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Three high-performance versions of the Haploid Evolutionary Constructor program are presented (http://
evol-constructor.bionet.nsc.ru). The software was designed for simulating the functioning and evolution of 
microbial communities. These high-performance versions are to be run on systems with shared and distributed 
memory, using CPU and/or GPU. Almost linear acceleration has been achieved on clusters and multi-core 
CPU. On GPU systems, the simulation time was reduced to several minutes (dozens of hours on CPU).
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INTRODUCTION

Simulation of evolutionary processes occurring 
in bacterial communities is one of the vital tasks 
of modern systems biology. Bacteria perform a 
vast majority of processes in nature. Many bac-
terial species are utilized to meet human needs. 
However, some bacterial communities reach such 
a high genetic diversity and huge population size 
that they cannot be investigated under laboratory 
conditions. Theoretical studies including math-
ematical modeling and simulation may be helpful in 
these cases. Information technology development 
has led to the appearance of a variety of programs 
devoted to modeling and simulation of various 
aspects of bacterial communities’ life. Evolution 
and functioning of such communities in certain 
conditions (including infeasible for laboratories) 
can be modeled for purposes of medicine, funda-
mental and applied science.

In recent years, many papers on modeling and 
simulation of various features of bacterial com-
munities have been published. Some papers are 
focused on the biological sense of simulation re-
sults, such as interconnections between individual 
and populational features of communities and their 
members (Kutalik et al., 2005) or mechanisms of 

biodiversity sustainability in various fi tness land-
scapes and at various mutation rates (Beardmore 
et al., 2011). Others studied mathematical and 
programming features (Ashlock, McEachern, 2011; 
Bihary et al., 2012). Applicability and advantages/
disadvantages of agent-based (DeAngelis, Mooij, 
2005) approaches, or cellular automata (Esteban, 
Rodrнguez-Patуn, 2011) have been also analyzed 
and compared with classical ODE and PDE equa-
tions. In spite of the multitude of modeling methods 
and software packages for simulation of bacterial 
communities, most of them consider a system under 
study at only one level of biological organization. 
Furthermore, few of them use modern technologies 
for high-performance computations.

This study is dedicated to the development 
of high-performance methods for simulating the 
functioning and evolution of bacterial communi-
ties (more generally, communities of unicellular 
haploid microorganisms). The method has been 
implemented as part of the Haploid Evolutionary 
Constructor software package (hereafter referred 
to as the HEC, http://evol-constructor.bionet.nsc.
ru). HEC models are multiscale, and they include 
submodels describing different levels of biological 
organization: genetic, metabolic, population, and 
ecological (Lashin et al., 2011; Lashin, Matushkin, 
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2012). Such composite models consume a lot of 
computational resources, especially in the case of 
communities of extremely broad genetic diversity 
(about 108 various allelic combinations in a popu-
lation considering 10–100 model genes), which 
results in long simulation time. The paper also 
presents high-performance algorithms for HEC and 
test results. Three high-performance implementa-
tions have been made: OpenMP (http://openmp.
org), MPI (http://www.open-mpi.org), and CUDA 
(http://www.nvidia.com/object/cuda_home_new.
html).

HEC software package

HEC uses the multiscale modeling approach 
(Ayton et al., 2007; Martins et al., 2010). Four 
layers of biological organization are considered: 
genetic, metabolic, populational, and ecological 
(Lashin, Matushkin, 2012). Models of every layer 
can be implemented with various mathematical 
techniques (differential equations, automata, 
graphs, etc.). For each layer, libraries of submodels 
are released (Lashin, Matushkin, 2012). Notably, 
models of gene networks can also be implemented 
as HEC plugins. Such a multilayered approach al-
lows users to study various aspects of a bacterial 
community within an integral framework.

