Gait Analysis Techniques using Principle Component Analysis (PCA)
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Abstract

A gait analysis procedure is derived to provide a reliable visual impression of gait performances. Kinematic
information of the limb segments and body centre of mass (BCOM) are collected from three healthy subjects
using an ambulatory gait monitoring system under several walking restrictions. The method includes multiple
stages of gait data processing which eventually eliminates redundant or correlated variables and reduces vector
dimensions. Clusters of walking performance under different walking restrictions are clearly separated in 2D
and 3D plots of Principle Components (PCs). This method provides potential visual aids in decision making in
many medical applications such as pathological gait analysis and lower limb prosthetic dynamic alignment.
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1. INTRODUCTION

Instrumental gait analysis plays a crucial
role in the study of human locomotion.
Researchers [1, 2] have looked into human
locomotion in the aspect of kinematic, kinetic,
energy consumption or musculoskeletal
system using electromyography (EMGQG)
technique. A standard gait analysis system is
confined in a room that allows limited walking
distances. Commercial instruments such as
camera system (Vicon) and force plate
(Kistler) are amongst the popular yet
expensive gait monitoring systems that
provide reliable and accurate discrete gait
information. Microelectromechanical system
(MEMS) accelerometers and gyroscopes [3-8]
provide another option for measuring body
segment movements, usually as an ambulatory
system. This system is much cheaper to build
while providing reliable and consistent
performance. Moreover, it is easily integrated
with light-weight, thin film sensors [9, 10]
such as force sensitive resistor (FSR) to study
insole pressure or body load during dynamic
movements.

One of the key procedures in gait analysis
involves processing gait data using many gait
variables [1] of interest. Very often, variables
swell in high dimensions and size. It is hence a
challenge to interpret them in an easy-to-
understand form. Researchers have attempted
many efforts [11, 12] including statistical
methods, artificial neural network, wavelet
method, fuzzy logic etc.

The authors hypothesized that since
walking is a controlled sequence of falling and
supporting, a gait performance is repetitive
events with a statistical centre tendency.
Appropriately chosen gait variables should
enable the representation of this information.
Objective and reliable feedbacks from the
instruments are desired. These questions are
asked in this paper.

1. Is the system reliable?
Which variables are to be chosen?

3. Which variables are correlated or
redundant?

4. How to ‘see
variables?

)

high dimension

2. METHODOLOGY

2.1. AMBULATORY DATA
COLLECTION DEVICE

A portJabIe customized ambulatory ‘system
was designed to collect kinematic gait data
from lower limb segments and body .centre of
mass (BCOM). The system includes a battery-
powered datalogger, five units of IMUs and a
vest. The datalogger consists of a Mbed NXP
LPC1768 microprocessor, sampling at 200Hz
and 32 analogue inputs being.expanded using
10-Bit A/D Converters with SPI Interface
(MCP3008, pchip). IMU-5DOF
(ADXL330/ADXL335 and 1DG300/IDG500)
in PCB breakouts (SparkFun, Iric) -were
mounted on the body landmarks using Velcro
straps. All IMUs were carefully calibrated
using the method proposed by [13, 14].

2.2. EXPERIMENTAL SETUP |

Three healthy subjects voluntarily took part
in the trials. The trials received ethical
approval from the research support unit of The

University of Leeds. All subjects were
required to walk under the following
restrictions:

(S1). Walking normally on a flat level

(S82). Walking on a flat level with ankle-
locked.

(S3). Walking on a 5" tilted manual
treadmill.

(S4). Walking on a 5° tilted manual
treadmill with ankle-locked.

During  ‘ankle-locked’  walking, the
subject’s ankle was immaobilized by putting on
an ankle orthotic (Motion Walker,
Physioterapystore Ltd.) locked at 90°. Five to
eight trials were carried out for each setup.
Each subject was allowed to rest for a minute
in between trials. All trials were repeated again
in a week’s time on the same subjects under
the same criteria to ensure that repeatability
has been taken into account.

2.3. DATA PROCESSING
PROCEDURES

Gait data were processed in a multi-stage
procedure as listed below:



1. Test-retest reliability
Test-retest reliability [5, 6] checks the
reliability of an instrument over time. All
criteria are kept the same but repeated over
a week. If an index called Cronbach’s Alpha
(CA) is above 0.7, the instrument is reliable
and consistent.

