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ABSTRACT 
 
 
 
 

High availability is an important property for current distributed systems. The trends 

of current distributed systems such as grid computing and cloud computing are the 

delivery of computing as a service rather than a product. Thus, current distributed 

systems rely more on the highly available systems. The potential to fail-stop failure 

in distributed computing systems is a significant disruptive factor for high 

availability distributed system. Hence, a new failure detection approach in a 

distributed system called Affirmative Adaptive Failure Detection (AAFD) is 

introduced. AAFD utilises heartbeat for node monitoring. Subsequently, Neighbour 

Replica Failure Recovery(NRFR) is proposed for autonomous recovery in distributed 

systems. AAFD can be classified as an adaptive failure detector, since it can adapt to 

the unpredictable network conditions and CPU loads. NRFR utilises the advantages 

of the neighbour replica distributed technique (NRDT) and combines with weighted 

priority selection in order to achieve high availability, since automatic failure 

recovery through continuous monitoring approach is essential in current high 

availability distributed system. The environment is continuously monitored by 

AAFD while auto-reconfiguring environment for automating failure recovery is 

managed by NRFR. The NRFR and AAFD are evaluated through virtualisation 

implementation. The results showed that the AAFD is 30% better than other 

detection techniques. While for recovery performance, the NRFR outperformed the 

others only with an exception to recovery in two distributed technique (TRDT). 

Subsequently, a realistic logical structure is modelled in complex and interdependent 

distributed environment for NRDT and TRDT. The model prediction showed that 

NRDT availability is 38.8% better than TRDT. Thus, the model proved that NRDT is 

the ideal replication environment for practical failure recovery in complex distributed 

systems. Hence, with the ability to minimise the Mean Time To Repair (MTTR) 

significantly and maximise Mean Time Between Failure (MTBF), this research has 

accomplished the goal to provide high availability self sustainable distributed system.  
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ABSTRAK 
 
 
 
 

Kebolehsediaan yang tinggi ialah satu ciri  penting untuk sistem  teragih semasa. 

Kecenderungan sistem-sistem teragih masakini seperti grid computing dan cloud 

computing ialah penyedian pengkomputeran sebagai satu perkhidmatan berbanding 

sebagai satu produk. Oleh itu,  sistem teragih semasa sangat memerlukan  sistem 

yang mempunyai kebolehsediaan yang tinggi. Potensi untuk gagal-berhenti dalam 

sistem pengkomputeran teragih adalah faktor yang memyebabkan gangguan kepada 

kebolehsediaan yang tinggi. Oleh itu, tesis ini mencadangkan pengesanan kegagalan 

yang afirmatif serta adaptif (AADF). AAFD menggunakan heartbeat untuk 

pemantauan nod. Seterusnya pemulihan kegagalan replika kejiranan (NRFR) 

dicadangkan untuk pemulihan secara autonomi. Oleh kerana AAFD dapat 

mengadaptasi dengan ketidaktentuan rangkaian dan CPU, ia boleh diklasifikasikan 

sebagai pengesan kegagalan yang adaptif. NRFR menggunakan kelebihan teknik 

replika kejiranan teragih (NRDT) dan menggabungkan pemilihan keutamaan 

berdasarkan pemberat. Seterusnya AAFD dan NRFR dinilai melalui  pelaksanaan 

virtualisation. Hasil keputusan menunjukkan, secara puratanya AAFD adalah 30% 

lebih baik dari teknik-teknik yang lain. Manakala bagi prestasi pemulihan, NRFR 

mengatasi yang lain kecuali untuk pemulihan didalam teknik replika berdua (TRDT). 

Seterusnya, struktur logik yang realistik dan praktikal bagi kebolehsediaan tinggi 

dalam persekitaran teragih yang komplek dan saling bergantungan  dimodelkan 

untuk  NRDT dan TRDT. Model ini membuktikan bahawa kebolehsediaan NRDT 

adalah 38.8% lebih baik. Oleh yang demikian, model ini membuktikan NRDT adalah 

pilihan terbaik untuk memulihkan kegagalan di dalam sistem teragih yang komplek.  

Oleh itu, dengan kebolehan meminimumkan Mean Time To Repair (MTTR) dan 

memaksimumkan Mean Time Between Failure (MTBF), kajian ini mencapai 

matlamat untuk menyediakan sistem teragih yang mampan dan kebolehsediaan 

tinggi. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

 In this chapter, the background of the research is outlined, followed by 

problem statements, objectives, contributions, scope of the research and lastly, the 

organization of the thesis. 

 
 
1.1 Research background 
 
 
Availability is one of the most important issues in distributed systems (Renesse & 

Guerraoui, 2010; Deris et al., 2008; Bora, 2006). With greater numbers of computers 

working together, the possibility that a single computer failure can significantly 

disrupt the system is decreased (Dabrowski, 2009). One of the benefits of a distributed 

system is the increase of parallelism for replication (Renesse & Guerraoui, 2010). 

Replication is a fundamental technique to achieve high availability in distributed and 

dynamic environments by masking errors in the replicated component (Noor & 

Deris, 2010; Bora, 2006). Thus, replication is very important in providing high 

availability and efficient distributed system. Distributed systems can therefore lend 

themselves in providing high availability (Mamat et al., 2006). 