Polymorphic population is described via the 
“generalized population genome” and the genetic 
spectrum technique (Lashin et al., 2010), which af-
fords a valuable decrease of the computational time 
as compared to classical agent-based approaches. 
This method also ensures comparable accuracy. An 
organism (cell) is characterized by a set of traits, 
each of which determines the process of either 
synthesis or utilization of a particular metabolite 
(substrate). In HEC, the whole network of those 
processes is assumed to be a “gene network” of 
the cell. Such a “gene network” can be formally 
implemented by using, for example, differential 
equations. Parameters of such a gene network are 
assumed to be genes, whereas particular values of 
these genes are assumed to be alleles. Cells belong-
ing to the same population may possess different 
allelic combinations (ACs). The total number of 
ACs in a population characterizes its genetic di-
versity. Various ACs may be differently effi cient in 
substrate synthesis and/or utilization, which results 
in different fi tnesses and reproduction rates of sub-

populations in the entire polymorphic population. 
HEC allows simulation of mutations, horizontal 
transfer of genes and gene loss. The last two change 
the set of metabolic reactions and, thereby, the gene 
network of a cell, generating a new strain/species. 
This feature allows HEC to model speciation and 
evolution of biodiversity in the community, which 
can be simulated either in complete-mixed or in 
spatially distributed environments.

The variation in reproduction rates depending 
upon both genetic and environmental factors allows 
us to simulate a wide range of evolutionary modes 
including neutral evolution. Other features of HEC 
are the simulation of phage infections (Lashin et 
al., 2011) and gene networks (Lashin, Matushkin, 
2012). Integration of the gene network concept with 
the HEC opens exciting possibilities for investiga-
tion of gene network evolution at the over-genetic 
and over-organism levels of biological organiza-
tion, such as populational or ecological.

The genetic diversity of a community impacts 
the computational time

The most time-consuming procedure in the 
HEC computational process is the simulation of 
the reproduction of populations. When a broadly 
diverse (106–108 unique ACs) community is simu-
lated, almost all computational time is consumed 
by this function (Fig. 1).

Figure 2 shows an example of a generalized 
population genome in HEC. It is just a multidi-
mensional distribution of allelic frequencies for 
all genes present in cells of this population. This 

Fig. 1. Proportion of time consumed by the reproduction 
procedure in relation to the overall computational 
time.
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generalized genome contains four genes, which 
have three, one, four, and two possible allelic 
variants present in the population, respectively. 
By multiplying the numbers of allelic variants, we 
obtain the total AC number (for example, 3 × 1 ×
× 4 × 2 = 24, as shown below).

In order to calculate the total population size 
change, it is necessary to calculate it for each AC 
subpopulation (cells with identical genome), and 
then rearrange new allelic frequencies in the popu-
lation (Lashin et al., 2010). This routine requires 
cycles and cycles of the same function calls where 
only the AC changes. Thus, it can be and should 
be parallelized.

High-performance versions of the HEC

The initial reproduction procedure used a recur-
sive algorithm for iteration over allelic combina-
tions, which was unsuitable for parallelization. The 
iteration algorithm and internal data representation 
were modifi ed (Mustafi n et al., 2012), which re-
sulted in an elegant parallelization scheme (fi g. 3) 
upon which high-performance implementations 
could be made. Several high-performance ver-
sions of the reproduction procedure were devel-
oped and tested: OpenMP, MPI, and CUDA ones. 

The OpenMP version has been developed for the 
desktop version of HEC primarily along with a 
graphic user interface. It is effective in modeling 
mid- and high-diverse communities (> 100 AC). 
Computations for models of low-diverse commu-
nities (< 100) themselves take less time than data 
exchange between processes. It is ineffective to 
parallelize such models. The optimal number of 
parallel threads for this version should be divisible 
by the number of populations. It is also desirable 
that simulated populations should have roughly 
equal levels of genetic diversity in order to obtain 
the optimal thread load. The OpenMP version is 
suited for high frequency/few-core processors (In 
contrast with MPI, OpenMP gives an acceleration 
even when the number of threads exceeds the 
number of processor cores.) 

An MPI version to be used with console ver-
sions of HEC is being developed. It is effective 
when it comes to models of genetic diversity more 
than 100 ACs. Communities of any number of 
populations with any genetic diversity can be simu-
lated with minimal effi ciency loss (as the genetic 
diversity increases, the data exchange time defi es 
evaluation). Models with high genetic diversity 
(> 105 АCs) show linear effi ciency growth. The 
tendency breaks only when the software is run with 

Fig. 2. Example of a generalized population genome in the HEC:

A1(0.5) A2(0.2) A3(0.3)  distribution of alleles for gene 1
B1(1)    distribution of alleles for gene 2
C1(0.1) C2(0.1) C3(0.4) C4(0.4)  distribution of alleles for gene 3
D1(0.9) D2(0.1)   distribution of alleles for gene 4
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very high numbers of parallel threads (typically for 
supercomputer clusters). The MPI version is suited 
for supercomputer clusters and personal computers 
with several core processors. It can also replace the 
OpenMP version, while in most cases it shows just 
as good results as OpenMP.

