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Abstract
Background: Macroautophagy (autophagy) is a cellular re-
cycling process involving the destruction of damaged or-
ganelles and proteins in intracellular lysosomes for efficient 
nutrient reuse. Summary: Impairment of the autophagy-lys-
osome pathway is tightly associated with multiple kidney 
diseases, such as diabetic nephropathy, proteinuric kidney 
disease, acute kidney injury, crystalline nephropathy, and 
drug- and heavy metal-induced renal injury. The impairment 
in the process of autophagic clearance may induce injury in 
renal intrinsic cells by activating the inflammasome, induc-
ing cell cycle arrest, and cell death. The lysosome depletion 
may be a key mechanism triggering this process. In this re-
view, we discuss this pathway and summarize the protective 
mechanisms for restoration of lysosome function and au-
tophagic flux via the endosomal sorting complex required 
for transport (ESCRT) machinery, lysophagy, and transcrip-
tion factor EB-mediated lysosome biogenesis. Key Message: 

Further exploring mechanisms of ESCRT, lysophagy, and lys-
osome biogenesis may provide novel therapy strategies for 
the management of kidney diseases.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Macroautophagy is an evolutionarily conserved lyso-
some-dependent catabolic process that sequesters the cy-
toplasmic materials, such as protein aggregates and dam-
aged organelles, into a double-membrane structure 
termed autophagosome for lysosome degradation. This 
process is crucial to maintain the cellular homeostasis in 
eukaryotic cells. In addition to macroautophagy, chaper-
one-mediated autophagy and microautophagy are 2 oth-
er types of autophagy that vary based on the form of sub-
strate delivery [1]. Macroautophagy, generally referred to 
as autophagy, is also classified as “basal autophagy” or 
“induced autophagy.” In contrast to spontaneous basal 
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autophagy, induced autophagy can be triggered by cellu-
lar stresses including nutrient starvation, oxidative stress, 
hypoxia and endoplasmic reticulum (ER) stress, or other 
harmful stimuli [2].

Autophagy consists of several steps, including initia-
tion, phagophore nucleation, autophagosome formation, 
lysosome fusion and degradation [3, 4]. Lysosomes are 
single-membrane organelles, containing over 50 acid hy-
drolases. Attributed to its acid hydrolases and strong 
acidic luminal pH, lysosomes are supposed to the shared 
degradative compartments of endocytic and autophagic 
pathways [5]. Lysosome fusion with autophagosomes 
leads to the breakdown of phagocytosed cellular compo-
nents by exposing them to acidic hydrolases. The degrad-
ed products generated by lysosomal hydrolases are then 
reused for synthesis of new cellular components and en-
ergy, which are essential for cell survival, differentiation, 
development, homeostasis, and energy production [6].

Increasing evidence has shown that lysosome disrup-
tion (such as induced by nephrotoxin) may not only im-
pair the autophagic clearance but also triggers cell death, 
which may contribute to the progress of various kidney 
diseases. In order for kidney cells to survive, damaged ly-
sosomes must be cleared via autophagy-dependent path-
way (lysophagy), and the impaired degradation capacity 
must be restored through lysosome biogenesis.

In this review, we discuss the autophagy-lysosome 
pathway and summarize the protective mechanisms for 
restoration of lysosome function and autophagic flux via 
lysophagy and transcription factor EB (TFEB)-mediated 
lysosome biogenesis. Further exploration of these mecha-
nisms may provide novel therapy strategies for the man-
agement of kidney diseases through targeting autophagy-
lysosome pathway.

The Autophagy Process

Initiation of Autophagosome Formation
The formation of autophagosome is a multistage pro-

cess triggered by activation of the Unc-51-like kinase 1 
(ULK1) complex (ULK1/2, ATG13, FIP 200, and 
ATG101) and the class III phosphatidylinositol 3-kinase 
(PI3K) complex that consists of VPS34, Beclin1, UVRAG, 
Bif1, and P150, which promotes the nucleation of the 
phagophore membrane. Coat protein complex II 
(COPII)-coated vesicles, bud from specialized regions of 
the ER called ER exit sites, are known to help for autopha-
gosomes formed and are necessary for ER-Golgi traffic 
and autophagy. Under nutrient-rich conditions, COPII 

vesicles mediate ER-Golgi traffic. However, under starva-
tion or stress conditions, COPII-coated vesicles are con-
tributed to autophagosomes formation [7]. Autophago-
some biogenesis is initiated from the generation of phag-
ophore, which then expands into an autophagosome [8]. 
Subsequently, the conjugation of ATG5–ATG12 com-
plex and ATG16 elongates the autophagosome mem-
brane, and concomitantly, a cytosolic form of LC3-I con-
jugates with phosphatidylethanolamine to generate lipi-
dated LC3-II that attaches to the expanding autophagosome 
membrane [3]. Finally, completing autophagosome for-
mation after autophagy cytoplasmic cargo is engulfed.

