2,
a discrete time nonlinear stochastic optimal control problem
is described and the corresponding model-based optimal
control problem is simplified. In Section 3, an expanded
optimal control model, which integrates system optimization
and parameter estimation interactively, is introduced. Then,
the iterative algorithm based on principle of model-reality
differences is derived, and the computation procedure is sum-
marized. In Section 4, a convergence analysis is provided. In
Section 5, an example of the optimal control of a wastewater
treatment problem is illustrated. Finally, some concluding
remarks are made.

2. Problem Statement

Consider the following discrete time nonlinear stochastic
optimal control problem:

min
𝑢(𝑘)

𝐽
0
(𝑢)

= 𝐸[𝜑 (𝑥 (𝑁) ,𝑁) +

𝑘−1

∑

𝑘=0

𝐿 (𝑥 (𝑘) , 𝑢 (𝑘) , 𝑘)]

subject to 𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑢 (𝑘) , 𝑘) + 𝐺𝜔 (𝑘) ,

𝑦 (𝑘) = ℎ (𝑥 (𝑘) , 𝑘) + 𝜂 (𝑘) ,

(1)

where 𝑢(𝑘) ∈ R𝑚, 𝑘 = 0, 1, . . . , 𝑁 − 1, 𝑥(𝑘) ∈ R𝑛, 𝑘 = 0, 1,

. . . , 𝑁, and 𝑦(𝑘) ∈ R𝑝, 𝑘 = 0, 1, . . . , 𝑁, are, respectively,
the control sequence, the state sequence, and the output
sequence. 𝜔(𝑘) ∈ R𝑞, 𝑘 = 0, 1, . . . , 𝑁 − 1, and 𝜂(𝑘) ∈ R𝑝, 𝑘 =

0, 1, . . . , 𝑁, are the stationary Gaussian white noise sequences
with zeromean and their covariances are given by𝑄

𝜔
∈ R𝑞×𝑞

and 𝑅
𝜂

∈ R𝑝×𝑝, which are positive definite matrices. 𝐺 ∈

R𝑛×𝑞 is a process coefficient matrix, 𝑓 : R𝑛 ×R𝑚 ×R → R𝑛

represents the real plant, and ℎ : R𝑛 × R → R𝑝 is the
output measurement. 𝐽

0
is the scalar cost function and 𝐸[⋅]

is the expectation operator, whereas 𝜑 : R𝑛 × R → R
is the terminal cost and 𝐿 : R𝑛 × R𝑚 × R → R is the
cost under summation. It is assumed that all functions in (1)

are continuously differentiablewith respect to their respective
arguments.

The initial state is

𝑥 (0) = 𝑥
0
, (2)

where 𝑥
0
∈ R𝑛 is a random vector with mean and covariance

given, respectively, by

𝐸 [𝑥
0
] = 𝑥
0
,

𝐸 [(𝑥
0
− 𝑥
0
) (𝑥
0
− 𝑥
0
)
T
] = 𝑀

0
.

(3)

Here, 𝑀
0
∈ R𝑛×𝑛 is a positive definite matrix. It is assumed

that initial state, process noise, and measurement noise are
statistically independent.

This problem is referred to as Problem (𝑃).
Because of the complexity in the structure of the real plant

and the presence of the random sequences, the exact solution
of Problem (𝑃) is impossible to be obtained. Moreover,
applying the nonlinear filtering theory to estimate the state
dynamics is computationally demanding. In view of these, we
propose a simplified model-based optimal control problem,
which is constructed by carrying out the linearization of
Problem (𝑃), in order to approximate the correct optimal
solution of the original optimal control problem iteratively.
This simplified model-based optimal control problem, which
is referred to as Problem (𝑀), is given by

min
𝑢(𝑘)

𝐽
1
(𝑢) =

1

2
𝑥 (𝑁)

T
𝑆 (𝑁) 𝑥 (𝑁) + 𝛾 (𝑁)

+

𝑁−1

∑

𝑘=0

1

2
(𝑥 (𝑘)

T
𝑄𝑥 (𝑘) + 𝑢 (𝑘)

T
𝑅𝑢 (𝑘))

+ 𝛾 (𝑘)

subject to 𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝛼
1
(𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝛼
2
(𝑘) ,

𝑥 (0) = 𝑥
0
,

(4)

where 𝑥(𝑘) ∈ R𝑛, 𝑘 = 0, 1, . . . , 𝑁, and 𝑦(𝑘) ∈ R𝑝, 𝑘 =

0, 1, . . . , 𝑁, are the expected state sequence and the expected
output sequence, respectively. 𝛼

1
(𝑘) ∈ R𝑛, 𝑘 = 0, 1, . . . , 𝑁 −

1, 𝛼
2
(𝑘) ∈ R𝑝, 𝑘 = 0, 1, . . . , 𝑁, and 𝛾(𝑘) ∈ R, 𝑘 =

0, 1, . . . , 𝑁, are adjustable parameters. 𝐴 ∈ R𝑛×𝑛 is a state
transition matrix, 𝐵 ∈ R𝑛×𝑚 is a control coefficient matrix,
and 𝐶 ∈ R𝑝×𝑛 is an output coefficient matrix, while 𝑆(𝑁) ∈

R𝑛×𝑛 and 𝑄 ∈ R𝑛×𝑛 are positive semidefinite matrices and
𝑅 ∈ R𝑚×𝑚 is a positive definite matrix.