A fail-stop system is one that does not produce any data once it has failed. It 

immediately stops sending any events or messages and does not respond to any 

messages(Arshad,2006). This type of failures is common in today’s large computing 

systems. When a fail-stop failure occurs, a prompt and accurate failure detection with 

minimum time to recover are critical factors in providing high availability in 

distributed systems. If these factors can efficiently and effectively be handled by a 
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failure detection and recovery technique, it can provide a theoretical and practical 

high availability solution for a distributed system. 

Since current distributed computing such as grid computing and cloud 

computing become larger, increasingly dynamic and heterogeneous. These 

distributed systems become more and more complicated. Failures or errors are 

arising due to the inherently unreliable nature of the distributed environment include 

hardware failures, software errors and other sources of failures. Many failure 

detection and recovery techniques have been adopted to improve the distributed 

system availability. In addition to the outstanding replication technique for high 

availability, failure detection and recovery is an important design consideration for 

providing high availability in distributed systems (Dabrowski, 2009; Stelling et al., 

1998; Abawajy, 2004b;  Flavio,  2006). 

Therefore, failure detection and recovery in distributed computing has 

become an active research area (Dimitrova & Finkbeiner, 2009; Siva & Babu 2010; 

Khan, Qureshi & Nazir, 2010; Montes, Sánchez & Pérez, 2010; Costan et al.,  2010). 

Research in failure detection and recovery distributed computing aims at making 

distributed systems high availability by handling faults in complex computing 

environments. In order to achieve high availability, an autonomous failure detection 

and recovery service need to be adopted. An autonomous failure detection and 

recovery service is able to detect errors and recover the system without the 

participation of any external agents, such as human. It can be restored, or has the 

ability of self-healing, then back to the correct state again (Arshad, 2006). If no 

failure detection and recovery is provided, the system cannot survive to continue 

when one or several processes fail, and the whole program crashes.  

Failure detection (or fault detection) is the first essential phase for developing 

any fault tolerance mechanism or failure recovery (Avizienis et al., 2004). Failure 

detections provide information on faults of the components of these systems (Stalin 

et al., 1998).   

Failure recovery is the second phase in developing any recovery mechanism 

(Avizienis et al., 2004). Replication is one of the core techniques that can be utilised 

for failure recovery in distributed and dynamic environments (Bora, 2006). 

Exploitation of component redundancy is the basis for recovery in distributed 

systems. A distributed system is a set of cooperating objects, where an object could 

be a virtual node, a process, a variable, an object as in object-oriented programming, 
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or even an agent in multi-agent systems. When an object is replicated, the application 

has several identical copies of the object also known as replicas (Helal, Heddaya & 

Bhargava , 1996; Deris et al., 2008). When a failure occurs on a replica, the failure is 

masked by its other replicas, therefore availability is ensured in spite of the failure. 

Replication mechanisms have been successfully applied in distributed applications. 

However, the type of replication mechanisms to be used in the application is decided 

by the programmer before the application starts. As a result, it can only be applied 

statically. Thus, the development of autonomous failure detection and recovery 

model with suitable replication technique and architectural design strategy is very 

significant in building high availability distributed systems. 
 
 
1.2   Problem statements 

 
 
A study has found fault-detection latencies covered from 55% to 80% of non-

functional periods (Dabrowski et al., 2003). This depends on system architecture and 

assumptions about fault characteristics of components. These non-functional periods 

happened when a system is uninformed of a failure (or failure detection latency) and 

periods when a system attempts to recover from a failure (failure-recovery latency) 

(Mills et al., 2004). Even though the development of fault detection mechanism in 

large scale distributed system is subject to active research, it still suffers from some 

weaknesses   (Dabrowski, 2009; Pasin, Fontaine & Bouchenak, 2008; Flavio,  2006).  

i) Failure detection trade-offs between accuracy and completeness. Current 

failure detection approaches suffer from the weaknesses of either fast detection 

with low accuracy or completeness in detecting failures with a lengthy timeout. 

Inaccurate detection may result in the recovery malfunction while delays in 

detecting a failure will subsequently delay the recovery action. These trade-offs 

need to be improved.  

ii) Choosing the right replication architectural design strategies are very crucial in 

providing high availability and efficient distributed system. This is because 

keeping all of the replicas requires extra communication as well as processing 

and may delay the recovery process. This will cause the system to be down for 

a considerable period of time. In contrast, insufficient replicas can jeopardise 

the availability of the distributed system. 
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iii) Although the idea and theory of replication is convincing and robust, practical 

implementation of replication technique is difficult to be modelled in real 

distributed environment (Christensen, 2006). This is due to the complexity in 

the implementation of replication and check pointing techniques. Therefore 

they have been studied more theoretically through the  use of  simulation 

technique (Khan, Qureshi & Nazir, 2010). Thus, most of them only discussed 

the simulation of the theories rather than its implementation. 

iv) Many existing failure recovery techniques have a considerable period of 

downtime associated with them. This downtime can cause a significant 

business impact in terms of opportunity loss, administrative loss and loss of 

ongoing business. There is a need not just to reduce the downtime in the failure 

recovery process but also to automate it to a significant degree in order to avoid 

errors that are caused by manual failure recovery techniques. 
 
