
	

COMPARATIVE ANALYSIS BETWEEN FPA AND COCOMO TECHNIQUES

FOR SOFTWARE COST ESTIMATION

ABU BAKER ALI MOFTAH

A thesis submitted in

fulfillment of the requirement for the award of the

Degree of Master of Computer Science (Software Engineering)

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

JULY 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/42954597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	
 v

ABSTRACT

Software cost estimation is the process of predicting the effort required to develop a

software system. The basic inputs for the software cost estimation are programs, size

and set of cost drivers, while the output is effort in the form of person-month and

cost. In this thesis, Function Point Analysis (FPA) and Constructive Cost Model

(COCOMO) have been used to estimate software project cost of two case studies.

They are Web-Based Dog’s Diseases Diagnosis System (WBDDDS) and Sugar Bun

Online Bakery System (SBOBSE). By using FPA, it was shown that for the

WBDDDS, the person-month was 12.506 with the total cost of USD65,031.2 were

estimated. While using COCOMO, it was shown that 16.286 persons-month with the

total cost of USD 84,687.2 were estimated. However, for the SBDBSE, by using

FPA, 19.62 persons-month with the total cost of USD102,024 were estimated. It also

shown that 19.354 persons-month with the total cost of USD100,640.8 were

estimated by using COCOMO. In conclusion, there are no best techniques to

estimate cost for a project. It all depends on the parameters of a system.

	
 vi

ABSTRAK

Membuat anggaran kos perisian adalah proses meramalkan usaha yang diperlukan

untuk membangunkan sesebuah sistem perisian. Input asas untuk membuat anggaran

kos perisian adalah program, saiz dan set pemacu kos, manakala untuk output usaha

adalah dalam bentuk bilangan orang diperlukan bagi tempoh sebulan iaitu person-

month dan kos. Dalam kajian ini, Function Point Analysis (FPA) dan Constructive

Cost Model (COCOMO) telah digunakan untuk menganggarkan kos projek perisian

untuk dua kajian kes. Kajian kes tersebut adalah Web-Based Dog’s Diseases

Diagnosis System (WBDDDS) dan Sugar Bun Online Bakery System (SBOBSE).

Dengan menggunakan FPA, hasil anggaran kos ke atas WBDDDS menunjukkan

bahawa sebanyak 12.506 person-month dan jumlah kos sebanyak USD65.031,2

diperlukan. Manakala, dengan menggunakan COCOMO, 16.286 person-month

dengan jumlah kos sebanyak USD4,687.2 dianggarkan. Walau bagaimanapun, bagi

SBOBSE, dengan menggunakan FPA, 19.62 person-month dengan jumlah kos

sebanyak USD102.024 dianggarkan. Selain itu, kajian juga menunjukkan 19,354

person-month dengan jumlah kos sebanyak USD 100,640.8 dianggarkan dengan

menggunakan COCOMO. Kesimpulannya, tiada satu teknik terbaik untuk membuat

anggaran kos. Anggaran kos yang baik adalah bergantung kepada parameter

sesebuah sistem.

	

	

	

vii

CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS AND ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Problem Statement 2

1.3 Project Objectives 2

1.4 Scope of the Project 3

1.5 Thesis Outline 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Introduction 4

2.2 Overview of Cost Estimation 4

2.3 Cost Estimation Techniques 7

2.3.1 Constructive Cost Model (COCOMO) 7

2.3.2 Function Point Analysis (FPA) 10

2.5 Related Work 14

2.6 Summary 14

CHAPTER 3 METHODOLOGY 15

3.1 Introduction 15

	

	

	

viii

3.2 Research Activities 15

3.3 Constructive Cost Model (COCOMO) 17

3.3.1 Data Setup 17

3.3.2 Basic COCOMO 18

3.3.3 Intermediate COCOMO 18

3.3.4 Apply on Case Studies 19

3.4 Function Point Analysis (FPA) 20

3.4.1 Data Setup 20

3.4.2 Function Point Count 21

3.4.3 Adjustment Factor in FPA 22

3.4.4 Apply on Case Studies 24

3.5 Comparative Study and Results Discussion 24

3.6 Summary 24

CHAPTER 4 IMPLEMENTATION AND RESULT ANALYSIS 25

4.1 Introduction 25

4.2 Case Study 1: Web Based Dog’s Diseases System 25

4.3 Case Study 2: Sugar Bun Online Bakery System (SBOBS) 26

4.4 Constructive Cost Model (COCOMO) Analysis 26

4.4.1 Basic COCOMO on WBDDDS 26

4.4.2 Intermediate COCOMO on WBDDDS 29

4.4.3 Basic COCOMO on SBOBSE 32

4.4.4 Intermediate COCOMO (SBOBS) 34

4.5 Function Point Analysis (FPA) 37

4.5.1 Function Point Count on WBDDDS 37

4.5.2 Adjustment Factor in FPA of WBDDDS 47

4.5.3 Function Point Count of SBOBSE 48

4.5.4 Adjustment Factor in FPA of SBOBSE 59

4.6 Results and Comparatives 61

4.6.1 Web Based Dog’s Diseases Diagnosis System 61

4.6.2 Sugar Bun Online Bakery System, E-Sugarbun 61

4.6.2 Evaluate The Results of Comparison the Estimation

 Method 62

4.7 Summary 63

	

	

	

ix

CHAPTER 5 CONCLUSIONS 64

5.1 Introduction 64

5.2 Objectives Achievement 64

5.2.1 Objectives 1 65

5.2.2 Objectives 2 65

5.2.3 Objectives 3 65

5.3 Conclusion 65

5.4 Future Works 66

5.5 Summary 66

REFERENCES 67

APPENDIX 71

VITA 193

	

	

	

x

LIST OF TABLES

2.1 Software Overrun Case Studies from Boehm 5

2.2 Basic COCOMO Calculating Person Months 8

2.3 Categories of Intermediate COCOMO 8

2.4 Intermediate COCOMO Calculating Person Months 9

2.5 Function Types and Weights 12

2.6 General System Characteristics (GSCS) 13

3.1 Intermediate COCOMO Coefficients 19

3.2 Complexity weights 22

3.3 Value Adjustment Factor 23

4.1 Tasks to determine LOC 27

4.2 Basic COCOMO Coefficients 29

4.3 Find Rating of cost Drivers 30

4.4 Intermediate COCOMO Coefficient 31

4.5 Tasks for Determine LOC 32

4.6 Basic COCOMO Coefficients 33

4.7 Find Rating of Cost Drivers 35

4.8 Intermediate COCOMO Coefficients 35

4.9 External Input (EI) 37

4.10 Calculate the extent to each of the FTR, DET and

complexity (EI) 38

4.11 External Outputs (EO) 41

4.12 Calculate the extent to each of the FTR, DET and

complexity (EO) 42

4.13 External Inquiry (EI) 43

4.14 Calculate the extent to each of the FTR, DET and

complexity (EI) 44

	

