
TITLE

COMPARISON ON CORRECTNESS, TIME TAKEN AND MEMORY USED IN

WEB APPLICATIONS USING UNIT AND INTEGRATION TESTING

ELHADI ELFITORY ALGARAI

A thesis submitted in

fulfillment of the requirements for the award of the

Degree of Master of Computer Science (Software Engineering)

The Department of Software Engineering

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

MARCH 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/42954598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

v

ABSTRACT

Web testing is the name given to software testing that focuses on web applications. A

complete testing of a web-based system before going live can help to address issues

before the system is revealed to the public. Issues such as the security of the web

application, the basic functionality of the site, its accessibility to handicapped users

and fully able users as well as readiness for expected traffic and number of users, and

the ability to survive a massive spike in user traffic are related to load testing. This

project describes the generation of various test cases for web application in two case

studies by using unit testing and integration testing and the comparison in terms of

Correctness, Memory Used and Time Taken. The experimental results showed the

same Correctness rate for both unit and integration testing with the 80% for the case

study 1 and 75% for the case study 2. Magnitude of relative error (MRE) for Time

Taken using unit testing was 0.227 in case study 1 and 0.214 in case study 2.

Meanwhile, for Integration testing, MRE for Time taken was 0.149 in case study 1

and 0.108 in case study 2. MRE for memory used during unit testing was 0.060 in

case study 1 and 0.066 in case study 2. When using integration testing, MRE for

memory used was 0.161 in case study 1 and 0.169 in case study 2. Based on the

experimental results, MRE for Time taken using Integration testing is better than

MRE for Time taken using Unit testing. However, the MRE for Memory used using

Unit testing is better than MRE for Memory used using Integration testing.

vi

ABSTRAK

Pengujian Web adalah nama yang diberikan kepada ujian perisian yang

memfokuskan kepada aplikasi web. Ujian lengkap bagi sistem berasaskan web

sebelum sistem dilancarkan boleh membantu menangani isu-isu sebelum sistem

didedahkan kepada orang ramai. Isu-isu seperti keselamatan aplikasi web, fungsi

asas laman web, akses kepada pengguna kurang upaya dan pengguna berupaya

sepenuhnya, serta kesediaan untuk menjangkakan trafik dan bilangan pengguna dan

keupayaan untuk meneruskan ledakan trafik pengguna adalah berkaitan dengan

beban ujian. Projek ini menerangkan penjanaan pelbagai kes-kes ujian untuk aplikasi

web dalam dua kes kajian menggunakan ujian unit dan ujian integrasi dan

perbandingan dari segi (Ketepatan, Memori digunakan dan Masa yang diambil).

Keputusan eksperimen menunjukkan kadar ketepatan adalah sama bagi kedua-dua

ujian Unit dan ujian Integrasi dengan 80% pada kes kajian 1 dan 75% bagi kes

kajian 2. Magnitud ralat relatif (MRE) untuk Masa yang diambil menggunakan ujian

unit adalah 0.227 dalam kes kajian 1dan 0.214 dalam kes kajian 2 . Sementara itu,

bagi ujian Integrasi MRE untuk Masa yang diambil adalah 0.149 dalam kes kajian 1

dan 0.108 dalam kes kajian 2. MRE untuk Memori yang digunakan menggunakan

ujian unit adalah 0.060 dalam kes kajian 1dan 0.066 dalam kes kajian 2 Apabila

menggunakan Integrasi ujian, MRE untuk Memori yang digunakan adalah 0.161

dalam kes kajian 1 dan 0.169 dalam kes kajian 2. Berdasarkan keputusan

eksperimen, MRE bagi masa yang diambil menggunakan ujian Integrasi adalah lebih

baik berbanding MRE menggunakan ujian Unit. Walau bagaimanapun, MRE bagi

Memori yang digunakan menggunakan Ujian unit adalah lebih baik berbanding MRE

bagi Memori yang digunakan menggunakan Ujian Integrasi.

