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The steady two-dimensional stagnation-point flow over a linearly stretching/shrinking sheet in a viscous and
incompressible fluid in the presence of a magnetic field is studied. The governing partial differential equa-
tions are reduced to nonlinear ordinary differential equations by a similarity transformation, before being
solved numerically by a shooting method. Results show that the skin friction coefficient decreases, but the
heat transfer rate at the surface increases when the effect of slip at the boundary is taken into consideration.
Dual solutions are found to exist for the shrinking sheet, while for the stretching sheet, the solution is unique.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The flow and heat transfer of a viscous and incompressible fluid
over a stretching sheet has attracted the interest of many researchers
in view of its applications in many industrial manufacturing process-
es. Some examples are in the glass blowing, the cooling and/or drying
of papers and textiles, the extrusion of a polymer in a melt-spinning
process, metals and plastics, continuous casting and spinning of fi-
bers, etc. Crane [1] was the first who studied the two-dimensional
steady flow of an incompressible viscous fluid caused by a linearly
stretching plate and obtained an exact solution in closed analytical
form. Since then, many authors have studied various aspects of this
problem, such as Chiam [2], Mahapatra and Gupta [3], Ishak et al.
[4,5], etc., who have studied the flow behaviors due to a stretching
sheet in the presence of magnetic field, considering some other phys-
ical features such as power-law velocity and buoyancy effect, with
various surface heating conditions.

Compared to a stretching sheet, less work has been done on the
flow over a shrinking sheet. It seems that the steady hydrodynamic
flow due to a shrinking sheet for a specific range of the suction pa-
rameter was first studied by Miklavčič and Wang [6], where the exis-
tence of the exact solution to the Navier–Stokes equations was
reported. They also found that the flow is unlikely to exist unless
adequate suction on the boundary is imposed since the vorticity of
the shrinking sheet is not confined within a boundary layer. Later,
Wang [7] showed that with an added stagnation flow to contain the
vorticity, similarity solutions may exist. Recently, Faraz et al. [8]
rights reserved.
05
studied the two-dimensional viscous flow over a shrinking sheet by
employing an analytical approach. On the other hand, the problem of
stagnation flow over a shrinking sheet immersed in a micropolar fluid
was considered by Ishak et al. [9] and Lok et al. [10], while Bhattacharyya
and Layek [11] considered the boundary layer stagnation-point flow to-
wards a shrinking sheet with thermal radiation and suction/blowing
effects. They found that dual solutions exist for a certain range of the
shrinking parameter.

All of the above-mentioned studies considered no slip condition at
the boundaries. Andersson [12] noticed that in certain situations, the
assumption of the flow field obeys the conventional no-slip condition
at the boundary does no longer apply and should be replaced by par-
tial slip boundary condition. Later, Wang [13] gave an exact solution
of the Navier–Stokes equations for the flow due to a stretching
boundary with slip. Wang [14] has also considered the effect of stag-
nation slip flow on the heat transfer from a moving plate. The effects
of slip on the flow of an elastic-viscous fluid with some other physical
features have been studied by Ariel et al. [15] and Ariel [16]. The heat
transfer problem in a viscous fluid over an oscillatory stretching sur-
face with slip has been investigated by Abbas et al. [17], while Fang et
al. [18] studied the MHD slip flow and found only one physical solu-
tion for any combination of the slip, magnetic and mass transfer pa-
rameters. Later, Fang et al. [19] solved the problem of viscous fluid
over a shrinking sheet with a second order slip flow model, without
considering the heat transfer aspects, and reported an exact solution
of the governing Navier–Stokes equations. The thermal boundary
layers over a shrinking sheet with mass transfer but without slip
has been also studied by Fang and Zhang [20]. In another paper,
Fang et al. [21] solved analytically the magnetohydrodynamic flow
under slip conditions over a shrinking sheet and reported the exis-
tence of multiple solution branches for certain parameter domain.
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Nomenclature

a, c constants
B0 uniform magnetic field
Cf skin friction coefficient
f dimensionless stream function
k thermal conductivity
L slip length
M magnetic parameter
Nux local Nusselt number
Pr Prandtl number
qw surface heat flux
Rex local Reynolds number
S proportionality constant
T fluid temperature
Tw surface temperature
T∞ ambient temperature
u, v velocity components along the x and y directions,

respectively
U external flow velocity
x, y Cartesian coordinates along the surface and normal to

it, respectively

Greek symbols
α thermal diffusivity
γ thermal slip parameter
δ velocity slip parameter
ε stretching/shrinking parameter
η similarity variable
θ dimensionless temperature
μ dynamic viscosity
ν kinematic viscosity
ρ fluid density
σ electrical conductivity
τw surface shear stress
ψ stream function

Subscripts
w condition at the surface
∞ ambient condition

Superscript
′ differentiation with respect to η
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The effect of slip on the stagnation-point flow towards an imperme-
able shrinking sheet has been studied by Bhattacharyya et al. [22],
while Aman and Ishak [23] studied the flow and heat transfer over a
permeable shrinking sheet.