Notice that, without the adjustable parameters, Problem
(𝑀) is a standard linear quadratic regulator (LQR) optimal
control problem. Solving this problem will not give us the
optimal solution of the original optimal control problem.
However, by adding the adjustable parameters into themodel
used, the differences between the real system and the model
used can be computed such that system optimization and
parameter estimation are integrated interactively.
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3. System Optimization with
Parameter Estimation

Now, let us introduce an expanded optimal control problem,
which is referred to as Problem (𝐸), given as follows:

min
𝑢(𝑘)

𝐽
2
(𝑢) =

1

2
𝑥 (𝑁)

T
𝑆 (𝑁) 𝑥 (𝑁) + 𝛾 (𝑁)

+

𝑁−1

∑

𝑘=0

1

2
(𝑥 (𝑘)

T
𝑄𝑥 (𝑘) + 𝑢 (𝑘)

T
𝑅𝑢 (𝑘))

+ 𝛾 (𝑘) +
1

2
𝑟
1
‖𝑢 (𝑘) − V (𝑘)‖2

+
1

2
𝑟
2
‖𝑥 (𝑘) − 𝑧 (𝑘)‖

2

subject to 𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝛼
1
(𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝛼
2
(𝑘) ,

𝑥 (0) = 𝑥
0
,

1

2
𝑧 (𝑁)

T
𝑆 (𝑁) 𝑧 (𝑁) + 𝛾 (𝑁) = 𝜑 (𝑧 (𝑁) ,𝑁) ,

1

2
(𝑧 (𝑘)

T
𝑄𝑧 (𝑘) + V (𝑘)T 𝑅V (𝑘)) + 𝛾 (𝑘)

= 𝐿 (𝑧 (𝑘) , V (𝑘) , 𝑘) ,

𝐴𝑧 (𝑘) + 𝐵V (𝑘) + 𝛼
1
(𝑘) = 𝑓 (𝑧 (𝑘) , V (𝑘) , 𝑘) ,

𝐶𝑧 (𝑘) + 𝛼
2
(𝑘) = 𝑦 (𝑘) ,

V (𝑘) = 𝑢 (𝑘) ,

𝑧 (𝑘) = 𝑥 (𝑘) ,

(5)

where V(𝑘) ∈ R𝑚, 𝑘 = 0, 1, . . . , 𝑁 − 1, and 𝑧(𝑘) ∈ R𝑛, 𝑘 =

0, 1, . . . , 𝑁, are introduced to separate the control and the
expected state from the respective signals in the parameter
estimation problem and ‖ ⋅ ‖ denotes the usual Euclidean
norm. The terms (1/2)𝑟

1
‖𝑢(𝑘) − V(𝑘)‖2 and (1/2)𝑟

2
‖𝑥(𝑘) −

𝑧(𝑘)‖
2 are introduced to improve convexity and enhance con-

vergence of the resulting iterative algorithm. It is important
to note that the algorithm is to be designed such that the
constraints V(𝑘) = 𝑢(𝑘) and 𝑧(𝑘) = 𝑥(𝑘) will be satisfied at
the end of the iterations. In this situation, the state estimate
𝑧(𝑘) and the control V(𝑘) will be used for the computation
in the parameter estimation and the matching schemes. On
the other hand, the corresponding expected state 𝑥(𝑘) and
control 𝑢(𝑘) will be reserved for optimizing the model-based
optimal control problem.

It is important to note that the output measured from
the real plant is fed back into the parameter estimation
problem and the matching scheme, which aims at updating
the model output from the model-based optimal control
problem repeatedly. On this basis, the output residual could
be reduced such that the model output approximates closely
to the real output, in spite of model-reality differences. This

improvement enhances the accuracy of the output solution as
discussed in [26–28].

3.1. Optimality Conditions. Define the Hamiltonian function
for Problem (𝐸) as follows [28–30]:

𝐻(𝑘) =
1

2
(𝑥 (𝑘)

T
𝑄𝑥 (𝑘) + 𝑢 (𝑘)

T
𝑅𝑢 (𝑘)) + 𝛾 (𝑘)

+
1

2
𝑟
1
‖𝑢 (𝑘) − V (𝑘)‖2 +

1

2
𝑟
2
‖𝑥 (𝑘) − 𝑧 (𝑘)‖

2

− 𝜆 (𝑘)
T
𝑢 (𝑘) − 𝛽 (𝑘)

T
𝑥 (𝑘)

+ 𝑞 (𝑘)
T
(𝐶𝑥 (𝑘) + 𝛼

2
(𝑘) − 𝑦 (𝑘))

+ 𝑝 (𝑘 + 1)
T
(𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝛼

1
(𝑘)) .