In bulk autophagy, the formation of autophagosome 
is generally controlled by mammalian target of rapamy-
cin complex 1 (mTORC1) and AMP-activated protein 
kinase (AMPK). In response to growth factors and nu-
trients, activation of mTORC1 promotes the cellular 
anabolic processes but suppresses the catabolic pro-
cesses by blocking autophagy via phosphorylation of 
ULK1 and its cooperator ATG13 [9, 10]. In contrast, 
AMPK, an energy-sensitive enzyme, can be activated by 
high AMP/ATP ratios and then suppresses mTORC1 
by phosphorylated tuberous sclerosis complex 2. In ad-
dition, AMPK can directly phosphorylate ULK1 at the 
other sites to activate the autophagy pathway. Indeed, 
inhibition of mTORC1 by tizoxanide [11] or rapamycin 
[12] triggers autophagy, whereas suppression of AMPK 
abolishes ULK1-mediated autophagy initiation [13]. 
Moreover, the regulatory mTOR-dependent autophagy 
is also influenced by activation of PI3K/AKT and pro-
tein kinase B signaling.

Autophagy has been shown to be initiated by specifi-
cally endogenous danger signals. This process may be in-
dependent of AMPK/mTORC1. Specific molecules sense 
the damaged organelles and recruit the ubiquitin ligase to 
modulate the ubiquitination and then establish a plat-
form to activate the ULK1-mediated core autophagy ma-
chinery. For example, mitophagy involves in selective  
removal of the damaged mitochondria via an autophago-
some-lysosome-dependent pathway. When mito
chondrial damage occurs, PTEN-induced kinase 1 
(PINK) recruits and activates the E3 ubiquitin ligase Par-
kin, which then tags mitochondrial surface proteins by 
ubiquitination and recruits autophagic adapter proteins, 
such as p62 [14]. Subsequently, the core autophagy ma-
chinery is activated to engulf the damaged mitochondria 
into the autophagosome for lysosome-mediated degrada-
tion. A similar process also occurs for selective degrada-
tion of the peroxisomes, ER and nucleus via an autopha-
gosome-lysosome-dependent pathway [15].
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Transport of Autophagosomes and Autophagosome-
Lysosome Fusion
Lysosomes are mainly concentrated in the perinuclear 

region. Once autophagosome formation is completed, it 
must be delivered to the perinuclear region to fuse with 
lysosomes for digestion. This is a key step in maintaining 
autophagy flux [16, 17]. Autophagosomes are delivered 
along with the cytoskeleton, including microtubules and 
actin filaments. The minus-end-directed dynein-dynac-
tin motor complex mediates the movement of autopha-
gosomes to the perinuclear region, whereas the plus-end-
directed motor assists to move the autophagosomes to the 
cell peripheral region [16]. Interestingly, antibodies 
against LC3 disrupt the efficient movement of autopha-
gosomes, indicating the involvement of LC3 in this pro-
cess [18]. The rate of autophagosomal fusion is also  
determined by the localization of lysosomes. Increased 
perinuclear localization of lysosomes promotes autopha-
gosomal fusion and vice versa [19]. The movement of au-
tophagosomes into the perinuclear region reaches the vi-
cinity of lysosomes and must then be tethered to the  
lysosomes. Next, SNARE proteins carry out autophago-
some-lysosome fusion. This process has been described 
in detail in recent reviews [16, 20].

Lysosome-Dependent Degradation
Lysosome plays a key role in the degradation of dam-

aged organelles, aggregated proteins and pathogens. And 
it acts as a key cellular catabolic center for fundamental 
metabolic and signaling functions [21, 22]. Lysosomes are 
created from Golgi apparatus, whereas the hydrolases are 
manufactured in the ER. After decorating with mannose-
6-phosphate, these hydrolytic enzymes are delivered to 
the Golgi apparatus by transport vesicles and then pack-
aged into lysosomes. In general, lysosomal membrane is 
resistant to digestion since glycosylated membrane pro-
teins are specifically expressed in the lysosomes, such as 
lysosomal-associated membrane protein (LAMP)-1 and 
LAMP-2, and function to protect them from degradation 
by acidic hydrolases [23]. Furthermore, other membrane 
proteins such as transporter protein, ion channel protein, 
and SNARE protein are involved in mediating different 
aspects of lysosome functions, especially the vATPase 
complex which mediates the acidification of lysosome 
and regulates the fission and fusion of lysosomes [24].

When autophagosomes fuse with lysosomes, autolyso-
somes are formed. The inner autophagosomal membrane 
and engulfed cargo are then digested by lysosomal hydro-
lytic enzymes [25]. The catabolites generated from au-
tophagosome degradation may be exported from lyso-

somes to the cytoplasm for the reuse to form new macro-
molecules. However, the relevant transporters and mech-
anisms for amino acids and lipids are largely unknown 
[26]. After degradation of autophagic substrates, the ami-
no acid levels in the cytoplasm increase and mTORC1 is 
activated. The reactivation of mTORC1 not only nega-
tively regulates autophagy to avoid overactivation but 
also helps lysosomes regenerate from autolysosomes. Im-
pairment of this process, termed autophagic lysosome 
reformation, makes the cells highly susceptible to starva-
tion-induced cell death [27].

