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Abstract: The ability to model the time varying dynamics of an unmanned

rotorcraft is an important aspect in the development of adaptive flight controller.

This paper presents a recursive Gauss-Newton based training algorithm to model

the attitude dynamics of a small scale rotorcraft based unmanned aerial system

using the neural network (NN) modelling approach. It focuses on selection

of optimised network for recursive algorithm that offers good generalisation

performance with the aid of the cross validation method proposed. The recursive

method is then compared with the off'-line Levenberg-Marquardt (LM) training

method to evaluate the generalisation performance and adaptability ofthe model.

The results indicate that the recursive Gauss-Newton (rGN) method gives slightly

lower generalisation perfbrmance compared with its off-line counterpart but

adapts well to the dynamic changes that occur during flight. The proposed

recursive algorithm was found effective in representing helicopter dynamics with

acceptable accuracy within the available computational time constraint.
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1 Introduction

Rotorcraft based unmanned aerial systems (RUAS) are a commonly used platform of
unmanned aerial vehicles (UAV) and this platform configuration have been widely used in
numerous applications ranging from surveillance to safe and rescue operation. The rotorcraft
or helicopter platform possesses the unique manoeuvring capabilities that can hover above

or near targets, which make it more suitable than fixed wing aircraft for high building
structural inspection. Research efforts had been directed in this field to enable the UAV to
execute these application autonomously which subsequently could eliminate accident risks
to human pilots and increase higher chances of successful mission implementation.

The miniature RUAS are regarded as an unstable non-linear system with fast responsive

dynamics and this present challenges in designing the automatic flight control. The
automatic flight control function is responsible for manipulating the inputs to a dynamical
system to obtain a desired effect on its outputs without a human in the control loop. Most
research platform of RUAS and commercial off the shelf (COTS) autopilot systems are

based on standard linear controllers such as PID, LQR and .F1- techniques (Mettler, 2003;

Shim, 2000; Jiang et al., 2006). Even though the linear controllers are the preferred methods
in controlling the RUAS, the linear controllers are well known to suffer from performance

degradation when the RUAS operate beyond the linear operating conditions. Advanced
non-linear controllers such as feedback linearisation, adaptive control and non-linear model
based approaches have been suggested in the literature to overcome the limitation of linear
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approaches with successful implementation in real flight tests (Kendoul, 2012). However,

the capability of the RUAS automatic ffight controller can be further improved with the

development of self tunable and flexible controllers such as the NN based flight controller
that can be deployed and integrated into different rotorcraft platforms in shorter development

time. Another benefit ofNN based controller includes the ability to adapt to platform changes

such as payload, sensors or changes in the dynamic system.

In recent development of real-time adaptive control system, the NN approach has found
growing success in the development of automatic flight control system due to their ability
to leam complex mapping from the flight data. This would make the representation of the

system dynamics much more straight forward, whereas the complex mathematical model

is much more difficult to develop. The NN calculation is parallel in nature, which leads

to faster calculation speed in an intensive computation problems (Balakrishnan and Weil,
1996). Furthermore, the NN has the ability to adapt well to a changing environment which
makes it suitable for adaptive control application. Typical NN based control schemes can

be categorised into six main classes as follows (Norgaard, 2000):

a

a

a

a

a

a

direct inverse controller

internal model controller (IMC)

feed-forward controller with inverse model

feedback linearisation controller

optimal controller

NN based model predictive controller (NNMPC).

Samal (2009), Norgaard (2000) and Agarwal (1997) suggested that the first five types ofNN
controller schemes fall under direct adaptive control class where the NN is used to update

the controller parameters. Whereas, the NMPC is an indirect type of adaptive controller
where the NN model is used to aid the existing conventional MPC controller to achieve the

desired reference trajectory. Figure I shows the basic configuration structure of the direct
and indirect adaptive control system for a dynamic system. In direct adaptive controllers,
the control parameters are updated directly to minimise the tracking error. The calculation
of the controller parameters or gains does not rely on the dynamic system to update the

controller parameters. Whereas in the indirect adaptive control configuration, a dynamic
model is used to predict the response of the dynamic plant. The prediction from the dynamic
model is assumed to be identical to the actual response and this information is used to
minimise the tracking error of the system.

The non-linear and high order dynamics behaviour of a rotorcraft is typically hard to
model using first principle modelling approach (direct physical understanding of forces
and moments balance of the vehicle), and such approach can be inaccurate (Budiyono
et al., 2N9). Dynamic model obtained using the frst principle approacb depends on

many parameters which needs to be carefully identified through direct measurements of
geometrical or structural data. For aerodynamic parameters estimation, detailed experiment
needs to be performed using wind tunnel facilities. The principle modelling approach

requires considerable amount of theoretical knowledge and experiences about the rotorqaft
flight and potentially would not produce a highly accurate results unless performed
with extreme care. In certain cases, the agreement between the predicted and measured
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dynamic behaviours is unsatisfactory because ofthe accumulated uncertainty and modelling
simplification (Mettler, 20031 Kendoul, 2012).