vii

CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF TABLE x

LIST OF FIGURES xii

LIST OF SYMBOLS AND ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 3

1.3 Project Objectives 4

1.4 Scope of Project 4

1.5 Thesis Outline 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Software Testing 5

2.2.1 Web Application Testing 5

2.2.2 Automated Testing 6

2.2.3 Unit Testing 6

2.2.4 Integration Testing 7

2.3 Selenium Tool 9

2.3.1 Selenium components 9

2.3.2 Performing the Unit and Integration with Selenium 10

viii

2.4 Testing Challenges 11

2.4.1 Inconsistent Infrastructure and Environment 11

2.4.2 Inconsistent Interaction Models 12

2.4.3 Distributed Nature of Systems 12

2.4.4 Performance and Reliability Issues to Heterogeneity 12

2.4.5 Interoperability 13

2.5 Performance Parameters for Testing 13

2.6 Magnitude of Relative Error for Performance Parameters 14

2.7 Related Work 15

2.8 Summary 16

CHAPTER 3 METHODOLOGY 18

3.1 Introduction 18

3.2 Flow Chart of the Project Work 19

3.3 Creating two Case Studies 20

3.4 Application Unit and Integration Testing in Two Case Study 120

3.4.1 Test Cases for Integration Testing in SISPEK System20

3.4.2 Test Cases for Unit Testing in SISPEK System 25

3.5 Application Unit and Integration Testing in Two Case Study 26

3.5.1 Test cases for Integration Testing in Woodman 27

3.5.2 Test cases for Unit Testing in Woodman 31

3.6 Results Analysis 33

3.7 Summary 33

CHAPTER 4 IMPLEMENTATION & RESULTS ANALYSIS 34

4.1 Introduction 34

4.2 Implementation for Unit and Integration in Two Case Studies 34

4.2.1 Implementation of Test Cases for Unit in SISPEK 34

4.2.2 Implementation Test cases for Integration in SISPEK 40

4.2.3 Implementation of Unit Testing Cases for Woodman 45

4.2.4 Implementation for Integration in Woodman 51

4.3 Analysis of the Result in Two Case Studies 56

4.3.1 Magnitude of relative error (MRE) 56

4.3.2 Analysis of the results in SISPEK System 57

4.3.3 Analysis of the results in Woodman System 69

ix

4.4 Summary 82

CHAPTER 5 CONCLUSIONS 83

5.1 Objectives Achievement 83

5.2 Conclusion 84

5.3 Future Work 83

REFERENCES 85

 VITA 88

x

LIST OF TABLE

4.1 Test cases in SISPEK using Unit testing 35

4.2 Experiment results for Test Login using Unit testing in SISPEK 36

4.3 Results for Test Creating Student using Unit testing in SISPEK 37

4.4 Experiment results for Test Updating Student using Unit in SISPEK 37

4.5 Experiment results for Test Deleting Student using Unit testing in SISPEK 38

4.6 Experiment results for Test Creating Asset using Unit testing in SISPEK 38

4.7 Experiment results for Test Updating Asset using Unit testing in SISPEK 39

4.8 Experiment results for Test Deleting Asset using Unit testing in SISPEK 39

4.9 Experiment results for Test View Student using Unit testing in SISPEK 39

4.10 Experiment results for Test View Student using Unit testing in SISPEK 40

4.11 Experiment results for Test Login using Integration testing in SISPEK 42

4.12 Experiment results for Creating Student using Integration in SISPEK 42

4.13 Experiment results for Updating Student using Integration in SISPEK 43

4.14 Experiment results for Deleting Student using Integration in SISPEK 43

4.15 Experiment results for Test Creating Asset using Integration in SISPEK 44

4.16 Experiment results for Test Updating Asset using Integration in SISPEK 44

4.17 Experiment results for Test Deleting Asset using Integration in SISPEK 45

4.18 Experiment results for Test View Student using Integration in SISPEK 45

4.19 Test cases in Woodman using Unit testing 46

4.20 Experiment results for Test Login using Unit testing in Woodman 47

4.21 Experiment results for Test View User using Unit testing in Woodman 48

4.22 Experiment results for Creating User using Unit testing in Woodman 48

4.23 Experiment results for Updating User using Unit testing in Woodman 49

4.24 Experiment results for Deleting User using Unit testing in Woodman 49

4.25 Experiment results for Test Creating Supervisor using Unit in Woodman 50

4.26 Experiment results for Test Updating Supervisor using Unit in Woodman 50

4.27 Experiment results for Test Deleting Supervisor using Unit in Woodman 50

xi

4.28 Test cases in Woodman using Integration testing 51

4.29 Experiment results for Test Login using Integration testing in Woodman 53

4.30 Experiment results for Test View User using Integration in Woodman 53

4.31 Experiment results for Test Creating User using Integration in Woodman 54

4.32 Experiment results for Test Update User using Integration in Woodman 54

4.33 Experiment results for Test Deleting User using Integration in Woodman 55

4.34 Results for Test Creating Supervisor using Integration in Woodman 55

4.35 Experiment results to Updating Supervisor using Integration in Woodman 56

4.36 Experiment results to Deleting Supervisor using Integration in Woodman 56

4.37 Experiment results in terms of Correctness using Unit testing in SISPEK 57

4.38 Experiment results in terms of Correctness using Integration in SISPEK 59

4.39 Experiment results in terms of Time Taken using Unit testing in SISPEK 61

4.40 Experiment results in terms of Time Taken using Integration in SISPEK 63

4.41 Experiment results in terms of Memory used using Unit in SISPEK 65

4.42 Experiment results in terms of Memory using Integration in SISPEK 67

4.43 Criteria in SISPEK System 69

4.44 Experiment results in terms of Correctness using Unit in Woodman 70

4.45 Experiment results in terms of Correctness using Integration in Woodman 72

4.46 Experiment results in terms of Time Taken using Unit in Woodman 74

4.47 Experiment results in terms of Time Taken using Integration in Woodman 76

4.48 Experiment results in terms of Memory used using Unit in Woodman 78

4.49 Experiment results in terms of Memory using Integration in Woodman 80

4.50 Criteria in Woodman Estate System 82

xii

LIST OF FIGURES

2.1 Simplified Architecture Diagram 9

2.2 Display output of test case using Selenium Tool 11

3.1 Flow Chart the steps of the project work 19

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

SISPEK – SistemPendaftaranPerkakasanElektrikPelajar

Woodman – SistemPemantauanPekerjaAsing

MM-path – Method-Message Path

HTTP – Hypertext Transfer Protocol

SBST – Search Based Software Testing

MRE – Magnitude of Relative Error

I&T – Integration Testing

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Testing is a major component of any software engineering process meant to produce

high quality applications. The testing aims at finding errors in the tested object and

give confidence in its accurate performance by executing the tested object with input

values. Web applications are the fastest growing classes of software systems today.

They are being used to support a wide range of important activities: business

transaction, scientific activities (information sharing), and medical systems (an

expert system-based diagnoses). Web applications have been deployed at a fast pace

and have helped in fast adoption, but have also decreased the quality of the software.

Therefore, all the entities of web application must be tested. In order to make

a web based application widely and successfully adopted, the testing

methodologies must be flexible, automatic, and able to handle their dynamic nature

(Arora & Sinha, 2012).

 Unit testing is a method by which the individual units of source code, the sets

of one or more computer program modules, together with the associated control data,

usage procedures, and operating procedures are tested to determine if they are fit for

use (William & Nathaniel, 2011).

