
NEIGHBOUR R NEIGHBOUR REPLICA AFFIRMATIVE ADAPTIVE

FAILURE DETECTION AND AUTONOMOUS RECOVERY

AHMAD SHUKRI BIN MOHD NOOR

A thesis submitted in

fulfillment of the requirements for the award of the

Doctor of Philosophy.

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

NOVEMBER 2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UTHM Institutional Repository

https://core.ac.uk/display/42953909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

v

ABSTRACT

High availability is an important property for current distributed systems. The trends

of current distributed systems such as grid computing and cloud computing are the

delivery of computing as a service rather than a product. Thus, current distributed

systems rely more on the highly available systems. The potential to fail-stop failure

in distributed computing systems is a significant disruptive factor for high

availability distributed system. Hence, a new failure detection approach in a

distributed system called Affirmative Adaptive Failure Detection (AAFD) is

introduced. AAFD utilises heartbeat for node monitoring. Subsequently, Neighbour

Replica Failure Recovery(NRFR) is proposed for autonomous recovery in distributed

systems. AAFD can be classified as an adaptive failure detector, since it can adapt to

the unpredictable network conditions and CPU loads. NRFR utilises the advantages

of the neighbour replica distributed technique (NRDT) and combines with weighted

priority selection in order to achieve high availability, since automatic failure

recovery through continuous monitoring approach is essential in current high

availability distributed system. The environment is continuously monitored by

AAFD while auto-reconfiguring environment for automating failure recovery is

managed by NRFR. The NRFR and AAFD are evaluated through virtualisation

implementation. The results showed that the AAFD is 30% better than other

detection techniques. While for recovery performance, the NRFR outperformed the

others only with an exception to recovery in two distributed technique (TRDT).

Subsequently, a realistic logical structure is modelled in complex and interdependent

distributed environment for NRDT and TRDT. The model prediction showed that

NRDT availability is 38.8% better than TRDT. Thus, the model proved that NRDT is

the ideal replication environment for practical failure recovery in complex distributed

systems. Hence, with the ability to minimise the Mean Time To Repair (MTTR)

significantly and maximise Mean Time Between Failure (MTBF), this research has

accomplished the goal to provide high availability self sustainable distributed system.

vi

ABSTRAK

Kebolehsediaan yang tinggi ialah satu ciri penting untuk sistem teragih semasa.

Kecenderungan sistem-sistem teragih masakini seperti grid computing dan cloud

computing ialah penyedian pengkomputeran sebagai satu perkhidmatan berbanding

sebagai satu produk. Oleh itu, sistem teragih semasa sangat memerlukan sistem

yang mempunyai kebolehsediaan yang tinggi. Potensi untuk gagal-berhenti dalam

sistem pengkomputeran teragih adalah faktor yang memyebabkan gangguan kepada

kebolehsediaan yang tinggi. Oleh itu, tesis ini mencadangkan pengesanan kegagalan

yang afirmatif serta adaptif (AADF). AAFD menggunakan heartbeat untuk

pemantauan nod. Seterusnya pemulihan kegagalan replika kejiranan (NRFR)

dicadangkan untuk pemulihan secara autonomi. Oleh kerana AAFD dapat

mengadaptasi dengan ketidaktentuan rangkaian dan CPU, ia boleh diklasifikasikan

sebagai pengesan kegagalan yang adaptif. NRFR menggunakan kelebihan teknik

replika kejiranan teragih (NRDT) dan menggabungkan pemilihan keutamaan

berdasarkan pemberat. Seterusnya AAFD dan NRFR dinilai melalui pelaksanaan

virtualisation. Hasil keputusan menunjukkan, secara puratanya AAFD adalah 30%

lebih baik dari teknik-teknik yang lain. Manakala bagi prestasi pemulihan, NRFR

mengatasi yang lain kecuali untuk pemulihan didalam teknik replika berdua (TRDT).

Seterusnya, struktur logik yang realistik dan praktikal bagi kebolehsediaan tinggi

dalam persekitaran teragih yang komplek dan saling bergantungan dimodelkan

untuk NRDT dan TRDT. Model ini membuktikan bahawa kebolehsediaan NRDT

adalah 38.8% lebih baik. Oleh yang demikian, model ini membuktikan NRDT adalah

pilihan terbaik untuk memulihkan kegagalan di dalam sistem teragih yang komplek.

Oleh itu, dengan kebolehan meminimumkan Mean Time To Repair (MTTR) dan

memaksimumkan Mean Time Between Failure (MTBF), kajian ini mencapai

matlamat untuk menyediakan sistem teragih yang mampan dan kebolehsediaan

tinggi.

vii

PUBLICATIONS

1) Ahmad Shukri Mohd Noor , Mustafa Mat Deris and Tutut Herawan

Neighbour-Replica Distribution Technique Availability Prediction in

Distributed Interdependent Environment. International Journal of Cloud

Applications and Computing (IJCAC) 2(3), 98-109, IGI Global , 2012

2) Ahmad Shukri Mohd Noor, Mustafa Mat Deris, Tutut Herawan and

Mohamad Nor Hassan. On Affirmative Adaptive Failure Detection. LNCS

7440 pp. 120-129 Springer-Verlag Berlin Heidelberg 2012.