Figure 1 The configuration of adaptive conroi system: (a) direct adaptive controller and

(b) indirect adaptive conffoller

Since the helicopter dynamics is nonlinear, the NN based system identification approach

using the NNARX (Neural Network-Auto Regressive structure with eXtra inputs) model

structure can be used to address such a problem. Here, the linear model structure
such as ARX model structure was introduced as the basic NN model structure while
static feed-forward multi-layered perceptron (MLP) network was used to introduce

non-linearity into the model estimation. Similar to stability features of ARX model

structure, the prediction from the NNARX model was considered stable since there

was only pure algebraic relationship between prediction and past input and output

measurements (Norgaard, 2000). This type of modelling technique demonstrates good
general approximation capabilities for a reasonable non-linear system which make them
ideal for the adaptive flight control application (Sjoberg et al., 1995; Calise and Rysdyk,
1998). Several research works on NN based approach using the popular feed-forward
NNARX architecture can be found in Samal et al. (2008), Suresh et al. (2002) and Shamsudin
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and Chen (2012) where the findings exhibit the capability ofneural network approach and

its effectiveness in modelling the dynamic response accurately using second order method

such as the Levenberg-Marquardt (LM) method.

Although the NN is superior in terms of it prediction accuracy, the dynamic model

identified from NN can be inaccurate due to many problems such as incorrect model structure

selection, incorrect input vectors selection and over-fitting due to the excessive number of
neurons. Previous attempts to model the non-linear unmanned helicopter dynamics using the

off-line NN modelling has successfully modelled the dynamics of the helicopter, resulting

in low mean or standard deviation of the residual values (Samal, 2009; Putro et al., 2009).

However, past efforts in identifying the helicopter dynamics did not include the effect of
embedded memory or model order of the NNARX networks on generalisation performance

for the modelling problem considered. The validation methods introduced in this work can

be used to ensure that the NNARX model fits well with observations and aid the neural

network modeller to select the optimised network structure for prediction with an acceptable

accufacy.

Furthermore, most NN based modelling techniques attempt to model the time varying

dynamics of an UAS helicopter system using offline modelling approach. The model which
is generated and trained once from previously collected data is not able to represent the

entire operating points of the flight envelope very well (Samal, 2009). Several attempts such

as Samal (2009), Samal et al. (2008, 2009) were made to update the NN prediction model

during flightusing mini-batch LM training (LM training with small numberof data samples).

However due to a limited amount of processing power available in the real-time processor,

such methods can only be employed to relatively small networks and they are limited to
model uncoupled helicopter dynamics. In order to accommodate the time-varying properties

of helicopter dynamics which changes frequently during flight, a recursive based learning
algorithm is required to properly track the dynamics of the system under consideration.
Furthermore, the usage of recursive algorithms such as recursive Gauss-Newton (rGN) or
recursive Levenberg-Marquardt (rLM) reduces the computation complexity of the off-line
training method without having to invert the full Hessian matrix in every iteration (Ngia

and Sjoberg, 2000).
The present study is concemed with the modelling and identification of a helicopter

based UAS. The multiJayer perceptron (MLP) network architecture is considered for this
purpose and different network structures are compared and analysed to determine the

optimised network structure, with good generalisation performance using the aid of the

cross validation method proposed. Based on the network structure selection, a recursive
prediction error algorithm such as the recursive Gauss-Newton method is proposed to train
the neural network model. The generalisation and adaptability performance of the recursive
algorithm is then compared with the off-line algorithm to verify if the prediction quality
has improved over its off-line counterpart.

2 Platform description

The UAV platform which was used in this research is a conventional electric model helicopter
known as TREX600, manufactured by ALIGN Co. Ltd. The helicopter model was selected

due to its sufficient payload capacity, great manoeuvrability and low cost replacement parts.

It was equipped with a standard Bell-Hiller stabiliser bar on the main rotor, which improves
handling characteristics for human pilots by increasing the damping on the pitch and roll
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responses. Furthermore, TREX600 was also equipped with a high efficiency high torque

brushless motor that allows the helicopter to carry about 2 kg payloads with an operation

time of about 15 m. The basic UAV platform shown in Figure 2 had been modified to make

room for installing necessary electronic equipments which gathers flight data for dynamic

modelling and control system design. Some key physical parameters of TREX600 RC

helicopter are given in Table 1.

Figure 2 The TREX600 helicopter used in the system identification experiment with
instrumentation equipment fitted between fuselage and landing gear (see online version

lbr colours)

Tabte I The specification of the TREX600 ESP helicopter

Spetifications TREX6OO ESP

Length
Height
Main Rotor Diameter
Tail Rotor Diameter
Weight
Endurance

l.16 m
0.4 m

1.35 kg
0.24 m
3.3 kg
l-5 min

3 Collection of flight data

The flight test was conducted on the UAV helicopter platform in calm weather conditions.

