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ABSTRACT 

 

 

 

Web testing is the name given to software testing that focuses on web applications. A 

complete testing of a web-based system before going live can help to address issues 

before the system is revealed to the public. Issues such as the security of the web 

application, the basic functionality of the site, its accessibility to handicapped users 

and fully able users as well as readiness for expected traffic and number of users, and 

the ability to survive a massive spike in user traffic are related to load testing. This 

project describes the generation of various test cases for web application in two case 

studies by using unit testing and integration testing and the comparison in terms of 

Correctness, Memory Used and Time Taken. The experimental results showed the 

same Correctness rate for both unit and integration testing with the 80% for the case 

study 1 and 75% for the case study 2. Magnitude of relative error (MRE) for Time 

Taken using unit testing was 0.227 in case study 1 and 0.214 in case study 2. 

Meanwhile, for Integration testing, MRE for Time taken was 0.149 in case study 1 

and 0.108 in case study 2. MRE for memory used during unit testing was 0.060 in 

case study 1 and 0.066 in case study 2.  When using integration testing, MRE for 

memory used was 0.161 in case study 1 and 0.169 in case study 2. Based on the 

experimental results, MRE for Time taken using Integration testing is better than 

MRE for Time taken using Unit testing. However, the MRE for Memory used using 

Unit testing is better than MRE for Memory used using Integration testing. 

  



vi 

 

 

 

ABSTRAK 

 

 

 

Pengujian Web adalah nama yang diberikan kepada ujian perisian yang 

memfokuskan kepada aplikasi web. Ujian lengkap bagi sistem berasaskan web 

sebelum sistem dilancarkan boleh membantu menangani isu-isu sebelum sistem 

didedahkan kepada orang ramai. Isu-isu seperti keselamatan aplikasi web, fungsi 

asas laman web, akses kepada pengguna kurang upaya dan pengguna berupaya 

sepenuhnya, serta kesediaan untuk menjangkakan trafik dan bilangan pengguna dan 

keupayaan untuk meneruskan ledakan trafik pengguna adalah berkaitan dengan 

beban ujian. Projek ini menerangkan penjanaan pelbagai kes-kes ujian untuk aplikasi 

web dalam dua kes kajian menggunakan ujian unit dan ujian integrasi dan 

perbandingan dari segi (Ketepatan, Memori digunakan dan Masa yang diambil). 

Keputusan eksperimen menunjukkan  kadar ketepatan adalah sama bagi kedua-dua 

ujian Unit dan ujian Integrasi  dengan 80% pada kes kajian 1 dan 75% bagi kes 

kajian 2. Magnitud ralat relatif (MRE) untuk Masa yang diambil menggunakan ujian 

unit adalah 0.227 dalam kes kajian 1dan 0.214 dalam kes kajian 2 . Sementara itu, 

bagi ujian Integrasi MRE untuk Masa yang diambil adalah 0.149 dalam kes kajian 1 

dan 0.108 dalam kes kajian 2. MRE untuk Memori yang digunakan menggunakan 

ujian unit adalah 0.060 dalam kes kajian 1dan 0.066 dalam kes kajian 2  Apabila 

menggunakan Integrasi ujian, MRE untuk Memori yang digunakan adalah 0.161 

dalam kes kajian 1 dan 0.169 dalam kes kajian 2. Berdasarkan keputusan 

eksperimen, MRE bagi masa yang diambil menggunakan ujian Integrasi adalah lebih 

baik berbanding MRE menggunakan ujian Unit. Walau bagaimanapun, MRE bagi 

Memori yang digunakan menggunakan Ujian unit adalah lebih baik berbanding MRE 

bagi Memori yang digunakan menggunakan Ujian Integrasi. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of Study 

 

Testing is a major component of any software engineering process meant to produce 

high quality applications. The testing aims at finding errors in the tested object and 

give confidence in its accurate performance by executing the tested object with input 

values. Web applications are the fastest growing classes of software systems today. 

They are being used to support a wide range of important activities: business 

transaction, scientific activities (information sharing), and medical systems (an 

expert system-based diagnoses). Web applications have been deployed at a fast pace 

and have helped in fast adoption, but have also decreased the quality of the software. 

Therefore, all the entities of web application must be tested. In order to make  

a web based application widely and successfully adopted, the testing 

methodologies must be flexible, automatic, and able to handle their dynamic nature 

(Arora & Sinha, 2012). 

 Unit testing is a method by which the individual units of source code, the sets 

of one or more computer program modules, together with the associated control data, 

usage procedures, and operating procedures are tested to determine if they are fit for 

use (William & Nathaniel, 2011). 