 At a high-level, unit testing refers to the practice of testing certain functions

and areas or units of the code. This enables the ability to verify that the functions

work as expected. That is to say that for any function and a given set of inputs, it can

be determined if the function is returning the proper values. If it will gracefully

handle failures during the course of execution invalid input should be provided.

http://en.wikipedia.org/wiki/Source_code

2

 Ultimately, this helps to identify failures in the algorithms and/or logic to

help improve the quality of the code that composes a certain function. As more and

more tests were being written, it ended up creating a suite of tests that can run at any

time during development to continually verify the quality of the work.

 A second advantage to approaching development from a unit testing

perspective is that, a code that is easy to test will be written. Since the unit testing

requires that the code is easily testable, it means that the code must support this

particular type of evaluation. As such, it is more likely to have a higher number of

smaller, more focused functions that provide a single operation on a set of data rather

than having large functions that perform a number of different operations.

 A third advantage for writing solid unit tests and well-tested code is that

future changes from the breaking functionality can be prevented. Since the code is

being tested as the functionality is being introduced, a suite of test cases will start to

develop that can be run each time the logic is being worked on. When a failure

happens, it is known that there is something used to address the Integration test

(Zhiyong et al., 2012).

 Integration testing (sometimes called integration and testing, abbreviated

I&T) is the phase in software testing where individual software modules are

combined and tested as a group. It occurs after unit testing, before validation testing.

Integration testing takes as its input modules that have been unit tested and teamed in

larger aggregates, then the defined tests are applied in an integration test plan on

those aggregates, and the integrated system is delivered as its output that is ready for

system testing (Sacha et al., 2010).

 Integration testing is a logical extension of unit testing. In it‟s the simplest

form; two units that have already been tested are combined into a component and the

interface between them is tested. A component, in this sense, refers to an integrated

aggregate of more than one unit. In a realistic scenario, many units are combined into

components, which in turn, aggregated into even larger parts of the program. The

idea is to test combinations of pieces and eventually expand the process to test the

modules with other groups. Eventually, all the modules making up a process are

tested together. Beyond that, if the program is composed of more than one process,

they should be tested in pairs rather than all at once (Sebastian, 2009).

 Integration testing identifies problems that occur when units are combined by

using a test plan that requires to testing each unit and ensuring the viability of each

3

before combining units. Any errors that are discovered when combining units are

likely related to the interface between units. This method reduces the number of

possibilities to a far simpler level of analysis (Giuseppe & Di, 2012).

1.2 Problem Statement

The wide diffusion of the Internet has produced a significant growth demand of

Web-based applications with stricter requirements of reliability, usability,

interoperability, and security. Due to market pressure and very short time-to-market,

the testing of Web-based applications is often neglected by developers as too time

consuming and lacks a significant payoff (Giuseppe & Di, 2012). This depreciable

habit affects negatively the quality of the applications and, therefore, it triggers the

need for adequate, efficient, and cost effective testing approaches for verifying and

validating them. Though the testing of Web-based applications shares the same

objectives of „traditional‟ application testing, in most cases, traditional testing

theories and methods cannot be used just as they are because of the peculiarities and

complexities of Web applications. Indeed, they have to be adapted to the specific

operational environment and new approaches for testing them are needed (Edward &

Robert, 2011). The aim of Web application testing consists of executing the

application using combinations of input and state to reveal failures. A failure is the

manifested inability of a system or component to perform a required function within

specified performance requirements (Ye, 2011). There are many techniques used to

test web applications such as Unit testing and Integration testing. Unit Testing is a

level of the software testing process where individual units/components of a

software/system are tested. The purpose is to validate that each unit of the software is

performs as designed (Per, 2006). Integration testing is the testing applied when all

the individual modules are combined to form a working program. Testing is done at

the module level, rather than at the statement level as in unit testing. Integration

testing emphasizes the interactions between modules and their interfaces

(Manar & James, 2010). The project is the generation of various test cases using unit

testing and integration testing for web applications in two case studies. The results

for Unit and Integration testing were compared using performance parameters

(Correctness, Memory Used and Time Taken).

4

1.3 Project Objectives

The objectives of this research are:

(i) To generate test cases for web application using integration technique in two

case studies; Sistem Pemantauan Pekerja Asing Woodman Estate Sarawak

and Sistem Pendaftaran Perkakasan Elektrik Pelajar KKTDT (SISPEK).

(ii) To generate test cases for web application using Unit technique in two case

studies; Sistem Pemantauan PekerjaAsing Woodman Estate Sarawak and

Sistem Pendaftaran Perkakasan ElektrikPelajar KKTDT (SISPEK).

(iii) To compare the results are using performance parameters (Correctness,

Memory Used and Time Taken) in web application using unit and integration

testing for the two case studies.

1.4 Scope of Project

This study focuses on the problem of web application testing. Therefore, various

methodologies are proposed to Web application testing. The integration and Unit

techniques are used to test a Web application. These two testing techniques

(Correctness, Memory Used and Time Taken) of Web application testing will be

compared using integration and unit for the two case studies.

1.5 Thesis Outline

This thesis consists of five chapters. Chapter 1 is an overview and main objectives of

the project. It consists of the scope of work covered and the objectives of the project.

Chapter 2 illustrates the literature review of unit and integration testing and brief

explanation in general information on the automated testing for enterprise systems in

this project. Chapter 3 discusses the methodology and tools to obtain the entire

objectives of this project. Chapter 4 explains the implementation and detailed steps

used in this work. Chapter 5 includes the objectives achieved, disadvantages, future

work, and conclusion.

5

2 CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The overall goals of this chapter are establishing the significance of the general field

of study. The greater part of this chapter is about critical evaluation of different

methodologies used in this field so as to identify the appropriate approach for

investigating objectives of the project.

2.2 Software Testing

Software testing is a costly and time-consuming process but is essential if a high

quality product is to be produced. The importance of software testing and

establishment of good testing skills must begin as early as possible in computing

curricula complementing programming skills. Various techniques exist for test

design and execution, Some tests do not involve running the system at all, some

require inside knowledge of how the system works, some run step by step by the

tester, while in other cases, a computer does the test execution, though skilled test

engineers must perform the test design and results interpretation, automated testing

or testing using simulators (Jim & Kalpana, 2005).