Different flight manoeuvres were conducted to excite the desired dynamic of interest. For

example, after the helicopter reached steady and level condition, the yaw dynamics was

excited using only tail collective pitch command while other input commands were used

to balance the helicopter in such a way to make the vehicle oscillate roughly around the

operating point of interest.
Training and validation data were collected from specifically designed frequency swept

excitation signal suggested in Tischler and Remple (2006). This type of signal is commonly

used to collect experimental flight data in aircraft and rotorcraft system identification.
The frequency swept excitation signal is not required to have constant amplitude.
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It is recommended that the pilot executes two good low frequency cycle inputs (20 s) and

then gradually increase the swept frequency to mid and higher frequencies before ending

the manoeuvre in the trim position. Starting and ending the record in aircraft trim state

enables concatenating flight data collected from several test runs while at the same time

ensuring rich signal content.
All measurements of the helicopter's state variables were collected using an inertial

measurement unit (IMU) where the data that were recorded during test were Euler angles:

roll /, pitch 0 and yaw V; angular rates in body coordinate frame: roll rate, p, pitch rate,

q and yaw rate, r and body accelerations: o", ao, a".The control inputs measured during
the experiment were the stick deflection from the pilot's collective pitch 6,,,1, pedal 57,ea,

longitudinal cyclic 56n and lateral cyclic d1o1. The four servomotor signals

": lsette sAUx sELE "rrof' .

can be translated to pilot's stick positions (Input range = *1),

6 : l6u.6Lot 6"ot 5r.o)' ,

by means of a linear transformation:

6 : A-r (" - tr,o^) (1)

where .s1,;,, are the servo signals at trim values which indicate the necessary pulse width
values to level the swash plate position. Matrix ,4 (mixing gains) has to be determined

through the measurement of servo signals for different stick positions to get the exact

relationship between pulse width commands sent to the servos and the requested control
inputs.

The common frequency range for the excitation signal used in rotorcraft system

identification and control are between 0.3-20 rad/s. It is also recommended in Tischler and

Remple (2006) that an identical filter should be used for all output and input signals with
a cut-off frequency 5 times higher than the maximum excitation signal frequency. Hence

to reduce the noise in sensors data, the curoff frequency of the low pass filter used in this

study was selected at l5 Hz. The sampling rate of the sensors was selected at 100 Hz which
was at least 25 times higher than the maximum excitation frequency.

4 Neural network model structure

The NN based modelling approach was usually used to deduce the dynamic model of
a system by taking into account the relationship between all inputs and outputs of the

system. To simplify the modelling problem, the dynamic model of a helicopter was described

and partition into smaller identification problems such as coupled roll-pitch equations,

heave dynamics, yaw dynamics or coupling of heave and yaw dynamics or with some

coupling combination among these coupling cases (Mettler, 2003). In our study, the attitude
dynamics of the helicopter as coupled roll and pitch equations were considered in the

system identification process. Although extra coupling from the effects of collective pitch
and tail rotor collective were omitted, the current form ofcoupling pairings are still valid,
particularly in low speed flight operation (Fan et al., 2009).
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The NN input-output relationship of a dynamic system described in this research was

adapted from standard ARX (Autoregressive structure with extra inputs) model structure as

in Ljung ( 1999). In a NN based ARX (NNARX) model structure, the variable to be estimated

and other influencing variables including their time lags are typically fed into a static feed-

forward network such as multi-layer perceptron (MLP) network (Samarasinghe, 2007). The

conceptual diagram of NNARX model structure used to identify the non-linear relationship

of helicopter's attitude dynamics is shown in Figure 3. Note that the regression vector or
inputs vector to the network is typically chosen to include ny past output measurement data

and n, past input data. The number of past output and input data to be fed to the network

is left for user choice.

Figure 3 The NNARX model structure with preselected regression vectors (see online version

for colours)

Output
Layer

Hidden
Layer

lnput I Input 2

The fully connected MLP network architecture containing only one hidden layer, was chosen

to leam the nonlinear relationship of the NNARX model. The output calculation from the

MLP structure to represent the NNARX predictor is given as follows:
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and the parameter and regression vectors are given by:

0 : l*ni Wn bI b2]

e Q) : lP'' Pr " ' q,,]

: 
fu(t),y(t - r), "',aft - n), t\t),u(t- 1),.. .,rt(t - n)]

where tr.r6; is the weights matrix between the input layer and the hidden layer and I4l;' is

the weights matrix between the hidden layer and the output layer. The functions f iQ") and

f;(*) are non-linear activation function for neurons in each hidden and output layers. The

symbol 11 denotes the number ofneurons in the hidden layer while bL and,b2 are the bias

elements for the input layer and output layer. The number of inputs and outputs ofthe neural

network are presented by rn. and n respectively.

5 Cross validation method

The choice of higher number of past output and input will results in a larger network

architecture that will have a lower MSE but poor generalisation ability (Billings et al.,

1992). This means that the network model predicts the estimation data set (training set) with
great accuracy but fails to represent a new data that was not used in the training process.

Large assignment of hidden neurons also contributes to poor generalisation performance
(Wilamowski, 2009).