2. Gait identification
Critical gait events (Figure 1) such as Heel-
Contact (HC), Toe-Off (TO) and Mid-
Swing (MSW) are identified from
gyroscope lateral axis [4, 7, 8, 10, 15]
located at shanks.
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Figure 1: Gait Events for Identification
(TO = Toe-Off, MSW = Mid-Swing, HC = Heel
Contact)

3. Low Pass filter
A zero phase low pass filter, f, = 3Hz,
smoothes out all IMUs outputs at the same
time base as before.

4. Gait Cycle (GC) extraction
GC [16] is defined as the period between
two HC. GCs are extracted individually
from time-series data using gait cycle
indexes (GCl) generated from gait
identification.

5. GC normalization

For the sake of comparison, all time axes of

extracted GCs are normalized from zero to
one. However, they are not in same vector
length.

6. Linear interpolation of normalized GC

(LiNo GC)

Normalized GCs are remapped into equal
vector length using linear interpolation.
Their time-axes are in the same range, same
length and intervals as shown in Figure 2.

7. LiNo GC stacks and data structure

LiNo GC are stacked in a structure (Figure
3) that branches into names using locations
of IMUs with respect to the categories of
walking restrictions. New structures are
created according to subjects and weeks of
trials taken. In this paper, six structures
were created, i.e. 3 subjects x 2 weeks. At
this stage, LiNo GC stacks are useful for
many computational analysis.
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Figure 2: Example of Right Shank. Stacks of
normalized and equal vector length GCs
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Figure 3: Structure Format

. Features selection within a GC

Several features are selected out from a GC
of each side of the leg. Mid-Stance (MST)
[16] is defined as 0.4 of a GC. The authors
had selected four events from a GC, i.e.
[HC, MST, TO, MSW]. This paper
demonstrates 102 features selected from
five IMUs, 1.e. 5 IMU x 5 axes x 4 features
+ 2 Left/Right Stride Time. Figure 4 shows
a sample of selected gait features marked on
right shank-XR. For generality, the number
of features could be any selections.
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Figure 4: Features selection from a filtered GC.
¢ HC, O MST, ¢ TO, v MSW).
(HC = Heel Contact , MST = Mid-Stance, TO
= Toe-Off, MSW = Mid-Swing)

9. Extraction of feature vectors and array
The features are extracted from LiNo GC
and organized in a feature matrix such as
equation 1. Each row of the matrix is
corresponding to a specific observation and
labelled. This paper demonstrates 102
feature vectors.

S1 Xy X1z Xim
S| Xr X2 o Ry M
S3 X31 X3z 0 Xam
Sa X4 Xa2 Xam
where

labels of each walking restrictions

Xim  selected feature vectors (m) as input
variables in i restriction

10. Principle Component Analysis (PCA)
PCA is an orthogonal transformation that
transforms  correlated  variables  to
uncorrelated variables called principle
components (PCs). Each column of the
feature matrix must be standardized. The
restrictions (§1 to §4) could be plotted in

2D or 3D graphs using first two or three
PCs.

3. RESULTS

Results of test-retest reliability of LiNo
GCs are shown in Table 1. In general, high CA
are noticed (> 0.78) but mostly above 0.9.

Low standard deviation are noticed, indicating
high repeatability.

Figure 5 shows clearly separated clusters
(S1 to S4) of subject] under different walking
restrictions on 2D PCA plots over two weeks.
Each restrictions have resulted in almost the
same cluster locations over two weeks, i.e. S1
at the left side, S2 at the bottom, S3 at the top
and S4 at the right side. S1 and S4 are two
extreme setup. Their distance is the farthest.
Additional information could be further
interpreted from the figure. Two categories,
i.e. ankle restriction and level restriction could
be grouped in the plots. Clusters (S1, S3)
represent the group of ‘ankle-free’> while
clusters (82, S4) represent the group of ‘ankle-
locked’. Clusters (S1, S2) represent the group
of ‘flat-level” while clusters (S3, S4) represent
the group of ‘tilted-level’. Clusters in the
group of ‘flat-level’ appear to be apart but
‘tilted-level” appear to be closer.