	

	

xi

4.15 Internal Logical File (ILF) 45

4.16 Calculate the extent to each of the RET and DET and

 complexity (ILF) 45

4.17 External Interface File (EIF) 46

4.18 Unadjusted Function Point 46

4.19 Value Adjustment Factor 47

4.20 External Input (EI) 49

4.21 Calculate the extent to each of the FTR, DET and

complexity (EI) 49

4.22 External Outputs (EO) 53

4.23 Calculate the extent to each of the FTR, DET and

 complexity (EO) 54

4.24 External Inquiry (EI) 56

4.25 Calculate the extent to each of the FTR, DET and

complexity (EI) 56

4.26 Internal Logical File (ILF) 57

4.27 Calculate the extent to each of the RET and DET and

complexity (ILF) 58

4.28 External Interface File (EIF) 58

4.29 Unadjusted Function Point 59

4.30 Value Adjustment Factor 60

4.31 Comparatives (FPA & COCOMO) (WBDDDS) 61

4.32 Comparatives (FPA & COCOMO) (SBOBS) 62

	

	

	

xii

LIST OF FIGURES

2.1 Function Point Computation Model 13

3.1 Flow chart for Research Activities 16

3.2 COCOMO Increasingly Detailed 17

3.3 Function Point Count 21

4.1 Equation and Calculating for Basic COCOMO 29

4.2 Equation and Calculating for Intermediate COCOMO 31

4.3 Equation and Calculating for Basic COCOMO 34

4.4 Equation and Calculating for Intermediate COCOMO 36

4.5 VAF for SBOBSE 48

4.6 Adjusted FP for SBOBSE 48

4.7 VAF for SBOBSE 60

4.8 Adjusted FP for SBOBSE 61

	

	

	

xiii

 LIST OF SYMBOLS AND ABBREVIATIONS

LOC - Line of Code

SLOC - Source Line of Code

FPA - Function Point Analysis

COCOMO - Constructive Cost Model

EAE - Effort Adjustment Factor

UPA - Unadjusted Function Point

	

	

	

xiv

LIST OF APPENDICES

A Sugar Bun Online Bakery System, E-Sugarbun 71

B Web Based Dog’s Diseases Diagnosis System 143

	

	

	

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Estimating software development cost remains a complex problem, one that

continues to attract a considerable amount of research attention. Improving the

accuracy of the cost estimation models available to project managers would facilitate

a more effective control of time and budgets during the software development. The

needs for a reliable and accurate cost estimation in software engineering have been

an ongoing challenge for software engineers in the last decade [1] [2] [3].

The Standish Group Chaos Report recently reported that about 66% software

projects are delivered with some delay, over-budget, and many are not even finished.

Commonly, the main cause of these problems is the failure of the software

development cost estimation (SDCE) [4].

The software cost estimation is the process of predicting cost for the

development of the software. The software cost is the amount of cost in either person

days or person hours necessary for conducting the tests. The most commonly used

methods for predicting software development cost are Function Point Analysis,

Constructive Systems Engineering Cost Model (COSYSMO), SEER for Software

(SEER-SEM), Putnam model, and Constructive Cost Model (COCOMO) [5].

The function point analysis (FPA) is a method of quantifying the size and

complexity of a software system in terms of the functions that the system delivers to

the user. The function does not depend on the programming languages or tools used

to develop a software project. FPA is a standard method to measure the software

2
	

	

	

development from the user’s point of view. The past three decades of the use of FPA

have shown that it is a proven method [6] [7] [8].

The Constructive Cost Model (COCOMO) is developed by Boehm. It is

based on the linear-least-squares regression. Using the line of code (LOC) as the unit

of measure for the software size itself contains so many problems. These methods

failed to deal with the implicit non-linearity and interactions between the

characteristics of the project and effort [2]. This research looks into the both

techniques and compares them in term of cost involved.

1.2 Problem Statement

Software cost estimation is the process related to the well-balanced management of a

software project. The most commonly used methods for predicting software costs

estimation are function point analysis (FPA) and Constructive Cost Model

(COCOMO) [6] [9]. Despite the evolving research activity, the task of estimating

accurately the budget and the delivering time has been a research problem for many

decades. Nowadays, the cost of a project is still estimated with error. Therefore in

this study, the use of Function Point Analysis (FPA) and Constructive Cost Model

(COCOMO) is compared. The techniques are used to compare the software cost

estimation for the two case studies to get the person-month and total cost.

1.3 Project Objectives

The main objectives of this study are:

(i) To evaluate the estimated software cost using the function point analysis

(FPA) estimation technique in the two case studies of the Web-Based Dog’s

Diseases Diagnosis System (WBDDDS) and the Sugar Bun Online Bakery

System, E-Sugarbun (SBOBSE).

(ii) To evaluate the estimated software cost using the Constructive Cost Model

(COCOMO) technique in the two case studies of the Web-Based Dog’s

Diseases Diagnosis System (WBDDDS) and the Sugar Bun Online Bakery

System, E-Sugarbun (SBOBSE).

3
	

	

	

(iii) To compare the software cost estimation using FPA and COCOMO in terms

of time of person-month and total cost for both case studies: Web Based

Dog’s Diseases Diagnosis System (WBDDDS) and Sugar Bun Online Bakery

System, E-Sugarbun (SBOBSE).

1.4 Scope of the Project

This study focuses on the comparison of the software cost estimation using FPA with

External Input, External Outputs, External Inquiry, Internal Logical File and External

Interface File as the parameters. While for the Constructive Cost Model (COCOMO)

parameters, Basic COCOMO and Intermediate COCOMO were used. The LOC for

WBDDDS and SBOBSE are calculated manually and applied equations as provided

by FPA and COCOMO.