In this paper, we study the behaviour of the hydromagnetic
stagnation-point flow towards a stretching/shrinking sheet with slip
effect on the boundary. The effect of magnetic, slip and stretching/
shrinking parameters on the skin friction coefficient and the heat
transfer rate at the surface is analyzed and discussed. To the best of
our knowledge, this problem has not been studied before.

2. Mathematical formulation

Consider a two-dimensional stagnation-point flow towards a line-
arly stretching/shrinking sheet of constant temperature Tw immersed
in an incompressible viscous fluid. It is assumed that the external flow
velocity varies linearly along the x-axis, i.e., U(x) = ax, where a is a
positive constant. A uniform magnetic field of strength B0 is assumed
to be applied in the positive y-direction normal to the plate. The in-
duced magnetic field is assumed to be small compared to the applied
magnetic field and is neglected. Under these assumptions along with
the boundary layer approximations, the system of equations, which
model the boundary layer flow, are given by (see Ishak et al. [5] and
Bhattacharyya et al. [22])

∂u
∂x þ

∂v
∂y ¼ 0 ð1Þ

u
∂u
∂x þ v

∂u
∂y ¼ U

dU
dx

þ ν
∂2u
∂y2

þ σB2
0

ρ
U−uð Þ ð2Þ

u
∂T
∂x þ v

∂T
∂y ¼ α

∂2T
∂y2

ð3Þ

where (u,v) are the fluid velocities in the (x,y) directions, T is the tem-
perature in the boundary layer, ν is the kinematic viscosity, α is the
thermal diffusivity, ρ is the fluid density and σ is the electrical con-
ductivity. The appropriate boundary conditions for the velocity com-
ponents with slip condition at the surface and the temperature are
given by (see Bhattacharyya et al. [22])

u ¼ cxþ L ∂u=∂yð Þ; v ¼ 0; T ¼ Tw þ S
∂T
∂y at y ¼ 0

u→U xð Þ; T→T∞ as y→∞
ð4Þ

where c is the stretching/shrinking rate of the sheet with c N 0 for
stretching and c b 0 for shrinking, L denotes the slip length, S is a pro-
portionality constant and T∞ is the ambient temperature.

We introduce now the following similarity transformation:

η ¼ U
νx

� �1=2
y; ψ ¼ νxUð Þ1=2 f ηð Þ; θ ηð Þ ¼ T−T∞

Tw−T∞
ð5Þ

where η is the independent similarity variable, f(η) is the dimension-
less stream function, θ(η) is the dimensionless temperature and ψ is
the stream function defined as u = ∂ ψ/∂ y and v = − ∂ ψ/∂ x,
which identically satisfies Eq. (1). Using Eq. (5), we obtain

u ¼ axf ′ ηð Þ and v ¼ − νað Þ1=2 f ηð Þ ð6Þ

where primes denote differentiation with respect to η.
Substituting Eqs. (5) and (6) into Eqs. (2) and (3), we obtain the

following nonlinear ordinary differential equations:

f 000 þ f f ″ þ 1− f ′
2 þM 1− f ′

� �
¼ 0 ð7Þ

θ″ þ Pr f θ′ ¼ 0 ð8Þ

where M = σB02/(ρa) is the magnetic parameter and Pr = ν/α is the
Prandtl number. The boundary conditions (4) now become

f 0ð Þ ¼ 0; f ′ 0ð Þ ¼ ε þ δ f ″ 0ð Þ; θ 0ð Þ ¼ 1þ γθ′ 0ð Þ
f ′ ηð Þ→1; θ ηð Þ→0 as η→∞

ð9Þ

where ε = c/a is the stretching/shrinking parameter, with ε N 0 for
stretching and ε b 0 for shrinking, δ = L(a/ν)1/2 is the velocity slip
parameter and γ = S(a/ν)1/2 is the thermal slip parameter.

The physical quantities of interest are the skin friction coefficient
Cf and the local Nusselt number Nux, which are defined as

C f ¼
τw

ρU2=2
; Nux ¼

xqw
k Tw−T∞ð Þ ; ð10Þ



Fig. 1. Variation of the skin friction coefficient C f Rex1=2 with stretching/shrinking pa-
rameter ε for some values of velocity slip parameter δ when M = 0.1.
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where the surface shear stress τw and the surface heat flux qw are
given by

τw ¼ μ
∂u
∂y

� �
y¼0

; qw ¼ −k
∂T
∂y

� �
y¼0

; ð11Þ

with μ and k being the dynamic viscosity and the thermal conductivity,
respectively. Using the similarity variables (5), we obtain

1
2
C fRe

1=2
x ¼ f ″ 0ð Þ; Nux=Re

1=2
x ¼ −θ′ 0ð Þ ð12Þ

where Rex = Ux/ν is the local Reynolds number.
Following Magyari [24], it can be shown that Eq. (8) with the

boundary conditions (9) for θ(η) has the following integral form ana-
lytical solution