(6)

Then, the augmented cost function becomes

𝐽
󸀠

2
(𝑘) =

1

2
𝑥 (𝑁)

T
𝑆 (𝑁) 𝑥 (𝑁) + 𝛾 (𝑁)

+ 𝑝 (0)
T
𝑥 (0) − 𝑝 (𝑁)

T
𝑥 (𝑁) + 𝜉 (𝑁)

× (𝜑 (𝑧 (𝑁) ,𝑁) −
1

2
𝑧 (𝑁)

T
𝑆 (𝑁) 𝑧 (𝑁) − 𝛾 (𝑁))

+ Γ
T
(𝑥 (𝑁) − 𝑧 (𝑁))

+

𝑁−1

∑

𝑘=0

𝐻(𝑘) − 𝑝 (𝑘)
T
𝑥 (𝑘)+ 𝜆 (𝑘)

T V (𝑘)+ 𝛽 (𝑘)
T
𝑧 (𝑘)

+ 𝜉 (𝑘) (𝐿 (𝑧 (𝑘) , V (𝑘) , 𝑘)

−
1

2
(𝑧 (𝑘)

T
𝑄𝑧 (𝑘) + V (𝑘)T 𝑅V (𝑘))

−𝛾 (𝑘))

+ 𝜇 (𝑘)
T
(𝑓 (𝑧 (𝑘) , V (𝑘) , 𝑘) − 𝐴𝑧 (𝑘)

−𝐵V (𝑘) − 𝛼
1
(𝑘))

+ 𝜋 (𝑘)
T
(𝑦 (𝑘) − 𝐶𝑧 (𝑘) − 𝛼

2
(𝑘)) ,

(7)

where 𝑝(𝑘), 𝑞(𝑘), 𝜉(𝑘), 𝜇(𝑘), 𝜋(𝑘), Γ, 𝜆(𝑘), and 𝛽(𝑘) are the
appropriate multipliers to be determined later.

Applying the calculus of variation [26, 27, 29–31] to (7),
the following necessary optimality conditions are obtained.

(a) Stationary condition:

𝑅𝑢 (𝑘) + 𝐵
T
𝑝 (𝑘 + 1) − 𝜆 (𝑘) − 𝑟

1
(V (𝑘) − 𝑢 (𝑘)) = 0. (8a)

(b) Costate equation:

𝑝 (𝑘) = 𝑄𝑥 (𝑘) + 𝐴
T
𝑝 (𝑘 + 1) − 𝛽 (𝑘) − 𝑟

2
(𝑧 (𝑘) − 𝑥 (𝑘)) .

(8b)
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(c) State equation:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝛼
1
(𝑘) (8c)

with the boundary conditions 𝑥(0) = 𝑥
0
and 𝑝(𝑁) =

Γ.

(d) Adjustable parameter equations:

𝜑 (𝑧 (𝑁) ,𝑁) =
1

2
𝑧 (𝑁)

T
𝑆 (𝑁) 𝑧 (𝑁) + 𝛾 (𝑁) , (9a)

𝐿 (𝑧 (𝑘) , V (𝑘) , 𝑘)

=
1

2
(𝑧 (𝑘)

T
𝑄𝑧 (𝑘) + V (𝑘)T 𝑅V (𝑘)) + 𝛾 (𝑘) ,

(9b)

𝑓 (𝑧 (𝑘) , V (𝑘) , 𝑘) = 𝐴𝑧 (𝑘) + 𝐵V (𝑘) + 𝛼
1
(𝑘) , (9c)

𝑦 (𝑘) = 𝐶𝑧 (𝑘) + 𝛼
2
(𝑘) . (9d)

(e) Multiplier equations:

Γ = ∇
𝑧(𝑘)

𝜑 − 𝑆 (𝑁) 𝑧 (𝑁) , (10a)

𝜆 (𝑘) = − (∇V(𝑘)𝐿 − 𝑅V (𝑘)) − (
𝜕𝑓

𝜕V (𝑘)
− 𝐵)

T
𝑝 (𝑘 + 1) ,

(10b)

𝛽 (𝑘) = − (∇
𝑧(𝑘)

𝐿 − 𝑄𝑧 (𝑘)) − (
𝜕𝑓

𝜕𝑧 (𝑘)
− 𝐴)

T
𝑝 (𝑘 + 1)

(10c)

with 𝜉(𝑘) = 1, 𝜇(𝑘) = 𝑝(𝑘 + 1), and 𝜋(𝑘) = 𝑞(𝑘) = 0.

(f) Separable variables:

V (𝑘) = 𝑢 (𝑘) , 𝑧 (𝑘) = 𝑥 (𝑘) , 𝑝 (𝑘) = 𝑝 (𝑘) . (11)

In view of these necessary optimality conditions, condi-
tions (8a), (8b), and (8c) are the necessary conditions for the
modified model-based optimal control problem, conditions
(9a), (9b), (9c), and (9d) define the parameter estimation
problem, and conditions (10a), (10b), and (10c) are used to
compute the multipliers.

3.2. Feedback Control Law. Taking the necessary optimality
conditions (8a), (8b), and (8c), the modified model-based

optimal control problem, which is referred to as Problem
(𝑀𝑀), is defined as follows:

min
𝑢(𝑘)

𝐽
3
(𝑢) =

1

2
𝑥 (𝑁)

T
𝑆 (𝑁) 𝑥 (𝑁) + 𝛾 (𝑁) + Γ

T
𝑥 (𝑁)

+

𝑁−1

∑

𝑘=0

1

2
(𝑥 (𝑘)

T
𝑄𝑥 (𝑘) + 𝑢 (𝑘)

T
𝑅𝑢 (𝑘))

+ 𝛾 (𝑘) +
1

2
𝑟
1
‖𝑢 (𝑘) − V (𝑘)‖2

+
1

2
𝑟
2
‖𝑥 (𝑘) − 𝑧 (𝑘)‖

2

− 𝜆 (𝑘)
T
𝑢 (𝑘) − 𝛽 (𝑘)

T
𝑥 (𝑘)

subject to 𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝛼
1
(𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝛼
2
(𝑘) ,

𝑥 (0) = 𝑥
0
.

