
1039VAVILOV JOURNAL OF GENETICS AND BREEDING, 2014, VOL. 18, No. 4/2

HIGH-PERFORMANCE SIMULATIONS OF POPULATION-
GENETIC PROCESSES IN BACTERIAL COMMUNITIES USING
THE HAPLOID EVOLUTIONARY CONSTRUCTOR SOFTWARE

© 2014 г. Z.S. Mustafin1, Yu.G. Matushkin1, 2, S.A. Lashin1, 2

1 Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia,
e-mail: lashin@bionet.nsc.ru;

2 Novosibirsk National Research State University, Novosibirsk, Russia

Received October 17, 2014. Accepted for publication November 27, 2014.

Three high-performance versions of the Haploid Evolutionary Constructor program are presented (http://
evol-constructor.bionet.nsc.ru). The software was designed for simulating the functioning and evolution of
microbial communities. These high-performance versions are to be run on systems with shared and distributed
memory, using CPU and/or GPU. Almost linear acceleration has been achieved on clusters and multi-core
CPU. On GPU systems, the simulation time was reduced to several minutes (dozens of hours on CPU).

Key words: Microbial community, parallelization, simulation, evolution, optimization.

INTRODUCTION

Simulation of evolutionary processes occurring
in bacterial communities is one of the vital tasks
of modern systems biology. Bacteria perform a
vast majority of processes in nature. Many bac-
terial species are utilized to meet human needs.
However, some bacterial communities reach such
a high genetic diversity and huge population size
that they cannot be investigated under laboratory
conditions. Theoretical studies including math-
ematical modeling and simulation may be helpful in
these cases. Information technology development
has led to the appearance of a variety of programs
devoted to modeling and simulation of various
aspects of bacterial communities’ life. Evolution
and functioning of such communities in certain
conditions (including infeasible for laboratories)
can be modeled for purposes of medicine, funda-
mental and applied science.

In recent years, many papers on modeling and
simulation of various features of bacterial com-
munities have been published. Some papers are
focused on the biological sense of simulation re-
sults, such as interconnections between individual
and populational features of communities and their
members (Kutalik et al., 2005) or mechanisms of

biodiversity sustainability in various fi tness land-
scapes and at various mutation rates (Beardmore
et al., 2011). Others studied mathematical and
programming features (Ashlock, McEachern, 2011;
Bihary et al., 2012). Applicability and advantages/
disadvantages of agent-based (DeAngelis, Mooij,
2005) approaches, or cellular automata (Esteban,
Rodrнguez-Patуn, 2011) have been also analyzed
and compared with classical ODE and PDE equa-
tions. In spite of the multitude of modeling methods
and software packages for simulation of bacterial
communities, most of them consider a system under
study at only one level of biological organization.
Furthermore, few of them use modern technologies
for high-performance computations.

This study is dedicated to the development
of high-performance methods for simulating the
functioning and evolution of bacterial communi-
ties (more generally, communities of unicellular
haploid microorganisms). The method has been
implemented as part of the Haploid Evolutionary
Constructor software package (hereafter referred
to as the HEC, http://evol-constructor.bionet.nsc.
ru). HEC models are multiscale, and they include
submodels describing different levels of biological
organization: genetic, metabolic, population, and
ecological (Lashin et al., 2011; Lashin, Matushkin,

УДК 573.22

1040 Z.S. Mustafi n, Yu.G. Matushkin, S.A. Lashin

2012). Such composite models consume a lot of
computational resources, especially in the case of
communities of extremely broad genetic diversity
(about 108 various allelic combinations in a popu-
lation considering 10–100 model genes), which
results in long simulation time. The paper also
presents high-performance algorithms for HEC and
test results. Three high-performance implementa-
tions have been made: OpenMP (http://openmp.
org), MPI (http://www.open-mpi.org), and CUDA
(http://www.nvidia.com/object/cuda_home_new.
html).