 
1.3 Objectives 
 
 
The main objectives of this dissertation can be summarized as follows: 

i) To propose new approaches for failure detection and an autonomous failure 

recovery in distributed system by introducing; 

• A new framework for continuous failure detection, 

• A new framework for automated failure recovery 

ii) To implement   failure detection and   autonomous failure recovery based on 

the proposed approach. 

iii) To compare and analyse the performance of the proposed method with 

existing approaches.  

 
 
1.4 Scope 
 
 
The focus of this research is to continuously monitor the failure detection and to 

automate the failure recovery in an unpredictable network within Neighbour Replica 

Distributed environment with the assumption that failure model is fail-stop failure.  
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1.5  Contributions 
 
 
There are four major contributions in this thesis; 

i) Introduced new continuous failure detection approach. The approaches have 

improved the detection accuracy and completeness as well as reducing 

detection time. 

ii) Proposed an autonomous failure recovery approach in a neighbour replica 

distributed system that can reduce computation time for failure recovery. The 

failure recovery approach also has the capability to determine and select the 

neighbour with the best optimal resources which can optimise the system 

availability.  

iii)  The implementation of continuous failure detection and autonomous failure 

recovery frameworks using Linux Shell script and tools in the neighbour 

replica distributed system. The implementation results showed that 

affirmative adaptive failure detection (AAFD) is able to achieve a complete 

and accurate detection with prompt timing while neighbour replica failure 

recovery NRFR can minimise the recovery time. Hence, by reducing failure 

detection latency and recovery processing time, the proposed approaches are 

able to reduce the Mean Time To Repair (MTTR) significantly as well as 

maximise the system availability or Mean Time Between Failure (MTBF). In 

addition, the implementation demonstrated that the proposed failure detection 

and recovery is theoretically sound as well as practically feasible in providing 

high availability distributed system.  

iv) Modelled a realistic and practical logical structure for high availability in 

complex and interdependent distributed environment. This model provided 

availability predictions for neighbour replica distribution technique (NRDT) 

and two replica distribution technique (TRDT). 

 
 
1.6 Thesis organisation. 
 
 
The work presented in this dissertation is organized into six chapters. The rest of this 

document is organized as follows. Chapter two describes preliminary concepts and   

related works that are selected from related research. Chapter three proposed a 
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methodology for failure detection and failure recover in neighbour replica distributed 

architecture. This chapter discusses in detail the proposed methodology. The 

implementation of proposed failure detection and recovery is presented in Chapter 

four. Chapter five presents the results and analysis of the proposed approach 

implementation and provide in-depth discussion of the implementation results. 

Lastly, Chapter six describes the conclusions and possible future work in relation to 

this dissertation. 
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CHAPTER 2 
 
 
 
 

LITERATURE REVIEW 
 
 
 
 

This chapter describes related background knowledge and reviews existing literature 

on failure detection and recovery. The background knowledge would provide the 

information on failure detection metrics, the behaviour of failed systems and 

interaction policies. Furthermore, this chapter also discusses and reviews existing 

related researches on failure recovery in distributed system which includes, check-

pointing and replication techniques. Since one of the objectives of this thesis is to 

automate failure recovery, this chapter will provide detailed review of replication 

techniques that best suited the high availability distributed system with self recovery 

characteristics. This includes the costs of resources and communication for 

replication as well as architectural complexity which will affect the recovery time. It 

also highlights the advantages and disadvantages of recent work that have been done 

in these fields. 

 
 
2.1 Introduction  
 
 
Schmidt (2006) defined availability as the frequency or duration in which a service 

or a system component is available for use. If this component is needed to provide 

the service, outage of a component is also applicable for service availability. In 

addition, any features that could help the system to stay operational despite the 

occurrences of failures will also be considered as availability.  
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The base availability measurement is the ratio of uptime to total elapsed time 

(Schmidt, 2006): 

 
 
2.2 Availability and unavailability 
 
 
In availability engineering and availability studies, unavailability values are 

generally used as compared to the availability values. According to ITEM Software 

Inc. (2007), unavailability or Q(t), is the probability that the component or system is 

not operating at time t, given that is was operating at time zero. Conversely, 

availability, A(t), represents the probability that the component or system is operating 

at time t, given that it was operating at time zero. Both Q(t) and A(t) has a numerical 

values from 0 to 1 and has no units (ITEM Software Inc, 2007). The unavailability, 

Q(t) can also be defined as  the component or system  probability is in the non-

functional state at time t and is equal to the number of the non-functional 

components at time t divided by the total sample. Since a component or system must 

be either in the operating or non-operating state at any time, the following 

relationship holds true:  

A(t) + Q(t) = 1 or   Unavailability  Q(t) = 1 – A(t) (2.2)

 

In this relation, the probability of availability with the absent of unavailability 

can be calculated. Both parameters can be used in availability assessments, safety 

and cost related studies. 

 
  
2.2.1  Probability of availability  
 
 
The goal of failure detection and failure recovery study is to reduce the sudden 

unavailability so that computer systems can improve availability.  