Impairment of Autophagosome Clearance and 
Depletion of Lysosomes

Impairment of Autophagosome Clearance by 
Lysosome Depletion
Autophagy plays crucial roles in preserving cellular 

homeostasis. Interruption of autophagy is implicated in 
various human diseases. However, compared with the 
initiation steps, the later steps of autophagosome-lyso-
some fusion and degradation have not been extensively 
characterized. Ma et al. [28] reported that accumulation 
of autophagosomes is associated with elevated reactive 
oxygen species (ROS) and mitochondrial permeabiliza-
tion, resulting in cardiomyocyte death. In addition, Sarkar 
et al. [29] showed that after traumatic brain injury, au-
tophagosome clearance is impaired and is correlated with 
neuronal cell death. Consistent with this finding, Cui et 
al. [30] demonstrated that accumulation of autophago-
somes increases the caspase-dependent and independent 
apoptosis, as well as necrosis in neurons, in a model of 
neonatal hypoxic-ischemic encephalopathy. Interesting-
ly, initiation of autophagy and autophagosome formation 
is not inhibited but instead enhanced.

Typically, impairment of autophagosome clearance is 
related to lysosome depletion. It can result from the existing 
lysosome dysfunction or the impairment of lysosome bio-
genesis (as described in detail below). Lysosome dysfunc-
tion may be caused by the deficiencies of lysosomal en-
zymes, elevated lysosomal pH, the changes in lysosome in-
tracellular localization, and increased lysosomal membrane 
permeability. For example, Wang et al. [31] found that lys-
osome dysfunction induced by silica nanoparticles inhibits 
autophagosome degradation, resulting in the disruption of 
autophagy flux Mounting evidence suggests the involve-
ment of lysosome depletion in various human diseases in-
cluding lysosomal storage diseases, neurodegenerative dis-
eases, autoimmune diseases, and diabetes [23, 32, 33]
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Lysosomal Membrane Permeabilization as the Main 
Manifestation of Lysosome Depletion
Lysosomal membrane integrity is essential for lyso-

some function. Lysosomal membrane permeabilization 
(LMP) leads to the leakage of lysosomal contents then 
results in lysosome dysfunction, thus impairing autopha-
gosome clearance. In addition, the leakage of lysosomal 
constituents is thought to be sufficient to trigger cell death 
in a caspase-dependent or independent manner [34, 35]. 
However, partial and selective disruption of lysosomes 
results in cell apoptosis [36]. Moreover, the extracellular 
signal-regulated kinase pathway is necessary for promot-
ing lysosome-mediated cell death [37]. Several reports 
have indicated that the membrane permeabilization is 
not observed in all lysosomes at the same time in response 
to some lethal stimuli. Although the mechanisms related 
to this heterogenetic observation remains unclear, it 
seems that large lysosomes are particularly sensitive to the 
effects of LMP-inducing agents [23, 38].

LMP can be triggered by indigestible substrates and 
the intralysosomal ROS. It can also be regulated by tran-
scription factor p53 in a transcription-dependent or in-
dependent manner. Some reports suggested that the 
phosphorylated p53 at Ser15 upon treatment with tumor 
necrosis factor (TNF)-α, radiation, or DNA-damaging 
drugs can result in it translocated to the lysosomal mem-
brane and consequently induces LMP [39, 40]. Addition-
ally, it has been found that the transcription factor signal 
transducer and activator of transcription 3 is involved in 
inducing LMP, which can upregulate the lysosomal pro-
teases cathepsin B and L and downregulate the lysosome 
endogenous inhibitor Spi2A [41]. Various proteases, 
such as caspases, cathepsins, and calpains, are also in-
volved in LMP. Guicciardi et al. [42] showed that cas-
pase-8 can promote the release of cathepsins from lyso-
somes, and this process is enhanced after induction of 
LMP. Of note, lysosomal cathepsin B could constitutively 
amplify the feedback loop to stimulate the release of their 
own from the lysosome to the cytoplasm and TNF-α in-
duces LMP via a cathepsin B-dependent manner [43]. 
Consistently, overexpression of the endogenous cathep-
sin B inhibitor protein Spi2A can reduce LMP induced by 
TNF-α [44]. Thus, once lysosome is damaged, it could 
represent a potential hazard to the cell.

Autophagy plays a crucial role in several kidney dis-
eases. The regulation and function of autophagy in kid-
ney diseases is likely dependent on cell types and disease 
conditions because of high levels of basal autophagy in 
kidney cells [45, 46]. In this section, we focus on studies 
in kidney diseases associated with disruption of autoph-

agy caused by lysosome depletion and impairment of au-
tophagic clearance.

Diabetic Nephropathy
Diabetic nephropathy (DN) is a serious kidney-related 

complication in patients with type 1 and type 2 diabetes 
[32, 47–50]. Hyperglycemia mediators such as advanced 
glycation end products (AGEs), protein kinase C, and 
glucose play a crucial role in the pathogenesis of DN. Au-
tophagy deficiency or insufficiency in renal intrinsic cells 
including podocytes and tubular epithelial cells (TECs) is 
also involved in the pathogenesis of DN [51]. Tagawa et 
al. [52] found that large accumulation of p62 protein is 
observed in the glomeruli in kidney biopsy sample of pa-
tients with DN. Moreover, they also found that in DN rat 
model with severe proteinuria, a reduction in podocin-
positive areas and alteration in foot processes are ob-
served in podocytes, accompanied by an increase in p62 
and a decrease in LC3-II [52]. Similarly, another group 
showed that the injurious podocytes in DN are closely as-
sociated with the decreased autophagy flux as demon-
strated by the accumulation of p62 and the interaction 
between p62 and LC3 [53]. Additionally, impaired au-
tophagy in podocytes can also result in the podocyte loss, 
which ultimately promotes proteinuria and DN develop-
ment [54, 55]. In our previous study, we showed that 
AGEs overload disrupts the autophagic pathway in podo-
cytes due to LMP [30]. Furthermore, Atsushi and col-
leagues found that autophagy promotes AGEs degrada-
tion in the diabetic kidney by regulating lysosome bio-
genesis. Activation of autophagy can reduce inflammasome 
activation and improve kidney fibrosis [56]. Another 
study suggested that autophagy impairment and lyso-
some dysfunction occur in the cultured podocytes treated 
with sera from patients and rats with diabetes and mas-
sive proteinuria, leading to apoptosis [51].