Table 1: CA of The Ambulatory System

MU
No Loc. X Y z XR YR
p} 098 (09810981099} 096
1 R Shk
s | 0.01 | 0.02 | 002 0.01 | 0.02
pi 0.78 | 0.97 | 0.94 | 0.98 | 0.81
2 L Shk
s | 0.05] 0.01 | 002 001|002
y| 0931098 ) 096 (099 | 095
3 | RThg
s | 002|001 ] 0.01 | 001] 0.02
pyl 092 093] 097|099 | 083
4 L Thg
s | 0.02 | 0.02 { 0.01 | 0.00 { 0.03
p| 096 | 097 | 0.98 | 0.81 | 0.93
4 BCOM
s]0.02)001) 001012 0.02

*u = mean, s = standard deviation

Figure 6 lists the variance explained by
each PCs and their cumulative percentages.
Only the first 10 out of 102 PCs are shown.
The first principle component (PC1) represents
the most percentage of the variance explained
after PCA is performed, followed by PC2 and
PC3 and so on. A 2D plot (PCl, PC2)
accounts for around 53% of the total variance
explained while a 3D plot (PC1, PC2, PC3)
accounts for around 62% of the total variance
explained.
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Figure 5: Clusters of Observations of Three
Subjects Over Two Weeks. (
Y (S1) Walking normally on flat level.
A\ (S2) Walking with ankle-locked on flat
fevel.
[[1(S3) Walking normally on a 5° tilted
manual treadmill.
O (S4) Walking with ankle-locked on a 5°
tilted manual treadmill. )
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Figure 6: Variance Explained by Each
Principle Components

4. DISCUSSION

The accuracy and repeatability of the gait
data are largely dependent on the instrument
reliability. Test-retest reliability shows that the
instrument exhibits reliable and consistent
performance.

Selection of IMU and IMU axis for gait
identification have raised a few attentions.
Firstly, IMU outputs are attenuated [3] as
mounted IMU  position  approximates
proximally. In this paper, their outputs at
shanks are highest and clearly spotted from a
time-series plot in corresponding axes.
Secondly, shank IMUs provide choices of
outputs from its accelerations and angular
speeds at vertical, anterior/posterior (A/P) and
medial/lateral (M/L) axes respectively.
However gyroscope output at M/L axis
(sagittal plane) exhibits larger excursions and
relatively clearer signals during walking as
compared to A/P and accelerations. Thirdly,
gait events (HC, TO) under other walking
restrictions besides normal walking at flat
level (S1) are unclear. Researchers [4, 8, 10]
had proposed gait identification (HC, TO)
using a gyroscope shank lateral axis under
normal level walking. However IMUs outputs
varies substantially according to different
walking restrictions. Features as shown in
Figure 1 might not be clearly noticeable in
other waking restrictions. Assistive aids using
shank accelerations [15] during gait event
identification provide secondary suggestions.
At HC or TO, time-series shank accelerations
always exhibit spikes which will coincides
with the definition of M/L gyroscope outputs.
Lastly, it is a tedious and time-consuming
process to identify gait events manually from
all collected gait data. An automatic and robust
algorithm is urgently needed to identify gait
events from all walking terraces and
restrictions regardless of the subjects.

The choices of filter types and cut-off
frequencies vary amongst researchers [5, 17].
A typical spectral analysis will reveal the
signal spectrum. The noises originate from
muscle movements and vibrations, impact
during HC, abrupt changes of lower limb
during falling and supporting. In this paper, it
is highlighted that gait events (HC, TO, MSW)
are identified using unfiltered gait data
because all high frequency spikes that carry
the features are removed in filtered gait data.
To eliminate different time delay, this paper
has introduced a zero phase low pass filter
(LPF). Further analysis using unfiltered GC
might cause unsatisfactory results due to
greater variability and uncertainties caused by
the noises.



Adaptive to walking - restrictions, human
walking is a series of controlled falling and
supporting events. These controlled events

exhibit a centre tendency which could be -

classified by its categories and hence revealed

in selected feature variables. The selection of -

feature variables are unlimited. However,
correlated variables will cause unnecessary
analytical noises. High dimension variables
could not be easily interpreted using a plot.
PCA is the simplest way to eliminate
correlated noises and provides an option to
plot in low dimension with certain extent of
confidence. Besides providing low dimension
plots, PCA also provides clean, uncorrelated
variables in preparation before other analysis
such as Self-Organizing Map (SOM) and
Back-Propagation Artificial Neural Network
(BPANN).

Stacks of normalized and equal length GCs
have opened a number of potential analysis
[11, 12]. For example, symmetry index [18] of
the left and the right legs and step-to-step
variations [19]. Multi-variants statistical
analysis such as MANOVA, factor analysis
and pattern recognition algorithms using
neural network are highly applicable.

5. CONCLUSION

A reliable customized ambulatory system is
proposed to collect kinematic gait data from
three healthy subjects under four walking
restrictions. Meanwhile, a gait analysis
procedure is  introduced to  provide
comprehensive results in low dimension plots.
Visualization in low dimension plots provide a
potential objective aids in many medical
applications such as pathelogical gait analysis
and lower limb prosthetic dynamic alignment.
Gait data explorations using multi-variant
statistics and neural networks are potential
future applications.