 

 

                                              Operational 

 Availability  =    --------------------------------------  

   Operational + Non- Operational 

  

(2.1)  
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Based on equation 2.1, the probability of availability can be expressed as 

MTTR+ MTBF
MTBFty Availabili   =   (2.3)

 

Availability of a system can also be referred to as the probability that a 

system will be available over a time interval T (Jia & Zhou, 2005). In other words, 

availability is a conditional probability that a system survives for the time interval [0, 

t], given that it was operational at time t=0. That is, the availability A of a system is a 

function of time, t, as given in the following equation.   

A(t) = Pr{0 failures in [0,t] | no failure at t = 0}  (2.4)

 

Jia & Zhou (2005) have also expressed availability in terms of operational 

and failure nodes. Equation 2.5 gives the value of A(t) where No (t) represents the 

number of nodes that are operating correctly at time t, Nf (t) the number of nodes that 

have failed at time t, and N be the number of nodes that are in operation at time t.  

)()(
)()(

)(
tNtN

tN
N

tN
fo

ootA
+

==  (2.5)

 

Similarly, unavailability, (Q) is defined by Jia & Zhou (2005) as:  

)()(
)()(

)(
tNtN

tN
N

tN

fo

fftQ
+

==  (2.6)

 
 
2.2.2 Mean Time Between Failures (MTBF) 
 
 
Reliability of repairable items can be measured using Mean Time Between Failures 

(MTBF). MTBF basically refers to the amount of time passed before a component, 

assembly, or system fails, when subjected to constant failure rate. Or it is simply the 

expected value of time between two consecutive failures. For constant failure rate 

systems, MTBF can also be calculated as the inverse of the failure rate, λ.  
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2.2.3 Mean Time To Failure (MTTF) 
 
 
 Mean Time To Failure (MTTF) on the other hand is used to measure the reliability 

of non-repairable systems (ITEM Software Inc, 2007). It represents the expected 

mean time before the occurrence of the first failure. For constant failure rate systems, 

MTTF is the inverse of the failure rate λ. If failure rate λ, is in failures/million hours, 

MTTF = 1,000,000 /Failure Rate, λ, or; 

hoursfailures
MTTF 610/

1
λ

=  
 

(2.7)

Typically, MTBF is applicable to components that could be repaired and returned to 

service whereas MTTF applies to parts that would no longer be used upon failure. 

However, MTBF can also be used for both repairable and non-repairable items. 

According to the European Power Supply Manufacturers Association (2005), MTBF 

refers to the time until the first (an only) failure after t0. 

 
 
2.2.4 Mean Time to Repair (MTTR) 
 
 
Mean Time To Repair (MTTR) refers to the duration of time between failure and 

completion of any corrective or preventative maintenance repairs (ITEM Software 

Inc. 2007). The term only applies to repairable systems.  

 
 
2.2.5 Failure Rates 
 
 
The probability of availability is based on failure rates. Every product has a failure 

rate, λ which is the number of units failing per unit time.  Conditional Failure Rate or 

Failure Intensity, λ(t), on the other hands provides a measure of reliability for a 

product. ITEM Software Inc. (2007) defined λ(t), as the expected number of times an 

item will fail in a specified time period, given that it was as good at time zero and is 

working at time t. A failure rate of 0.2%/1000 hours or 2 failures per million hours 

( fpmh ) or 500,000 hours/failure can be expressed as: 

fpmh2
10

2
1000

1*100
2.0

6 ==  (2.8)
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By considering a node with 0.2% of failure per 1000 hours, the probability of 

failures, Q(t), (sudden unavailability)  per year could be calculated as: 

0.01752365*241000
1

100
2.0 ** = , 

Since availability is given by A(t)= 1- Q(t), therefore A(t) = 1- 0.01752 = 

0.98248.  

If in three year, the unavailability is; 

Q(t)  = 0.052563*365*24*1000
1*100

2.0 =  (2.9)

Thus, the availability for three year is;  
            A(t)= 1- Q(t) = 1- 0.05276 = 0.94724 (2.10)

Based on this equation, it can be calculated that in 3 years (26,280 hours) the 

availability, A(t)  is approximately 0.95. This means that if such a unit is operational 

24 hours a day for 3 years, the probability of it surviving that time is about 95%. The 

same calculation for a ten year period will give A(t) a value of about 84%.  

 
2.2.6  System availability 
 
 
System availability is calculated by structuring the system as an interconnection of 

parts in series and parallel.  In order to decide if components should be placed in 

series or parallel, Pre (2008) applies the following rules:   

i) The two parts are considered to be operating in series if failure of a part leads 

to the combination becoming inoperable. 

ii) The two parts are considered to be operating in parallel if failure of a part 

leads to the other part taking over the operations of the failed part. 

 
 
2.2.6.1  Availability in series 
 
 
Two parts, x and y are considered to be operating in series if failure of either of the 

parts results in failure of the combination. For this combined system, it is only 

available if both Part X and Part Y works.  
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Hence, the serial availability of the combined system is given by the product 

of the two parts as shown in the following equation (Pre, 2008):  

A = Ax * Ay (2.11)

 

Figure 2.1: Availability in series 
 

Based on the above equation, the combined serial availability of two 

components is always lower than the availability of its individual components. 