Autophagy activation is a mechanism that protects re-
nal TECs from injury in DN. However, the impairment 
of autophagy-lysosome pathway also causes renal tubular 
injury in DN [32]. Several studies have shown that hyper-
glycemia inhibits the activation of autophagy, whereas in-
creased expression levels of p62 is also evidenced in prox-
imal tubular cells in animal models of both type 1 and 
type 2 diabetes [51, 57]. In our study, we found that AGEs 
block the autophagic flux and significantly decrease the 
lysosomal activity and degradative potential in TECs 
[32]. Furthermore, our current study found that Smad3 
activation mediates AGEs-induced autophagic flux 
blockage since Smad3 can directly bind to the 3′-UTR of 
TFEB and inhibit its transcription, thus leading to the de-
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ficiency of lysosome biogenesis [58]. Taken together, 
these findings support that the injury of renal intrinsic 
cells in DN is associated with impaired autophagic flux 
and lysosome homeostasis.

Proteinuric Kidney Disease
Proteinuric kidney diseases are a set of renal disorders 

characterized by the presence of massive proteins in the 
urine. Proteinuria is not only a marker of kidney diseases 
but also an independent risk factor for the loss of renal 
function. Most proteinuric kidney diseases are attributed 
to change in the structure and function of podocytes, 
which are the key components of glomerular filtration 
barrier.

Several studies have shown that proteinuria caused by 
podocyte damage is associated with the inherited and ac-
quired impairment of autophagic clearance and lysosome 
depletion. In Fabry’s disease, lysosomal enzymatic defi-
ciency resulted from a mutation in the gene encoding 
α-galactoside A causes dysregulation of autophagic flux 
and contributes to podocyte damage, leading to the oc-
currence of proteinuria [59]. Podocyte-specific deletion 
of lysosomal acid ceramidase causes effacement of foot 
processes and severe proteinuria in mice. Moreover, loss 
of lysosome cathepsin D in podocytes is associated with 
the accumulation of abundant autophagosomes/auto
lysosome-like bodies which trigger the apoptotic podo-
cyte death followed by proteinuria and glomerulosclero-
sis [60]. In contrast, the induction of cathepsin L expres-
sion in podocytes may mediate the development of 
proteinuria in puromycin aminonucleoside nephropa-
thy. We also find that the complement membrane attack 
complex can induce podocyte injury in idiopathic mem-
branous nephropathy by triggering LMP and blocking 
autophagic flux [61]. The function of Janus kinase 2 
(JAK2) in podocytes is to maintain autophagy comple-
tion, and mice with JAK2 deficiency in podocytes exhibit 
increased urinary albumin excretion, accompanied by 
autophagosome accumulation and p62 aggregation [62].

Proteins filtered through the glomerular filtration bar-
rier can be reabsorbed by TECs, followed by digestion 
and reuse. Upregulation of lysosomal proteolysis in TECs 
is required to maintain the normal clearance of megalin/
tubulin-mediated reabsorbed proteins. Once the urinary 
protein is overload, the degradation of lysosomes in prox-
imal tubules occurs, which results in tubulointerstitial in-
flammation and fibrosis via various mechanisms, includ-
ing oxidative stress, mitochondrial dysfunction, and ER 
stress. In our previous study, we found that activation of 
autophagy through removal of damaged mitochondria 

attenuates TEC injury induced by overload of urinary 
proteins from patients [63, 64] However, after long-term 
exposure to overload of urinary proteins, excess oxidative 
stress is caused by LMP and lysosomal dysfunction in 
TECs, resulting in blockage of autophagic flux [65]. Nolin 
et al. [66] also found that albumin overload suppresses 
proximal tubule autophagy in an mTOR-mediated mech-
anism. Recently, Liu et al. [67, 68] showed that albumin 
overload causes lysosome rupture and defects in autoph-
agic flux. Additionally, LMP releases lysosomal hydro-
lases, which subsequently triggers activation of the NLRP3 
inflammasome in TECs.

Acute Kidney Injury
Acute kidney injury (AKI), characterized by a rapid 

loss of renal function, is a global public health concern 
associated with high morbidity, mortality, and healthcare 
costs [69]. AKI can be caused by various conditions in-
cluding ischemia-reperfusion injury, sepsis, and expo-
sure to nephrotoxins, generally resulting in sublethal and 
lethal damage to renal tubules. Additionally, patients 
with AKI are more likely to develop into CKD, and the 
process is largely determined by whether tubular cells re-
cover sufficiently [69].