1.5 Thesis outline

The thesis consists of five chapters. Chapter 1 is where the overview, main objectives

and scope of works of the project were carried out. Chapter 2 illustrates the related

literature review of this project. Chapter 3 discusses the methodology to obtain the

entire objectives of this project. Chapter 4 explains the implementation and the

detailed steps in this work. Finally, Chapter 5 includes the objectives achievement,

disadvantages, future work, and conclusion of this project.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The software cost estimation subject has been a dynamic exploration range, with the

examination expanding considerably in the course of the last few decades. Reviews

written in [10] and [11] indicate that the exploration in the recent 25 years

concentrated on diverse levels of software estimation.

Constructive Cost Model (COCOMO) is a software model, created by Barry

Boehm, which focuses around algorithms for the estimation of costs. A fundamental

relapse recipe is used with the parameters acquired from the task data of the

undertaking qualities from the past, present, and future [12].

According to Pressman [13], he indicated that the Function Point Analysis is a

well-known method to estimate the size of the software systems and software

projects, so the function point count can be applied to development projects. There

are 5 significant segments of the Function Point Analysis, which catch the

practicality of the provision including the external Inputs (EIs), external Outputs

(EOs), external Inquiries (EQs), internal Logical Files (ILFs) and external Interface

Files (EIFs).

2.2 Overview of Cost Estimation

Pandian [14] suggested the Analogy, Top down and Bottom up approaches as the

three estimation methodologies in which the Analogy method estimates the project

5

by using the historical data of the previously completed projects and comparing with

the already existing information on the completed projects. The second approach

concentrates on the overall characteristics instead of the functional and non-

functional requirements of the system to be developed, whereas the bottom up

approach considers each and every component and then combines them all to give

the overall required estimation for the project, which is found to provide the most

detailed estimation.

McConnell [15] reported that numerous projects were either cancelled or

missed its delivery dates. However, more than half of the projects substantially

overrun their estimation, as shown in Table 2.1, from which this approach was based

on the several surveys conducted. The related studies indicated that the effective

software estimation is one of the most important and difficult software development

activities [16]. The over-estimating system and the under-estimating system of a

project are both bad for different reasons, which the overestimating will cause a

project to take at least as long as it was estimated. However for the other system

(under-estimating), a project will lead to under staffing, under scoping the quality

assurance effort, and short schedule [17].

 Table 2.1 Software Overrun Case Studies [16]

Project First Cost
($M)

Last Estimate
Cost($M)

First Schedule
(months)

Last Estimate
Schedule
(months)

Status at
Completion

PROMS
(Royalty

Collection)
12 21+ 22 46 Cancelled,

Month 28

London
Ambulance 1.5 6+ 7 17+ Cancelled,

Month 17
London Stock

Exchange 60-75 150 19 70 Cancelled,
Month 36

Confirm
(Travel

Reservation)
56 160+ 45 60+ Cancelled,

Month 48

Master Net
(Banking) 22 80+ 9 48+ Cancelled,

Month 48

The previous studies indicated several reasons for the overruns of the cost

estimation as which were listed by Laird [18], who found that they are including of

the lack of training, education, confusion of the desired schedule/effort target with

the estimate, and creeping requirements affected the software cost estimation. On the

other hand, the researchers identified other reasons to exceed the requirements of the

6

project, which is incomplete, unclear and difficult in managing the project schedule,

such as changing the scope, planning to schedule more assertive than necessary, and

insufficient resources for the project.

In view of the Khatibi, Jawawi and Dayang [19] research, which found the

reasons for the failure of the software projects during their intensive research on the

internet sites, which showed that poor planning of the project, insufficient

requirements engineering, suddenly decisions at the early stages of the project and

inaccurate estimations that are considered as the most important reasons.

In another study conducted by Boehm [20] who is known as the leader of the

software cost estimation from which he also reformulated his model in COCOMO II

in 1997, that consists of three different sub models: application composition, early

design, and post-architecture. The researcher suggested three basic reasons for failure

of cost estimations, including the lack of clear understanding of the software

requirements, under-estimation of the software size, and the required effort for the

software projects [16].

Boehm [20] commented that there are large numbers of cost analysis methods

available, but found that these are not always safe to be used. The simplest method is

to base cost estimate on the typical costs or productivity rates of the previous

projects. Some of the simple methods are useful if the new project does not have any

cost-critical differences from the previous projects. However, they are risky if the

critical factor of the cost driver has been discarded.

Software cost estimation is an important, but difficult. In the last there decades,

different models based on techniques were proposed, such as SLIM, Checkpoint,

Price-S, SEER-SEIM, ESTIMACS, and COCOMO. When most of the researchers

were working on developing the cost estimation, they found the same difficulties

once the software grows in size and complexity, which makes it very difficult to

predict the cost of software development [21]. Whereas three models were created

that are significantly used for cost estimation, which are known as Boehm’s

COCOMO, Putman’s SLIM, and Albrecht’s function point. Most of the models used

the size measurement methods, such as Line of Code (LOC) and Function Point (FP)

for determining the cost estimation. The accuracy of the cost estimation is directly

related with the estimation of size [16]. In this research however, the COCOMO and

FPA were used to evaluate estimated software cost for two case studies.

7

2.3 Cost Estimation Techniques

This method is formed to give a mathematical approach to carry out the software

estimates. These mathematical equations are based on the research and historical data

and used inputs, such as Source Lines of Code (SLOC), and some other cost drivers;

these algorithmic models have been extensively worked on. Several models have

been formed based on these, such as the COCOMO models, function point and

Putnam models that are also known as based models [22]. There are many ways in

the literature to estimate the cost. Basically, the cost estimation methods are

classified into two groups, which are arithmetic and non-arithmetic [23]. In this

study, the arithmetic method will be used to discuss the estimate of the cost.

Constructive Cost Model commonly referred to as COCOMO, which is

actually a hierarchy of three models of an increasing detail, is based on a study of

sixty-three projects developed at TRW from the period of 1964 to 1979. In his text,

Boehm describes the development of COCOMO as being the result of a review of

then available cost models coupled with a Delphi exercise that resulted in the original

model. This model was calibrated using a database of 12 completed projects [24].

2.3.1 Constructive Cost Model (COCOMO)

The Basic COCOMO registers advancement exertions and cost as a system capacity

communicated in lines of code (LOC). The essential steps that are included in this

model are to get a starting assessment of advancement from the 1000s of evaluated

conveyance lines of source codes. Also to decide on a set of 15 various components

from the distinctive traits of the undertaking, and to settle the exertion gauge by

duplicating the introductory appraisal with the elements.