 
 
2.2.6.2 Availability in parallel 
 
 
Two parts, x and y, are considered to be operating in parallel if either part is 

available.  Only when both parts fail, the combination is considered failed. Hence, 

this combination enables the design of a high availability system which makes it 

suitable for mission critical systems. Equation 2.12 gives the availability for parallel 

systems (Pre, 2008): 

 
A = 1 - (1 - Ax)(1 -  Ay) (2.12)

 

 

 

 

 
 

Figure 2.2: Availability in parallel 
 
 
2.2.6.3 Availability in joint parallel and series environment 
 
 
In real environment, however, it is common to have two or more sets of parallel 

components connected in series. If this is the case, the availability A can be defined 

as: 

A = ( 1 - (1 – Aw)(1 -  Ax)) * ((1 - (1 – Ay)(1 -  Az)) (2.13)

Part x 

Part y 

Part x Part y 
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Figure 2.3: Availability in joint parallel with series 
 
 
2.2.7  Availability in distributed system  
 
 
Data availability in parallel distributed systems could be improved by storing 

multiple copies of data at different sites. With this redundancy, data could be made 

available to users despite site and communication failures. In the parallel distributed 

system, the system works unless all nodes fail. Connecting machines in parallel 

contribute to the system redundancy reliability enhancement. 

Let A = availability, Q = unavailability, then the system unavailability as 

given by Koren and Krihna (2007) is as follow: 

             Q = Q1 * Q2 * Q3 *...* Qn 

Q = (1 – A1) * (1 – A2) * (1 – A3) * (1 – An) 

 

(2.14)

 

Thus, the availability of the distributed parallel system can be calculated as: 

AS = 1- QS =1- (Q1* Q2 * Q3 *...* Qn) 

     = 1- [(1 – A1) * (1 – A2) * ..* (1 – An)] 

    = ∏
=

−−
n

i
iA

1
)1(1  

(2.15)

 

To illustrate this, let us take a system that consists of three nodes connected in 

parallel. The availability of these nodes are 0.9, 0.95 and 0.98 respectively. The 

overall system availability is given by: 

A = 1-(1-0.9)*(1-0.95)*(1-0.98) = 1-0.1*0.05*0.02 = 1-0.0001 

     A = 0.99990 

(2.16)

 
 
 
 
 

Part w 

Part x 

Part y 

Part z 
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2.2.8  The k-out-of-n availability model in distributed system   
 
 
A k-out-of-n configuration refers to independent nodes that have some identical data 

or services (Koren & Krihna, 2007). Based on this configuration, failure of any 

nodes would not affect the remaining nodes and all nodes have the same failure 

distribution. The availability of each node could be evaluated using the binomial 

distribution, or: 

 
      

(2.17)

Where, 

• n is the total number of units in distributed parallel. 

• k is the minimum number of units required for system success. 

• R is the reliability of each unit. 

 
 
2.3  Terminology 
 
 
Flavio (2006) described a fault as either software or a hardware defect. An error is an 

incorrect step, process, or data definition. A failure is a deviation from the expected 

correct behaviour. As an example, if a programmer introduces an invalid set of 

instructions, and the execution of these instructions causes a computer to crash, then 

the introduction of these instructions into the program is the fault, executing them is 

the error, and crashing the computer is the failure.  

The following terms are mostly based on the book  published by  IBM 

entitled “Achieving High Availability on Linux for System Z with Linux-HA 

Release  2” by Parziale et al., (2009). 

 

i) High availability 

High availability is the maximum uptime of a system. A system that is 

developed to be high availability resists failures that are caused by planned or 

unplanned outages. The terms stated in Service level agreements (SLAs) 

decide the degree of a system’s high availability.  

∑
=

n

kr

n 
r 

 1
n-r

)( RR
r

−RS  (k,n,R) = 
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ii) Continuous operation 

Continuous operation is an uninterrupted or non-disruptive level of operation 

where changes to hardware and software are apparent to users. Planned 

outages normally take place in environments that are designed to provide 

continuous operation. These kinds of environments are designed to avoid 

unplanned outages. 

iii) Continuous availability 

Continuous availability is an uninterrupted, non-disruptive, level of service 

that is provided to users. It provides the highest level of availability that can 

possibly be achieved. Planned or unplanned outages of hardware or software 

cannot exist in environments that are designed to provide continuous 

availability. 

iv) Failover 

Failover is the procedure in which one or more node resources are transferred 

to another nodes or nodes in the same cluster because of failure or 

maintenance. 

v) Failback 

Failback is the procedure in which one or more resources of a non-functional 

node are returned to its original owner once it becomes available. 

vi) Primary (active) node 

A principal or main node is a member of a cluster, which holds the cluster 

resources and runs processes against those resources. When the node is 

conciliated, the ownership of these resources stops and is passed to the 

standby node. 

vii) Standby (secondary, passive, or failover) node 

A standby node, also known as a passive, secondary or failover node is a 

member of a distributed system that is able to access resources and running 

processes. However, it is in a standby position until the principal node is 

conciliated or has to be stopped. At that point, all resources fail over to the 

standby node, which becomes the active node. 