Autophagy plays protective role in tubular cells in 
AKI. Proximal tubule-specific depletion of ATG7 or 
ATG5 in mice is more sensitive to renal injury in response 
to AKI both induced by cisplatin and ischemia-reperfu-
sion [70]. In contrast, overexpression of ATG5 and be-
clin-1 inhibits the activation of caspase and cell death, 
protecting renal tubular cells from cisplatin toxicity [71]. 
Furthermore, we found that selective autophagic process-
es are impaired in sepsis-induced AKI, leading to the ac-
cumulation of damaged mitochondria, increased oxida-
tive stress, and enhanced tubular cell death [72].

Some studies have shown that the impairment of au-
tophagic clearance is also involved in AKI. For example, 
disruption of autophagic clearance by the lysosome in-
hibitor chloroquine worsens cisplatin nephrotoxicity 
[70]. Aged mice sensitive to AKI exhibit weakening of 
autophagic clearance in tubular cells. In addition, au-
tophagic clearance may contribute to the recovery of tu-
bular cells after AKI. Lin’s group showed that the process 
of renal recovery is accompanied by the initiation of au-
tophagy and the clearance of autophagosome in autopha-
gic reporter mice. They also reported that tubular cells 
with autophagosome accumulation are little proliferative 
with delayed tubular repair [73]. Moreover, blockage of 
autophagic flux by the lysosome inhibitor, chloroquine or 
bafilomycin A, promotes G1-phase cell cycle arrest in-
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duced by transforming growth factor-β in renal TECs 
[74]. Thus, impaired autophagic clearance and lysosome 
depletion may promote tubular injury and delay tubular 
repair.

Crystalline Nephropathy
Kidney is the predominant organ for crystal deposition. 

The concentrations of mineral secretion and supersatura-
tion in urine can cause the diverse crystal nephropathies 
and kidney stone diseases. Crystals not only obstruct the 
tubular lumen but also are widely taken up by TECs and 
even reach the tubulointerstitium. Although the formation 
and types of crystals vary, the pathological mechanisms of 
crystal-induced renal damage seem similar. Crystals can be 
engulfed into the phagosomes by tubular cells and deliv-
ered to fuse with lysosomes for digestion with lysosomal 
proteolytic enzymes. Because it is impossible to digest 
these crystals, they can destabilize the lysosomal mem-
brane and induce LMP. Leakage of lysosomal proteolytic 
enzymes (such as cathepsin B) from the lysosome into the 
cytoplasm triggers ROS production, NLRP3 inflamma-
some activation, or RIPK1/RIPK3/phospho-MLKL 
necroptosis activation, resulting in tubular cell death and 
tubulointerstitial inflammation [75]. In response to calci-
um oxalate monohydrate crystals, the autophagy activity is 
markedly decreased in mouse renal tubular cells, accom-
panied by accumulation of damaged mitochondria and ly-
sosomes. mTOR-mediated TFEB suppression contributes 
to the impairment of autophagic activity [76]. In uric acid 
nephropathy, uric acid crystals elevate the levels of urate 
transporter 1 via suppression of Numb-mediated lyso-
some-dependent degradation [77]. Thus, lysosome deple-
tion and autophagic clearance impairment are also in-
volved in many types of crystalline nephropathy.

Drug- and Heavy Metal-Induced Renal Damage
Many clinically used drugs are associated with tubular 

cell toxicity. These drugs induce tubule injury through 
various mechanisms, such as mitochondrial dysfunction, 
oxidative stress, lysosome depletion, and autophagic 
clearance impairment. For example, the aminoglycoside 
antibiotic gentamicin accumulates in lysosomes and in-
duces ROS-mediated LMP, which subsequently triggers 
mitochondrial-dependent apoptosis in TECs [78, 79]. 
Autophagy protects against renal damage induced by the 
immunosuppressor cyclosporine A (CsA) [80]. However, 
chronic administration of CsA causes renal injury associ-
ated with increased autophagosome formation and re-
duced autophagosome clearance [80], which may be at-
tributed to the lysosome depletion [81]. During CsA-in-

duced autophagy in TECs, the transmembrane bax 
inhibitor motif containing 6 plays key roles in maintain-
ing autophagic flux via activation of lysosomes in vitro 
and in vivo [82]. The lysosome inhibitor hydroxychloro-
quine is recommended for the management of autoim-
mune diseases, including lupus, and has been shown to 
protect against AKI in mice by suppressing NLRP3 in-
flammasome activation [83]. However, in rare cases, hy-
droxychloroquine accumulates in lysosomes and induces 
cytoplasmic vacuolization and zebra bodies in podocytes, 
which are mimicking the histological lesions of Fabry’s 
disease and ultimately resulting in podocyte injury and 
proteinuria [84, 85].

Heavy metal-induced tubular injury is also related to 
the autophagy-lysosome pathway. Mercuric chloride im-
pairs lysosome function in tubular cells [86]. Addition-
ally, lead promotes autophagosome accumulation in pri-
mary rat proximal tubular cells by inducing lysosome al-
kalinization via inhibition of 2 V-ATPase subunits of 
lysosomes, rather than through suppressing autophago-
some-lysosome fusion. Moreover, blockage of autopha-
gic flux and LMP contributes to caspase-3-mediated 
apoptosis in lead-treated tubular cells [87]. In cadmium 
nephrotoxicity, autophagy protects against tubular injury 
under low cadmium stress. However, high cadmium 
stress disrupts lysosome stability and impairs autophagic 
flux, leading to cell death [88].