REFERENCES

[1] D. Winter, Biomechanics and motor control of
human movement, 4 ed. Hoboken, New Jersey: John
Wiley & Sons, 2009.

[2] M. W. Whittle, Gait analysis: an introduction, 3 ed.
Oxford: Butterworth-Heinemann, 2001,

[3] J. J. Kavanagh and H. B. Menz, "Accelerometry: A
technique for quantifying movement patterns during
walking," Gait and Posture, vol. 28, pp. 1-15, 2008.

[4] K. Aminian, B. Najafi, C. BulaBula, P. F. Leyvraz,
and P. Robert, "Spatio-temporal parameters of gait

measured by an ambulatory system using miniature
gyroscopes," Journal of Biomechanics, vol. 35, pp.
689 - 699, 2002.

[51 R. Moe-Nilssen, "Test-retest reliability of trunk
accelerometry durmg standing ‘and ~ walking,”
Archives of Physical Medicine and Rehabtlttatzon,

. vol. 79, pp. 1377-1385, 1998. .

[6] M. Henriksen, H. Lund, R. Moe-Nilssen, H. Bhdda]
and B. Danneskiod-Samsee, "Test-retest reliability
of trunk accelerometric gait analysis," Gait &
Posture, vol. 19, pp. 288-297, 2004.

[71 J. Rueterbories, E. G. Spaich, B. Larsen, and O. K.
Andersen, "Methods for gait event detection and
analysis in ambulatory systems," . Medical
Engineering and Physics, vol. 32, pp. 545-552,
2010. :

[8] K. Tong and M. H. Granat, "A practical gait analysis
system using gyroscopes,”" Medical Engineering &
Physics, vol. 21, pp. 87-94, 1999.

[91 M. Raggi, A. G. Cutti, A. Giovanardi, L. Chiari, D.
Orlandini, and A. Davalli, "Wearable sensors for the
real-time assessment of gait temporal symmetry in
above-knee amputees: The ‘SEAG’ protocol,” Gait
& Posture, vol. 28, pp. S26-527, 2008.

[10]1. P. 1. Pappas, T. Keller, S. Mangold, M. R.
Popovic, and V. M. Dietz, M., “A reliable
gyroscope-based  gait-phase  detection  sensor
embedded in a shoe insole," Sensors Journal, IEEE,
vol. 4, pp. 268-274, 2004.

[11] T. Chau, "A review of analytical techniques for gait
data. Part 2: neural network and wavelet methods "
Gait and Posture, vol. 13, pp. 102 - 120 2001.

[12] T. Chau, "A review of analytical techniques for gait
data. Part 1: fuzzy, statistical and fractal methods "
Gait and Posture, vol. 13, pp. 49-66, 2001. ‘

[13]1 K. S. Tee, M. Awad, A. Dehghani, D. Moser, and S.
Zahedi, "Comparison of Two Static Calibration
Methods of an Inertial Measurement Unit," in
Biomedical Engineering, Innsbruck, Austria, 2011.

[14] K. S. Tee, M. Awad, A. Dehghani, D. Moser, and S.
Zahedi, "Triaxial Accelerometer Static Calibration,”
in The 2011 International Conference of Mechanical
Engineering, London, UK, 2011.

[15]J. M. Jasiewicz, J. H. J. Allum, J. W. Middleton, A.
Barriskill, P. Condie, B. Purcell, and R. C. T. Li,
"Gait event detection using linear accelerometers or
angular velocity transducers in able-bodied and
spinal-cord injured individuals," Gait and Posture,
vol. 24, pp. 502-509 2006.

[16]1]. Perry, Gait analysis : normal and pathological
Jfunction. Thorofare, N.J.: SLACK inc, 1992.

[17]1R. C. Gonzilez, A. M. Loépez, J. Rodriguez-Uria, D.
Alvarez, and J. C. Alvarez, "Real-time gait event
detection for normal subjects from lower  trunk
accelerations," Gait & Posture, vol. 31, pp. 322-325,
2010.

[18] R. E. Hannah, J. B. Morrison, and A. E. Chapman,
"Prostheses alignment: effect on gait of persons with
below-knee amputations,” Archives of Physical
Medicine and Rehabilitation, vol. 65, pp. 159-162,
1984.

[19]1 M. S. Zahedi, W. D. Spence, S. E. Solomonidis, and
1. P. Paul, "Repeatability of kinetic and kinematic
measurements in gait studies of the lower limb
amputee," Prosthetics and Orthotics International,
vol. 11, pp. 55-64, 1987.



