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Abstract: Fracture mechanics approach has successfully used to characterize the existing cracks in engineering 
materials and structures. Tremendous number of publications on surface cracks can be found for crack behaviour 
which was assumed to behave linear elastic. However, lack of information on elastic-plastic crack behaviour or J-
integral was demanded especially for 3D surface cracks. In this present study, semi-elliptical surface cracks 
embedded in a solid round bar subjected to mode III loadings are considered. Then, J-integral or h-function and 
limit load were determined and analyzed. In order to predict J-integral along the crack front, a mathematical model 
was then developed. It is found that the developed model capable to predict J-integral well. However, the 
predictions breakdown occurred when the elastic dominated region of cracks. 
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INTRODUCTION 

 
Solid cylindrical bars are generally used as a shaft 

in engineering fields to transmit power from one point 
to another. Due to several factors such as material or 
design defects, the shaft can be experienced a 
mechanical failure over certain period of time. Such 
failure can be divided into three stages: 

 
• Micro crack initiation 
• Crack growth  
• Final failure (Anderson, 2005)  
 
Fracture mechanics is frequently used to characterize 
such failure. For linear-elastic materials, it is sufficient 
to use Stress Intensity Factor (SIF) to analyze the crack 
behaviour. If the plastic deformation is large, J-integral 
is used. Since the introduction of powerful computer 
between 1965 until 1979, various numerical methods 
are developed such as finite element method used to 
find the solution for SIFs. After 30 years of research, 
Toribio et al. (2009) summarized that the solution for 
SIFs have already covered all aspects of crack 
geometries which is not only concerned at the deepest 
crack point as well documented by Murakami and 
Tsuru (1987).  

In fracture mechanics, SIF and J-integral is 
important in order to evaluate the reliability of crack 
structures. Recently, mode I SIFs has given more 
priority since its effect is significant compared with 
other types of SIFs for example mode II and III (Raju 

and Newman, 1982). Most researchers have 
concentrated their work on mode I SIFs since the 
introduction of numerical methods and it is well 
understood (Toribio et al., 2009). However, there are 
lacks of solution for the SIFs obtained using mode II 
and III loadings significantly (Ismail et al., 2012a). 
These two types of SIFs are important due to the fact 
that, the mode II and III SIFs also played an important 
role in determining the structural integrity.  

According to literature survey (Fonte and Freitas, 
1997; Shahani and Habibi, 2007; Ismail et al., 2012b), 
mode III SIFs has already been published previously. J-
integral  solution  for  mode I can be found in (Toribio 
et al., 2009) for surface crack in a plate. However, lack 
of solution for J-integral for surface crack in round bars 
subjected to mode III loadings. Therefore, this study 
focused to determine and analyze the J-integral 
subjected to elastic-plastic mode III loadings.  
 
J-integral estimation: J-integral firstly introduced by 
Rice (1968). Assuming a single edge crack embedded 
in a 2D elastic or elastic-plastic plate. J-integral is 
defined as an arbitrary curve around the crack tip and it 
is evaluated counter-clock wise as in Fig. 1 which can 
be expressed as: 
 

. uJ Wdy T ds
zΓ

∂ = − ∂ ∫
                                       (1) 

 
where, 
𝑇𝑇�⃗  = A traction vector defined as outward along the Γ  
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Fig. 1: Definition of the J-integral evaluation 
 
Ti = σ ijni or force per unit length  
u = A displacement vector  
ds = An element on curve Γ  
W = A strain energy density expressed by:  
 

{ } { }
0 0

T
ij ijW d d

ε ε

σ ε σ ε= =∫ ∫                                  (2) 

 
where, ε ij is strain tensor and {ε} represents a strain 
vector. The path independent on J-integral has already 
proved by Rice (1968) as in Eq. (1) by applying Green 
Theorem for any closed curve, Γ* as follows: 
 

*

. 0uWdy T ds
zΓ

∂ − = ∂ ∫
                                       (3) 

 
The use of SIF concept is limited for elastic 

analysis only and it is successfully used to characterize 
high strength and low toughness materials. For ductile 
materials, SIF approaches cannot be used since the 
effect of plasticity is not included. SIF can be converted 
into J-integral if the material used is elastic as follows 
(Kim et al., 2002):  
 

2
2(1 )x

e
KJ
E

ν= −
                                              

       (4) 

 
where, Je is a elastic J-integral and K is a SIF and x 
represent the mode of loading. For Stress Intensity 
Factor (SIF), K, it can be defined as follows: 
 

, ,I a I b aK F aσ π=                                           
       (5) 

 

, ,I b I b aK F aσ π=                                                (6) 

 

II IIK F aτ π=                                                      (7) 
 