Cross validation is a statistical method that is normally used in data mining problems

to determine the model sffucture selection and to compare generalisation performance of
different learning methods. The simplest method to conduct validation analysis is to use the

hold-out method where the measurement data is divided into training and test sets with user

defined split ratio. Subsequently, the training set is used for model training and the test set

data for error rate estimation of the trained model. However, the downside of this method
is that the model evaluation can produces a high variance error. Depending on how the split
ratio is defined, the prediction error evaluation may be inconsistent for different partitions

of data that forms the training and test sets (Kohavi, I 995).

To overcome this problem and utilising the available overall data, the k-fbld cross-

validation method was used to reduce the variance by averaging error over & data segments.

Kohavi (1995) suggested that cross validation with 10-20 folds would gives reasonable

estimate with low bias and variance error. In this method, the measurement data N is split
into k approximately equal M size data segments. Then, the training and validation are

performed for /c-iterations where within each iteration, a single portion of the data segment

at a certain index location shown in Figure 4 will be used for validation after the training
of the remaining k - 1 data segments are completed. For each validation, the prediction

MSE is calculated for the specific segment. The MSEs from each validation segment are

averaged and combined together at the end of the iteration process using percentage root
mean square error (% RMSE) as follows:

(3)

RMSE:
r-t r/2-l
-l x100
I

N
KIVI

tf:, Dlj, (gt(t) - at(t)) (4)
rL (s(t) - aQD2
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where 9;(t) denoted the predicted NN model output from a specific /c-validation data

segment, y;(l) indicated the k-validation data segment and y(t) is the mean value of the

measurement data.

Figure 4 The procedure of ft-fold cross-validation for A : 5 (see online version for colours)
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6 System identification methods

The system identification for inferring the helicopter dynamic model can be conducted
using off-line (batch) and recursive based system identification methods. The estimation
of a dynamic model in the off-line NN identification method involves the training process

being canied out over some finite data gathered beforehand. Over the whole length of the

data record, we determine the best weights (parameters vector 0) that give the best fit for
the measurement data over repetitive iterations. Obviously, the off-line methods have a

disadvantage such as it is unsuitable for tracking time varying dynamics, as the amount
of computation time for the training phase in each iteration might exceed the available
processing time (Norgaard,2000). The adaptive control is an example where a model needs

to be identified at the same time as a control law is calculated to compensate the time
varying control variables. Even though the off-line training methods are not suitable for
real-time implementation, several researchers have used a mini batch data size for the off-
line training method implementation in real-time as proposed in (Samal, 2009; Puttige and

Anavatti, 2006; Puttige, 2009). However, in these examples, the NN estimation and control
were restricted only for the SISO case and smaller network due to the limited computation
capabilities to invert big Hessian matrix at each iteration.
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To overcome the disadvantages of the off-line training methods, the recursive based

system identification methods can be used in tracking time varying dynamics. The recursive

model estimation is a system identification technique that enables us to infer a model

that adapts to time-varying dynamics based on real-time data coming from the system. In
contrast to off-line training method, the recursive methods enforce update to NN parameter

vector based only on a single data at current sample t. To achieve real-time implementation

of the neural network based system identification, the estimation of neural network's
parameter vector d can be carried out using recursive algorithms as described in Billings
et al. (1992), Norgaard (2000), Youmin and Li (1999), Ljung and Soderstrom (1983)'

The recursive identification algorithms have several advantages over the batch methods. The

implementation of the method is simpler, less memory-consuming with faster convergence

since the redundancy in the data set is effectively utilised (Norgaard, 2000).

Recursive algorithm can also be implemented similar to the offline training where the

recursive training is repeated several time on the finite training set Z N , collected in advance

(Norgaard, 2000; Billings et al., 1991, 1992). Figure 5 shows the difference between the

batch algorithm, mini-batch algorithm, on-line recursive algorithm and repeated recursive

algorithm. The parameter vector d updating process usually start with initial random

weights and it is carried out forward to the next iteration as computation progress. The

implementation of batch and mini-batch algorithm is similar but differs in the number of data

samples used for training. In the recursive algorithm methods, the parameter vector update

is obtained in real-time as the measurement data become available from the instrumentation

system. Figure 5(d) shows the implementation of recursive algorithm as an offline method.

The parameter vector 0 is updated at each time sample t over a fixed data sample. At the

end of first iteration, the last parameter vector d is used as the initial update to the second

iteration step. This iteration process will stopped ifthe mean square criterion converges to

pre-defined threshold as in batch training algorithm implementation.