HEC software package

HEC uses the multiscale modeling approach
(Ayton et al., 2007; Martins et al., 2010). Four
layers of biological organization are considered:
genetic, metabolic, populational, and ecological
(Lashin, Matushkin, 2012). Models of every layer
can be implemented with various mathematical
techniques (differential equations, automata,
graphs, etc.). For each layer, libraries of submodels
are released (Lashin, Matushkin, 2012). Notably,
models of gene networks can also be implemented
as HEC plugins. Such a multilayered approach al-
lows users to study various aspects of a bacterial
community within an integral framework.

Polymorphic population is described via the
“generalized population genome” and the genetic
spectrum technique (Lashin et al., 2010), which af-
fords a valuable decrease of the computational time
as compared to classical agent-based approaches.
This method also ensures comparable accuracy. An
organism (cell) is characterized by a set of traits,
each of which determines the process of either
synthesis or utilization of a particular metabolite
(substrate). In HEC, the whole network of those
processes is assumed to be a “gene network” of
the cell. Such a “gene network” can be formally
implemented by using, for example, differential
equations. Parameters of such a gene network are
assumed to be genes, whereas particular values of
these genes are assumed to be alleles. Cells belong-
ing to the same population may possess different
allelic combinations (ACs). The total number of
ACs in a population characterizes its genetic di-
versity. Various ACs may be differently effi cient in
substrate synthesis and/or utilization, which results
in different fi tnesses and reproduction rates of sub-

populations in the entire polymorphic population.
HEC allows simulation of mutations, horizontal
transfer of genes and gene loss. The last two change
the set of metabolic reactions and, thereby, the gene
network of a cell, generating a new strain/species.
This feature allows HEC to model speciation and
evolution of biodiversity in the community, which
can be simulated either in complete-mixed or in
spatially distributed environments.

The variation in reproduction rates depending
upon both genetic and environmental factors allows
us to simulate a wide range of evolutionary modes
including neutral evolution. Other features of HEC
are the simulation of phage infections (Lashin et
al., 2011) and gene networks (Lashin, Matushkin,
2012). Integration of the gene network concept with
the HEC opens exciting possibilities for investiga-
tion of gene network evolution at the over-genetic
and over-organism levels of biological organiza-
tion, such as populational or ecological.

The genetic diversity of a community impacts
the computational time

The most time-consuming procedure in the
HEC computational process is the simulation of
the reproduction of populations. When a broadly
diverse (106–108 unique ACs) community is simu-
lated, almost all computational time is consumed
by this function (Fig. 1).

Figure 2 shows an example of a generalized
population genome in HEC. It is just a multidi-
mensional distribution of allelic frequencies for
all genes present in cells of this population. This

Fig. 1. Proportion of time consumed by the reproduction
procedure in relation to the overall computational
time.

1041High-performance simulations of population-genetic processes in bacterial communities

generalized genome contains four genes, which
have three, one, four, and two possible allelic
variants present in the population, respectively.
By multiplying the numbers of allelic variants, we
obtain the total AC number (for example, 3 × 1 ×
× 4 × 2 = 24, as shown below).

In order to calculate the total population size
change, it is necessary to calculate it for each AC
subpopulation (cells with identical genome), and
then rearrange new allelic frequencies in the popu-
lation (Lashin et al., 2010). This routine requires
cycles and cycles of the same function calls where
only the AC changes. Thus, it can be and should
be parallelized.

High-performance versions of the HEC

The initial reproduction procedure used a recur-
sive algorithm for iteration over allelic combina-
tions, which was unsuitable for parallelization. The
iteration algorithm and internal data representation
were modifi ed (Mustafi n et al., 2012), which re-
sulted in an elegant parallelization scheme (fi g. 3)
upon which high-performance implementations
could be made. Several high-performance ver-
sions of the reproduction procedure were devel-
oped and tested: OpenMP, MPI, and CUDA ones.

The OpenMP version has been developed for the
desktop version of HEC primarily along with a
graphic user interface. It is effective in modeling
mid- and high-diverse communities (> 100 AC).
Computations for models of low-diverse commu-
nities (< 100) themselves take less time than data
exchange between processes. It is ineffective to
parallelize such models. The optimal number of
parallel threads for this version should be divisible
by the number of populations. It is also desirable
that simulated populations should have roughly
equal levels of genetic diversity in order to obtain
the optimal thread load. The OpenMP version is
suited for high frequency/few-core processors (In
contrast with MPI, OpenMP gives an acceleration
even when the number of threads exceeds the
number of processor cores.)