(12)

To solve Problem (𝑀𝑀), we will construct a feedback
control law, which includes the model-reality differences for
system optimization.Hence, with the determined value of the
adjustable parameters, the corresponding result is stated in
the following theorem.

Theorem 1 (expanded optimal control law). Suppose that the
expanded optimal control law for Problem (𝐸) exists.Then, this
optimal control law is the feedback control law for Problem
(𝑀𝑀) given by

𝑢 (𝑘) = −𝐾 (𝑘) 𝑥 (𝑘) + 𝑢
𝑓𝑓

(𝑘) , (13)

where

𝑢
𝑓𝑓

(𝑘) = − (𝑅
𝑎
+ 𝐵

T
𝑆 (𝑘 + 1) 𝐵)

−1

× (𝐵
T
𝑠 (𝑘 + 1) + 𝐵

T
𝑆 (𝑘 + 1) 𝛼

1
(𝑘) − 𝜆

𝑎
(𝑘)) ,

(14a)

𝐾 (𝑘) = (𝑅
𝑎
+ 𝐵

T
𝑆 (𝑘 + 1) 𝐵)

−1

𝐵
T
𝑆 (𝑘 + 1)𝐴, (14b)

𝑆 (𝑘) = 𝑄
𝑎
+ 𝐴

T
𝑆 (𝑘 + 1) (𝐴 − 𝐵𝐾 (𝑘)) , (14c)

𝑠 (𝑘) = (𝐴 − 𝐵𝐾 (𝑘))
T
(𝑠 (𝑘 + 1) + 𝑆 (𝑘 + 1) 𝛼

1
(𝑘))

+ 𝐾 (𝑘)
T
𝜆
𝑎
(𝑘) − 𝛽

𝑎
(𝑘)

(14d)

with the boundary conditions 𝑆(𝑁) given and 𝑠(𝑁) = 0, and

𝑅
𝑎
= 𝑅 + 𝑟

1
𝐼
𝑚
; 𝑄

𝑎
= 𝑄 + 𝑟

2
𝐼
𝑛
;

𝜆
𝑎
(𝑘) = 𝜆 (𝑘) + 𝑟

1
V (𝑘) ; 𝛽

𝑎
(𝑘) = 𝛽 (𝑘) + 𝑟

2
𝑧 (𝑘) .

(15)

Proof. From (8a), the stationary condition can be rearranged
by

𝑅
𝑎
𝑢 (𝑘) = −𝐵

T
𝑝 (𝑘 + 1) + 𝜆

𝑎
(𝑘) . (16)
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Applying the sweep method [28, 30, 31], that is,

𝑝 (𝑘) = 𝑆 (𝑘) 𝑥 (𝑘) + 𝑠 (𝑘) , (17)

substitute (17) for 𝑘 = 𝑘 + 1 into (16) to yield

𝑅
𝑎
𝑢 (𝑘) = −𝐵

T
𝑆 (𝑘 + 1) 𝑥 (𝑘 + 1) − 𝐵

T
𝑠 (𝑘 + 1) + 𝜆

𝑎
(𝑘) .

(18)

Then, consider the state equation (8c) in (18). After some
algebraic manipulations, the feedback control law (13) is
obtained, where (14a) and (14b) are satisfied.

From (8b), the costate equation is rewritten as follows
after substituting (17) for 𝑘 = 𝑘 + 1 into (8b):

𝑝 (𝑘) = 𝑄
𝑎
𝑥 (𝑘) + 𝐴

T
𝑆 (𝑘 + 1) 𝑥 (𝑘 + 1)

+ 𝐴
T
𝑠 (𝑘 + 1) − 𝛽

𝑎
(𝑘) .

(19)

Considering the state equation (8c) in (19), we have

𝑝 (𝑘) = 𝑄
𝑎
𝑥 (𝑘) + 𝐴

T
𝑆 (𝑘 + 1) (𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝛼

1
(𝑘))

+ 𝐴
T
𝑠 (𝑘 + 1) − 𝛽

𝑎
(𝑘) .

(20)

Use the feedback control law (13) in (20), and, doing some
algebraic manipulations by considering (14a) and (14b), it is
found that (14c) and (14d) are satisfied after comparing the
manipulation result to (17). This completes the proof.