 At a high-level, unit testing refers to the practice of testing certain functions 

and areas or units of the code. This enables the ability to verify that the functions 

work as expected. That is to say that for any function and a given set of inputs, it can 

be determined if the function is returning the proper values. If it will gracefully 

handle failures during the course of execution invalid input should be provided. 

http://en.wikipedia.org/wiki/Source_code
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 Ultimately, this helps to identify failures in the algorithms and/or logic to 

help improve the quality of the code that composes a certain function. As more and 

more tests were being written, it ended up creating a suite of tests that can run at any 

time during development to continually verify the quality of the work. 

 A second advantage to approaching development from a unit testing 

perspective is that, a code that is easy to test will be written. Since the unit testing 

requires that the code is easily testable, it means that the code must support this 

particular type of evaluation. As such, it is more likely to have a higher number of 

smaller, more focused functions that provide a single operation on a set of data rather 

than having large functions that perform a number of different operations. 

 A third advantage for writing solid unit tests and well-tested code is that 

future changes from the breaking functionality can be prevented. Since the code is 

being tested as the functionality is being introduced, a suite of test cases will start to 

develop that can be run each time the logic is being worked on. When a failure 

happens, it is known that there is something used to address the Integration test 

(Zhiyong et al., 2012). 

 Integration testing (sometimes called integration and testing, abbreviated 

I&T) is the phase in software testing where individual software modules are 

combined and tested as a group. It occurs after unit testing, before validation testing. 

Integration testing takes as its input modules that have been unit tested and teamed in 

larger aggregates, then the defined tests are applied in an integration test plan on 

those aggregates, and the integrated system is delivered as its output that is ready for 

system testing (Sacha et al., 2010). 

 Integration testing is a logical extension of unit testing. In it‟s the simplest 

form; two units that have already been tested are combined into a component and the 

interface between them is tested. A component, in this sense, refers to an integrated 

aggregate of more than one unit. In a realistic scenario, many units are combined into 

components, which in turn, aggregated into even larger parts of the program. The 

idea is to test combinations of pieces and eventually expand the process to test the 

modules with other groups. Eventually, all the modules making up a process are 

tested together. Beyond that, if the program is composed of more than one process, 

they should be tested in pairs rather than all at once (Sebastian, 2009). 

 Integration testing identifies problems that occur when units are combined by 

using a test plan that requires to testing each unit and ensuring the viability of each 
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before combining units. Any errors that are discovered when combining units are 

likely related to the interface between units. This method reduces the number of 

possibilities to a far simpler level of analysis (Giuseppe & Di, 2012). 

 

1.2 Problem Statement 

 

The wide diffusion of the Internet has produced a significant growth demand of 

Web-based applications with stricter requirements of reliability, usability, 

interoperability, and security. Due to market pressure and very short time-to-market, 

the testing of Web-based applications is often neglected by developers as too time 

consuming and lacks a significant payoff (Giuseppe & Di, 2012). This depreciable 

habit affects negatively the quality of the applications and, therefore, it triggers the 

need for adequate, efficient, and cost effective testing approaches for verifying and 

validating them. Though the testing of Web-based applications shares the same 

objectives of „traditional‟ application testing, in most cases, traditional testing 

theories and methods cannot be used just as they are because of the peculiarities and 

complexities of Web applications. Indeed, they have to be adapted to the specific 

operational environment and new approaches for testing them are needed (Edward & 

Robert, 2011). The aim of Web application testing consists of executing the 

application using combinations of input and state to reveal failures. A failure is the 

manifested inability of a system or component to perform a required function within 

specified performance requirements (Ye, 2011).  There are many techniques used to 

test web applications such as Unit testing and Integration testing. Unit Testing is a 

level of the software testing process where individual units/components of a 

software/system are tested. The purpose is to validate that each unit of the software is 

performs as designed (Per, 2006). Integration testing is the testing applied when all 

the individual modules are combined to form a working program. Testing is done at 

the module level, rather than at the statement level as in unit testing. Integration 

testing emphasizes the interactions between modules and their interfaces  

(Manar & James, 2010). The project is the generation of various test cases using unit 

testing and integration testing for web applications in two case studies. The results 

for Unit and Integration testing were compared using performance parameters 

(Correctness, Memory Used and Time Taken). 
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1.3 Project Objectives 

 

The objectives of this research are:  

(i) To generate test cases for web application using integration technique in two 

case studies; Sistem Pemantauan Pekerja Asing Woodman Estate Sarawak 

and Sistem Pendaftaran Perkakasan Elektrik Pelajar KKTDT (SISPEK).  