viii) Single point of failure 

A single point of failure (SPOF) exists when a hardware or software 

component of a system can potentially bring down the entire system without 
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any means of quick recovery. High availability systems tend to avoid a single 

point of failure by using redundancy in every operation. 

ix) Cluster 

A cluster is a group of nodes and resources that act as one entity to enable 

high availability or load balancing capabilities. 

x) Outage 

For the intention of this thesis, outage is the failure of services or applications 

for a particular period of time. An outage can be planned or unplanned: 

• Planned outage  

Planned outage takes place when services or applications are 

interrupted because of planned maintenance or changes, which are 

expected to be reinstated at a specific time. 

• Unplanned outage  

Unplanned outage takes place when services or applications are 

interrupted because of events that are out of control such as natural 

disasters. Unplanned outages can also be caused by human errors and 

hardware or software failures. 

xi) Uptime 

Uptime is the duration of time when applications or services are available. 

xii) Downtime 

Downtime is the duration of time when services or applications are not 

available. It is usually calculated from the time that the outage takes place to 

the time when the services or applications are available. 

xiii) Service level agreement 

Service Level Agreements (SLAs) ascertain the degree of responsibility to 

maintain services that are available to users, costs, resources, and the 

complexity of the services. For example, a banking application that handles 

stock trading must maintain the highest degree of availability during active 

stock trading hours. If the application goes down, users are directly affected 

and, as a result, the business suffers. The degree of responsibility varies 

depending on the needs of the user. 
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2.4  Failure  detection 
 
 
Failure detection is a process in which information about faulty nodes is collected 

(Siva & Babu, 2010).  This process involves isolation and identification of a fault to 

enable proper recovery actions to be initiated. It is an important part of failure 

recovery in distributed systems. 

Chandra & Toueg (1996) characterize failure detectors by specifying their 

completeness and accuracy properties (Elhadef  & Boukerche,  2007). The 

completeness of a failure detector refers to its capability of suspecting every faulty 

node permanently. While, the accuracy refers to its capability of not suspecting fault-

free ones. 

Stelling et al. (1999) considered the main concerns or requirements that 

should be addressed in designing a fault detector for grid environments. These 

include:  

i) Accuracy and completeness. The fault detector must identify faults 

accurately, with both false positives and false negatives being rare. 

ii) Timeliness. Problems must be identified in a timely manner in order for 

responses and corrective actions to be initiated as soon as possible. 

 

Chen et al. (2000) analysed the quality of service (QoS) of failure detectors 

and proposed that the measurement of QoS should adhere to the following metrics: 

i) Detection time (TD): TD is the time that passes from q’s crash to the time 

when q starts to suspect p permanently. 

ii) Mistake recurrence time (TMR): The mistake recurrence is the time between 

false detections. 

In order to formally classify the QoS metrics, Chen et al. (2000) identified 

state transitions of a failure detector as “when a failure detector monitors a monitored 

process, at any time, the failure detector’s state either trusts or suspects the monitored 

process’s liveness. If a failure detector transfers from a trust state to a suspect state, 

then an S-transition occurs, if a failure detector transfers from a Suspect state to a 

Trust state then a T-transition occurs”. Ma (2007) recommended a set of QoS metrics 

to measure the completeness, accuracy and speed of unreliable failure detectors. QoS 

in this context means measures that indicate (1) how fast a failure detector detects 

actual failures, and (2) how well it avoids false detections. 
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2.5 Behaviour of failed systems 
 
 
In distributed systems, failures do occur. The types of failures can cause the system 

to behave in a certain way. While there are slight discrepancies in literature regarding 

their definitions (Satzger et al., 2008), Arshad (2006) classifies possible behaviour of 

systems following a failure into three types which are: 

i) A crash-recovery failure model is a fail-stop failure in which once it has 

failed, it would not be able to output any action or trigger any events. 

ii)  A byzantine system is one that does not stop after a failure but instead 

behaves in an inconsistent way. It may send out wrong information, or 

respond late to a message. 

iii) A fail-fast system is one that behaves like a Byzantine system for some time 

but moves into a fail-stop mode after a short period of time. 

This thesis focuses on distributed system components or nodes that have fail-

stop behaviour. It does not matter what type of faults or failures that have caused this 

behaviour but it is necessary that the system does not perform any operation once it 

has failed. In other words it just stops doing anything following a failure. 

 
 
2.6 Interaction policies 
 
 
The failure detectors and the monitored components commonly communicate 

through either two interaction protocols. One is the heartbeat model and the other is 

the pull or ping model.  These behaviours of monitoring protocols are used by failure 

detector to monitor system components (Felber et al., 1999).  

 
 
2.6.1  The Heartbeat model 
 
 
The heartbeat model or push model is the most common technique for monitoring 

crash failure (Mou, 2009). Many state-of-the-art failure detector approaches were 

based on heartbeats (Hayashibara & Takizawa 2006; Satzger et al., 2007; Satzger et 

al., 2008; Dobre et al., 2009; Noor  & Deris, 2009). 