Taking (13) in (8c), the state equation becomes

𝑥 (𝑘 + 1) = (𝐴 − 𝐵𝐾 (𝑘)) 𝑥 (𝑘) + 𝐵𝑢
𝑓𝑓

(𝑘) + 𝛼
1
(𝑘) (21)

and the output is measured from

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝛼
2
(𝑘) . (22)

3.3. Adjustable Parameters andMultipliers. Now,we apply the
separable variables given in (11) for solving the parameter
estimation problem as defined in (9a), (9b), (9c), and (9d).
Our aim is to establish the matching scheme, where the
differences between the real system and the model used are
taken into account. Consequently, the adjusted parameters,
which are resulting from parameter estimation problem
defined in (9a), (9b), (9c), and (9d), are calculated from

𝛼
1
(𝑘) = 𝑓 (𝑧 (𝑘) , V (𝑘) , 𝑘) − 𝐴𝑧 (𝑘) − 𝐵V (𝑘) , (23a)

𝛼
2
(𝑘) = 𝑦 (𝑘) − 𝐶𝑧 (𝑘) , (23b)

𝛾 (𝑁) = 𝜑 (𝑧 (𝑁) ,𝑁) −
1

2
𝑧 (𝑁)

T
𝑆 (𝑁) 𝑧 (𝑁) , (23c)

𝛾 (𝑘) = 𝐿 (𝑧 (𝑘) , V (𝑘) , 𝑘) −
1

2
(𝑧 (𝑘)

T
𝑄𝑧 (𝑘) + V (𝑘)T 𝑅V (𝑘)) .

(23d)

The multipliers, which are related to the Jacobian matrix
of the functions 𝑓 and 𝐿 with respect to V(𝑘) and 𝑧(𝑘), are
computed from

Γ = ∇
𝑧(𝑘)

𝜑 − 𝑆 (𝑁) 𝑧 (𝑁) , (24a)

𝜆 (𝑘) = − (∇V(𝑘)𝐿 − 𝑅V (𝑘)) − (
𝜕𝑓

𝜕V (𝑘)
− 𝐵)

T
𝑝 (𝑘 + 1) ,

(24b)

𝛽 (𝑘) = − (∇
𝑧(𝑘)

𝐿 − 𝑄𝑧 (𝑘)) − (
𝜕𝑓

𝜕𝑧 (𝑘)
− 𝐴)

T
𝑝 (𝑘 + 1) .

(24c)

3.4. Iterative Algorithm. From the discussion above, the
resulting algorithm, which is an iterative algorithm, is sum-
marized below.

Iterative Algorithm

Data. Consider 𝐴, 𝐵, 𝐶, 𝐺, 𝑄, 𝑅, 𝑄
𝜔
, 𝑅
𝜂
, 𝑆(𝑁),𝑀

0
, 𝑥
0
,𝑁, 𝑟
1
,

𝑟
2
, 𝑘V, 𝑘𝑧, 𝑘𝑝, 𝑓, 𝐿, ℎ, and 𝜑. Note that𝐴 and 𝐵may be chosen

through the linearization of 𝑓, and 𝐶 is obtained from the
linearization of ℎ.

Step 0. Compute a nominal solution. Assume 𝛼
1
(𝑘) = 0, 𝑘 =

0, 1, . . . , 𝑁 − 1, 𝛼
2
(𝑘) = 0, 𝛾(𝑘) = 0, 𝑘 = 0, 1, . . . , 𝑁, and 𝑟

1
=

𝑟
2
= 0. Solve Problem (𝑀) defined by (4) to obtain 𝑢(𝑘)

0, 𝑘 =

0, 1, . . . , 𝑁 − 1, and 𝑥(𝑘)
0

, 𝑦(𝑘)
0

, 𝑝(𝑘)
0, 𝑘 = 0, 1, . . . , 𝑁. Then,

with 𝛼
1
(𝑘) = 0, 𝑘 = 0, 1, . . . , 𝑁 − 1, 𝛼

2
(𝑘) = 0, 𝛾(𝑘) = 0, 𝑘 =

0, 1, . . . , 𝑁, and 𝑟
1
, 𝑟
2
from data, compute𝐾(𝑘) and 𝑆(𝑘) from

(14b) and (14c), respectively. Set 𝑖 = 0, V(𝑘)0 = 𝑢(𝑘)
0, 𝑧(𝑘)0 =

𝑥(𝑘)
0, and 𝑝(𝑘)

0

= 𝑝(𝑘)
0.

Step 1. Compute the adjustable parameter 𝛼
1
(𝑘)
𝑖, 𝑘 =

0, 1, . . . , 𝑁 − 1, 𝛼
2
(𝑘)
𝑖, and 𝛾(𝑘)

𝑖, 𝑘 = 0, 1, . . . , 𝑁, from
(23a), (23b), (23c), and (23d). This is called the parameter
estimation step.

Step 2. Compute the modifiers Γ
𝑖, 𝜆(𝑘)𝑖, and 𝛽(𝑘)

𝑖, 𝑘 =

0, 1, . . . , 𝑁 − 1, from (24a), (24b), and (24c). This requires
the partial derivatives of 𝑓, ℎ, and 𝐿 with respect to V(𝑘)𝑖 and
𝑧(𝑘)
𝑖.

Step 3. With the determined 𝛼
1
(𝑘)
𝑖, 𝛼
2
(𝑘)
𝑖, 𝛾(𝑘)𝑖, Γ𝑖, 𝜆(𝑘)𝑖,

𝛽(𝑘)
𝑖, V(𝑘)𝑖, and 𝑧(𝑘)

𝑖, solve Problem (𝑀𝑀) defined by (12)
using the result as given in Theorem 1. This is called the
system optimization step.