(ii) To generate test cases for web application using Unit technique in two case 

studies; Sistem Pemantauan PekerjaAsing Woodman Estate Sarawak and 

Sistem Pendaftaran Perkakasan ElektrikPelajar KKTDT (SISPEK). 

(iii) To compare the results are using performance parameters (Correctness, 

Memory Used and Time Taken) in web application using unit and integration 

testing for the two case studies. 

 

1.4 Scope of Project 

 

This study focuses on the problem of web application testing. Therefore, various 

methodologies are proposed to Web application testing. The integration and Unit 

techniques are used to test a Web application. These two testing techniques 

(Correctness, Memory Used and Time Taken) of Web application testing will be 

compared using integration and unit for the two case studies.  

 

1.5 Thesis Outline 

 

This thesis consists of five chapters. Chapter 1 is an overview and main objectives of 

the project. It consists of the scope of work covered and the objectives of the project. 

Chapter 2 illustrates the literature review of unit and integration testing and brief 

explanation in general information on the automated testing for enterprise systems in 

this project.  Chapter 3 discusses the methodology and tools to obtain the entire 

objectives of this project. Chapter 4 explains the implementation and detailed steps 

used in this work. Chapter 5 includes the objectives achieved, disadvantages, future 

work, and conclusion. 
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2 CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 INTRODUCTION 

 

The overall goals of this chapter are establishing the significance of the general field 

of study. The greater part of this chapter is about critical evaluation of  different 

methodologies used in this field so as to identify the appropriate approach for 

investigating objectives of the project. 

 

2.2 Software Testing 

 

Software testing is a costly and time-consuming process but is essential if a high 

quality product is to be produced. The importance of software testing and  

establishment of good testing skills must begin as early as possible in computing 

curricula complementing programming skills. Various techniques exist for test 

design and execution, Some tests do not involve running the system at all, some  

require inside knowledge of how the system works, some  run step by step by the 

tester, while in other cases, a computer does the test execution, though skilled test 

engineers must perform the test design and results interpretation, automated testing 

or testing using simulators (Jim & Kalpana, 2005). 

 

2.2.1 Web Application Testing 

 

Three related algorithms and a tool, are introduced for automated web application 

testing using Search Based Software Testing (SBST). The algorithms significantly 
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enhance the efficiency and effectiveness of traditional search-based techniques, 

which exploit both static and dynamic analysis. The combined approach yields a 

54% increase in branch coverage and a 30% reduction in test effort. Each 

improvement is separately evaluated in an empirical study on 6 real world web 

applications (Nadia, 2011). 

Models are considered essential steps in capturing different system 

behaviours and simplifying the analysis that is required to check or improve the 

quality of software. The verification and testing of web software require effective 

modelling techniques that address the specific challenges of web applications. In this 

study, 24 different modelling methods were used in web site verification and testing 

was measured. Based on a short catalogue of desirable properties of web applications 

that require analysis, two different views of the methods are presented: a general 

categorization by modelling level, and a detailed comparison based on property 

coverage (Nadia, 2011). 

 

2.2.2 Automated Testing 

 

Trends are in an automated testing for enterprise systems. The results of an industry 

market research survey commissioned by Work soft Inc. were presented and 

performed by an independent third party to study the state of test automation in 

operating companies. The results include responses from 699 respondents at 504 

companies, primarily located in North America and Europe, and most with annual 

revenues greater than $500 million USD. The overwhelming majority (93.4%) are 

companies that use SAP, although a small number use other packaged software as 

their primary ERP system (Reiner, 2013). 

 

2.2.3 Unit Testing 

 

Unit testing is defined as the testing of a single unit, separated from other units of the 

program (Eklun   Fernlund, 1   ). 

Sometimes, when the units are strongly interdependent, a unit must be tested 

together with all units that the first unit depends on (Lindegren   Hakan, 2003). 

http://dl.acm.org/author_page.cfm?id=81385599528&CFID=396106155&CFTOKEN=23378396
http://dl.acm.org/author_page.cfm?id=81385599528&CFID=396106155&CFTOKEN=23378396
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In object-oriented development process, a unit is normally a class or an 

interdependent cluster of classes, i.e. it‟s not just a snapshot or a script of code that 

does some specific work ( inder   Robert, 1   ). 