In the push model, the direction of control flow matches the direction of 

information flow. In addition, the model has active monitorable objects. These 
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objects will periodically send heartbeat messages to inform other objects that they 

are still alive. If no heartbeat is received by the monitor within specific time bounds, 

it starts suspecting the object. Since only one-way messages are sent in the system, 

this method is efficient. If several monitors are monitoring the same objects, the 

model may be implemented with hardware multicast facilities. 

Figure 2.4: The Heartbeat model for object monitoring  

 

Figure 2.4 illustrates the monitoring objects of the heartbeat model (Felber et 

al., 1999). The abstraction of the roles of objects involved in a monitoring system is 

performed by three interfaces namely monitors, monitorable objects and notifiable 

objects. Monitors (or failure detectors) basically collect information about 

component failures. Objects that may be monitored hence enable failures to be 

detected are termed as Monitorable objects. Notifiable objects refer to objects that 

can be registered are asynchronously notified by the monitoring service about object 

failures. 

 
 
2.6.2  The Pull model 
 
 
In the pull model which is also known as ping model, the flow of information is in 

the opposite direction of control flow, i.e., only when requested by consumers. If 

compared with the push model, monitored objects in this model are passive. The 

monitors periodically send liveness requests to check the status of the monitored 

objects. If a monitored object replies, it means that it is alive. Since two-way 

messages are sent to monitored objects, this model is normally regarded as less 

efficient and less popular than the push model. However, the pull model is easier to 

use because the monitorable objects are passive and do not have to know the 

 Time 
out

Monitor 

Time 

I’m 
Alive 

Suspect 
N1

I’m 
Alive

I’m 
Alive

Failure
Monitorable 
Object :N1 



 20

frequency at which the monitor expects to receive messages. Figure 2.5 illustrates 

how the pull model is used for monitoring objects and the messages exchanged 

between the monitor and the monitorable object (Felber et al., 1999).  

Figure 2.5: The Pull model for object monitoring 

 
 
2.7  Existing failure detection techniques 
 
 
Failure detection techniques in distributed systems have received much attention by 

many researchers. There were many failure detection protocols or techniques that 

have been proposed and implemented. Most of these implementations were based on 

timeouts. 

 
 
2.7.1 Globus Heartbeat monitor   
 
 
Stelling et al., (1999) proposed Globus Heartbeat Monitor (GHM) for a failure 

detection service in grid computing, which have became one of the most popular 

fault detector services in grid environment. GHM is based on two-layer architecture: 

the lower layer includes local monitors and the upper layer contains data collectors. 

The local monitor performs two functions: (i) monitors the host on which it runs, and 

(ii) selects processes on that host. It periodically sends heartbeat messages to data 

collectors including information on the monitored components. On receiving 

heartbeats from local monitors, the data collectors are responsible for identifying 

failed components, and notifying applications about relevant events concerning 

monitored components. This approach improves the failure detection time in a grid.  
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Each local monitor in this approach broadcasts heartbeats to all data 

collectors. Globus toolkit has been designed to use existing fabric components, 

including vendor-supplied protocols and interfaces (Hayashibara & Takizawa, 2006). 

 

Figure 2.6: The architecture of the GHM failure detection (Stelling et al., 1999) 

 

The architecture of the GHM failure detection service grid shown in Figure 

2.6 may change its topology by component leaving/joining at runtime but the 

proposed architecture is static and does not adapt well to such changes in a system 

topology. Recently, International Business Machines (IBM) (Parziale et al., 2009) 

have utilised the Heartbeat Release 2 (released in 2005) in achieving high availability 

on Linux for IBM System Z. This heartbeat is able to scale up to 16 nodes. However, 

the Heartbeat Release 2 still maintains the fixed interval time and timeout delay as 

Heartbeat Release 1. However, few bottlenecks have been identified as put by 

Abawajy (2004b) “they scale badly in that the number of members that are being 

monitored require developers to implement fault tolerance at the application level”. 

Pasin, Fontaine and Bouchen (2008) also found that they are difficult to implement 

and have high-overhead.  

Failure Detection and Recovery Services (FDS) improves the GHM with 

early detection of failures in applications, grid middleware and grid resources 

(Abawajy, 2004b). The classical heartbeat approach suffers from two main 

weaknesses;  

i) The detection time depends on the last heartbeat. 
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ii) It relies on a fixed timeout delay that does not take into account the network 

and system’s load.  

The first weakness may have a negative impact on the accuracy of the failure 

detector since premature timeouts may occur. For the second weakness, a node may 

be mistakenly suspected as faulty if it slows down due to heavy workload or if the 

network suffers from links failure that may delay the delivery of messages. 

 
 
2.7.2 Scalable failure detection 
 
 
Gillen  et al. (2007) have designed an adaptive version of the Node-Failure Detection 

NFD subsystem. In this version, the failure-detection thresholds used by individual 

Monitors are increasingly adjusted on a per-node basis. A simplistic approach was 

used to monitor adaptation. Every time the monitor detected a false positive on that 

node, the Monitor’s detection threshold, Th for a node is multiplied by a configurable 

value, k. In the implementation, they set the value of threshold to 2 (the same value 

of k is used for all nodes.) Th+1 = k(Sn).They concluded that the best way to avoid a 

large  number of false positives caused by dropped heartbeat packets  is to set Th to 

be at least twice the heartbeat generation period. This enables the system to avoid 

declaring a false failure in the case of disjointed single-packet losses without 

incurring the overhead from sending more packets. 