(3.1) Solve (14d) backward to obtain 𝑠(𝑘)
𝑖

, 𝑘 = 0, 1, . . . , 𝑁,
and solve (14a), either backward or forward, to obtain
𝑢
𝑓𝑓
(𝑘)
𝑖

, 𝑘 = 0, 1, . . . , 𝑁 − 1.

(3.2) Use (13) to obtain the new control 𝑢(𝑘)
𝑖

, 𝑘 =

0, 1, . . . , 𝑁 − 1.
(3.3) Use (21) to obtain the new state 𝑥(𝑘)𝑖, 𝑘 = 0, 1, . . . , 𝑁.
(3.4) Use (17) to obtain the new costate 𝑝(𝑘)

𝑖

, 𝑘 =

0, 1, . . . , 𝑁.
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(3.5) Use (22) to obtain the new output 𝑦(𝑘)
𝑖

, 𝑘 =

0, 1, . . . , 𝑁.

Step 4. Test the convergence and update the optimal solution
of Problem (𝑃). In order to provide a mechanism for regulat-
ing convergence, a simple relaxation method is employed:

V (𝑘)𝑖+1 = V (𝑘)𝑖 + 𝑘V (𝑢 (𝑘)
𝑖

− V (𝑘)𝑖) , (25a)

𝑧 (𝑘)
𝑖+1

= 𝑧 (𝑘)
𝑖

+ 𝑘
𝑧
(𝑥 (𝑘)

𝑖

− 𝑧 (𝑘)
𝑖

) , (25b)

𝑝 (𝑘)
𝑖+1

= 𝑝 (𝑘)
𝑖

+ 𝑘
𝑝
(𝑝 (𝑘)

𝑖

− 𝑝 (𝑘)
𝑖

) , (25c)

where 𝑘V, 𝑘𝑧, 𝑘𝑝 ∈ (0, 1] are scalar gains. If V(𝑘)𝑖+1 = V(𝑘)𝑖,
𝑘 = 0, 1, . . . , 𝑁−1, and 𝑧(𝑘)𝑖+1 = 𝑧(𝑘)

𝑖, 𝑘 = 0, 1, . . . , 𝑁, within
a given tolerance, stop; else set 𝑖 = 𝑖 + 1 and repeat from Steps
1–4.

Remarks

(a) The offline computation is done, as stated in Step 0,
to calculate 𝐾(𝑘), 𝑘 = 0, 1, . . . , 𝑁 − 1, and 𝑆(𝑘), 𝑘 =

0, 1, . . . , 𝑁, for the control law design. Then, these
parameters are used for solving Problem (𝑀) in Step 0
and for solving Problem (𝑀𝑀) in Step 3, respectively.

(b) The variables 𝛼
1
(𝑘)
𝑖, 𝛼
2
(𝑘)
𝑖, 𝛾(𝑘)𝑖, Γ𝑖, 𝜆(𝑘)𝑖, 𝛽(𝑘)𝑖, and

𝑠(𝑘)
𝑖 are zero in Step 0.Their calculated values, 𝛼

1
(𝑘)
𝑖,

𝛼
2
(𝑘)
𝑖, and 𝛾(𝑘)𝑖in Step 1, Γ𝑖, 𝜆(𝑘)𝑖, and 𝛽(𝑘)𝑖 in Step 2,

and 𝑠(𝑘)
𝑖 in Step 3, change from iteration to iteration.

(c) The driving input 𝑢
𝑓𝑓
(𝑘) in (14a) corrects the differ-

ences between the real plant and the model used, and
it also drives the controller given in (13).

(d) Problem (𝑃) does not need to be linear or to have a
quadratic cost function.

(e) The conditions V(𝑘)𝑖 = V(𝑘)𝑖+1 and 𝑧(𝑘)
𝑖

= 𝑧(𝑘)
𝑖+1

are required to be satisfied for the converged optimal
control sequence and the converged state estimate
sequence. The following averaged 2 norms are com-
puted and then they are compared with a given
tolerance to verify the convergence of V(𝑘) and 𝑧(𝑘):

󵄩󵄩󵄩󵄩󵄩
V𝑖+1 − V𝑖

󵄩󵄩󵄩󵄩󵄩2
= (

1

𝑁 − 1

𝑁−1

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
V (𝑘)𝑖+1 − V (𝑘)𝑖

󵄩󵄩󵄩󵄩󵄩
)

1/2

, (26a)

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑖+1

− 𝑧
𝑖
󵄩󵄩󵄩󵄩󵄩2

= (
1

𝑁

𝑁

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑧 (𝑘)
𝑖+1

− 𝑧 (𝑘)
𝑖
󵄩󵄩󵄩󵄩󵄩
)

1/2

. (26b)

(f) The relaxation scalars (𝑘V, 𝑘𝑧, 𝑘𝑝) are the step sizes in
the regulating convergence mechanism. They could
be normally chosen as a certain value in (0, 1] but
this choice may not result in the optimal number of
iterations. It is important to note that the optimal
choice of 𝑘V, 𝑘𝑧, 𝑘𝑝 ∈ (0, 1] is problem dependent. It is
required to run the algorithm (from Steps 1–4) several
times. They are initially chosen as 𝑘V = 𝑘

𝑧
= 𝑘
𝑝
= 1

for first run of the algorithm (from Step 1 to Step 4),
and then the algorithm is run with different values
chosen from 0.1 to 0.9. The value which provides the
optimal number of iterations can then be determined.
The parameters 𝑟

1
and 𝑟
2
are to enhance the convexity

so as to improve the convergence of the algorithm.