As mentioned above, all the pathogenic factors (includ-
ing AGEs, high glucose, proteinuric, crystalline, drug, and 
heavy metal and so on) could impair autophagic flux, trig-
ger inflammasome activation, and cause cell death through 
disrupting the integrity of lysosomal membrane and pro-
moting the leakage of lysosomal proteolytic enzymes. 
That might be one of the key underlying mechanisms to 
induce kidney injury and promote the progression of 
CKD. The relationship between lysosome depletion and 
these kidney diseases are summarized in Table 1.

Potential Therapeutic Strategies for  
Management of Kidney Diseases by Targeting 
Lysosome Depletion-Caused Autophagic Clearance 
Impairment

To mitigate lysosome depletion and autophagic clear-
ance impairment, cells can develop multiple protective 
mechanisms, including the rescue of slightly damaged ly-
sosomes, the removal of severely damaged lysosomes, 
and the regeneration of new lysosomes, which is ulti-
mately promoting autophagic clearance and cell survival.
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Rescue of Lysosomes Mediated by the Endosomal 
Sorting Complex Required for Transport
If lysosome damage is limited, it can be repaired by  

the endosomal sorting complex required for transport 
(ESCRT) machinery. ESCRT is an evolutionarily con-
served membrane remodeling process that is involved in 
endosomal trafficking and is essential for generating ves-
icles that bud into multivesicular endosomes [89]. The 
ESCRT machinery consists of 5 distinct protein complex-
es (ESCRT-0, I, II, and III and the Vps4 complex) that 
transiently assemble a multisubunit complex via a topo-
logically unique membrane bending and scission reaction 
away from the cytoplasm. The modular setup of this ma-
chinery enables flexible integration into very different 3 
biological processes from the interaction with ubiquiti-
nated membrane proteins to the membrane deformation 
and abscission [90].

Consistent with the results reported in a recent study 
[89], Radulovic and colleagues found that ESCRT can 
mediate the repair of damaged lysosomes. Besides, they 
found that ESCRT-mediated membrane repair provides 

an advantage effect in promoting cell viability after lyso-
some injury. This mechanism can also be involved in the 
maintenance of intact replicative niche for intracellular 
pathogens [91]. ESCRT drives membrane remodeling 
prior to fission and plays distinct but equally important 
roles in the downregulation of surface transporter and 
receptor mediated by the multivesicular body pathway 
[92]. Unfortunately, no studies have yet shown whether 
ESCRTs have protective roles in kidney diseases.

Removal of Damaged Lysosomes via Promotion of 
Lysophagy
Presumably, if ESCRT-mediated membrane repair 

fails, these damaged lysosomes are then selectively elimi-
nated by autophagic degradation termed lysophagy. Ly-
sophagy is an essential process for maintaining intracel-
lular homeostasis [93, 94], which is initiated by ubiquiti-
nation of lysosomal proteins [95]. After membrane 
damage, the ubiquitination occurs, which is 30-min delay 
compared to the recruitment of the ESCRT components. 
This observation indicates that unrepairable lysosomes 

Table 1. The part of autophagy disruption in different type of kidney diseases

Disease Model Tissue and cell 
type

The step of autophagy deficiency and the 
manifestation

References

DN Human kidney biopsy samples, 
high-fat diet-induced DKD, db/db 
mice, high-fat diet combined 
STZ-induced DKD

Glomeruli 
especially in 
podocytes

Lysosome fusion and degradation (accumulation 
of p62, decrease of LC3-II, and lysosome 
membrane permeability)

[33, 
51–55]

Human kidney biopsy samples, 
HK-2 cell line, db/db mice, WFRs

TECs Lysosome fusion and degradation (accumulation 
of p62, decrease of LC3-II, and lysosome 
membrane permeability)

[32, 51, 57, 
58]

Proteinuric kidney disease 
(Including Fabry’s disease, 
IMN and so on)

Podocytes, specific CD knockout 
mice

Podocytes, 
human kidney 
biopsy samples

Lysosome fusion and degradation (lysosomal 
enzymatic deficiency accumulation of p62, 
decrease of LC3-II, and lysosome membrane 
permeability)

[59–62]

MCNS Human kidney biopsy samples, 
urinary protein and albumin 
overload HK-2 cell line

TECs Lysosome fusion and degradation (accumulation 
of p62, decrease of LC3-II, and lysosome 
membrane permeability)

[63–66]

AKI ATG7 and ATG5 ko mice, aged 
mice, autophagic reporter mice

TECs Initiation and degradation [70–74]

Crystalline nephropathy GFP-MAP1LC3 transgenic mice 
and C57BL/6J mice, mTECs

Renal tubular 
cells

Lysosome fusion and degradation (LMP and 
accumulation of damage lysosomes)

[76]

Drug- and heavy 
metal-induced renal 
damage (aminoglycoside 
antibiotic, CsA, and so on)

Renal LLC-PK1 cells, rat kidneys, 
Tmbim6 knockout (tmbim6−/−) 
mice

Renal tubular 
cells

Lysosome fusion and degradation (accumulation 
of p62, decrease of LC3-II, and lysosome 
membrane permeability)