The testing of the lower levels of a system (i.e. the unit testing) will require 

highly technical testers. Also, low-level testing is a difficult, time-consuming and 

expensive task to be accomplished (Hutcheson   Marnie, 2003). Less and less low-

level testing is done in top-down approaches to software development, arguing that 

“if the system seems to give the correct response to the user, why look any further in 

favor of unit testing. It has been recognised that “the problem is that the really tough, 

expensive faults often reside in the lower-level areas (Hutcheson   Marnie, 2003). 

Another argument for performing unit testing for the software verification is 

that the unit testing will localize the faults found to the unit tested. If unit testing is 

not performed, faults found later during integration testing of the system may lead to 

time-consuming work because there are too many places to look for the faults 

(Patton   Ron, 2001). 

Unit testing will help in removing local faults, but does not exercise the 

interactions among different units, whereas Integration testing is the activity of 

exercising such interactions by pulling together the different modules composing a 

system. It is characterized by involving different interacting units, which have been, 

in general, developed by different programmers. In this case the code is still visible, 

but with higher granularity (Alessandro, 2006). 

 

2.2.4 Integration Testing 

 

A technique defined (regarding both the unit testing and the integration testing test 

cases) for reducing the combinatorial explosion of the number of test cases for 

covering all combinations of polymorphic caller,       , parameters, and related 

states. The technique is based on       squares: a set of specific orthogonal arrays 

used to identify the subset of combinations of the state of each object and its dynamic 

type to be tested. The method ensures coverage of all pairwise combinations. It 

applies to single calls, but does not consider the combined effects of different calls 

(McGregor   Korson, 1  4). 

A pairwise integration approach is described based on the relationships 

between the system classes, and a heuristic method for selecting test cases based on 
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the states of objects. The method allows for identifying some infeasible 

combinations, and hence, limiting the number of generated test cases for integration 

testing, focusing on the integration order (Paradkar, 1  6). 

The notion of method-message path (MM-path) has been introduced, and defined 

as a sequence of method executions linked by messages. For each identified MM-

path, integration is performed by pulling together classes involved in the path and 

exercising the corresponding message sequence. More precisely, Jorgensen and 

Erickson identify two different levels for integration testing: 

(i) Message quiescence: This level involves testing a method together with all 

methods it invokes, either directly or transitivly (McGregor & Korson, 1994).  

(ii) Event quiescence: This level is analogous to the message quiescence level, 

with difference that it is driven by the system level events. Testing at this 

level means exercising message chains (threads), such as the invocation of the 

first message of the chain is generated at the system interface level (i.e., the 

user interface) and, analogously, the invocation of the last message results in 

event that can be observed at the system interface level. An end-to-end thread 

is called an atomic system function  Jorgensen   Erickson, 1  4). 

The main drawback of this method is the difficulty in the identification of 

ASFs, which requires either the understanding of the whole system or an analysis of 

the source code (Jorgensen   Erickson, 1  4). 

A methodology called                        is described, based on a 

specific development technique. Developers reach an agreement on the functionality 

to be achieved for each component during each integration process. To achieve such 

functionality, all involved classes must provide a subset of their features. Therefore, 

development proceeds across all of the classes at the same time. This methodology 

can be considered a variation of the threads integration strategies, characterised by 

development and testing being tightly coupled. The main drawback of this approach 

is that it requires much communications among different teams. Its main advantage is 

the little need for scaffolding (McGregor   Korson, 1  4). 
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2.3 Selenium Tool 

 

Selenium is a portable software testing framework for web applications. It provides a 

record/playback tool for authoring tests without learning a test scripting language 

(Selenium IDE). It also provides a test domain-specific language (Selenese) to write 

tests in a number of popular programming languages including Java, C#, Groovy, 

Perl, PHP, Python and Ruby. The tests can then be run against most modern  

web browsers. Selenium deploys on Windows, Linux, and Macintosh   

platforms (Alan, 2010). 

 

2.3.1 Selenium components 

 

The Selenium Server, which launches and kills browsers, interprets and runs the 

Selenese commands passed from the test program, and acts as a HTTP proxy, 

intercepting and verifying HTTP messages passed between the browser and the AUT 

Client libraries provide the interface between each programming language and the 

Selenium Server. Figure 3.1 displays a simplified architecture diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Simplified Architecture Diagram (Roy, 2012) 
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The diagram shows that the client libraries communicate with the server 

passing each Selenium command for execution. Then the server passes the Selenium 

command to the browser using Selenium-Core JavaScript commands. The browser, 

using its JavaScript interpreter, executes the Selenium command. This runs the 

selenese action or verification specified in test script (Roy, 2012). 