The starting evaluation, which is additionally alluded to as the ostensible

appraisal, is dictated by the static single variable model comparison utilizing Kilo

Lines of Code (KLOC) as the measure of size; this decides the starting exertion in an

individual month, where the Development Mode in this research is Semi Detached

(3.0*(KLOC) 1.12) that relies on the kind of the undertaking, as demonstrated in Table

2.2 and emulating development mode [22].

EFFORT = a* (KLOC) b (2.1)

8

Table 2.2 Basic COCOMO Calculating Person Months [22]

Development Mode Basic Effort Equation Time Duration

Organic Effort = 2.4 KLOC1.05 TDEV = 2.50 *(PM) 0.38

Semi Detached Effort = 3.0 KLOC1.12 (2.1) TDEV = 2.50 *(PM) 0.35

Embedded Effort = 3.6 KLOC1.20 TDEV = 2.50 *(PM) 0.32

2.3.1.1 Intermediate COCOMO

This model processes advancement exertion of the software as a system size capacity

and a set of cost drivers, these incorporate subjective evaluations of the fittings, work

force and undertaking traits, and items. The cost drivers can be put into groups, as

shown in Table 2.3.

Table 2.3 Categories of Intermediate COCOMO [22]
Cost Drivers

Product attributes Hardware attributes Personnel attributes Project attributes

Size of

application

database

Memory

Constraints

Software Engineer

Capability

Application of software engineeri

ng methods

Complexity of the

product

Volatility of the

virtual machine

environment

Analyst Capability Use of software tools

Required

Software

Reliability

Run-time

Performance

Constraints

Virtual Machine

Experience
Required development schedule

Required

Turnaround Time

Applications Experience
Application of software engineeri

ng methods

Programming Language

Experience
Use of software tools

9

It extends from a high to a low in the matters of worth. An exertion

multiplier, focused around the evaluations, is chosen from the tables that was

distributed by Boehm, and an exertion appraisal component (EAF) is received as an

item from these multipliers. The typical values for EAF range from 0.9 to 1.4 [30].

The intermediate COCOMO model takes the following form:

EFFORT = a* (KLOC) b* EAF (2.2)	

Where the effort is applied in person-months, KLOC is the estimated number

of thousands of delivered lines of code for the project, and EAF is the factor

calculated. The coefficient “a” and the exponent “b” use semi detaches mode value,

as given in Table 2.4.

Table 2.4 Intermediate COCOMO Calculating Person-Months [22]

Development Mode Intermediate Effort Equation

Organic Effort = 3.2 * (KLOC) 1.05* EAF

Semi Detached Effort = 3.0 * (KLOC) 1.12 * EAF (2.2)

Embedded Effort = 2.8 * (KLOC) 1.20 * EAF

The same basic equation for the model is used, but fifteen cost drivers are

rated on a scale from 'very low' to ‘very high’ to calculate the specific effort

multiplier and each of them returns an adjustment factor, which multiplied yields in

the total EAF (Effort Adjustment Factor). The adjustment factor is 1 for a cost driver

that's judged as normal. In addition to the EAF, the model parameter "a" is slightly

different in Intermediate COCOMO from the basic model. The parameter "b"

remains the same in both models [22]. For example, if modern programming

practices are used, the initial estimates are scaled downward by multiplication with a

cost driver having a value less than 1. If there are stringent reliability requirements

on the software product, this initial estimate is scaled upward. Boehm requires the

project manager to rate these 15 different parameters for a particular project on a

scale of one to three. Then depending on these ratings, he suggests appropriate cost

driver value that should be multiplied with the initial estimate, which is obtained

using the basic COCOMO. In general, the cost drivers can be classified as being

attributes.

10

2.3.2 Function Point Analysis (FPA)

The FPA is another method used to quantify the size and complexity of the software

system on the functions that the system provides its user. A lot of exclusive models

regarding cost estimates have a function pointer approach, such as ESTIMACS and

SPQR/20 [15]. This measurement is based on the program’s functionality introduced

by Albrecht [25]. The number of distinct types decides the total number of function

points. Mainly, the two steps are followed in the function points counting the User

Functions: the real count of function points is achieved by keeping in mind a linear

arrangement of five basic software component basics, such as External Inputs,

External Outputs, External Inquiries, Logic Internal Files, and External Interfaces

[26].

The above are all at the complexity level out the following three levels:

simple, average or complex. The total of these numbers based on the complexity

level is the number of function counts (FC). The Environment Processing

Complexity-based Adjustment is the last function point that is obtained by the

multiplication of FC with an adjustment factor that is decided by contemplating 14

processing complexity aspects. The FC can be modified to a maximum of 35% or -

35% with the help of the adjustment factor [27].

The function point analysis is a gauge for sizing and is associated with a clear

business significance. It was first made public by Allan Albrecht of IBM in 1979 and

is designed to measure commercial type applications. It is not suitable for

applications, such as technical or scientific. These applications are more complex

than the method of feature points that is not designed to handle algorithms. The

approach of function points has characteristics that overcome the major problems

encountered when using lines of code as a measure of the system size [28].

The FPA is system for evaluating the span of activities of software

frameworks and software. Initially, the system was utilized within the early phases of

the waterfall model so that the exertion of execution could be evaluated and focused

around the conduct of data and yield, as characterized in the utilitarian

documentation, the size and unpredictability of software expansions, it gets to be

progressively significant to create powerful cost of a fantastic software inside a

specified period [29].

11

The software size helps in developing an initial estimate for the software

effort/cost estimation during the software development life cycle. The COCOMO

model provided this estimate based on the source lines of code (SLOC). It was

reported that SLOC produced many problems [21]. For example, in the modern

software programming, auto-generate tools produced a large number of LOC. SLOC

also changes with the developer’s experience, difference in programming languages,

variation in the graphical user interface (GUI) code generation, and lack of

functionality, The estimation of SLOC under this condition seems uncertain to

measure, which is why Albrecht proposed his idea of computing the software size

based on the system functionality [30].