[78, 
80–87]

DN, diabetic nephropathy; TECs, tubular epithelial cells; AKI, acute kidney injury; CsA, cyclosporine A; WFRs, Wistar fatty (fa/fa) rats; LMP, lysosomal 
membrane permeabilization.
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eliminated by lysophagy is independent on ESCRT-me-
diated repair process. Unlike the ESCRT machinery that 
is recruited by the subtler cues, the initiation of lysophagy 
requires holes large enough in the severely damaged lyso-
somal membrane for detecting intraluminal β-galactosides 
via cytosolic lectins such as galectin-3 [91]. When severer 
LMP occurs, galectin-3 binds to lysosomal glycans and 
recruits the atypical tripartite motif (TRIM) family pro-
tein TRIM16. It promotes a robust ubiquitination of the 
damaged lysosome and formation of a platform for the 
autophagic machinery, including ULK1, ATG16L, and 
beclin-1, to initiate selective autophagy [93]. Chrisova-
lantis et al. [94] found that damaged lysosomes are selec-
tively ubiquitinated and are degraded eventually by in-
corporate into autolysosomes. Analysis of lysosome dam-
age induced by LLOMe shows that the recruitment of 
ubiquitination is as importance as autophagy receptor 
p62 for maintaining efficiency of lysophagy. It has identi-
fied that the E2 enzyme UBE2QL1 is involved in catalyz-
ing the ubiquitination of damaged lysosomes [95]. With-
out this enzyme, the process of removing the ruptured 
lysosomes by lysophagy is compromised both upon lyso-
some damage and under normal conditions [96–98]. 
Thus, lysophagy represents a crucial mechanism of lyso-
somal quality control [94].

The protective role of lysophagy in kidney disease has 
mainly been reported in crystalline nephropathy. Nota-
bly, inhibition of mTOR promotes the activity of the au-
tophagy pathway and suppresses crystal-induced inflam-
matory responses in tubular cells. Moreover, lysosomes 
damaged by urate crystals can be sequestered, and the de-
creased degradation ability of lysosomes can be repaired 
in an autophagy-dependent manner (lysophagy). In ad-
dition, autophagy not only mediates the clearance of 
damaged lysosomes but also promotes lysosome biogen-
esis [99].

TFEB-Mediated Lysosome Biogenesis
If there is an overload of damaged lysosomes, lysoph-

agy cannot clear the damaged lysosomes due to deficien-
cies in functional lysosomes. Subsequently, lysosome bio-
genesis is initiated to overcome this lysosome depletion. 
In recent studies regarding lysosome biogenesis, TFEB, a 
member of the microphthalmia family of basic helix-
loop-helix leucine-zipper transcription factors, has re-
ceived a lot of attention [100]. TFEB mediates lysosome 
biogenesis by directly binding to the promoter sequences 
containing the coordinated lysosomal expression and 
regulation element, thereby initiating the transcription of 
its target gene network encoding lysosome, endosome, 

and autophagy proteins. Thus, TFEB activation caused by 
stress can drive lysosome biogenesis and autophagic flux 
to adapt and scale-up the activity of the endo-lysosomal 
system [101].

The most widely studied responsible regulation of 
TFEB activation is mTOR-mediated phosphorylation, 
which is closely relevant to the functional status of its 
resident organelle, the lysosome. Phosphorylated TFEB 
is sequestered into the cytoplasm in the presence of nu-
trients, whereas dephosphorylated TFEB rapidly trans-
locates from the cytoplasm to the nucleus under condi-
tions of starvation or lysosome dysfunction. Within the 
nucleus, it binds to the coordinated lysosomal expres-
sion and regulation element and consequently pro-
motes the transcriptional activation of downstream tar-
get genes [102, 103]. Recently, advances in the regula-
tion of TFEB have demonstrated the unexpected 
complexity of this system. Sha et al. [104] found that 
inactive phosphorylated TFEB is preferentially ubiqui-
tylated by the E3 ubiquitin ligase STUB1 for proteasom-
al degradation; however, dephosphorylated TFEB is 
spared from the ubiquitylation of STUB1 and accumu-
lates in the nucleus. Consequently, increased phos-
phorylated TFEB in STUB1-deficient cells further com-
promises the TFEB activity by forming heterodimers 
with dephosphorylated TFEB and inhibits the translo-
cation of them to the nucleus even in a state of starva-
tion. Thus, TFEB activity is mediated by STUB1 through 
promoting the proteasomal degradation of inactive 
TFEB and reducing the formation of heterodimeriza-
tion [101]. Pan et al. [105] found that, in cardiac pro-
teinopathy, activation of mTORC1 impaired TFEB sig-
naling. However, overexpression of TFEB protects 
against proteotoxicity in cardiomyocytes through im-
proving autophagy-lysosome pathway activity.