III IIIK F aτ π=                                                     (8) 
 
where, KI,a, KI,b and KII/KIII are the SIFs subjected to 
axial, bending and torsion loadings, respectively. FI,a, 
FI,b and FII/FIII are the respective correction factors for 

each loadings. The J-integral estimation for elastic-
plastic analysis is the summation of elastic J-integral, Je 
and elastic-plastic J-integral, Jp as follows:  
 

e pJ J J= +                                                           (9) 

 
Je is defined as in Eq. (4). While, Jp is expressed as 
(Lei, 2004):  
 

1n

p o o
L

TJ Dh
T

αε σ
+

 
=  

                                         
(10) 

 
where, α and n is a material constant and strain 
hardening exponent, respectively. T is an applied 
torsion and TL is a normalizing torsion or limit load. εo 
is a yield strain and σo is yield stress. The symbol of h 
represents as fully plastic calibration and it is also 
called h-function. Moreover, Lei (2008) stated that the 
h-function solution for a surface crack in round bar is 
limited and lot of works need to be conducted.  

In order to determine h-function, a relationship 
between J-integral obtained using finite element 
method, Jp-FE and normalizing plastic J-integral, Jp-normal 
is plotted. Then, the relations are represented by a 
linear function and the slope of each line is called h-
function. It is dependent of crack aspect ratio, a/b, 
relative crack depth, a/D, normalized coordinate, x/h 
and strain hardening exponent, n. In order to minimize 
the numerical error, higher load level is only considered 
and low load level is omitted. This is due to the fact 
that, h-function is a fully plastic parameter. Therefore, 
Eq. (11) can be expressed as follows: 
 

1, , , p FEP FE
III n

p normal
o o

L

JJa a xh n
b D h JTD

T
αε σ

−−
+

−

  = = 
   

 
       

(11) 

 
Crack modelling: The geometry of the crack shown in 
Figure 2 can be described by the dimensionless 
parameters a/D and a/b, the so-called relative crack 
depth and crack aspect ratio, respectively, where D, a 
and b are the diameter of the bar, the crack depth and 
the major diameter of the ellipse.  

In this study, a/b is ranging between 0.0 to 1.2, 
while, a/D is in the range of 0.1 to 0.6 which are based 
on the experimental observations. Any arbitrary point, 
P on the crack front can also be normalised through the 
ratio of x/h, where h is the crack width and x is the 
arbitrary distance of P. The outer diameter of the 
cylinder is 50 mm and the total length is 200 mm. A 
finite element model is developed using ANSYS and a 
special attention is paid to the crack tip by employing 
20-node   iso-parametric  quadratic  brick elements. The  
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Fig. 2: Arbitrary crack shapes 
 

 
 
Fig. 3: A quarter finite element model for surface crack 
 

 
 
Fig. 4: A remotely applied moments to the bar 
 
square-root singularity of stresses and strains is 
modelled by shifting the mid-point nodes to the quarter-
point locations around the crack-tip region. A quarter 
finite element models is shown in Fig. 3.  

In order to remotely apply loadings on the 
structural component, a rigid element or Multi-Point 
Constraint (MPC) is used to connect the nodes at a 
circumferential line at the end of the component to an 
independent node. Figure 4 shows a technique of 
constructing the independent node connected to the 
model using a rigid beam element. The bending 
moment, My and the torsion moment, Tx, are directly 
applied    to   this   node,  whereas  the  axial  force, F is  

 
 

         (a) 
 

 
 

        (b) 
 
Fig. 5: Finite element model validation, (a) bending, (b) 

tension loadings 
 
directly applied to the direction-x on the cross-sectional 
area of the round bar. At the other end, the component 
is constrained appropriately. In order to obtain a 
suitable finite element model, it is needed to compare 
the proposed model with others available in the 
literature (Shin and Chai, 2004; Carpinteri and 
Vantadori, 2009).  

Figure 5 shows a comparison of the dimensionless 
SIFs under bending and tension loadings. Two crack 
aspect ratio, a/b used for the validation purposes, 
namely 0.0 and 1.0. It has been found that the findings 
of this study are in agreement with those determined by 
the previous models where the curves have coincident 
to each others. The solution of Mode III SIFs is difficult 
to obtain (Ismail et al., 2011a) and consequently 
compare with the present results. Therefore, it can be 
assumed that the present model is also suitable to 
analyse Mode III condition in a satisfactory way. In 
order to model elastic-plastic for material, multi-linear 
isotropic hardening rule is used when it is combined 
with von Mises criterion associated with isotropic 
hardening and flow rule. Strain-stress relationship is 
characterized using Ramberg-Osgood equation. There 
are   two  type  of  strain  hardening  exponent  are  used 
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Fig. 6: Relations  between  Jp-FE  and  Jp-normal for a/b = 0.6, 

a/D = 0.3 
 
n = 5 and 10. These values represent higher and lower 
strain hardening of such material. 
 