4. Convergence Analysis

In this section, we aim to provide a convergence analysis
for the proposed computation procedure. The following
assumptions are needed.

Assumption 1. (a) The derivatives of 𝑓, 𝐿, and ℎ exist; (b) the
solution (𝑢

∗

, 𝑥
∗

) is the exact optimal expected solution to
Problem (𝑃) with the optimal real output solution 𝑦

∗.
The convergence property of the approximated solution

to the true optimal solution is addressed in the following
theorem.

Theorem 2. Let (𝑢𝑐, 𝑥𝑐) be the converged solution to Problem
(𝑀). Then, there exist a converged output sequence 𝑦𝑐 and a
sequence of {𝑦∗}, which is the original output sequence, such
that

𝑦
𝑐

󳨀→ 𝑦
∗

𝑎𝑠 (𝑢
𝑐

, 𝑥
𝑐

) 󳨀→ (𝑢
∗

, 𝑥
∗

) . (27)

That is, the converged solution is the true optimal solution of
Problem (𝑃) and the converged output sequence is the true real
output sequence.

Proof. Consider the real system of Problem (𝑃) with the
exact optimal expected solution (𝑢

∗

, 𝑥
∗

) and the optimal real
output solution 𝑦

∗ is given by

𝑥 (𝑘 + 1)
∗

= 𝑓 (𝑥 (𝑘)
∗

, 𝑢 (𝑘)
∗

, 𝑘) , (28a)

𝑦 (𝑘)
∗

= ℎ (𝑥 (𝑘)
∗

, 𝑘) , (28b)

𝑦 (𝑘)
∗

= 𝑦 (𝑘)
∗

+ 𝜂 (𝑘) , (28c)

where 𝑦(𝑘)
∗ is the exact optimal expected output solution

and 𝜂(𝑘) is the output noise sequence.Meanwhile, in Problem
(𝑀), the model used consists of

𝑥 (𝑘 + 1)
𝑐

= 𝐴𝑥 (𝑘)
𝑐

+ 𝐵𝑢 (𝑘)
𝑐

+ 𝛼
1
(𝑘)
𝑖

, (29a)

𝑦 (𝑘)
𝑐

= 𝐶𝑥 (𝑘)
𝑐

+ 𝛼
2
(𝑘)
𝑖

. (29b)

Here, taking the adjusted parameters 𝛼
1
(𝑘)
𝑖 and 𝛼

2
(𝑘)
𝑖 from

(23a) and (23b), the differences between the real system and
the model used can be calculated from

𝛼
1
(𝑘)
𝑖

= 𝑓 (𝑧 (𝑘)
𝑖

, V (𝑘)𝑖 , 𝑘) − 𝐴𝑧 (𝑘)
𝑖

− 𝐵V (𝑘)𝑖 , (30a)

𝛼
2
(𝑘)
𝑖

= 𝑦 (𝑘)
∗

− 𝐶𝑧 (𝑘)
𝑖 (30b)

at each iteration 𝑖. Note that (30a) and (30b) establish a
matching scheme, in which, for any 𝜌

1
> 0, there exists a

𝛿
1
> 0 such that, for 𝑘 = 0, 1, . . . , 𝑁,

󵄩󵄩󵄩󵄩𝑦 (𝑘)
𝑐

− 𝑦 (𝑘)
∗󵄩󵄩󵄩󵄩 ≤ 𝜌

1
whenever 󵄩󵄩󵄩󵄩󵄩

(𝑢
𝑐

, 𝑥
𝑐

) − (V𝑖, 𝑧𝑖)
󵄩󵄩󵄩󵄩󵄩
< 𝛿
1
.

(31)
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Hence, by substituting (30a) and (30b) into (29a) and (29b)
and comparing the result yielded to (28a), (28b), and (28c),
we conclude that

𝑢
𝑐

(𝑘) = 𝑢
∗

(𝑘) , 𝑥 (𝑘)
𝑐

= 𝑥 (𝑘)
∗

, 𝑦 (𝑘)
𝑐

= 𝑦 (𝑘)
∗

(32)

which are, respectively, the optimal expected solution and the
optimal real output solution for the original optimal control
problem. This completes the proof.

5. Illustrative Example

Consider the wastewater treatment problem [32–34]. The
process equations, which are assumed to be unknown, are
given by

[
𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

]

= [
1 + 𝜇 (𝑘) ⋅ 𝑇 0

−0.3636 ⋅ 𝑇 1
] [

𝑥
1
(𝑘)

𝑥
2
(𝑘)

]

+ [
−𝑇 ⋅ 𝑥

1
(𝑘) 0

−𝑇 ⋅ 𝑥
2
(𝑘) 𝑇

] [
𝑢
1
(𝑘)

𝑢
1
(𝑘) ⋅ 𝑢

2
(𝑘)

] + [
𝜔
1
(𝑘)

𝜔
2
(𝑘)

]

𝑦 (𝑘) = 𝑥
1
(𝑘) + 𝜂 (𝑘)