Emerging evidence has shown that promotion of 
TFEB-mediated lysosome biogenesis attenuates renal in-
jury [106]. Zhao et al. [107] found that hyperactivity of 
mTOR inhibits TFEB-mediated lysosome biogenesis and 
autophagy, thereby suppressing autophagic flux in dia-
betic podocytes. Additionally, suppression of mTOR ac-
tivity recovers TFEB nuclear translocation and prevents 
AGE-induced autophagy insufficiency. Furthermore, we 
showed that restoration of lysosomes by resveratrol plus 
vitamin E treatment rescues autophagic flux to alleviate 
podocyte injury in DN [33]. We also found that decreased 
TFEB expression impairs lysosome biogenesis and au-
tophagic flux in TECs in DN [58]. In contrast, enhanced 
TFEB activity promotes lysosome biogenesis and diges-
tive function, resulting in suppression of tubular cell in-
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jury in vitro and in vivo. In proteinuric kidney disease, 
deletion of JAK2 downregulates TFEB expression, where-
as TFEB overexpression enhances lysosome function and 
rescues autophagic flux, resulting in improvement of 
podocyte function [62]. Recently, we found that rescue of 
lysosome depletion via activation of TFEB-mediated lys-
osome biogenesis repairs blockage of autophagic flux and 
suppresses apoptosis in TECs stimulated by urinary pro-
teins. In addition, we found that Smad3 participates in the 

progression of DN by downregulation of TFEB, and inhi-
bition of Smad3 enhanced the expression of TFEB [58]. 
Additionally, stimulation of endogenous TFEB activity or 
overexpression of exogenous TFEB also rescues lysosome 
abnormalities related to cystinosin deficiency in TECs 
[108]. Overall, enhancing autophagic flux by TFEB-me-
diated lysosome biogenesis can suppress renal damage in 
many kidney diseases.
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Fig. 1. Potential mechanisms of renal injury triggered by lysosome 
depletion in kidney diseases. Lysosome rupture that causes lyso-
somal dysfunction and the release of endogenous hydrolytic en-
zymes, leading to the disruption of autophagic flux and LMP, 
which further triggers ROS production, NLRP3 inflammasome ac-
tivation, cell cycle arrest, and RIPK1/RIPK3/phospho-MLKL-me-

diated necroptosis in renal intrinsic cells, consequently promoting 
renal fibrosis and injury. LC3, microtubule-associated protein 1 
light chain 3; LMP, lysosomal membrane permeabilization; ROS, 
reactive oxygen species; IL-1β, interleukin-1β; IL-18, interleu-
kin-18.
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Drugs Targeting Lysosome Depletion
Because the mechanisms of ESCRT-mediated lyso-

some repair and lysophagy are not fully elucidated, there 
are currently no drugs for selectively targeting them to 
rescue lysosome. Only lysosome biogenesis by targeting 
TFEB has been utilized in some diseases including kidney 
diseases. Trehalose was confirmed to promote autophagy 
and attenuate cisplatin-induced AKI through activating 
TFEB [109]. Urolithin A protects against ischemia/reper-
fusion-induced renal injury in mice by enhancing TFEB-
mediated autophagy [110]. Zhang et al. [111] found that 
curcumin has a potential anticancer function by inhibit-
ing mTOR and promoting TFEB nuclear translocation. 

Moskot et al. [112] also found that the beneficial effect of 
genistein in lysosomal storage diseases is attributed to ge-
nistein-mediated enhancement of TFEB gene expression, 
TFEB nuclear translocation, and activation of TFEB-de-
pendent lysosome biogenesis to lysosomal metabolism. 
In addition, the mTOR inhibitors such as Torin1 [113], 
pp242 [114], rapamycin [115], naringenin, and the drugs 
used for anticancer treatment such as doxorubicin [116, 
117] and mitoxantrone [116] can also increase the expres-
sion of TFEB and promote its nuclear translocation. All 
the drugs we mentioned above might be potential thera-
peutic agent for kidney diseases caused by lysosomes de-
pletion.

1

3

ESCRT
mTOR

mTOR

ESCRT-III
ESCRT-II

ESCRT-I

ESCRT-0

AMPK

P

P

P TFEB

TFEB
CLEAR

Nucleus

Promoter

TFEB

Lysosome repair

Lysosomal biogenesis

2 Lysophagy

VPS4
Galectin-3

Galectin-3

TRIM16

TRIM16

Damaged lysosomal accumulation
and autophagic clearance impairment

Intact lysosomes

Lys
os

om
e r

ep
len

ish

Removal of

damaged lysosomes

Fig. 2. Overview of potential protective mechanisms for coping 
with the lysosome depletion. Different repair mechanisms have 
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potential therapy strategies for the management of kidney diseas-
es. ESCRT, the endosomal sorting complex required for transport; 
mTOR, mammalian target of rapamycin; AMPK, AMP-activated 
protein kinase; TFEB, transcription factor EB.
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Conclusion

Autophagic clearance impairment caused by lysosome 
depletion is tightly associated with many types of kidney 
diseases. Lysosome depletion induces NLRP3 activation, 
ROS production, RIPK1/RIPK3/phospho-MLKL-medi-
ated necroptosis, cell cycle arrest, and growth suppres-
sion in renal intrinsic cells, promoting the progression of 
renal inflammation and fibrosis (Fig. 1). In addition, res-
cue of lysosomes mediated by ESCRT, removal of dam-
aged lysosomes via lysophagy, and lysosome biogenesis 
mediated by TFEB can restore lysosome function and im-
prove autophagic clearance (Fig. 2). Thus, better under-
standing of the regulatory mechanisms involving in the 
lysosome function and autophagy pathway may be the 
first step toward the development of novel therapeutic 
strategies for kidney diseases.
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