2.2.1 Web Application Testing

Three related algorithms and a tool, are introduced for automated web application

testing using Search Based Software Testing (SBST). The algorithms significantly

6

enhance the efficiency and effectiveness of traditional search-based techniques,

which exploit both static and dynamic analysis. The combined approach yields a

54% increase in branch coverage and a 30% reduction in test effort. Each

improvement is separately evaluated in an empirical study on 6 real world web

applications (Nadia, 2011).

Models are considered essential steps in capturing different system

behaviours and simplifying the analysis that is required to check or improve the

quality of software. The verification and testing of web software require effective

modelling techniques that address the specific challenges of web applications. In this

study, 24 different modelling methods were used in web site verification and testing

was measured. Based on a short catalogue of desirable properties of web applications

that require analysis, two different views of the methods are presented: a general

categorization by modelling level, and a detailed comparison based on property

coverage (Nadia, 2011).

2.2.2 Automated Testing

Trends are in an automated testing for enterprise systems. The results of an industry

market research survey commissioned by Work soft Inc. were presented and

performed by an independent third party to study the state of test automation in

operating companies. The results include responses from 699 respondents at 504

companies, primarily located in North America and Europe, and most with annual

revenues greater than $500 million USD. The overwhelming majority (93.4%) are

companies that use SAP, although a small number use other packaged software as

their primary ERP system (Reiner, 2013).

2.2.3 Unit Testing

Unit testing is defined as the testing of a single unit, separated from other units of the

program (Eklun Fernlund, 1).

Sometimes, when the units are strongly interdependent, a unit must be tested

together with all units that the first unit depends on (Lindegren Hakan, 2003).

http://dl.acm.org/author_page.cfm?id=81385599528&CFID=396106155&CFTOKEN=23378396
http://dl.acm.org/author_page.cfm?id=81385599528&CFID=396106155&CFTOKEN=23378396

7

In object-oriented development process, a unit is normally a class or an

interdependent cluster of classes, i.e. it‟s not just a snapshot or a script of code that

does some specific work (inder Robert, 1).

The testing of the lower levels of a system (i.e. the unit testing) will require

highly technical testers. Also, low-level testing is a difficult, time-consuming and

expensive task to be accomplished (Hutcheson Marnie, 2003). Less and less low-

level testing is done in top-down approaches to software development, arguing that

“if the system seems to give the correct response to the user, why look any further in

favor of unit testing. It has been recognised that “the problem is that the really tough,

expensive faults often reside in the lower-level areas (Hutcheson Marnie, 2003).

Another argument for performing unit testing for the software verification is

that the unit testing will localize the faults found to the unit tested. If unit testing is

not performed, faults found later during integration testing of the system may lead to

time-consuming work because there are too many places to look for the faults

(Patton Ron, 2001).

Unit testing will help in removing local faults, but does not exercise the

interactions among different units, whereas Integration testing is the activity of

exercising such interactions by pulling together the different modules composing a

system. It is characterized by involving different interacting units, which have been,

in general, developed by different programmers. In this case the code is still visible,

but with higher granularity (Alessandro, 2006).

2.2.4 Integration Testing

A technique defined (regarding both the unit testing and the integration testing test

cases) for reducing the combinatorial explosion of the number of test cases for

covering all combinations of polymorphic caller, , parameters, and related

states. The technique is based on squares: a set of specific orthogonal arrays

used to identify the subset of combinations of the state of each object and its dynamic

type to be tested. The method ensures coverage of all pairwise combinations. It

applies to single calls, but does not consider the combined effects of different calls

(McGregor Korson, 1 4).

A pairwise integration approach is described based on the relationships

between the system classes, and a heuristic method for selecting test cases based on

8

the states of objects. The method allows for identifying some infeasible

combinations, and hence, limiting the number of generated test cases for integration

testing, focusing on the integration order (Paradkar, 1 6).

The notion of method-message path (MM-path) has been introduced, and defined

as a sequence of method executions linked by messages. For each identified MM-

path, integration is performed by pulling together classes involved in the path and

exercising the corresponding message sequence. More precisely, Jorgensen and

Erickson identify two different levels for integration testing:

(i) Message quiescence: This level involves testing a method together with all

methods it invokes, either directly or transitivly (McGregor & Korson, 1994).

(ii) Event quiescence: This level is analogous to the message quiescence level,

with difference that it is driven by the system level events. Testing at this

level means exercising message chains (threads), such as the invocation of the

first message of the chain is generated at the system interface level (i.e., the

user interface) and, analogously, the invocation of the last message results in

event that can be observed at the system interface level. An end-to-end thread

is called an atomic system function Jorgensen Erickson, 1 4).

The main drawback of this method is the difficulty in the identification of

ASFs, which requires either the understanding of the whole system or an analysis of

the source code (Jorgensen Erickson, 1 4).

A methodology called is described, based on a

specific development technique. Developers reach an agreement on the functionality

to be achieved for each component during each integration process. To achieve such

functionality, all involved classes must provide a subset of their features. Therefore,

development proceeds across all of the classes at the same time. This methodology

can be considered a variation of the threads integration strategies, characterised by

development and testing being tightly coupled. The main drawback of this approach

is that it requires much communications among different teams. Its main advantage is

the little need for scaffolding (McGregor Korson, 1 4).

9

2.3 Selenium Tool

Selenium is a portable software testing framework for web applications. It provides a

record/playback tool for authoring tests without learning a test scripting language

(Selenium IDE). It also provides a test domain-specific language (Selenese) to write

tests in a number of popular programming languages including Java, C#, Groovy,

Perl, PHP, Python and Ruby. The tests can then be run against most modern

web browsers. Selenium deploys on Windows, Linux, and Macintosh

platforms (Alan, 2010).