In 1979, Albrecht [25] published his article on the FP methodology while he

was working at IBM. He proposed that FP has no dimension and that FP was

computed based on the analysis of project requirements. The requirements helped in

identifying the number of function to be developed along with the complexity of

each function. Once the number of FP is measured, the average number of function

points per month was specified, and the labour cost per month is estimated; the total

budget can be computed. Albrecht originally proposed four function types, which are

files, inputs, outputs, and inquiries with one set of associated weights and 10 General

System Characteristics (GSC). In 1983, the work, developed by Albrecht and

Gaffney, proposed the expansion of the function type, a set of three weighting values

(i.e. simple, average, and complex) and fourteen General System Characteristics

(GSCs).

Kemerer [31] provided a famous study reporting the results of the

comparative accuracy for four software cost estimation models. They are the

Function Points, SLIM, COCOMO, and ESTIMACS. The results were produced

using the data collected from 15 completed software projects. Each model was tested

based on its predictive capability on the computing software cost. The results showed

that the models require substantial calibration. The researcher also identified the

main attributes that affect the software’s productivity. Recently by using Albrecht’s

FPA method and using an analogous approach, the authors provided a methodology

that they claimed as more reliable and accurate in predicting the software size at an

early stage of the software life cycle. Recently, FP gains more attention as a powerful

approach for estimating software effort [32].

12

There are two parts in the model that are Unadjusted Function Point (UFP)

and Adjusted Function Point (AFP). The UFP consists of five components. They are

External Inputs (EI), External Outputs (EO), External Inquires (EQ), Internal Logical

Files (ILF), and External Interface date (EIF) [32].

There are 14 GSCs components that affect the length of the project energy

and each can be ranked from no influence to necessary (0-5). They were connected

with 14 factors called f1, f2... f14. These types of factors are outlined in Table 2.5.

The sum of the Table 2. 5 components are then multiplied with the given Equation

2.3, which constitute this Adjustment Factor (AF) defined within the range. (0.65, -

1.35) [28]. For example, the value adjustment factor (VAF) is based on 14 general

system characteristics (GSC's) that rate the general functionality of the application

being counted. Each characteristic has associated descriptions that help determine the

degrees of influence of the characteristics. The degrees of influence range on a scale

of zero to five, from no influence to strong influence. The International Function

Point Users Group (IFPUG) Counting Practices Manual provides detailed evaluation

criteria for each of the GSC'S. Table 2.6 is intended to provide an overview of each

GSC.

 AF = 0.65 + 0.01 fi!"
!!! (2.3)

Table 2.5 Function Types and Weights [32]

Function Type Simple Average Complex

External Input 3 4 6

External Output 4 5 7

Internal Files 7 10 15

External Files 5 7 10

External Inquiry 3 4 6

13

Then, the Unadjusted FP will be then multiplied by the AF to develop the

AFP count, as given in Equation 2.4. The AFP value is definitely within 35% in the

original UFP physique. A diagram, which shows the method of computing FP, is

given in Figure 2.1 [32].

Figure 2.1 Function Point Computation Model [32]

Adjusted FP = Unadjusted FP × AF (2.4)

Table 2.6 General System Characteristics (GSCS)[28]

GSCS’s Factors
Rank

0 1 2 3 4 5

Data Communications

No

Influence
Incidental Moderate Average Significant Essential

Distributed Functions

Performance

Heavily Used

Configuration

Transaction Rate

Online Data Entry

End User Efficiency

Online Update

Complex Processing

Reusability

Installation Ease

Operational Ease

Multiple Sites

Facilitate Change

14

The Adjusted Function Point is easily determined using the Equation 2.4. As

mentioned in the previous section, the AF can vary from 0.65 to 1.35, so the AF

exerts an influence, the final Adjusted FP.

2.4 Related Work

Kemerer [31] evaluates four software cost estimation models, which are SLIM,

COCOMO, Function Point and ESTIMACS. This research had used data on 15 large

projects. He found that the models do not suitable for business data processing

environment. Heemstra and Kusters [33] do an experiment on the effectiveness of

FPA model. Their research had used data of Dutch organizations. They found that

FPA is more acceptable for sizing measurement. While, Sheta and Aljahdali [32] had

done some enhancement on COCOMO and FPA using fuzzy model. They found that

the proposed fuzzy model show better estimation. However, this research limited to

compare on software cost estimated between COCOMO and FPA.

2.5 Summary

This specific chapter reviewed the actual FPA and COCOMO type. It also gives a

brief explanation concerning other estimations. The following chapter will look into

research methodology on the study.

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter discusses the methodology that was used for this research. This research

was conducted by applying the five-phase estimation using FPA in the case studies.

It was also conducted by applying the software cost estimation (COCOMO) in the

case studies and by comparing the software cost estimation using FPA and

COCOMO for these two case studies.

3.2 Research Activities

This section shows steps for the two techniques to be applied for these two case

studies. The first technique is COCOMO and it comes with the following steps:

Setup Data, Basic COCOMO, and Intermediate COCOMO. The second technique is

FPA which include several steps, including, Setup Data, Function Point Count and

Adjustment Factor. Finally, there is the discussion for the Comparative Studies and

Results.

 16

Figure 3.1: Flow Chart for Research Activities

Based on Figure 3.1, five phases are needed for each COCOMO and FPA. The

software cost was used to apply the estimation of the Constructive Cost Model

(COCOMO) technique and the basic COCOMO and Intermediate COCOMO were

used in the case study 1 (Sugar Bun Online Bakery System, E-Sugarbun (SBOBSE)).

Subsequently, by evaluating the software cost to apply the estimation of the

Constructive Cost Model (COCOMO) technique in the case study 2 (Web-Based

Dog’s Diseases Diagnosis System (WBDDDS)). There are also five steps for FPA to

apply this technique. Besides that, the Function Point Analysis (FPA) estimation

technique and the Development Project Function Point Count and Adjustment Factor

in FPA were used as well in the case study 1 (SBOBSE). The software cost was

Setup Data

Basic COCOMO

Intermediate COCOMO

Apply on Case Studies

(SBOBSE and WBDDDS)

Comparative Studies and Results

discussion

COCOMO FPA

Setup Data

Function Point Count (FPA)

Adjustment Factor in FPA

A

Apply on Case Studies

(SBOBSE and WBDDDS)

 17

evaluated to apply the estimation using the Function Point Analysis (FPA) estimation

technique in the case study 2 (WBDDDS). Then, the software cost estimation was

compared using FPA and COCOMO for both case studies.