RESULTS AND DISCUSSION 
 

Mode III J-integral: Figure 6 shows the relation 
between plastic J-integral, Jp-FE obtained using Finite 
Element Method   (FEM)   and   normalizing   plastic J- 

integral, Jp-normal subjected to torsion moment for seven 
points along the crack front. Due to similar pattern of 
lines are observed, the results of a/b = 0.6, a/D = 0.3 
and n = 10 are considered. The slopes of these lines are 
then calculated and it is represented as h-function. In 
this study, higher J-integral values are taken into 
account while lower J-integral or elastic J-integral is 
omitted. This is due to the fact that h-function is a fully 
plastic parameter. 

Characteristics of these linear relations of h-
function under mode III loading are different when 
compared with the results obtained using mode I 
loading (Ismail et al., 2013). It is shown that the slopes 
increased with increasing x/h. This is due to the 
different in stress distribution subjected to mode III 
loading where the maximum stress occurred at the outer 
surface and the minimum stress at a middle point. 
Stress gradient around the cylindrical solid bars have 
affected the determination of h-function when 
compared with mode I loading. For further discussion, a 
crack geometry with a/b = 0.6 is considered due to 
typical pattern of linear relations for other crack. Figure 
7 shows the mode III h-function plotted against x/h for 
cracks with a/b = 0.6, 0.8 and 1.0. Other types 

 

 
(a)                                                                                            (b) 

  

 
 

          (c) 
 

Fig. 7: Effect of h-function against x/h for (a) a/b = 0.6, (b) a/b = 0.8 and (c) a/b = 1.0 
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(a)                                                                                             (b) 
 

 
 

         (c) 
 

Fig. 8: The behavior of ξ t  against τ/τo of a/b = 0.6 and n = 5 for different a/D (a) 0.1, (b) 0.2 and (c) 0.3 
   
of crack are not considered due to typical curves of h-
function and the only difference is the values where it is 
increased when a/D is increased. Figure 7 (a) depicts 
the behavior of h-function for a/b = 0.6. For crack depth 
a/D≤0.2, it is found that the results are almost identical 
even different values of n are used indicating that n is 
not affected the h-function significantly.  

However, when a/D≥0.3 is used, the different 
among the results are obviously significant. It is 
indicated that the shallow cracks (a/D≤0.2) capable to 
constraint any distortion due to the bar deformation 
even different n is used. When a/D reached certain 
depth (a/D≥0.3), n played an important role in 
determining crack deformation and consequently 
affected the J-integral calculations. It is shown that with 
increasing a/D>0.3, the use of n = 10 sustained to 
deform material easily and then producing higher J-
integral along the crack front. 

Similar curves can also be observed for others a/b 
as shown in Fig. 7b and c. However, increasing a/b 
caused h-function to decrease. This is due to the crack 
geometries used. If a/b>1.0 is considered, crack width 
is relatively shorter than the crack depth. This condition 
increased the cross-sectional area of the bar compared 

with a/b<1.0. Increasing such area produced higher bar 
resistance to the loading applied and then reducing J-
integral along the crack front. According to literature 
survey (Lei, 2008), there are no solution for h-function 
subjected to mode III loading currently. Therefore, no 
validation of the present results can be conducted and it 
is solely dependent on the validation using elastic 
results such as stress intensity factors as in Fig. 5. 
 
Limit load for torsion moment: Figure 8 and 9 show 
the normalized limit load under torsion moment, ξ t for 
strain hardening exponent, n = 5 and 10, respectively 
which are plotted against normalized stress, τ/τo. It is 
found that when different a/b is considered, the pattern 
of limit load are almost identical where it is decreased 
asymptotically as τ/τo increased. Therefore, the crack 
with a/b = 0.6 is emphasized. Figure 8 reveals that it 
can be divided into two main regions which is lower 
load region (τ/τo<1.0) and higher load region 
(τ/τo>1.0). In the area of τ/τo<1.0, it is found that the 
higher distribution of limit load can be observed when 
compared with the area of τ/τo>1.0 indicated that 
elastic J-integral influenced the determination of limit 
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(a)   (b) 
 

 
 

        (c) 
 

Fig. 9: The behavior of ξ t  against τ/τo of a/b = 0.6 and n = 10 for different a/D (a) 0.1, (b) 0.2 and (c) 0.3 
 
load, ξ t. These type of curves showed that the overall 
deformation of the entire bar subjected to torsion 
moment is dominated by the elastic J-integral, Je. 
Additionally, Je is not relevant in determining h-
function which is a fully plastic parameter.  