6.1 Off-Iine system identificationwith neural network

After selecting the model structure, the next step in the system identification process is to

determine the best weights (vector parameters d) that give the best fit between the NNARX
model and measurement data. This is achieved by minimisation of error cost function.
As mentioned in Norgaard (2000), the measurement of prediction's closeness to the true

outputs of the system is given by mean square elror (MSE) type criterion:

, 1rt
v11(g,z1y.): *Dla@-a(le)1', (5)

t:1

with linear approximation of prediction error given by:

e(t,0)=a(t)-0(tl0) (6)

where ^f{ is the number of input-output pairs used as data test for training, g(t) is the real

measurement output of the system, i(tld) is the predicted output vector and the training
data set is given by Zxr: [g(r),tu(t)]. For multiple input-output case (n, outputs), the

measurement oulput of the system y(t) and predicted output y(tl9) will became a n x /y'

matrix which would produced a vector of MSE criterion.
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Figure 5 The different types of neural network model estimation methods: (a) batch algorithm;
(b) mini-batch algorithm; (c) recursive algorithm and (d) repeated recursive algorithm
(see online version for colours)
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In order to minimise the cost function in equation (5), the Levenberg-Marquardt (LM)
iterative search algorithm was used for the neural network training process. The optimisation
process is carried out iteratively over a given data set to achieve the minimum error

criterion. The LM optimisation algorithm uses the Gauss-Newton Gradient G(d) and

Hessian E(d) matrices, which were derived specifically for the neural network model in Yu

and Wilamowski (2011), Ngia and Sjoberg (2000) and Norgaard (2000). These important

matrices are represented in the following equations:

lJlG(0): *> ,v(tl0)le(t,0)l (7)
t\t 4- t:7

R (o) : * f ,ll 
elo) bt) (tlo)f (s)

NL'''t:l

where t!(tl|) is the Jacobian matrix that represent the first derivative of the one-step ahead

prediction with respect to parameters vector 0. The procedure to calculate matix l!(tl9) is

(c) (d)
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given in detailed in Yu and Wilamowski (2011) and Norgaard (2000). The Hessian matrix
R(d) has a dimension of d x d and Gradient vector G(0) with dimension of d x 1, where

d is the total number of elements (weights + biases) in the parameter vector d.

We could find the minimum of the error criterion by iteratively solving the following
equations:

g(t+l)-6Q.)ay()

ln (ot,'; + r(o)1] yter : -c (oto)

(e)

(10)

where /(t) is the search direction vector, l is the identity matrix and A(t) is a damping

factor used for deciding the step size. In order to determine ), the indirect method used in
Norgaard (2000) is adopted by calculating the following ratio to determine the accuracy of
approximation:

(11)

eduction approximation

The main purpose of introducing the ratio calculation is to measure how well the reduction

of the criterion V1,1(0, Zy) matches the reduction predicted by approximation terms in
denominator of ratio calculation in equation (11). The damping factor l is adjusted

accordingly to the ratio r(t) by some factor (Norgaard, 2000). The procedure of the

LM algorithm with indirect method to determine ,\ is given in Figure 6. The reduction
approximation (denominator term in equation (11)) is most likely a close approximation to
error criterion Vy (0, Z y), if the ratio r{t) value is close to one and parameter ) should be

reduced by some factor. However, if the ratio r'(t) is small or a negative value, parameter )
should be increased. Additional stopping criterions are normally introduced to this algorithm
to prevent minimisation problems or to force early stopping such as stopping criteria based

on maximum number of iterations, sum of square error that drops below a certain threshold,
upper bound for gradient and maximum weight change, maximum value of parameter ,\ or
early stopping criterion due to training time constraint.

6.2 Recursive system identification with neural network

Recursive model estimation is a system identification technique that enables us to infer a

model that adapts to time-varying dynamics based on real-time datacoming from the system.

To achieve real-time implementation of NN based system identification, the estimation of
neural network's parameter vector 0 can be carried out using recursive algorithms such as

described in Billings et al. (1992) and Youmin and Li (1999). Batch method described in
the previous section is deemed unsuitable for tracking time varying dynamic as the amount
of computation time for the training phase in each iteration might exceed the available
processing time (Norgaard, 2000).

The recursive system identification method builds a model of the system at the same

time as the measurement data is collected. The model is then updated at each time step, as

new data become available. In our study, the weight updating procedure is calculated using
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recursive Gauss-Newton (rGN) method. For every data sample, the parameter vector d(f )

is updated by the recursive algorithm using the following equations:

69

e(t): a(t) -0(t)
R(t) : R(t - r) +'y(t)1,/, (t)rr-' ft)',p' (t) - n(l - 1)l

A til : A (t - 1.) + 1,G) R-t Q),1'(t) i-t 1t1e 1t1

(12)

(13)

(14)

where ,R(t) is an approximation of Gauss-Newton Hessian matrix, dt is the estimation of
pilameter vector of the NN model. A-r (i; is the weighting matrix and 1(/) is the gain

sequence at the current time step f . The simplest choice of weighting matrix A-r (l) is an

identity matrix as suggested by Billings et al. (1992). The forgetting factor )(f ) is defined

as a constant scalar variable which accounts for the amount of past data information to

be included in the error criterion function. If the forgetting factor is I(t) < 1, the term

would make the estimation more adaptable to changes and sensitive to noise. Whereas, if
I(r) -+ 1 as time increases, more old data are included in the criterion and the adaptation

would fluctuate less during the learning process (Youmin and Li, 1999).