(33)

with

𝜇 (𝑘) =
(0.425 + 0.025 ⋅ sin (2𝜋𝑘/96)) ⋅ 𝑥

2
(𝑘)

0.4 + 𝑥
2
(𝑘)

,

for 𝑘 = 0, 1, . . . , 95,

(34)

where 𝑥
1
(𝑘) is the methane gas flow rate, 𝑥

2
(𝑘) is the sub-

strate output concentration, 𝑢
1
(𝑘) is the wastewater/dilution

substance mix rate, 𝑢
2
(𝑘) is the input flow rate, 𝜇(𝑘) is the

bacterial growth rate, and 𝑇 is the sampling interval, which
is 0.5 seconds. The initial state 𝑥(0) has a mean given by
𝑥
0
= (0.5, 1.6375)

Tand its covariance is 𝑀
0
= 0.1
2

𝐼
2
, where

𝐼
2
is the two-dimensional identity matrix. The process noise

𝜔(𝑘) and the measurement noise 𝜂(𝑘) have zero mean and
their covariance is given by 𝑄

𝜔
= 0.1

2

𝐼
2
and 𝑅

𝜂
= 0.1

2,
respectively. Here, the aim is to determine an optimal control
sequence 𝑢(𝑘) = (𝑢

1
(𝑘), 𝑢
2
(𝑘))

T
∈ R2 such that the cost

function

𝐽
0
(𝑢) =

1

2
𝐸[(𝑥

1
(288))

2

+ (𝑥
2
(288))

2

+

287

∑

𝑘=0

(𝑥
1
(𝑘))
2

+ (𝑥
2
(𝑘))
2

+ (𝑢
1
(𝑘))
2

+ (𝑢
2
(𝑘))
2

]

(35)

is minimized subject to the dynamic system given by (34).

Table 1: Iteration result.

Iteration
number

Elapsed
time Initial cost Final cost Output

residual
15 2.708 160.8596 1.1810 0.000048

This problem is regarded as Problem (𝑃).The correspond-
ing simplified model-based optimal control problem, which
is referred to as Problem (𝑀), is given by

min
𝑢(𝑘)

𝐽
1
(𝑢) = [

1

2
((𝑥
1
(288))

2

+ (𝑥
2
(288))

2

) + 𝛾 (288)

+

287

∑

𝑘=0

1

2
((𝑥
1
(𝑘))
2

+ (𝑥
2
(𝑘))
2

+ (𝑢
1
(𝑘))
2

+ (𝑢
2
(𝑘))
2

)

+𝛾 (𝑘)]

subject to 𝑥 (𝑘 + 1) = [
1.0012 0

−0.0018 0.9995
] 𝑥 (𝑘)

+ [
−0.0025 0

−0.0077 0.0005
] 𝑢 (𝑘) + 𝛼

1
(𝑘)

𝑦 (𝑘) = 𝑥
1
(𝑘) + 𝛼

2
(𝑘)

(36)

with the initial state

𝑥
1
(0) = 0.5 𝑥

2
(0) = 1.6375. (37)

By applying the algorithm proposed to solve Problem
(𝑀), the computation result is shown in Table 1. There is a
99.27 percent of reduction to the cost function, which gives
the final cost 1.1810 units.The graphical results, which present
the trajectories of output, state, and control, are shown,
respectively, in Figures 1, 2, and 3. It is noticed that the model
output sequence tracks closely to the real output sequence
with the output residual 4.8 × 10

−5. Both of the smooth
trajectories of state and control show the optimal expected
solution to the original optimal control problem.

Now, consider the target sequence that is a periodic
square wave, with (0.97, 0.2)

T for the first 48 time points and
(1.0, 0.1)

T for the second time points, as discussed in [34].
Let this target sequence be the real state sequence in Problem
(𝑃). Then, the real output sequence is measured and is fed
back into the parameter estimation problem. Here, themodel
used in Problem (𝑀) remains the same as we mentioned
above. Figure 4 shows the model output trajectory, which is
generated by the algorithm proposed, and tracks the target
sequence accordingly.

From the results above, the output sequence, which is
obtained by using the approach proposed, is efficient to
optimal control of the discrete time nonlinear stochastic
system. Hence, the applicability of the approach proposed is
highlighted.
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Figure 1: Output trajectories: real output 𝑦(𝑘) and model output
𝑦(𝑘).
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Figure 2: State trajectories: real state 𝑥(𝑘) and model state 𝑥(𝑘).
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Figure 3: Control trajectories: 𝑢
1
(𝑘) and 𝑢

2
(𝑘).

6. Concluding Remarks

In this paper, a computational approach was proposed,
where the efficient output solution of the discrete time
nonlinear stochastic optimal control problem is obtained.
In our approach, the model-based optimal control problem
is simplified from the original optimal control problem,
where the adjusted parameters are introduced into the model
used. On this basis, the differences between the real system
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O
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Figure 4: Output trajectories: target sequence 𝑡
𝑠
(𝑘) and model

output 𝑦(𝑘).

and the model used are computed, and the integration of
system optimization and parameter estimation could be
made interactively. Establishment of the matching scheme
by feeding back the output sequence that is measured from
the real plant into the model used improves the accuracy of
the model output sequence. For illustration, the wastewater
treatment problem was studied, and the efficiency of the
approach proposed is highly proven.
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