An MPI version to be used with console ver-
sions of HEC is being developed. It is effective
when it comes to models of genetic diversity more
than 100 ACs. Communities of any number of
populations with any genetic diversity can be simu-
lated with minimal effi ciency loss (as the genetic
diversity increases, the data exchange time defi es
evaluation). Models with high genetic diversity
(> 105 АCs) show linear effi ciency growth. The
tendency breaks only when the software is run with

Fig. 2. Example of a generalized population genome in the HEC:

A1(0.5) A2(0.2) A3(0.3) distribution of alleles for gene 1
B1(1) distribution of alleles for gene 2
C1(0.1) C2(0.1) C3(0.4) C4(0.4) distribution of alleles for gene 3
D1(0.9) D2(0.1) distribution of alleles for gene 4

1042 Z.S. Mustafi n, Yu.G. Matushkin, S.A. Lashin

very high numbers of parallel threads (typically for
supercomputer clusters). The MPI version is suited
for supercomputer clusters and personal computers
with several core processors. It can also replace the
OpenMP version, while in most cases it shows just
as good results as OpenMP.

The CUDA version is developed to run on com-
puters with NVidia CUDA graphic accelerators. It
is effective only on models of high and extremely
high genetic diversity. If AC is less than 105, the
version is awfully ineffective due to memory al-
location (on a video accelerator) and copying data
takes more time than computation procedures. An
obvious advantage of the CUDA version is the pos-
sibility to use extremely high numbers of threads
(more than 1000-fold compared to OpenMP or
MPI). With this version, models of genetic diversity
exceeding 106 ACs can be calculated much faster
than with any other. Simulation results and tests
are presented in the following sections (see also
tables 1–4).

Test calculations

Test simulations were performed on the AMD
Phenom II ×6 1055T (6-core) processor and the
NVIDIA GTX 570 video accelerator. The MPI
version was also tested on the NKS-30T supercom-
puter cluster (http://bioinformatics.bionet.nsc.ru/).
The tests were performed on the set of test models
published previously (Lashin et al., 2010; Lashin,
Matushkin, 2012). Furthermore, special load tests
were used.

Table 1 shows the test results of the MPI ver-
sion. Simulation time depended on several param-
eters, the main of which were AC number (as the
measure of community genetic diversity) and the
number of iterations (i.e. generations) per simula-
tion run. Parallelization effi ciency also depends on
these parameters. In low genetic diversity (1–100
ACs) models, parallelization is ineffective, as the
execution time of the reproduction procedure is
low with respect to the overall execution time. In
the range from 100 to 1000 ACs, the paralleliza-

Fig. 3. Parallelization scheme for the reproduction procedure.

The MPI version implies that each thread receives its portion of allelic combinations, performs calculations, and
returns data to the root node (MPI_BROADCAST and MPI_REDUCE are used). The CUDA version saves data
to the memory of the video card, and then GPU performs calculations and data return to the main process.

1043High-performance simulations of population-genetic processes in bacterial communities

Table 1
Test results for the MPI version on AMD Phenom II ×6 1055T (2.8 GHz)

Number
of allelic
combina-
tions

Iterations
(genera-

tions)

Average simulation time, s; parallelization efficiency, %
Number of parallel threads

1 2 3 4 5 6

103 25 000 53 s 45 s – 58 % 44 s – 40 % 44 s – 30 % 45 s – 23 % 52 s – 17 %
5 × 103 10 000 73 s 46 s – 79 % 38 s – 64 % 34 s – 54 % 33 s – 44 % 37 s – 33 %
104 5 000 68 s 39 s – 87 % 31 s – 73 % 27 s – 63 % 25 s – 54 % 27 s – 42 %
105 500 85 s 48 s – 89 % 35 s – 81 % 28 s – 76 % 24 s – 71 % 23 s – 62 %
106 50 162 s 88 s – 92 % 61 s – 89 % 48 s – 84 % 40 s – 81 % 37 s – 73 %
107 4 199 s 101 s – 99 % 69 s – 96 % 55 s – 90 % 46 s – 87 % 44 s – 75 %

The number of generations per simulation decreases with the growth of genetic diversity. It was made in order to make the test
last for several minutes. The values are rounded up or down to the nearest integer.