 
 
2.7.3  Adaptive failure detection 
 
 
Adaptive failure detectors can adapt to change network conditions (Chen, 2002; 

Hayashibara et al., 2004). The approaches were based on periodically sent heartbeat 

messages. A network can behave significantly different during high traffic times and 

low traffic times with respect to probability of message loss, the expected delay for 

message arrivals, and the variance of this delay. In order to meet the current 

conditions of the system, adaptive failure detectors will arrange their parameters 

accordingly. In this case, the parameter is the predicted arrival time of future 

heartbeat message. For example, the next heartbeat message will arrive within 2 

seconds. Thus, this makes adaptive failure detectors highly desirable. In large scale 

networks, adaptive approaches were proved to be more efficient than approaches 
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with constant timeout (Khilar, Singh & Mahapatra, 2008; Gillen et al., 2000; Satzger 

et al., 2008). 

Chen et al. (2002) have proposed a well-known implementation for a failure 

detector that adapts to changes in network conditions. It was based on a probabilistic 

analysis of a network traffic called adaptive failure. Adaptive failure detectors are 

extended implementations that adapt dynamically to their environment (i.e., network 

condition) and to change application behaviour. These adapters are basically 

implemented based on the concepts of unreliable failure detectors or the legacy 

timeout-based failure detection. A timeout is adjusted according to network condition 

and  requirement from an application. This technique compute an estimation of the 

arrival time of the next heartbeat using arrival times sampled in the recent past. The 

timeout is set according to this estimation and a safety margin, and recomputed for 

each interval. The safety margin is set by application QoS requirements (e.g., upper 

bound on detection time) and network characteristics (e.g., network load). Based on 

data failure samples, detectors generate a suspicion value which indicates whether a 

node has failed or not. Failure detectors differ in the way the suspicion value is 

computed but they all are dependent on the input from the sample base. 

Bertier & Marin (2002) have integrated Chen’s estimation with another 

estimation developed by Jacobson (1998) for a different context. Their approach is 

similar to Chen’s, however they did not use a constant safety margin but computed it 

with Jacobson’s approach. Elhadef & Boukerch (2007) proposed a method to 

estimate the arrival time of the heartbeat messages where the arrival time of the next 

heartbeat of a node is computed by averaging the n last arrival times. In their 

implementation, Bertier’s approach is improved and utilised. Process p manages a 

list S based on the information it receives about the inter arrival times of the 

heartbeats. The equation for heartbeat arrival prediction for this approach is given 

as:- 

||
  11n S

S
S

n

i
i∑

==+  (2.18)

where   

S = [1.083s, 0.968s, 1.062s, 0.993s, 0.942s, 2.037s, . . .] 

Si = {x | x  ∈ S and x  ≠ ∅} 

sn+1 =  Inter arrival time of next  heartbeat message. 
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Khilar, Singh & Mahapatra (2008) have proposed an adaptive failure 

detection service for large scale ad hoc networks using an efficient cluster based 

communication architecture. This failure detection service (after this, it is called 

Khilar’s approach) adapted the detection parameter to the current load of the wireless 

ad hoc network. In this proposed approach, a heartbeat based testing mechanism is 

used to detect failure in each cluster and take the advantage of cluster based 

architecture to forward the failure report to other cluster and their respective 

members.  In Khilar’s failure detection approach, each cluster head maintains a 

heartbeat table received for each member node. Cluster head, CH also stores the 

arrival time of last n heartbeat messages for each member node. Initially, the table 

has a fixed timeout period for each node. When a heartbeat from a particular member 

is received, a new freshness point is calculated using the arrival time of this heartbeat 

and previous heartbeat messages and new timeout period is set to be equal to this 

freshness point, Sn+1 =  Sn  or  Hmax  =  Sn. 

 
 
2.7.4 Lazy Failure Detection  
 
 
Lazy Failure detection approach (Fetzer et al., 2001) attempt to reduce the 

networking overhead that arises e.g. from sending heartbeat messages. To achieve 

this, detection processes monitor each other by using application messages whenever 

possible to get information on processor failures. This protocol requires each 

message to be acknowledged. Only when two processes are not communicating, then 

failure detection messages are used (Satzger et al., 2008). 

A heartbeat-style failure detector is referred to as lazy if it uses a technique to 

reduce the networking overhead caused by sending heartbeat messages. In other 

word, this approach only send heartbeat messages if it really have to and is thus 

called lazy. In this context, it is important to distinguish between application 

messages and heartbeat messages. While the former are sent by the application and 

unavoidable, heartbeat messages are sent by failure detectors. 

Satzger et al. (2008) proposed a lazy monitoring approach aims at reducing 

the network load without the negative effects on the detection time. Quite the 

contrary, it allows for a better training of the failure detector as it provides more data 

and thus can further improve the quality of the generated suspicion information. This 
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