2.3.1 Selenium components

The Selenium Server, which launches and kills browsers, interprets and runs the

Selenese commands passed from the test program, and acts as a HTTP proxy,

intercepting and verifying HTTP messages passed between the browser and the AUT

Client libraries provide the interface between each programming language and the

Selenium Server. Figure 3.1 displays a simplified architecture diagram.

Figure 2.1: Simplified Architecture Diagram (Roy, 2012)

10

The diagram shows that the client libraries communicate with the server

passing each Selenium command for execution. Then the server passes the Selenium

command to the browser using Selenium-Core JavaScript commands. The browser,

using its JavaScript interpreter, executes the Selenium command. This runs the

selenese action or verification specified in test script (Roy, 2012).

2.3.2 Performing the Unit and Integration Testing with Selenium

The generation of the test cases to unit testing is by writing the code compiler inside

the first case study, as well as generation of the test cases to unit testing by writing

the code compiler inside the second case study. Generation of test cases to

integration testing is also by writing the code compiled inside first case study, and

generation of the test cases to integration testing by writing the code compiled inside

the second case study. All test cases executed are as follow:

(i) The Client driver will first establish a connection with the Selenium server.

(ii) The Selenium Server will do the following:

 It will create a session for that particular request.

 It will launch the desired browser (specified in the code IE, FF,

Chrome).

 Loads the Selenium cores JavaScript file into specified browser (So as

the selenium server will have to handle with the webpage for

performing the Selenese action).

(iii) Now the Client driver will send the program that have been written in eclipse

IDE as selenese (by making conversion) and send it to Selenium server.

(iv) The Selenium server is intelligent enough to understand the selenese

command and triggers the corresponding JavaScript execution in the web

browser.

(v) Here the Selenium Server act as a “Proxy Server” between the AUT

(Application under Test) and actual browser, due to the restriction of “Same

origin policy”. Selenium server performs “Proxy Injection”. eing a proxy

gives the Selenium Server the capability of “lying” about the AUT‟s real

URL.

(vi) Now, the Selenium server requests the actual webserver for the page open

request and, then, it receives the page and sends it to the browser.

http://seleniumhq.org/docs/05_selenium_rc.html
http://seleniumhq.org/docs/05_selenium_rc.html

11

(vii) Now, any operation or request that the browser makes will eventually pass

through Selenium RC server to the actual webserver and vice versa.

At the end of the testing process, the selenium tool will display the following

on the screen: correctness, time taken and memory (Alan, 2010).

Figure 2.2: Display Output of test Case (Alan, 2010)

2.4 Testing Challenges

The integration testing challenges are described, as the size of Web applications are

growing due to the involvement of new emerging process like business processes and

highly secure requirements from customers. The existing integrated solutions are the

cheapest and the fastest way to develop such kinds of large Web-based applications.

But testing of such application is a complex task due to its large size, integration of

multilingual components, and use of different operating systems. The most important

and commonly known challenges during integration testing are:

2.4.1 Inconsistent Infrastructure and Environment

Web-based applications consist of a number of different heterogeneous components

and run on diverse environment. It means heterogeneity is one of the key features of

Web-based applications; heterogeneity may introduce the incompatibilities between

different programming languages, databases, different operating systems and

external operational environments involved in development and deployment of Web-

based applications. Complex integrated solutions consist of different software

components, which are developed by using different programming languages and

technologies. The assurance of compatibility and interoperability between these

components is one of major concerns during the testing process (Jerry et al 2003).

12

2.4.2 Inconsistent Interaction Models

Web-based applications are based on number of different Web components, which

are developed by a different group of teams with the use of different methods and

approaches; in complex Web-based applications, control protocols and data models

play key role in the reliable communication and interaction among different

integrated subsystems. Control protocols are responsible for defining the rules on

how integrated components interact to each other. Data models define the contents

and format of communication between them. Since Web-based applications can be

based on a number of different components, most of the time, different groups of

developers are involved in development process (Jerry et al 2003).

2.4.3 Distributed Nature of Systems

Web-based applications are mostly developed under distributed environments, so the

issues related to distributed systems, such as race condition and dead lock can be

inherited. The distributed nature of systems can have a great impact on the working

of Web-based applications, these issues can be solved during the integration testing.

The existence of more than one version of the same software component generates

multi version issues in the system (Jerry et al 2003).

2.4.4 Performance and Reliability Issues due to Heterogeneity

The testing of Web-based application and assurance of key quality feature are

challenging for the testing team to achieve the guarantee of these features required in

most of the testing effort. Performance and reliability are the key quality features that

can affect the overall working and presentation of Web application. The assurance of

this quality feature also produce a good impact on customers and users of Web

application. Heterogeneity allows integration of different subsystems or components

that are developed in different programming languages, under different platforms and

environments that can be achieved through standardization. The process of

standardization produces the extra overhead during communication of components

and this overhead causes the degradation of performance and reliability of the whole

application (Jerry et al 2003).

13

2.4.5 Interoperability

Interoperability is the ability of two or more systems, applications or components to

exchange information and to use the information that has been exchanged.

Interoperability itself is a critical testing challenge, which has further challenging

factors and characteristics (Jerry et al 2003).

2.5 Performance Parameters for Testing

When a program is implemented to provide a concrete representation of an

algorithm, the developers of this program are naturally concerned with the

correctness and performance of the implementation. Software engineers must ensure

that their software systems achieve an appropriate level of quality. Software

verification is the process of ensuring that a program meets its intended specification.

One technique that can assist during the specification, design, and implementation of

a software system is software verification through correctness proof. Software

testing, or the process of assessing the functionality and correctness of a program

through execution or analysis, is another alternative for verifying a software system

(Gregory, 2008).