Increasing τ/τo indicated the large distribution of 
limit load gradually decreased where all curves have 
closed to each others. The plastic deformation increased 
and the present limit load is then affected significantly 
where the limit load of each specified crack condition 
become a merged lines. For cracks with n = 10 as in 
Fig. 9 found that there is no significant different 
between two distinct regions. This is indicated that 
those materials are easily deformed and consequently 
plastic J-integral dominated along the crack front. 
Therefore, h-function curves are overlapped indicating 
that only a single limit can be used to represent various 
types of cracks. 
 
J-integral estimation formulation: Limit load 
behavior under mode III in Fig. 8 and 9 can be 
described by observing the curve characteristics of J-
integral ratio, J/Je along the crack front. 

Mathematically, the prediction of J-integral can be 
conducted by substituting Eq. (4) and (7) into (6) as 
follows: 
 

( )

1

2 2

39
4

1
8 1

n

III
o

e II III

x xJ h
h h
x a xJ F
h R h

τα
τ

π ν

−

−

           
      = +
      −                

(12) 

 
where, J = Je + Jp. It is found the parameter x/h can be 
varied and other parameters are assumed constant. 
Therefore, J/Je is determined using parameter hIII/F2

II-III 
for various types of cracks. The behavior of hIII/F2

II-III 
which  are  plotted against x/h for n = 5 and 10 as in 
Fig. 10 and 11, respectively. The curves of hIII/F2

II-III 
obtained using mode III are obviously different 
compared with the results of hIII/F2

I,b under bending 
moment and hIII/F2

I,a under tension force (Ismail et al., 
2011b, 2012b). Figure 10 shows the overall effect of 
hIII/F2

II-III against x/h when a/D is increased. For certain 
case, Fig. 10a reveals the curve behavior of a/D = 0.1. 
There is no flattened curve occurred along the crack 
front.  It   is  indicated  that  hIII/F2

II-III increased  with  
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                                                            (a)                                                                                (b) 
 

 
 

          (c) 
 
Fig. 10: The behavior of hIII/F2

II-III against x/h of n = 5 and different a/b for a/D, (a) 0.1, (b) 0.2 and (c) 0.3 
 

  
                                                           (a)                                                                                 (b) 

 

 
           (c) 

 
Fig. 11: The behavior of hIII/F2

II-III against x/h of n = 10 and different a/b for a/D, (a) 0.1, (b) 0.2 and (c) 0.3 
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increasing x/h. Therefore, it is difficult to estimate the 
J-integral along the crack front using a single limit load. 

It is also shown that different limit load must be 
used to predict the J-integral for different position along 
the  crack  front.  This  is  due  to  the fact that when 
a/D = 0.1, it can be categorized as a shallow crack and 
it has higher bar resistance. This condition successfully 
prevented the plastic deformation around the crack tip 
and consequently reduced the formation of plastic J-
integral. On the other hand, it is increased the elastic J-
integral which is less relevant in determining the limit 
load which is a fully plastic parameter. However, when 
a/D is increased to 0.2, the curves of hIII/F2

II-III are 
obviously changed as x/h increased. When it is reached 
at a certain position along the crack front (x/h>0.6), the 
curves flattened can be observed. This condition 
described where J-integral can be estimated using a 
single limit load. At the same time, in the region of 
x/h<0.6 where the curve is not well flattened, different 
limit load is used to determine the J-integral at different 
position along the crack front as in Fig. 10b and c. 

The existent of two distinct regions are affected 
significantly whether it is an elastic or plastic 
dominated J-integral. For the region of x/h<0.6, it is 
found that the parameter hIII/F2

II-III increased when x/h 
is increased. It is showed that the region is significantly 
affected by the elastic J-integral. On the other hand, the 
region of x/h>0.6, plastic J-integral is more dominant. 
Therefore, the curves for this region is flattened 
compared with the region of x/h<0.6. Similar behavior 
of hIII/F2

II-III can be observed for the curves using n = 
10 as shown in Fig. 11. Similar type of loading as used 
in obtaining the results as in Fig. 10. However, the 
crack induced significant amount of plastic J-integral 
along the crack front. Such plastic deformation along 
the crack  front  is  due  to  the  fact  that  the material 
with n = 10 has low resistant to mechanical deformation 
and consequently produced higher J-integral. 
Therefore, the curves obtained using n = 10 is higher 
than the curves of n = 5.  
 

CONCLUSION 
 

This study presents two approached which are 
finite element and analytical methods. Due to lack of J-
integral solution available especially in obtaining h-
function for surface crack in round bars. Therefore, 
ANSYS finite element method is utilized. On the other 
hand, a mathematical model to predict J-integral for 
surface crack is developed which is based on the 
reference stress approach. According to the present 
results, it is found that J-integral along the crack front 
can be estimated for various types of cracks. However, 
the J-integral prediction is successfully conducted 
except for the elastic-dominated region. 
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