θ ηð Þ ¼ J ∞; Prð Þ− J η; Prð Þ
γ þ J ∞;Prð Þ ð13Þ

where

J η; Prð Þ ¼
Zη

0

exp −Pr
Zt

0

f zð Þdz
0
@

1
A

2
4

3
5dt; J ∞;Prð Þ

¼
Z∞

0

exp −Pr
Zt

0

f zð Þdz
0
@

1
A

2
4

3
5dt ð14Þ

3. Results and discussion

The transformed Eqs. (7) and (8) subjected to the boundary con-
ditions (9) were solved numerically using the Runge–Kutta–Fehlberg
method with shooting technique for some values of the governing pa-
rameters, namely, the magnetic parameterM, the velocity slip param-
eter δ, the thermal slip parameter γ and the stretching/shrinking
parameter ε when the Prandtl number Pr is fixed to unity. It is
worth mentioning that the computation is made until the solution ex-
ists up to the smallest value of εwhere the results for the skin friction
coefficient f″(0) and the local Nusselt number − θ′(0) are converge
and both velocity f′(η) and temperature θ(η) profiles satisfy the far
field boundary conditions asymptotically. Comparisons of the values
of f″(0) for the shrinking case (ε b 0) with those obtained by Wang
[7] and Bhattacharyya et al. [22] for several values of ε are listed in
Table 1. It is observed that the results show a very good agreement.

The variation of the skin friction coefficient CfRex1/2 and the local
Nusselt number Nux/Rex1/2 (representing heat transfer rate at the sur-
face) for selected values of the velocity slip parameter δ are shown in
Table 1
Comparison with previously published data for the values of f″(0), when M = 0 and
δ = 0 (no slip) for shrinking case (ε b 0).

ε Present results Wang [7] Bhattacharyya et al. [22]

Upper
branch

Lower
branch

Upper
branch

Lower
branch

Upper
branch

Lower
branch

−0.25 1.4022 1.40224 1.40224051
−0.3 1.4276
−0.4 1.4686
−0.5 1.4957 1.49567 1.49566948
−0.615 1.5072 1.50724089
−0.75 1.4893 1.48930 1.48929834
−1 1.3288 0 1.32882 0 1.32881689 0
−1.15 1.0822 0.1167 1.08223 0.116702 1.08223164 0.11667340
−1.18 1.0004 0.1784
−1.2465 0.5543 0.5543 0.55430 0.55428565 0.55428565
Figs. 1 and 2, respectively. It was found that dual solutions exist for
the shrinking case (ε b 0), while for the stretching case (ε N 0), the
solution is unique. However, based on our computations, no dual so-
lutions could be found when the velocity slip parameter δ is absent
(δ = 0). In Figs. 1 and 2, the solid lines denote the upper branch so-
lution, while the dash lines denote the lower branch solution. The
value of CfRex1/2 is zero when ε = 1. This is due to the fact that, for
this case, the fluid and the solid boundary move with the same veloc-
ity, and thus there is no friction at the fluid–solid interface. However,
there is heat transfer at the boundary for this case, see Fig. 2, even
though there is no friction, since the fluid and the solid surface are
at different temperatures.

Since Eqs. (7) and (8) are uncoupled, the flow field is not affected
by the thermal field. Thus, the thermal slip parameter γ and the
Prandtl number Pr have no effect on the flow field. For this reason,
for each values of γ and Pr, the function f and its derivatives are iden-
tical. Fig. 3 presents the temperature profiles θ(η) for the selected
values of the thermal slip parameter γ when Pr = 1, M = 0.1,
ε = −2.48 and δ = 1. The effect of thermal slip is seen to reduce
the fluid temperature in the boundary layer, which in turn decreases
Fig. 2. Variation of the local Nusselt number Nux/Rex1/2 with stretching/shrinking pa-
rameter ε for some values of velocity slip parameter δ when M = 0.1, Pr = 1 and
γ = 1.

image of Fig.�1


Fig. 5. Streamlines for two-dimensional flow when M = 1, δ = 1 and ε = −3.5
(shrinking sheet).

Fig. 3. Temperature profiles θ(η) for some values of γwhen Pr = 1,M = 0.1, ε = −2.48
and δ = 1.
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the temperature gradient at the surface. Thus, the heat transfer rate at
the surface Nux/Rex1/2 increases as γ increases. Between the two solu-
tions as presented in Figs. 1 and 2, we expect that the first solution
(upper branch solution) is stable and most physically relevance,
while the second solution (lower branch solution) is not, since the
second solution exists only for certain range of the shrinking/
stretching parameter ε.

Figs. 4 and 5 present the streamlines sketched by the stream func-
tion ψ from Eq. (5) forM = 1, δ = 1when ε = 0.5 (stretching sheet)
and ε = −3.5 (shrinking sheet), respectively. It can be seen that the
streamlines for ε = 0.5 are quite simple and symmetric about the
vertical axis due to the equal force (in opposite directions) that exerts
to stretch the sheet, and the pattern is almost similar to the normal
stagnation-point flow without slip. On the other hand, the stream-
lines for ε = −3.5 are more complicated with a horizontal line sepa-
rate the flows into two regions.
Fig. 4. Streamlines for two-dimensional flow when M = 1, δ = 1 and ε = 0.5
(stretching sheet).
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