When performance is important, as it often is, we also need to choose an

algorithm that runs quickly and uses the available computing resources efficiently.

We are thus led to consider the often subtle matter of how we can measure the time

taken of a program or an algorithm, and what steps can we take to make a program

run faster. There are different test case design methods in practice today. These test

case design methods need to be part of a well-defined series of steps to ensure

successful and effective software testing. This systematic way of conducting testing

saves time, effort and increases the probability of more faults being caught, These

steps highlights when different testing activities are to be planned i.e. effort, time and

resource requirements, criteria for ending testing, means to report errors, and

evaluation of collected data. The schedule for accomplishing testing milestones is

also included, which matches the time allocation in the project plan for testing. It is

important that the schedule section reflect how the estimates for the milestones were

determined, the failing test case is re-run along with other related test cases so as to

be sure that the bug fix has not adversely affected the related functionality. This

14

practice helps in saving time and effort when executing test cases with higher

probability of finding more failures, the test execution process involves allocating

test time and resources, running tests, collecting execution information and

measurements and observing results (Wasif, 2007).

There are two major groups of experimental evaluations for Memory Used:

performance evaluation and semantic evaluation (debugging/testing/verification).

The biggest challenge for performance evaluation of memories used is to propose

benchmarks that are precise enough to emphasize Memory characteristics, but also

realistic enough to match the behavior of common applications, Performance tests

are generally longer than unit tests since they execute complex schedules to measure

the performance of a Memory. More precisely, they use randomization and loops to

test a large set of schedules (Derinet et al., 2008).

2.6 Magnitude of Relative Error (MRE) for Performance Parameters

To illustrate the problem of MRE, let us consider two prediction models A and B,

respectively. If MRE of model B is significantly lower than MRE of model A, one

would conclude that model is better than model A (is “more accurate” than A in

current software engineering terminology). To be able to draw the correct conclusion

with regard to whether model A or model B is the best, it is crucial that the model

evaluation metric selects the model that is closest to the true, Consider

MRE ≤ 0.25 as acceptable for prediction models, and to get MRE follow the

equation (Tron et al., 2002).

∑

where

N: Number of Values.

Y: Predicted Value.

 i: Actual Value.

15

2.7 Related Work

Several researchers have investigated many topics on the effectiveness and the

efficiency of the regression testing (for both integration and unit testing) as

summarized in the recent survey. While there is a large amount of work related to

our thesis, only the most related topics on generated automated testing have been

reviewed and discussed (Yoo Harman, 2010).

An automated approach for testing JavaScript web applications has been

described and implemented in the tool . It combines the use of random test

generation to explore the application‟s event space (i.e., the possible sequences of

user-interface actions) with the use of symbolic execution for systematically

exploring an application‟s value space (i.e., how the execution of control flow paths

depends on input values). The main goal of their work is to find code injection

vulnerabilities that result from untrusted data provided as arguments

to, for example, eval. The symbolic execution part relies on an elaborated model for

reasoning about string values and string operations (Saxena Akhawe, 2010).

The dynamic analysis has been described to construct a state-flow graph that

models the states of an AJAX application‟s user-interface and transitions between

these states. From this model, a set of equivalent static pages can be generated that

can be used for various applications (e.g., applying search engines to their content,

performing state-based testing). rawljax relied on a heuristically-based approach for

detecting “ ”, i.e., elements of the DOM that may correspond to active

user-interface components, and crawls the application by exercising these

in some random order (Mesbah ozdag, 200).

A tool, which relies on to create a model of the state space of an

AJAX application is described. It can check this state space model for a number of

common problems, including DOM invariants such as: situations where the

application causes the HTML DOM to be malformed, situations where the DOM

contains error messages such as “404 Not Found” and state machine invariants such

as dead clickables (corresponding to URLs that are permanently unavailable) and

situations where pressing the browser‟s back-button results in inconsistent behavior

(Mesbah Van, 200).

16

A framework for Automated Testing of JavaScript Web Applications is

introduced. The framework was aimed for feedback directed testing of JavaScript

applications. The framework in a tool called Artemis has been implemented and it

created several effective test generation algorithms by instantiating the framework

with different prioritization functions and input generators that employ simple

feedback mechanisms, the experimental results described stated that the basic

algorithm, events, produces good coverage (69% on average) if enough tests are

generated. However, if test generation is directed by coverage information and read-

write sets, a slightly better level of coverage (72% on average) can be achieved, and

sometimes with lesser tests (Shay Julian, 2011).

2.8 Summary

This chapter reviewed software testing and previous related works regarding testing

techniques, and Selenium tool. The next chapter will look into research methodology

of the study.

3 CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter discusses the methodology of this project. This chapter presents the

preliminary knowledge, in order, to apply the Selenium tool for unit and integration

testing in two case studies. Next, this section explains the research activities and all

main phases in this project. Finally, all the steps of the application of the Selenium

tool for the integration and unit testing are presented.

19

3.2 Flow Chart of the Project Work

Figure 3.1: Flow Chart the Steps of the Project Work

Based on Figure 3.1, four phases are needed for applying Unit and Integration testing

in two Case studies. They are 4 phases in the creating of two web application using

the Yii Framework then using Unit testing and Integration testing in two Case

studies. These phases are further discussed in the following sections.

Using Integration testing in

Case Study 2

Using Unit testing in Case

Study 2

Analysis and comparison of

results

End

Start

Using Integration testing in

Case Study 1

Using Unit testing in Case

Study 1

Creating two web application

using the Yii Framework

20

3.3 Creating two Case Studies

The case studies are the building of two web applications using the Yii framework

(Student Registration System, and Woodman Estate System).

(i) First Case Study

The first system is the SISPEK (Hamiza, 2013) is mainly aimed to register the

students‟ and the assets‟ information, in order to be used later to track the assets of

the students.