 

2.3.2 Performing the Unit and Integration Testing with Selenium 

 

The generation of the test cases to unit testing is by writing the code compiler inside 

the first case study, as well as generation of the test cases to unit testing by writing 

the code compiler inside the second case study. Generation of test cases to 

integration testing is also by writing the code compiled inside first case study, and 

generation of the test cases to integration testing by writing the code compiled inside 

the second case study. All test cases executed are as follow: 

(i) The Client driver will first establish a connection with the Selenium server. 

(ii) The Selenium Server will do the following: 

 It will create a session for that particular request. 

 It will launch the desired browser (specified in the code IE, FF, 

Chrome). 

 Loads the Selenium cores JavaScript file into specified browser (So as 

the selenium server will have to handle with the webpage for 

performing the Selenese action). 

(iii) Now the Client driver will send the program that have been written in eclipse 

IDE as selenese (by making conversion) and send it to Selenium server. 

(iv) The Selenium server is intelligent enough to understand the selenese 

command and triggers the corresponding JavaScript execution in the web 

browser. 

(v) Here the Selenium Server act as a “Proxy Server” between the AUT 

(Application under Test) and actual browser, due to the restriction of “Same 

origin policy”. Selenium server performs “Proxy Injection”.  eing a proxy 

gives the Selenium Server the capability of “lying” about the AUT‟s real 

URL. 

(vi) Now, the Selenium server requests the actual webserver for the page open 

request and, then, it receives the page and sends it to the browser. 

http://seleniumhq.org/docs/05_selenium_rc.html
http://seleniumhq.org/docs/05_selenium_rc.html
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(vii) Now, any operation or request that the browser makes will eventually pass 

through Selenium RC server to the actual webserver and vice versa. 

At the end of the testing process, the selenium tool will display the following 

on the screen: correctness, time taken and memory (Alan, 2010). 

 

 

 

 

 

 

 

Figure 2.2: Display Output of test Case (Alan, 2010) 

 

2.4 Testing Challenges 

 

The integration testing challenges are described, as the size of Web applications are 

growing due to the involvement of new emerging process like business processes and 

highly secure requirements from customers. The existing integrated solutions are the 

cheapest and the fastest way to develop such kinds of large Web-based applications. 

But testing of such application is a complex task due to its large size, integration of 

multilingual components, and use of different operating systems. The most important 

and commonly known challenges during integration testing are: 

 

2.4.1 Inconsistent Infrastructure and Environment  

 

Web-based applications consist of a number of different heterogeneous components 

and run on diverse environment. It means heterogeneity is one of the key features of 

Web-based applications; heterogeneity may introduce the incompatibilities between 

different programming languages, databases, different operating systems and 

external operational environments involved in development and deployment of Web-

based applications. Complex integrated solutions consist of different software 

components, which are developed by using different programming languages and 

technologies. The assurance of compatibility and interoperability between these 

components is one of major concerns during the testing process (Jerry et al   2003). 
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2.4.2 Inconsistent Interaction Models  

 

Web-based applications are based on number of different Web components, which 

are developed by a different group of teams with the use of different methods and 

approaches; in complex Web-based applications, control protocols and data models 

play key role in the reliable communication and interaction among different 

integrated subsystems. Control protocols are responsible for defining the rules on 

how integrated components interact to each other. Data models define the contents 

and format of communication between them. Since Web-based applications can be 

based on a number of different components, most of the time, different groups of 

developers are involved in development process (Jerry et al   2003). 

 

2.4.3 Distributed Nature of Systems  

 

Web-based applications are mostly developed under distributed environments, so the 

issues related to distributed systems, such as race condition and dead lock can be 

inherited. The distributed nature of systems can have a great impact on the working 

of Web-based applications, these issues can be solved during the integration testing. 

The existence of more than one version of the same software component generates 

multi version issues in the system (Jerry et al   2003). 

 

2.4.4 Performance and Reliability Issues due to Heterogeneity  

 

The testing of Web-based application and assurance of key quality feature are 

challenging for the testing team to achieve the guarantee of these features required in 

most of the testing effort. Performance and reliability are the key quality features that 

can affect the overall working and presentation of Web application. The assurance of 

this quality feature also produce a good impact on customers and users of Web 

application. Heterogeneity allows integration of different subsystems or components 

that are developed in different programming languages, under different platforms and 

environments that can be achieved through standardization. The process of 

standardization produces the extra overhead during communication of components 

and this overhead causes the degradation of performance and reliability of the whole 

application (Jerry et al   2003). 
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2.4.5 Interoperability 

 

Interoperability is the ability of two or more systems, applications or components to 

exchange information and to use the information that has been exchanged. 