Figure 6 The Levenberg-Marquardt (LM) algorithm with step involving 
^ 
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In practice, equations (12)-(14) are not calculated straightforward with inversion of matrix
/i- 1 (r) which requires computational complexity of O(d3 ) (Ngia and Sjoberg, 2000). Ljung
and Soderstrom (1983) had shown that using marix inversion theorem, the generalised rGN
algorithm is rewritten to avoid full Hessian matrix inversion as follows:

p (t) : lp (t - 1) - L(t) s*' (r) Lr (il) l^(t)
s(r) : 1!r (q P Q - t) t:(r) + 

^ 
(r) 

^(t)L (t) : P (r - 1) 4) (t) S-1 (t)

0(q:A(r-1)+ L(t)e(t)

(ls)

(16)

(17)

(18)

Note that the inversion of matrix R-'(t) had been reduced from full inversion of d x d
matrix to S - I ( t ) with n x n dimension . Note that n denotes the number of outputs predicted

in the model.
Equations (15)-(18) indicates that initial value of P(0) (d x d matrix) and parameter

vector d(0) need to be supplied by user at the beginning of the iteration. The initial
parameter n".tot d10; is usually selected as random values or pre-determined weights

resulting from the off-line training. A common choice for P(0) is P(0) : pI with p being

a large positive number (i.e., 102 -+ 104) indicating little confidence in A1O;. This would
cause the estimation to rapidly increase in the transient phase for a short period of time
dl (Ljung and Soderstrom, 1983). As the estimation of parameters are quite poor at the

beginning of the iteration, a lower forgetting factor should be selected at the initial stage

for rapid adaptation and approaching unity as the time increases. The following strategies

introduced by Ljung and Soderstrom (1983) is used for updating the forgetting factor term:

)(l):)")(t-1)+(1-)") (1e)

where .\n and )(0) are design variables. The typical values of )o is 0.99 and .\(0) is in the

rangeof 0.95 < )(0) < 1.

According to Ljung and Soderstrom (1983), the recursion ofequation (15) is numerically
unstable due to round-off errors which build up and influence P(l) to become indefinite.
The numerical problem involving matrix P(t) can also be corrected using several matrix
factorisation techniques such as Potter's square root algorithm, Cholesky decomposition

or UD factorisation which in turn gives better numerical properties compared with the

straightforward calculation of P(t) (Ljung and Soderstrom, 1983). The factorisation
algorithmsrequiredroughly the same amountof computationtoupdate P(l) inequation (15)
(Bierman, 1977). ln this work, the Potter's square root algorithm is considered for the

problem because of the algorithm's simple implementation.
The Potter's square root algorithm describes matrix P(f ) in terms of the following

factorisation:

P (t): Q (t)Q'ft) Qa)

where Q(t) is selected as a square non-singular matrix. The Q(t) matrix is then calculated
using the following algorithm in Table 2 at each time step. The implementation of recursive
Gauss-Newton algorithm for NN based system identification using Potter's factorisation
algorithm is given in Figure 7. Since the parameter vector d(l) in recursive algorithms is

updated at the same time as the sensor data is collected, the update remains in indefinite
loop as long as a stopping condition is supplied by the user.
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Table 2 Potter's square algorithm

7l

a) Initialise P(0) : Q(0)Q"'(0) at time t : 0

b) For each time step t, update Q(t - l) by performing step 1-6

1. /(r) : Q'r (t - r)Ik1)
2. p(t): )(,) + f'' (t) lG)
3 a(t):rtval+ J0@^ft-q]
4. L(t) : Q (t - r) .f (t)
s. Q (t) : lq (t- 1) -_o (t) L (t) fr (t)l I \/^(t)
6' Q @ :'iffitria Q) + p,,","1

c) Compute parameter vector as:

A(r: A (i - 1) + L(t)le(t) lp@l

Figure 7 The recursive Gauss-Newton (rCN) algorithm with Potter's square root factorisation
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Notedthatthe manx P(t) inequation (15) mayhappentobe singularornearly singularif the

model set contains too many parameters or if the input signal is not general enough (Ljung

and Soderstrom, 1983). This problem can be overcome by introducing a lower and upper

bounds on the eigenvalues of P(f ). Several variations of recursive Gauss-Newton algorithms

such as Constant Trace (CT) and Exponential Forgetting and Resetting Algorithm (EFRA)

have been proposed in various examples to overcome the unstable numerical P(1) recursion
(Norgarud, 2000; Salgado et al., 1988). By using the CT method, Step 6 in Table 2 is
introduced to bound the eigenvalues of the P(l). The p-o" and p^rn are the maximum and

minimum eigenvalues respectively, and the values are selected so that p*o, f p^nn = L05.

The initial Q(0) should be selected as a diagonal matix, p*inl < 8(0) 3 P^o,l.

7 Results and discussion

The experimental data from different flight manoeuvres was collected and concatenated

into a single recording with the measurements of the servo PWM signals were rescaled to

the appropriate pilot's input command range. The flight test data were divided into training.

validation and test data sets. The training and validation data sets were used for purpose of
NN training and model structure selection. The test data set was used for the final evaluation

of the NN model prediction accuracy. The pilot's input command range is normalised

between - 1 to + 1 for longitudinal cyclic, lateral cyclic and yaw pedal cyclic inputs, while
the collective cyclic input is scaled between 0 to *1. Using the collected data, the suitable

regression vector structure and hidden neurons size were determined using the k-fold cross

validation technique previously discussed.