3.3 Constructive Cost Model (COCOMO)

The Constructive Cost Model (COCOMO) is the most complete and thoroughly

documented model used in cost estimation. This model uses a basic regression

formula with parameters that are derived from a historical project data and current

project characteristics. COCOMO consists of a hierarchy of two increasingly detailed

and accurate forms. The first level, Basic COCOMO, is good for quick, early, rough

order of magnitude estimates of software costs, but its accuracy is limited due to its

lack of factors to account for a difference in project attributes of the cost drivers. The

Intermediate COCOMO takes these cost drivers into account and additionally

accounts for the influence of the individual project phases, as shown in Figure 3.2.

Figure 3.2: COCOMO Increasingly Detailed

3.3.1 Data Setup

Through the data setup for COCOMO, before using the basic COCOMO, the sum of

all tasks must be known, and then the KLOC in the project was determined by

calculating the number of LOC by the rule. After that, the rule was applied to find all

of the required factors (effort applied, development time and people required). All

factors were identified based on the analysis of the project. Then, the rating for

COCOMO

Basic COCOMO

Intermediate COCOMO

 18

COCOMO was finalized to find the total rating of the application of the rules (effort

applied, development time and people required).

3.3.2 Basic COCOMO

The COCOMO has three types of projects, which are either organic projects, semi-

detached projects or embedded projects. Before starting any project under the term

COCOMO, the type of project must be specified. Each project has its own

transactions that amount for each category of the software projects: (Organic ab2.4,	

bb1.05,	
 cb2.5,	
 db0.38,	
 Semi-­‐detached	
 ab3.0,	
 bb1.12,	
 cb2.5,	
 db0.35	
 and	
 embedded	

ab3.6,	
 bb1.20,	
 cb2.5,	
 db0.32), where the research is a Semi-detached project. The

equation was then applied to calculate the basic COCOMO formula, which consists

of the Effort Applied (E), Development Time (D), and People required (P). The

Effort Applied (E) is the effort required for people in a month, which is ab(KLOC)b
b

[person-months] and the calculation of Development Time (D) is cb(Effort

Applied)d
b [months], and then, the expense of the People required (P) for Execution,

divide by Effort Applied/Development Time [count]. But, the KLOC must be

calculated before applying the COCOMO formula.

3.3.3 Intermediate COCOMO

The Intermediate COCOMO part of this step, this is an extension of the basic

COCOMO model. This estimation model makes use of the set of the cost driver

attributes to compute the cost of the software. The intermediate COCOMO computes

the software development effort as the function of the program size and a set of cost

drivers that include the subjective assessment of the product, hardware, personnel,

and project attributes. This extension comprises of a set of four cost drivers, each

with a number of subsidiary attributes. Each of the 15 attributes receives a rating on a

six-point scale that ranges from "very low" to "extra high". An effort multiplier from

Table 3.1 applies to the rating. The product of an all-effort multipliers results in an

effort adjustment factor (EAF). The rating will then be used to calculate factors of

cost drivers.

 19

Table 3.1 Intermediate COCOMO Coefficients [25]

Cost Drivers
Ratings

Very
Low

Low Nominal High
Very
High

Extra
High

Product attributes
Required software reliability 0.75 0.88 1.00 1.15 1.40

Size of application database

0.94 1.00 1.08 1.16

Complexity of the product 0.70 0.85 1.00 1.15 1.30 1.65

Hardware attributes
Run-time performance constraints

1.00 1.11 1.30 1.66

Memory constraints

1.00 1.06 1.21 1.56

Volatility of the virtual machine environment

0.87 1.00 1.15 1.30

Required turnabout time

0.87 1.00 1.07 1.15

Personnel attributes
Analyst capability 1.46 1.19 1.00 0.86 0.71

Applications experience 1.29 1.13 1.00 0.91 0.82

Software engineer capability 1.42 1.17 1.00 0.86 0.70

Virtual machine experience 1.21 1.10 1.00 0.90

Programming language experience 1.14 1.07 1.00 0.95

Project attributes

Application of software engineering methods 1.24 1.10 1.00 0.91 0.82

Use of software tools 1.24 1.10 1.00 0.91 0.83

Required development schedule 1.23 1.08 1.00 1.04 1.10

3.3.4 Apply on Case Studies

In this section, the Basic COCOMO and Intermediate COCOMO will be applied on

the two case studies of SBOBSE and WBDDDS, where the Basic COCOMO method

was applied on two case studies. While COCOMO has three types of projects, which

are either organic projects, semi-detached projects or embedded projects. Before

starting any project under the term COCOMO, the type of project must be specified.

Each project has its own transactions that amount to each category of the software

projects: (Organic, Semi-detached and embedded), where then applied to calculate

the basic COCOMO formula. The intermediate COCOMO computes the software

development effort as the function of the program size and a set of cost drivers that

include the subjective assessment of the product, hardware, personnel, and project

attributes. This extension comprises of a set of four cost drivers, each with a number

 20

of subsidiary attributes. Each of the 15 attributes receives a rating on a six-point scale

that ranges from "very low" to "extra high". An effort multiplier from Table 3.1

applies to the rating. The product of all effort multipliers results in an effort

adjustment factor (EAF).

3.4 Function Point Analysis (FPA)

The Function Point Analysis (FPA) is an International Organization for

Standardization (ISO), which is a recognized method to measure the functional size

of an information system. The functional size reflects the amount of functionality

that is relevant to be recognised by the user in the business. It is independent of the

technology used to implement the system. The unit of measurement is "function

points" (fp's). So, FPA expressed the functional size of an information system in a

number of function points, for example, the size of a system is 314 fp's. The

functional size may be used for the budget application development or enhancement

costs and the budget for the annual maintenance costs of the application portfolio as

well as to determine the project productivity after completion of the project and to

determine the software size for cost estimation.

3.4.1 Data Setup

During the data setup for the FPA Function Point Count, the numbers of externals

(inputs, outputs, inquiries, and interfaces) were counted. The first external is the

inputs that must identify all inputs of the project to find the external input by the

project to determine the extent of file type referenced (FTR) and data element type

(DET). The extent to each of the file type was referenced (FTR) and the data element

type (DET) was calculated using the recognized rules in the external input.