Interoperability itself is a critical testing challenge, which has further challenging 

factors and characteristics (Jerry et al   2003). 

 

2.5 Performance Parameters for Testing 

 

When a program is implemented to provide a concrete representation of an 

algorithm, the developers of this program are naturally concerned with the 

correctness and performance of the implementation. Software engineers must ensure 

that their software systems achieve an appropriate level of quality. Software 

verification is the process of ensuring that a program meets its intended specification. 

One technique that can assist during the specification, design, and implementation of 

a software system is software verification through correctness proof. Software 

testing, or the process of assessing the functionality and correctness of a program 

through execution or analysis, is another alternative for verifying a software system 

(Gregory, 2008). 

When performance is important, as it often is, we also need to choose an 

algorithm that runs quickly and uses the available computing resources efficiently. 

We are thus led to consider the often subtle matter of how we can measure the time 

taken of a program or an algorithm, and what steps can we take to make a program 

run faster. There are different test case design methods in practice today. These test 

case design methods need to be part of a well-defined series of steps to ensure 

successful and effective software testing. This systematic way of conducting testing 

saves time, effort and increases the probability of more faults being caught, These 

steps highlights when different testing activities are to be planned i.e. effort, time and 

resource requirements, criteria for ending testing, means to report errors, and 

evaluation of collected data. The schedule for accomplishing testing milestones is 

also included, which matches the time allocation in the project plan for testing. It is 

important that the schedule section reflect how the estimates for the milestones were 

determined, the failing test case is re-run along with other related test cases so as to 

be sure that the bug fix has not adversely affected the related functionality. This 
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practice helps in saving time and effort when executing test cases with higher 

probability of finding more failures, the test execution process involves allocating 

test time and resources, running tests, collecting execution information and 

measurements and observing results (Wasif, 2007). 

There are two major groups of experimental evaluations for Memory Used: 

performance evaluation and semantic evaluation (debugging/testing/verification). 

The biggest challenge for performance evaluation of memories used is to propose 

benchmarks that are precise enough to emphasize Memory characteristics, but also 

realistic enough to match the behavior of common applications, Performance tests 

are generally longer than unit tests since they execute complex schedules to measure 

the performance of a Memory. More precisely, they use randomization and loops to 

test a large set of schedules (Derinet et al., 2008). 

 

2.6 Magnitude of Relative Error (MRE) for Performance Parameters 

 

To illustrate the problem of MRE, let us consider two prediction models A and B, 

respectively. If MRE of model B is significantly lower than MRE of model A, one 

would conclude that model   is better than model A (  is “more accurate” than A in 

current software engineering terminology). To be able to draw the correct conclusion 

with regard to whether model A or model B is the best, it is crucial that the model 

evaluation metric selects the model that is closest to the true, Consider  

MRE ≤ 0.25 as acceptable for prediction models, and to get MRE follow the  

equation (Tron et al., 2002). 

 

     
 

 
∑

     

  
                                                                                

 

   
 

 

where 

N: Number of Values. 

Y: Predicted Value.  

 i: Actual Value. 
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2.7 Related Work 

 

Several researchers have investigated many topics on the effectiveness and the 

efficiency of the regression testing (for both integration and unit testing) as 

summarized in the recent survey. While there is a large amount of work related to 

our thesis, only the most related topics on generated automated testing have been 

reviewed and discussed (Yoo   Harman, 2010).  

An automated approach for testing JavaScript web applications has been 

described and implemented in the tool      . It combines the use of random test 

generation to explore the application‟s event space (i.e., the possible sequences of 

user-interface actions) with the use of symbolic execution for systematically 

exploring an application‟s value space (i.e., how the execution of control flow paths 

depends on input values). The main goal of their work is to find code injection 

vulnerabilities that result from untrusted data provided as arguments 

to, for example, eval. The symbolic execution part relies on an elaborated model for 

reasoning about string values and string operations (Saxena   Akhawe, 2010). 

The dynamic analysis has been described to construct a state-flow graph that 

models the states of an AJAX application‟s user-interface and transitions between 

these states. From this model, a set of equivalent static pages can be generated that 

can be used for various applications (e.g., applying search engines to their content, 

performing state-based testing).  rawljax relied on a heuristically-based approach for 

detecting “          ”, i.e., elements of the DOM that may correspond to active 

user-interface components, and crawls the application by exercising these            

in some random order (Mesbah     ozdag, 200 ). 