The CUDA version is developed to run on com-
puters with NVidia CUDA graphic accelerators. It 
is effective only on models of high and extremely 
high genetic diversity. If AC is less than 105, the 
version is awfully ineffective due to memory al-
location (on a video accelerator) and copying data 
takes more time than computation procedures. An 
obvious advantage of the CUDA version is the pos-
sibility to use extremely high numbers of threads 
(more than 1000-fold compared to OpenMP or 
MPI). With this version, models of genetic diversity 
exceeding 106 ACs can be calculated much faster 
than with any other. Simulation results and tests 
are presented in the following sections (see also 
tables 1–4).

Test calculations

Test simulations were performed on the AMD 
Phenom II ×6 1055T (6-core) processor and the 
NVIDIA GTX 570 video accelerator. The MPI 
version was also tested on the NKS-30T supercom-
puter cluster (http://bioinformatics.bionet.nsc.ru/). 
The tests were performed on the set of test models 
published previously (Lashin et al., 2010; Lashin, 
Matushkin, 2012). Furthermore, special load tests 
were used.

Table 1 shows the test results of the MPI ver-
sion. Simulation time depended on several param-
eters, the main of which were AC number (as the 
measure of community genetic diversity) and the 
number of iterations (i.e. generations) per simula-
tion run. Parallelization effi ciency also depends on 
these parameters. In low genetic diversity (1–100 
ACs) models, parallelization is ineffective, as the 
execution time of the reproduction procedure is 
low with respect to the overall execution time. In 
the range from 100 to 1000 ACs, the paralleliza-

Fig. 3. Parallelization scheme for the reproduction procedure.

The MPI version implies that each thread receives its portion of allelic combinations, performs calculations, and 
returns data to the root node (MPI_BROADCAST and MPI_REDUCE are used). The CUDA version saves data 
to the memory of the video card, and then GPU performs calculations and data return to the main process.
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Table 1
Test results for the MPI version on AMD Phenom II ×6 1055T (2.8 GHz)

Number 
of allelic 
combina-
tions 

Iterations 
(genera-

tions)

Average simulation time, s; parallelization efficiency, %
Number of parallel threads

1 2 3 4 5 6

103 25 000 53 s 45 s – 58 % 44 s – 40 % 44 s – 30 % 45 s – 23 % 52 s – 17 %
5 × 103 10 000 73 s 46 s – 79 % 38 s – 64 % 34 s – 54 % 33 s – 44 % 37 s – 33 %
104 5 000 68 s 39 s – 87 % 31 s – 73 % 27 s – 63 % 25 s – 54 % 27 s – 42 %
105 500 85 s 48 s – 89 % 35 s – 81 % 28 s – 76 % 24 s – 71 % 23 s – 62 %
106 50 162 s 88 s – 92 % 61 s – 89 % 48 s – 84 % 40 s – 81 % 37 s – 73 %
107 4 199 s 101 s – 99 % 69 s – 96 % 55 s – 90 % 46 s – 87 % 44 s – 75 %

The number of generations per simulation decreases with the growth of genetic diversity. It was made in order to make the test 
last for several minutes. The values are rounded up or down to the nearest integer.

Table 2
Test results for the OpenMP version on AMD Phenom II ×6 1055T (2.8 GHz)

Number of al-
lelic combina-
tions 

Iterations 
(generations)

Average simulation time, s; parallelization efficiency, %
Number of parallel threads

1 2 4 8
103 25 000 49 s 39 s – 63 % 37 s – 33 % 35 s – 18 %
5 × 103 10 000 65 s 41 s – 80 % 29 s – 56 % 28 s – 29 %
104 5 000 59 s 35 s – 84 % 23 s – 64 % 21 s – 35 %
105 500 75 s 49 s – 77 % 23 s – 82 % 21 s – 45 %
106 50 147 s 81 s – 91 % 45 s – 82 % 34 s – 54 %
107 4 186 s 99 s – 94 % 73 s – 64 % 48 s – 48 %