(ii) Second Case Study

The second system, Woodman Estate (Nor, 2013), is mainly aimed to register the

users, supervisors and workers‟ information, in order to be used to track the workers

expiration date.

3.4 Application of Unit and Integration Testing in Two Case Study 1

In this section, the steps applied to the automated Integration and Unit

testing by Selenium is explained in SISPEK.

3.4.1 Test Cases for Integration Testing in SISPEK System

There are eight (8) test cases for integration testing in SISPEK System. These eight

test cases are: Login, Creating Student, Updating Student, Deleting Student, Creating

Asset, Updating, Asset Deleting Asset and View User. They are discussed in the

follows subsections.

21

3.4.1.1 Login Test

The integration test case steps are as the following:

(i) Open the web application and click the login link.

(ii) Ensure that the login page is opened by ensuring that the text “Login

Admin/Staff” is available in the page.

(iii) Ensure that the login page contains an input field for the username.

(iv) Type “admin” in the username field.

(v) Try to login by pressing on the login submit button.

(vi) Ensure that the web application showed an error that the password can‟t be

blank.

(vii) Type “admin123” in the password field.

(viii) Try to login again by pressing on the login submit button.

(ix) Ensure that the message “Password cannot be blank” has gone.

(x) Ensure that the web application has redirected the user to the home page that

contains the logout link.

(xi) Run test case above with Selenium.

(xii) After applying the correct case, the errors in this test scenario were created

(e.g. rename the field to).

3.4.1.2 Create Students Test

The integration test case steps are as the following:

(i) Open the web application and click the login link.

(ii) Type “admin” in the username field.

(iii) Type “admin123” in the password field.

(iv) Try to login by pressing on the login submit button.

(v) lick on the link “ reate Student”.

(vi) Ensure that the creation form includes the appropriate elements and then fill

them.

(vii) lick on the submit button “ reate”.

(viii) Ensure that the system is created correctly and has redirected to the View

Student page.

22

(ix) Run test case above with Selenium.

(x) After applying the correct case, the errors in this test scenario were created

(e.g. rename the field full_name to fullname).

3.4.1.3 Updating Students Test

The integration test case steps are as the following:

(i) Open the web application and click the login link.

(ii) Type “admin” in the username field.

(iii) Type “admin123” in the password field.

(iv) Try to login by pressing on the login submit button.

(v) lick on the link “List Students”.

(vi) lick on the link “Update” link.

(vii) Enter some new values.

(viii) Click on the “Save” button.

(ix) Ensure that the system updated the student correctly and has redirected to

the view student page.

(x) Run test case above with Selenium.

(xi) After applying the correct case, the errors in this test scenario were created

(e.g. rename the field to).

3.4.1.4 Deleting Students Test

The integration test case steps are as the following:

(i) Open the web application and click the login link.

(ii) Types “admin” in the username field.

(iii) Types “admin123” in the password field.

(iv) Try to login by pressing on the login submit button.

(v) lick on the link “List Students”.

(vi) Ensure that the student 'Muhammad Rabeeh Saeed' is existed.

(vii) Click on the first delete link.

(viii) Ensure that the student 'Muhammad Rabeeh Saeed' is no longer existed.

(ix) Run test case above with Selenium.

23

(x) After applying the correct case, the errors in this test scenario were created

(e.g. rename the link Delete to delete student).

3.4.1.5 Create Asset Test

The integration test case steps are as the following:

(i) Open the web application and click the login link.

(ii) Type “staff” in the username field.

(iii) Type “staff123” in the password field.

(iv) Try to login by pressing on the login submit button.

(v) lick on the link “ reate Asset”.

(vi) Ensure that the creation form includes the appropriate elements and then fill

them.

(vii) Click on the submit button “ reate”.

(viii) Ensure that the system created the asset correctly and has redirected to the

view asset page.

(ix) Run test case above with Selenium.

(x) After applying the correct case, the errors in this test scenario were created

(e.g. rename the field to asset cateogry).

3.4.1.6 Updating Asset Test

The integration test case steps are as the following:

(i) Open the web application and clicks the login link.

(ii) Type “staff” in the username field.

(iii) Type “staff123” in the password field.

(iv) Try to login by pressing on the login submit button.

(v) lick on the link “List Assets”.

(vi) lick on the link “Update” link.

(vii) Enter some new values.

(viii) lick on the “Save” button.

(ix) Ensure that the system updated the asset correctly and has redirected to the

view asset page.

(x) Run test case above with Selenium.

24

(xi) After applying the correct case, the errors in this test scenario were created

(e.g. rename the field cateogry to asset cateogry).

3.4.1.7 Deleting Asset Test

The integration test case steps are as the following:

(i) Open the web application and click the login link.

(ii) Type “staff” in the username field.

(iii) Type “staff123” in the password field.

(iv) Try to login by pressing on the login submit button.

(v) lick on the link “List Assets”.

(vi) Ensure that the asset 'US Flash‟ is existed.

(vii) Click on the first delete link.

(viii) Ensure that the asset 'USB Flash' is no longer existed.

(ix) Run test case above with Selenium.

(x) After applying the correct case, the errors in this test scenario were created

(e.g. rename the link to delete asset).

3.4.1.8 View Student Test

The integration test case steps are as the following:

(i) Open the web application and click the login link.

(ii) Type “admin” in the username field.

(iii) Type “admin123” in the password field.

(iv) Try to login by pressing on the login submit button.

(v) lick on the link “List Students”.

(vi) lick on the link “view” link.

(vii) Enter some new values.

(viii) lick on the “View” button.

(ix) Ensure that the system updated the student correctly and has redirected to

the view student page.

(x) Run test case above with Selenium.

(xi) After applying the correct case, the errors in this test scenario were created

(e.g. rename the field full_name to fullname).

85

6 REFERENCES

Alessandro Orso. (2006). Integration Testing of Object-Oriented Software. College

of Computing Georgia Institute of Technology.