A tool, which relies on          to create a model of the state space of an 

AJAX application is described. It can check this state space model for a number of 

common problems, including DOM invariants such as: situations where the 

application causes the HTML DOM to be malformed, situations where the DOM 

contains error messages such as “404 Not Found” and state machine invariants such 

as dead clickables (corresponding to URLs that are permanently unavailable) and 

situations where pressing the browser‟s back-button results in inconsistent behavior 

(Mesbah   Van, 200 ). 
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A framework for Automated Testing of JavaScript Web Applications is 

introduced. The framework was aimed for feedback directed testing of JavaScript 

applications. The framework in a tool called Artemis has been implemented and it 

created several effective test generation algorithms by instantiating the framework 

with different prioritization functions and input generators that employ simple 

feedback mechanisms, the experimental results described stated that the basic 

algorithm, events, produces good coverage (69% on average) if enough tests are 

generated. However, if test generation is directed by coverage information and read-

write sets, a slightly better level of coverage (72% on average) can be achieved, and 

sometimes with lesser tests (Shay   Julian, 2011). 

 

2.8 Summary 

 

This chapter reviewed software testing and previous related works regarding testing 

techniques, and Selenium tool. The next chapter will look into research methodology 

of the study. 



 

 

 

 

3 CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1  INTRODUCTION 

  

This chapter discusses the methodology of this project. This chapter presents the 

preliminary knowledge, in order, to apply the Selenium tool for unit and integration 

testing in two case studies. Next, this section explains the research activities and all 

main phases in this project. Finally, all the steps of the application of the Selenium 

tool for the integration and unit testing are presented. 
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3.2 Flow Chart of the Project Work  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flow Chart the Steps of the Project Work 

 

Based on Figure 3.1, four phases are needed for applying Unit and Integration testing 

in two Case studies. They are 4 phases in the creating of two web application using 

the Yii Framework then using Unit testing and Integration testing in two Case 

studies. These phases are further discussed in the following sections. 

Using Integration testing in 

Case Study 2 

 

Using Unit testing in Case 

Study 2 

 

Analysis and comparison of 

results 

End 

Start 

Using Integration testing in 

Case Study 1 

 

Using Unit testing in Case 

Study 1 

 

Creating two web application 

using the Yii Framework 
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3.3 Creating two Case Studies 

 

The case studies are the building of two web applications using the Yii framework 

(Student Registration System, and Woodman Estate System). 

 

(i) First Case Study 

 

The first system is the SISPEK (Hamiza, 2013) is mainly aimed to register the 

students‟ and the assets‟ information, in order to be used later to track the assets of 

the students. 

 

(ii) Second Case Study 

 

The second system, Woodman Estate (Nor, 2013), is mainly aimed to register the 

users, supervisors and workers‟ information, in order to be used to track the workers 

expiration date. 

 

3.4 Application of Unit and Integration Testing in Two Case Study 1 

 

In this section, the steps applied to the automated Integration and Unit 

testing by Selenium is explained in SISPEK. 

 

3.4.1 Test Cases for Integration Testing in SISPEK System 

 

There are eight (8) test cases for integration testing in SISPEK System. These eight 

test cases are: Login, Creating Student, Updating Student, Deleting Student, Creating 

Asset, Updating, Asset Deleting Asset and View User.  They are discussed in the 

follows subsections. 
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3.4.1.1 Login Test 

 

The integration test case steps are as the following: 

 

(i) Open the web application and click the login link. 

(ii) Ensure that the login page is opened by ensuring that the text “Login 

Admin/Staff” is available in the page. 

(iii) Ensure that the login page contains an input field for the username. 

(iv) Type “admin” in the username field. 

(v) Try to login by pressing on the login submit button. 

(vi) Ensure that the web application showed an error that the password can‟t be 

blank. 

(vii) Type “admin123” in the password field. 

(viii) Try to login again by pressing on the login submit button. 

(ix) Ensure that the message “Password cannot be blank” has gone. 

(x) Ensure that the web application has redirected the user to the home page that 

contains the logout link. 

(xi) Run test case above with Selenium. 

(xii) After applying the correct case, the errors in this test scenario were created 

(e.g. rename the field          to          ). 

 

3.4.1.2 Create Students Test 

 

The integration test case steps are as the following: 

(i) Open the web application and click the login link. 

(ii) Type “admin” in the username field. 

(iii) Type “admin123” in the password field. 