Table 2
Test results for the OpenMP version on AMD Phenom II ×6 1055T (2.8 GHz)

Number of al-
lelic combina-
tions

Iterations
(generations)

Average simulation time, s; parallelization efficiency, %
Number of parallel threads

1 2 4 8
103 25 000 49 s 39 s – 63 % 37 s – 33 % 35 s – 18 %
5 × 103 10 000 65 s 41 s – 80 % 29 s – 56 % 28 s – 29 %
104 5 000 59 s 35 s – 84 % 23 s – 64 % 21 s – 35 %
105 500 75 s 49 s – 77 % 23 s – 82 % 21 s – 45 %
106 50 147 s 81 s – 91 % 45 s – 82 % 34 s – 54 %
107 4 186 s 99 s – 94 % 73 s – 64 % 48 s – 48 %

Table 3
Comparison of parallelization effi ciency for the OpenMP and MPI versions

Number
of allelic
combinations

Iterations
(generations)

Parallelization effi ciency, %
2 threads 4 threads

MPI OpenMP MPI OpenMP
103 25 000 58 63 30 33
5 × 103 10 000 79 80 54 56
104 5 000 87 84 63 64
105 500 89 77 76 82
106 50 92 91 84 82
107 4 99 94 90 64

1044 Z.S. Mustafi n, Yu.G. Matushkin, S.A. Lashin

tion effect becomes apparent and depends on the
number of iterations per simulation. In models of
high-average genetic diversity (1000–10,000 ACs),
parallelization is more effective, and the iteration
number exerts next to no effect on efficiency.
In models with AC > 10,000, effi ciency does not
depend on the number of iterations. With AC in-
crease, the total effi ciency approaches unity, but
the more parallel threads run, the less effi ciency
is kept, although the computation time decreases
continuously.

Test results for the OpenMP version are pre-
sented in Table 2. The main difference from MPI
is that OpenMP loses more effi ciency when the
number of threads grows. Comparison of these two
versions is shown in Table 3.

Finally, the test results for the CUDA version
were compared with OpenMP and MPI. We com-
pared minimal obtained times for each version
(Table 4). In the table, the optimal number of
threads for each table cell is shown in parentheses.
Thus, the CUDA version can signifi cantly speed
up simulations in computationally costly (AC>105)
tasks.

Choosing the optimal parallel version

We classifi ed parallel versions described above
according to the most suitable simulation tasks for
each model. They are listed below:

(1) Models of communities with genetic diver-
sity less than 100 ACs are better simulated with the
use of non–parallel HEC because the reproduction
procedure in such a simple case takes only a small

amount of the total time. Sometimes parallel ver-
sions even increase the simulation time. Only the
OpenMP version works with the same effi ciency
(no data exchange), while the MPI version takes
15–20 % more time. We strongly recommend not
using the CUDA version in simple tasks, as it may
increase the running time.

(2) Models of communities with genetic diver-
sity of 100–10,000 ACs are better simulated with
the use of either MPI or OpenMP versions. The
effi ciency of both models grows in proportion to
the increase of AC. The effi ciency of the CUDA
version grows even more, but its overall computa-
tional time is longer than in the above case.

(3) Models of communities with genetic di-
versity of 105–106 AC are suitable for all three
versions.

(4) Finally, communities of extremely high
genetic diversity (> 106 AC) are better simulated
with the CUDA version. It takes much less time for
simulation than with MPI or OpenMP.