Alan Richardson. (2010). Selenium Simplified A tutorial guide to using the Selenium

 API in Java with JUnit. http://www.compendiumdev.co.uk/selenium.

Arora A., Sinha M. (2012). Web Application Testing. International Journal of

Scientific & Engineering Research, 3(2), ISSN 2229-5518.

Atif M. Memon. (2011). A Comprehensive Framework for Testing Graphical User

Interfaces, University of Karachi.

Binder, Robert V. (1999). Testing object-oriented systems – models, patterns and

tools Addison-Wesley. www.awl.com/cseng/.

Dorota Huizinga, Adam Kolawa. (2007). Automated Defect Prevention: Best

Practices in Software Management. ISBN: 978-0-470-04212-0.

Derin Harmanci Pascal, Vincent Gramoli, Christof Fetzer. (2008). Testing Software

Transactional Memories. University of Neuchâtel Switzerland, Dresden

University of Technology Germany.

Edward Hieatt and Robert Mee. (2011). Going Faster: Testing The Web Application.

http://computer.org/publications/dlib.

Giuseppe A. Di Lucca. (2012). Testing Web-based applications: The state of the art

and future trends. Research Centre on Software Technology, University of

Sannio, Via Traiano, 1, 82100 Benevento, Italy.

Giuseppe Antonio Di Lucca, Anna Rita Fasolino, Francesco Faralli, Ugo De Carlini.

(2002). Testing Web Applications. Dipartimento di Informatica

Sistemistica, Universita di Napoli Federico II ViaClaudio, Napoli, Italy.

Guido W. Imbens, Berkeley and Whitney Newey. (2007). Mean-squared-error

Calculations for Average Treatment Effects. UC Berkeley and NBER .

http://www.compendiumdev.co.uk/selenium
http://www.awl.com/cseng/
http://computer.org/publications/dlib

86

Hong Zhu, Xudong He. (2001). A Study of Integration Testing and Software

Regression at the Integration Level. Department of Computer Engineering

and Science Case Westem Reserve University Cleveland, Ohio 44106.

Jim Collofello and Kalpana Vehathiri. (2005). An Environment for Training

Computer Science Students on Software Testing. Department of Computer

Science and Engineering, Arizona State University Tempe.

Jerry Zeyu Gao. (2003). Testing and Quality Assurance for Component-Based

Software. www.artechhouse.com.

John Watkins. (2004). Testing IT an Off-the-Shelf Software Testing Process. ISBN

0-521-79546-X paperback.

Jorgensen and Erickson. (1994). Object-oriented integration testing. Grand Valley

State Univ., Allendale, MI.

Manar H. Alalfi, James R. Cordy. (2010). Modelling methods for web application

verification and testing: state of the art. School of omputing Queen’

University Kingston, Ontario, K7L 3N6, Canada.

McGregor and Korson. (1994). Testing of the polymorphic interactions of classes.

Department of Computer Science Clemson University.

Mesbah A. and Van Deursen. (2009). Invariant-based automatic testing of AJAX

User interfaces. Department of Software Technology Faculty of Electrical

Engineering, Mathematics and Computer Science Delft University of

Technology.

Mesbah A. (2008). Crawling AJAX by inferring user interface state changes.

Department of Software Technology Faculty of Electrical Engineering,

Mathematics and Computer Science Delft University of Technology.

Paradkar. (1996). Inter-Class Testing of O-O Software in the Presence of

Polymorphism. Department of Computer Science North Carolina State

University Raleigh, NC 27695-8206, USA.

Patton, Ron. (2001). Software testing. 800 E. 96th St., Indianapolis, Indiana, 46240

USA.

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,

Dawn Song. (2010). A symbolic execution framework for JavaScript.

Computer Science Division, EECS Department University of California,

USA.

http://www.artechhouse.com/

87

Ramamoorthy C.V., Chandra C. (2005). System integration problems and

approaches. Computer Science Division University of California, USA.

Reiner Musier. (2013). Trends in Automated Testing For Enterprise Systems.

http://www.worksoft.com/.

Roy de Kleijn. (2012). Learning Selenium. http://leanpb.com/LearningSelenium.

Sacha Reis, Andreas Metzger, and Klaus Poh. (2010). Integration Testing

in Software Product Line Engineering: A Model-Based Technique.

Software Systems Engineering, University of Duisburg-Essen,

Schutzenbahn 70,45117 Essen, Germany.

Sebastian Benz. (2009). Combining Test Case Generation for Component and

Integration Testing. BMW Car IT GmbH Petuelring 116 80809 Munich,

Germany.

Sanjeev Patwa and Anil Kumar Malviya. (2012). Reusability Metrics and Effect of

Reusability on Testing of Object Oriented Systems. FASC, MITS (Deemed

University), Lakshmangarh,Sikar, Raj., India.

Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, Frank Tip. (2011). A

Framework for Automated Testing of JavaScript Web Applications. IBM

Research, Aarhus University.

Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit

 Paradkar, Michael D. Ernst. (2008). Finding Bugs In Dynamic Web

Applications. MIT Computer Science and Artificial Intelligence Lab, IBM

T.J.Watson Research Center.

William Pugh, Nathaniel Ayewah. (2011). Unit Testing Concurrent Software. Dept.

of Computer Science Univ. of Maryland College Park, MD.

Wasif Afzal. (2007). Metrics in Software Test Planning and Test Design Processes.

School of Engineering Blekinge Institute of Technology.

Ye Wu. (2011). Modeling and Testing Web-based Applications. Information and

Software Engineering Department George Mason University.

Zhiyong Zhang, John Thangarajah, Lin Padgham. (2012). Automated Unit

Testing for Agent Systems. School of Computer Science, RMIT,

Melbourne, Australia.

http://www.worksoft.com/
http://leanpb.com/LearningSelenium