The lowest error resulting from the ,k-fold cross validation was used as the network

structure for the recursive training algorithm. A fully connected MLP architecture was

used for the NN training in cross validation with the number of hidden neurons gradually

increased. The tangent hyperbolic and linear activation functions were used in the hidden and

output layer of the NN model. In this study, the flight data obtained from the experiment was

divided into 10 approximately equal segments. In the validation stage, the error calculation

was then stored for every network structure and hidden neuron case. Subsequently, the

stored error calculation was then retrieved at the end of the validation cycle for RMSE
computation.

The results of k-fold cross validation for the off-line NN model is given in Figure 8. For
each neuron size, different network structures were tested and compared with each other.

From the plot, network sti'ucture with 3 past outputs and I past input (regression vector

or input nodes with dimension size of 8) gives the lowest RMSE value for neurons size,

fr, : 4. This network structure was then used as the basic architecture for comparing the

generalisation performance of the recursive Gauss-Newton method with the offline NN
model. Note that the neuron size D, : 8 gives a comparable low RMSE values. However,

it does not indicates that the prediction displays good generalisation performance since

neuron size h : 5, has a sudden increase in RMSE calculation. The effect of noise has

affected the error calculation for the neuron size h,:5 -+ 8. However, the validity test is

still useful in aiding the selection of an appropiate network structure (Billings et al., 1992).

Furthermore, it is not advisable to use an excessive number of neurons which may lead to

an over-fitting problem. Finally, we arrive at the following network specifications (Table 3)

that adequately represent the attitude dynamics of a model scaled helicopter.
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Figure 8 The percentage of root mean square elror (RMSE) for each network structure and

number of neurons. The neural network training was carried out using offJine
Levenberg-Marquardt (LM) (see online version for colours)

Thble 3 The MLP neural networks model parameters

MLP nenvork specifications for attitude dynamics

Number ofpast outputs
Number of past inputs
Number of neurons in hidden layer
Activation function at hidden layer
Activation function at output layer
Number of regressors

Total number of weights
Weight decay

73

3

I

^
Tanh

Linear
a

46

0.0001

An example ofthe one-step ahead prediction ofthe angular rate responses that are estimated
from the offline neural network system identification is shown in Figures 9 and 10. The
network is trained using the nearly optimal structure from Table 3. These predicted responses

from neural network identification (NNID) are overlaid with the measured helicopter
responses. The results indicate that one-step ahead NNID predictions overlap the test data

almost perfectly as indicated by the magnitude order of the prediction error plot. This
usually happens when the sampling frequency of the data collected is high compared with
the frequency ofthe dynamic system as suggested in Norgaard (2000).

This work also utilised the ,k-fold cross validation method to identify the efficiency
of the selected neural network raining methods in estimating the attitude dynamics of
the helicopter. In order to compare the generalisation performance of rGN method against

the off-line LM method, the training of rGN is repeated a several of time on a finite
data set instead of assuming that the data set increases with time as in the recursive
training scheme. After reaching the maximum iterations or perforrnance index threshold,
the resulting pmametet vector 0 is then selected for cross validation. The rGN design
parameters are initialised as P(t) : 100I, )o : 0.99 and )(0) : 0.995. Figure 1 1 indicates
the generalisation error plot for rGN and off-line LM methods for 10 runs. As seen in
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this plot, we consider a network structure of 3 past output and I past input as a network

structure for both training algorithms. The recursive training algorithm (rGN) exhibits a

slightly higher generalisation error in cross validation compared with the off-line method.

This indicates that training performed over a large data set would give better generalisation

performance over the recursive method.
Even though the generalisation error of rGN is slightly higher than the offline LM, the

rGN is more adaptive to the changes in dynamic properties. As a comparative study of the

adaptability between the off-line LM and rGN methods, the roll rate measurement from a

new data set is considered. Figure 12 shows the prediction from a pre-trained model using

off-line LM and rGN method. The corresponding error statistics for these prediction models

is given in Thble 4. In Figure 12(a) and (b), the offJine model (NN l) is pre{ained using

1 past output and 2 past inputs with 4 hidden neurons (training with746 samples) while
the recursive model (NN 2) is also trained with the same model structure. The training of
rGN is carried out using the sliding window method where older data is discarded from the

window to allow present data to enter. Thus, it can be seen that the off-line model follows the

output measurement accurately at the beginning of the data length and its prediction begins

to deteriorate for the remaining data. Whereas, the prediction from the model trained using

rGN algorithm adapts well to the dynamic changes that occur during flight even though it
was not trained using the optimal structure. In Figure 12(c), the prediction model (NN 3)

using the optimal model structure (n, : 3, n.u : I with 4 hidden neurons) gives the best

RMSE accuracy with t9.454% and 11.611% for roll rate and pitch rate respectively. Note

thar the RMSE values for recursive training (NN3) is slightly higher than results obtained

in Figure I I since the recursive training is done with a single pass to the data compared

with the results obtained in reoeated recursive trainins.