Ultimately, the estimation stage in the External Input was also calculated. The

second external is the outputs that must identify all outputs of the project to find the

external outputs by the project to determine the extent of file type referenced (FTR)

and the extent of data element type (DET). The extensions were calculated using the

recognized rules in the external outputs. Finally, the estimation stage in the external

outputs was calculated. The third external is the inquiries that must identify all

inquiries of the project to find the external inquiry by the project to determine the

 21

extent of file type referenced (FTR) and the extent of data element type (DET) using

the recognized rules in the external inquiry. The estimation stage in the external

inquiry was calculated. The fourth external is the Internal Logical File that must

identify all the (ILF) of the project to find the Internal Logical File and by using the

project to determine the extent of record element type (RET) and the extent of data

element type (DET). The calculation of both extensions of record the element type

(RET) and data element type (DET) was done using the recognized rules in the

Internal Logical File. Finally, the estimation stage in the Internal Logical File was

calculated. As a final point, the external is the interfaces. Subsequently, the FP model

was developed to create a list of fourteen general system characteristics that are rated

on a scale from 0 to 5 in terms of their likely effect for the system being counted (0 =

Not Present, or No Influence, 1 = Incidental Influence, 2 = Moderate Influence, 3 =

Average Influence, 4 = Significant Influence and 5 = Strong Influence Throughout).

The final AFP number of the system used was compared to the AFP count and the

cost of the systems has been measured. The more historical data that can be

compared, the better the chances are of accurately estimating the cost of the proposed

software system.

3.4.2 Function Point Count

The function points can be counted at all points of a development project from the

requirements, including the implementation. This type of count is associated with a

new development work. The scope creep can be tracked and monitored by

understanding the functional size at all phases of a project. Frequently, this type of

count is called a baseline function point count. The function points allow the

independence of the underlying language, in which the software is developed.

Figure 3.3: Function Point Count

 Function Point Count

Data Functions

Transactional
Functions

Internal Logical Files

External Interface Files

External Inputs

External Inquiries

External Outputs

 22

The function points allow the measurement of the software size in standard

units and independence of the underlying language, from which the software is

developed. Instead of counting the lines of code that make up a system, the number

of externals (inputs, outputs, inquiries, and interfaces) is counted, as shown in Figure

3.3. There are five types of externals that were counted. The first type is the external

inputs, which are the data or control inputs (input files, tables, forms, screens,

messages, etc.) to the system. The second type is the external outputs, which are the

data or control outputs from the system. The third type is the external inquiries that

are the I/O queries, which require a response (prompts, interrupts, calls, etc.). The

fourth type is the external interfaces, which are libraries or programs that are passed

into and out of the system (I/O routines, sorting procedures, math libraries, run-time

libraries, etc.). Lastly, there are the internal data files, which are groupings of the

data stored internally in the system (entities, internal control files, directories). These

steps are applied to calculate the size of a project. There is also a count or estimation

for all the occurrences of each type of externals. Each occurrence is assigned a

complexity weight and after that, each occurrence is multiplied by its complexity

weight. In total, the results will obtain a function count. The complexity weights are

listed in Table 3.2, and the function count is multiplied by the value adjustment

multiplier (VAM) to obtain the function point count.

3.4.3 Adjustment Factor in FPA

Although the Adjustment Factor (AF) can give us a good idea of the number of

functions in a system, it doesn’t take into account the environment variables for

Table 3.2 Complexity Weights [32]

 Complexity

Description Low Average High

External inputs 3 4 6

External outputs 4 5 7

External inquiries 3 4 6

External interfaces 5 7 10

Internal files 7 10 15

 23

determining the effort required to program the system. For example, a software

system that requires a very high performance would require an additional effort to

ensure that the software is written as efficiently as possible. Albrecht [25] recognized

this when developing the FP model and he created a list of fourteen “general system

characteristics that are rated on a scale from 0 to 5 in terms of their likely effect for

the system being counted.” These characteristics are as the following in Table 3.3.

Table 3.3 Value Adjustment Factor [32]

GSCS’s Factors
Rank

0 1 2 3 4 5

Data Communications

No
Influence Incidental Moderate

Average

Significant Essential

Distributed Functions

Performance

Heavily Used Configuration

Transaction Rate

Online Data Entry

End User Efficiency

Online Update

Complex Processing

Reusability

Installation Ease

Operational Ease

Multiple Sites

Facilitate Change

In practice, the final AFP number of the proposed system is compared against

the AFP count and the cost of systems that have been measured in the past. The more

historical data that can be compared, the better the chances are at accurately

estimating the cost of the proposed software system. To continuously refine the

estimation accuracy, it is essential that the actual cost is measured and recorded once

a system has been completed. It is this actual cost that enables the evaluation of the

initial estimate.

 24

3.4.4 Apply on Case Studies

During the application in this section, the FPA will be applied on the two case

studies of SBOBSE and WBDDDS. For The FPA Function Point Count, the numbers

of externals (inputs, outputs, inquiries, and interfaces) are counted. There are also

steps that are applied to calculate the size of a project. There is also a count or

estimation for all the occurrences of each type of externals. Each occurrence is

assigned a complexity weight and after that, each occurrence is multiplied by its

complexity weight.

3.5 Comparative Studies and Results Discussion

This section explains how the comparison is performed using COCOMO on both

case studies (Sugar Bun Online Bakery System, E-Sugarbun (SBOBSE) and Web-

Based Dog’s Diseases Diagnosis System (WBDDDS)) and using the FPA on both

case studies. COCOMO has two techniques (Basic COCOMO and Intermediate

COCOMO) that were applied to the case studies. As mentioned in Figure 3.1, the

FPA has two parameters that are the Function Point Count and the Adjustment Factor

in FPA where the function point count has five parameters that are External Input

(EI), External Outputs (EO), External Inquiry (EI), Internal Logical File (ILF) and

External Interface File that were applied to the case studies. In addition, after

completing the data collection and analysis, the man-months and total cost in each

project must be estimated. After the majority of the requirements are found, the

comparison between each of the man-months and total cost was performed to find

out which costs is lesser and which one had lesser man-months.

3.6 Summary

This chapter has discussed the methodology used for the FPA with five parameters

followed by the calculation of unadjusted function point counts and adjustment factor

in the FPA. The COCOMO was used with two parameters calculated to get the

formula. The next chapter will look further on the two techniques of the FPA and

COCOMO, based on the methodology proposed in this chapter.