(iv) Try to login by pressing on the login submit button. 

(v)  lick on the link “ reate Student”. 

(vi) Ensure that the creation form includes the appropriate elements and then fill 

them. 

(vii)  lick on the submit button “ reate”. 

(viii) Ensure that the system is created correctly and has redirected to the View 

Student page. 
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(ix) Run test case above with Selenium. 

(x) After applying the correct case, the errors in this test scenario were created 

(e.g. rename the field full_name to fullname). 

 

3.4.1.3 Updating Students Test 

 

The integration test case steps are as the following: 

(i) Open the web application and click the login link. 

(ii) Type “admin” in the username field. 

(iii) Type “admin123” in the password field. 

(iv) Try to login by pressing on the login submit button. 

(v)  lick on the link “List Students”. 

(vi)  lick on the link “Update” link. 

(vii) Enter some new values. 

(viii) Click on the “Save” button. 

(ix) Ensure that the system updated the student correctly and has redirected to 

the view student page. 

(x) Run test case above with Selenium. 

(xi) After applying the correct case, the errors in this test scenario were created 

(e.g. rename the field           to         ). 

 

3.4.1.4 Deleting Students Test 

 

The integration test case steps are as the following: 

(i) Open the web application and click the login link. 

(ii) Types “admin” in the username field. 

(iii) Types “admin123” in the password field. 

(iv) Try to login by pressing on the login submit button. 

(v)  lick on the link “List Students”. 

(vi) Ensure that the student 'Muhammad Rabeeh Saeed' is existed. 

(vii) Click on the first delete link. 

(viii) Ensure that the student 'Muhammad Rabeeh Saeed' is no longer existed. 

(ix) Run test case above with Selenium. 
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(x) After applying the correct case, the errors in this test scenario were created 

(e.g. rename the link Delete to delete student). 

 

3.4.1.5   Create Asset Test 

 

The integration test case steps are as the following: 

(i) Open the web application and click the login link. 

(ii) Type “staff” in the username field. 

(iii) Type “staff123” in the password field. 

(iv) Try to login by pressing on the login submit button. 

(v)  lick on the link “ reate Asset”. 

(vi) Ensure that the creation form includes the appropriate elements and then fill 

them. 

(vii) Click on the submit button “ reate”. 

(viii) Ensure that the system created the asset correctly and has redirected to the 

view asset page. 

(ix) Run test case above with Selenium. 

(x) After applying the correct case, the errors in this test scenario were created 

(e.g. rename the field          to asset cateogry ). 

 

3.4.1.6 Updating Asset Test 

 

The integration test case steps are as the following: 

(i) Open the web application and clicks the login link. 

(ii) Type “staff” in the username field. 

(iii) Type “staff123” in the password field. 

(iv) Try to login by pressing on the login submit button. 

(v)  lick on the link “List Assets”. 

(vi)  lick on the link “Update” link. 

(vii) Enter some new values. 

(viii)  lick on the “Save” button. 

(ix) Ensure that the system updated the asset correctly and has redirected to the 

view asset page. 

(x) Run test case above with Selenium. 
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(xi) After applying the correct case, the errors in this test scenario were created 

(e.g. rename the field cateogry to asset cateogry ). 

 

3.4.1.7 Deleting Asset Test 

 

The integration test case steps are as the following: 

(i) Open the web application and click the login link. 

(ii) Type “staff” in the username field. 

(iii) Type “staff123” in the password field. 

(iv) Try to login by pressing on the login submit button. 

(v)  lick on the link “List Assets”. 

(vi) Ensure that the asset 'US  Flash‟ is existed. 

(vii) Click on the first delete link. 

(viii) Ensure that the asset 'USB Flash' is no longer existed. 

(ix) Run test case above with Selenium. 

(x) After applying the correct case, the errors in this test scenario were created 

(e.g. rename the link        to delete asset). 

 

3.4.1.8 View Student Test 

 

The integration test case steps are as the following: 

(i) Open the web application and click the login link. 

(ii) Type “admin” in the username field. 

(iii) Type “admin123” in the password field. 

(iv) Try to login by pressing on the login submit button. 

(v)  lick on the link “List Students”. 

(vi)  lick on the link “view” link. 

(vii) Enter some new values. 

(viii)  lick on the “View” button. 

(ix) Ensure that the system updated the student correctly and has redirected to 

the view student page. 

(x) Run test case above with Selenium. 

(xi) After applying the correct case, the errors in this test scenario were created 

(e.g. rename the field full_name to fullname). 
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