Table 3
Comparison of parallelization effi ciency for the OpenMP and MPI versions

Number 
of allelic 
combinations 

Iterations 
(generations)

Parallelization effi ciency, %
2 threads 4 threads

MPI OpenMP MPI OpenMP
103 25 000 58 63 30 33
5 × 103 10 000 79 80 54 56
104 5 000 87 84 63 64
105 500 89 77 76 82
106 50 92 91 84 82
107 4 99 94 90 64
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tion effect becomes apparent and depends on the 
number of iterations per simulation. In models of 
high-average genetic diversity (1000–10,000 ACs), 
parallelization is more effective, and the iteration 
number exerts next to no effect on efficiency. 
In models with AC > 10,000, effi ciency does not 
depend on the number of iterations. With AC in-
crease, the total effi ciency approaches unity, but 
the more parallel threads run, the less effi ciency 
is kept, although the computation time decreases 
continuously.

Test results for the OpenMP version are pre-
sented in Table 2. The main difference from MPI 
is that OpenMP loses more effi ciency when the 
number of threads grows. Comparison of these two 
versions is shown in Table 3. 

Finally, the test results for the CUDA version 
were compared with OpenMP and MPI. We com-
pared minimal obtained times for each version 
(Table 4). In the table, the optimal number of 
threads for each table cell is shown in parentheses. 
Thus, the CUDA version can signifi cantly speed 
up simulations in computationally costly (AC>105) 
tasks. 

Choosing the optimal parallel version

We classifi ed parallel versions described above 
according to the most suitable simulation tasks for 
each model. They are listed below:

(1) Models of communities with genetic diver-
sity less than 100 ACs are better simulated with the 
use of non–parallel HEC because the reproduction 
procedure in such a simple case takes only a small 

amount of the total time. Sometimes parallel ver-
sions even increase the simulation time. Only the 
OpenMP version works with the same effi ciency 
(no data exchange), while the MPI version takes 
15–20 % more time. We strongly recommend not 
using the CUDA version in simple tasks, as it may 
increase the running time.

(2) Models of communities with genetic diver-
sity of 100–10,000 ACs are better simulated with 
the use of either MPI or OpenMP versions. The 
effi ciency of both models grows in proportion to 
the increase of AC. The effi ciency of the CUDA 
version grows even more, but its overall computa-
tional time is longer than in the above case.

(3) Models of communities with genetic di-
versity of 105–106 AC are suitable for all three 
versions.

(4) Finally, communities of extremely high 
genetic diversity (> 106 AC) are better simulated 
with the CUDA version. It takes much less time for 
simulation than with MPI or OpenMP.

CONCLUSION

In this paper, we present several high-perfor-
mance versions of the HEC software packages, 
available at our web site. Under appropriate condi-
tions (models of “optimal” genetic diversity), they 
provide nearly linear acceleration. Parallel versions 
are classifi ed according to the most suitable situ-
ations for their usage. The non-parallel version is 
the best for simple models of low genetic diversity. 
All the three parallel versions are appropriate for 
models of intermediate genetic diversity. Finally, 

Table 4
Comparison of the best computational times obtained using various high-performance versions of HEC 

Number of al-
lelic combina-
tions 

Iterations (generations)
Minimal computational time, s (optimal number of parallel 

threads)
MPI OpenMP CUDA

102 25,000 23 (1) 22 (1) 318 (1000)
103 25,000 43 (3) 35 (8) 335 (500)
5 × 103 10,000 33 (5) 28 (8) 128 (1000)
104 5000 25 (5) 21 (8) 65 (500)
105 500 23 (6) 21 (8) 12 (1000)
106 50 37 (6) 34 (8) 3 (10,000)
107 4 43 (6) 47 (8) 3 (5000, 10,000, 50,000)
108 1 × × 5 (50,000, 100,000)

× Failure with AMD Phenom II ×6 1055T 
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the CUDA version is the best for extremely diverse 
communities. We think that the last case is the 
most interesting for large-scale theoretical stud-
ies, and we hope that high-performance versions 
of HEC presented in this paper will allow users to 
investigate more complex and diverse microbial 
communities and will produce new interesting 
biological results.
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