 67

REFERENCES

1. Attarzadeh, I., & Ow, S. H. (2010). A novel soft computing model to increase

the accuracy of software development cost estimation. The 2nd International

Conference. In Computer and Automation Engineering (ICCAE), 2010 pp. 603 -

607.

2. Boehm, B. W. (1979). Software engineering-as it is. In Proceedings of the 4th

International Conference on Software Engineering (pp. 11-21). IEEE Press.

3. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., & Selby, R.

(1995). Cost models for future software life cycle processes: COCOMO

2.0.Annals of software engineering, 1(1), pp. 57 - 94.

4. Standish (1994) Project Success Safee Improves Every 10 years. Technical

Report. Standish Group.

5. Matson, J. E., Barrett, B. E., & Mellichamp, J. M. (1994). Software development

cost estimation using function points. Software Engineering, IEEE Transactions

on, 20(4), pp. 275 - 287.

6. Felfernig, A. and Salbrechter, A. (2004). Applying function point analysis to

effort estimation in configurator development. In International Conference on

Economic, Technical and organisational aspects of Product Configuration

Systems, Kopenhagen, Denmark, pp. 109 - 119.

7. Junhai M. and Lingling M. (2010), Comparison Study on Methods of Software

Cost Estimation. The 2nd International Conference on e-Business and

Information System Security (EBISS), pp. 1-4.

8. Jeng, B., Yeh, D., Wang, D., Chu, S. L., & Chen, C. M. (2011). A Specific

Effort Estimation Method Using Function Point. Journal of Information Science

and Engineering, 27(4), pp. 1363 - 1376.

9. Mittas, N. and Angelis, L. (2013). Overestimation and Underestimation of

Software Cost Models: Evaluation by Visualization. In Software Engineering

 68

and Advanced Applications (SEAA), 2013 39th EUROMICRO Conference

on (pp. 317-324). IEEE.

10. Moløkken-Ostvold, K., Jorgensen, M., Tanilkan, S. S., Gallis, H., Lien, A. C. &

Hove, S. W. (2004). A survey on software estimation in the Norwegian industry.

In Software Metrics, 2004. Proceedings. 10th International Symposium on (pp.

208-219). IEEE.

11. Nasir, M. (2006). A survey of software estimation techniques and project

planning practices. In Proceeding of the Seventh ACIS Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing (SNPD), 2006. pp. 305-310.

12. Boehm, B. W., Madachy, R., & Steece, B. (2000). Software Cost Estimation

with Cocomo II with Cdrom. Prentice Hall.

13. Pressman, R. S. (2010). Software Engineering: A Practitioner's Approach, 7/e,

Pressman & Associates: Published by McGraw-Hill, a business unit of The

McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY

10020.

14. Pandian, C. R. (2004). Software Metrics: A Guide to Planning. Analysis, and

Application. Auerbach Publications.

15. McConnell, S. (1998). Software Project Survival Guide. Microsoft Press, 1998.

pp. 40-45, Nov./Dec. 2006, doi:10.1109/MITP.2006.149.

16. Tagra, D. (2011). Cost Estimation For Commercial Software Development

Organizations. Dalhousie University Halifax, Nova Scotia: Ph.D. Thesis.

17. K. Kavoussanakis and T. Sloan. UKHEC Report on Software Estimation, Dec

2004

18. Laird, L. M. (2006). The limitations of estimation. IT professional, 8(6), 40-45.

19. Khatibi, V. & A.Jawawi, Dayang N. (2010). Software Cost Estimation Methods:

A Review. Journal of Emerging Trends in Computing and Information Sciences,

3(1), pp. 21 – 29.

20. Boehm, B. (2000). Safe and simple software cost analysis. IEEE software, 17(5),

pp. 14-17

21. Boehm, B., Abts, C., & Chulani, S. (2000). Software development cost

estimation approaches—A survey. Annals of Software Engineering, 10(1-4), pp.

177-205.

 69

22. Kumari, S. and Pushank, S. (2013). Performance analysis of the software cost

Estimation Methods: A Review. International Journal of Advanced Research in

Computer Science and Software Engineering, 3(7), (pp. 229 – 238).

23. H. Leung and Z. Fan, (2002). Software Cost Estimation. Handbook of software

engineering and knowledge engineering, World Scientific Publications

Company. pp. 1-14.

24. Abts, C., Boehm, B. W., & Clark, E. B. (2000). COCOTS: A COTS software

integration lifecycle cost model-model overview and preliminary data collection

findings. In ESCOM-SCOPE Conference.

25. Albrecht, A. J. (1979). Measuring application development productivity.

In Proceedings of the Joint SHARE/GUIDE/IBM Application Development

Symposium. pp. 83-92.

26. Longstreet, D. (2002). Fundamentals of function point analysis. Blue Springs:

Longstreet Consulting.

27. Ajmera, R., Sinha, R. R., & Lamba, C. S. (2012). Comparative analysis of

Software testing measurement technique. International Journal of Engineering

and Innovative Technology (IJEIT), 1(2), pp. 70 – 80.

28. Patel, S. (2013). Function point distribution using maximum entropy principle.

In Image Information Processing (ICIIP), 2013 IEEE Second International

Conference on (pp. 684-689). IEEE.

29. Sadiq, M., Zafar, S., Asim, M., & Suman, R. (2010). GUI of esrcTool: A Tool to

Estimate the Software Risk and Cost, The 2nd IEEE International Conference on

Computer and Automation Engineering (ICCAE-2010), Singapore, pp 673-677.

30. Wu, J., and Cai, X. (2008). A software size measurement model for large- scale

business applications, in Proceedings of the 2008 International Conference on

Computer Science and Software Engineering (CSSE), 2008. (Washington, DC,

USA), pp. 39–42.

31. Kemerer, C. F. (1987). An empirical validation of software cost estimation

models. Communications of the ACM, 30(5), pp. 416-429.

32. Sheta, A., and Aljahdali, S. (2013). Software Effort Estimation Inspired by

COCOMO and FP Models: A Fuzzy Logic Approach. International Journal of

Advanced Computer Science and Applications. 4(11), pp. 192 – 197.

 70

33. Heemstra, F.J. and Kusters, R.J. (1991). Function point analysis: Evaluation of a

software cost estimation model. European Journal of Information Systems. 1(4).

pp. 223-237.

34. Lederer, A.L. and Prasad, J. (1993). Information systems software cost

estimating: a current assessment. Journal of Information Technology, 8(1). pp.

22-33.