CONCLUSION

In this paper, we present several high-perfor-
mance versions of the HEC software packages,
available at our web site. Under appropriate condi-
tions (models of “optimal” genetic diversity), they
provide nearly linear acceleration. Parallel versions
are classifi ed according to the most suitable situ-
ations for their usage. The non-parallel version is
the best for simple models of low genetic diversity.
All the three parallel versions are appropriate for
models of intermediate genetic diversity. Finally,

Table 4
Comparison of the best computational times obtained using various high-performance versions of HEC

Number of al-
lelic combina-
tions

Iterations (generations)
Minimal computational time, s (optimal number of parallel

threads)
MPI OpenMP CUDA

102 25,000 23 (1) 22 (1) 318 (1000)
103 25,000 43 (3) 35 (8) 335 (500)
5 × 103 10,000 33 (5) 28 (8) 128 (1000)
104 5000 25 (5) 21 (8) 65 (500)
105 500 23 (6) 21 (8) 12 (1000)
106 50 37 (6) 34 (8) 3 (10,000)
107 4 43 (6) 47 (8) 3 (5000, 10,000, 50,000)
108 1 × × 5 (50,000, 100,000)

× Failure with AMD Phenom II ×6 1055T

1045High-performance simulations of population-genetic processes in bacterial communities

the CUDA version is the best for extremely diverse
communities. We think that the last case is the
most interesting for large-scale theoretical stud-
ies, and we hope that high-performance versions
of HEC presented in this paper will allow users to
investigate more complex and diverse microbial
communities and will produce new interesting
biological results.

ACKNOWLEDGMENTS

The study was supported by the following
grants: RFBR 12-07-00671-а, project VI.61.1.2,
and interdisciplinary SB RAS project 47.

LITERATURE
Ashlock D., McEachern A. A simulation of bacterial commu-

nities // IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology (CIBCB).
IEEE. 2011. P. 1–8.

Ayton G.S., Noid W.G., Voth G.A. Multiscale modeling of
biomolecular systems: in serial and in parallel // Curr.
Opin. Struct. Biol. 2007. V. 17. No. 2. P. 192–198.

Beardmore R.E., Gudelj I., Lipson D.A., Hurst L.D. Metabolic
trade–offs and the maintenance of the fi ttest and the fl at-
test // Nature. 2011. V. 472. No. 7343. P. 342–346.

Bihary D., Kerenyi A., Gelencser Z. et al. Simulation of com-
munication and cooperation in multispecies bacterial com-

munities with an agent based model // Scalable Comput.
Pract. Exp. 2012. V. 13. No. 1. P. 21–28.

DeAngelis D.L., Mooij W.M. Individual-based modeling of
ecological and evolutionary processes // Annu. Rev. Ecol.
Evol. Syst. 2005. V. 36. No. 1. P. 147–168.

Esteban P.G., Rodríguez-Patón A. Simulating a Rock – Scis-
sors – Paper Bacterial Game with a Discrete Cellular Au-
tomaton // New Challenges on Bioinspired Applications,
Lecture Notes in Computer Science / Eds. Ferrández J.M.,
Álvarez Sánchez J.R., De la Paz F., Toledo F.J. Berlin
Heidelberg: Springer, 2011. P. 363–370.

Kutalik Z., Razaz M., Baranyi J. Connection between sto-
chastic and deterministic modelling of microbial growth //
J. Theor. Biol. 2005. V. 232. No. 2. P. 285–299.

Lashin S.A., Matushkin Y.G. Haploid evolutionary construc-
tor: new features and further challenges // In Silico Biol.
2012. V. 11. No. 3–4. P. 125–135.

Lashin S.A., Matushkin Y.G., Suslov V. V., Kolchanov N.A.
Evolutionary trends in the prokaryotic community and
prokaryotic community-phage systems // Russ. J. Genet.
2011. V. 47. No. 12. P. 1487–1495.

Lashin S.A., Suslov V.V., Matushkin Yu.G. Comparative
modeling of coevolution in communities of unicellular
organisms: adaptability and biodiversity // J. Bioinform.
Comput. Biol. 2010. V. 8. No. 3. P. 627–643.

Martins M.L., Ferreira S.C., Vilela M.J. Multiscale models
for biological systems // Curr. Opin. Colloid Interface Sci.
2010. V. 15. No. 1–2. P. 18–23.

Mustafi n Z.S., Matushkin Y.G., Lashin S.A. Haploid Evolu-
tionary Constructor: parallelization and high performance
simulations of evolution of prokaryotic communities //
Russ. J. Genet. Appl. Res. 2012. V. 16. No. 4/1.
P. 825–829.