Figure 9 The prediction from MLP network model for roll dynamics. (a) The one-step ahead

prediction and measurement data plot. (b) The error plot between one-step ahead

prediction and the measurement data. The red dashed line indicates estimation from the

neural network model while the solid blue line with 'x' marker represents the output
measurement (see online version for colours)
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Figure 10 The prediction from MLP network model for pitch dynamics. (a) The one-step ahead

prediction and measurement data plot. (b) The error plot between one-step ahead

prediction and the measurement data. The red dashed line indicates estimation from the

neural network model while the solid blue line with 'x' marker represents the output

measurement (see online version for colours)

Figure 11 The percentage of root mean square error (RMSE) comparison plot for offJine
Levenberg-Marquardt (LM) and recursive Gauss-Newton (rGN) training methods
(see online version for colours)
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Figure 12 The prediction comparison of the off-line model trained by Levenberg-Marquardt (LM)
method and recursive modei trained using recursive Gauss-Newton (rGN) method

against roll rate measurement. (a) NN model I was trained using the off-line LM
algorithm. The NN model structure was set with ny : 1 and nu : 2 wrth 4 hidden

neurons; (b) NN model 2 was trained using the recursive Gauss-Newton algorithm.
The NN model structure was set with as : I and nu : 2 \rtith 4 hidden neurons and

(c) NN model 3 was trained using the recursive Gauss-Newton algorithm. The NN

model structure was set with optimised structure obtained from ft-fold cross validation
(n, : 3 andrtu : 1 with 4 hidden neurons (see online version for colours)
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In on-line system identification for adaptive control application, the training time for NN
model needs to be less than the sampling time of the control loop. This is essential since the

control decisions need to be updated at the specific timing requirement (less than 22 ms).

There are two type of recursive algorithm method exists to approximate the non-linear
dynamics in real-time:

mini-batch methods (Samal, 2009; Puttige, 2009)

recursive prediction methods as presented in previous section.
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For mini-batch wise methods, the off-line training such as LM algorithm was used to

train the NN in real-time by choosing smaller data length to achieve faster convergence

time. Typically, a fixed amount of input-output data is collected and stored in a queue.

Table 5 shows the average training time for mini-batch LM and rGN training algorithms

for attitude dynamics identification using the optimal NN model structure (r4 : 3,rlu : I
with 4 hidden neurons). The minimum criterion enor (MSE) was selected at 0.001, 0.01

and 0.05 as stopping criteria for mini-batch LM training. The training time comparison

test was conducted using a 400 MHz National Instrument's real-time embedded controller.

Result from the comparison test shows that faster training convergence is achieved with

smaller batch sizes. However, mini-batch method still requires a lot more computation

resources and would not finish within targeted sampling period (22 ms). Attempts to reduce

the training time of the NN training through manipulation of target MSE values could

improve the algorithm training performance, but at the expense of poor training error.

A recursive training algorithm such as rGN usually demonstrates faster prediction updates

and offers rapid computation of weight adaptation with average training time of 3.88 ms.

The average training time forrGN algorithm is well below the control loop sampling period
(22 ms) and this indicates that such recursive training algorithms are well suited for real-time

applications.

Table 4 Summaries of error statistics fbr training algorithms comparison

Error statistic's

Training System responses RMSE RMSE (Vo\ R"

NNI p
q

0.08891
0.03495

42.376
16.65'7

0.8506
0.964'7

NN2 D

q
0.04907
0.03665

23.366
t7.454

0.9451

0.969r

NN3 D

q
0.09289
0.04244

19.454
I 1.61 1

0.9620
0.9863

Table 5 Summaries of error statistics for training algorithms comparison

Average training time (ms)

Target MSE

Mini batch
LMI
Mini batch
L]|d2
Mini batch

LM3

0.001

0.01

0.05

38.29 44.98

[5.02Eo] 16.617o)

24.48 25.11

t13.i9l l15.72qol
23.22 23.13

122.0'7%ol [24.r6%al

46.373 50.84 54.78

[1.I3Eol 11 .53%ol l7.89Voj
24.89 26.38 27.53

116.8'lEol [18.007o] U8.471
26.38 27.37 28.86

l26.83Sal t28.161 t28.481

Data sample
N=1

rGN 3.88

[5.50Eo1
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Conclusion

The methods and results presented in this paper indicate the suitability and effectiveness
of offline and recursive based neural network modelling for representing coupled

UAS helicopter dynamics with acceptable accuracy. Results indicate that although the

generalisation error of rGN is slightly higher than off-line LM, the rGN is more adaptive

to the changes in dynamic properties. The rGN method is also capable to produce a
satisfactory prediction quality even-though the model structure was incorrectly selected. The
generalisation and adaptability performance can be further improved by properly selecting
the optimised network structure with the aid of k-fold cross validation method. It can also be

concluded that the recursive method presented here is suitable to model the UAS helicopter
in real-time within the computational resource constraints. These models can be further
used for the design of adaptive flight controllers for autonomous flight.
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