3) Ahmad Shukri Mohd Noor and Mustafa Mat Deris. Fail-stop-proof fault

tolerant model in distributed neighbor replica architecture. Procedia-

Computer Science. Elsevier Ltd 2011. (Accepted to be published).

4) Ahmad Shukri Mohd Noor and Mustafa Mat Deris. Deris Failure Recovery

Mechanism in Neighbor Replica Distribution Architecture. LNCS 6377, pp.

41–48, 2010. Springer-Verlag Berlin Heidelberg 2010.

5) Ahmad Shukri Mohd Noor and Mustafa Mat Deris. Extended Heartbeat

Mechanism for Fault Detection Service Methodology CCIS 63, pp. 88–95,

2009. Springer-Verlag Berlin Heidelberg 2009.

viii

TABLE OF CONTENTS

 TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 PUBLICATIONS vii

 TABLE OF CONTENTS viii

 LIST OF TABLES xii

 LIST OF FIGURES xiv

 LIST OF SYMBOLS AND ABBREVIATIONS xvii

 LIST OF APPENDICES xviii

CHAPTER 1 INTRODUCTION 1

 1.1 Research background 1

ix

 1.2 Problem statements 3

 1.3 Objectives 4

 1.4 Scope 4

 1.5 Contributions 5

 1.6 Thesis organisation 5

CHAPTER 2 LITERATURE REVIEW 7

 2.1 Introduction 7

 2.2 Availability and unavailability 8

 2.2.1 Probability of availability 8

 2.2.2 Mean Time Between Failures (MTBF) 9

 2.2.3 Mean Time To Failure (MTTF) 10

 2.2.4 Mean Time to Repair (MTTR) 10

 2.2.5 Failure rates 10

 2.2.6 System availability 11

 2.2.6.1 Availability in series 11

 2.2.6.2 Availability in parallel 12

 2.2.6.3 Availability in joint parallel

12
 and series environment

 2.2.7 Availability in distributed system 13

 2.2.8 The k-out-of-n availability model in
 14 distributed system

 2.3 Terminology 14

 2.4 Failure detection 17

 2.5 Behaviour of failed systems 18

 2.6 Interaction policies 18

 2.6.1 The Heartbeat model 18

 2.6.2 The Pull model 19

 2.7 Exiting failure detection techniques 20

 2.7.1 Globus Heartbeat monitor 20

 2.7.2 Scalable failure detection 22

 2.7.3 Adaptive failure detection 22

 2.7.4 Lazy failure detection 24

 2.7.5 Accrual failure detection 26

 2.8 Failure recovery 28

x

 2.8.1 Checkpointing failure recovery 29

 2.8.2 Failure recovery replication technique 31

 2.8.3 Read-One Write-All (ROWA) 32

 2.8.4 Two-Replica Distribution Technique
(TRDT)

34

 2.8.5 Voting (VT) 35

 2.8.6 Tree Quorum (TQ) 38

 2.8.7 Neighbour Replication Distributed
Technique (NRDT)

41

 2.9 Other related researches 43

 2.10 Summary 44

CHAPTER 3 METHODOLOGY 46

 3.1 Introduction 46

 3.2 AAFD framework 48

 3.2.1 Embedding Ping in AAFD framework 50

 3.2.2 AAFD maximum waiting time
prediction 51

 3.3 Neighbour Replica Failure Recovery (NRFR) 56

 3.3.1 NRFR logical structure 56

 3.3.2 NRFR framework 61

 3.3.3 Failover neighbour selection 66

 3.4 Embedding NRFR into web service
environment 68

 3.4.1 Existing Web service Failure Recovery 70

 3.4.2 Utilising NRFR in web services 70

 3.5 Summary 72

CHAPTER 4 IMPLEMENTATION 73

 4.1 Introduction 73

 4.2 Hardware specifications 73

 4.3 Operating systems and software specifications 74

 4.4 Experimental design environment 75

 4.5 AAFD configuration 81

 4.6.1 AAFD script execution 81

xi

 4.6 NRFR configuration 83

 4.7 AAFD and NRFR execution 86

 4.8 Experimental test scenarios 89

 4.9 Summary 96

CHAPTER 5 RESULTS AND ANALYSIS 97

 5.1 Introduction 97

 5.2 Failure detection results analysis 97

 5.2.1 Fail-stop failure detection results
analysis 108

 5.3 Failure recovery results analysis 111

 5.4 Inter-dependent distributed system availability 116
 prediction model

 5.4.1 TRDT availability prediction model 117

 5.4.2 NRDT availability prediction Model 119

 5.4.3 TRDT and NDRT availability
prediction comparison 122

 5.5 Summary 125

CHAPTER 6 CONCLUSION AND FUTURE WORKS 126

 6.1 Conclusion 126

 6.2 Future Works 129

 REFERENCES 131

 APPENDIX 138

xii

LIST OF TABLES

3.1 An example of sampling list S 52
3.2 The registered nodes status 58
3.3 Primary data file checksum for each node 59
3.4 Logical neighbour site 59
3.5 Node weighted information 60
3.6 The checksum data file of all nodes in content index table 60

4.1 Hardware specifications 74

4.2 Operating Systems and system development tools 74

specification

4.3 The local IP address and datafiles for each member site 80

5.1 AAFD and other failure detection techniques 100

5.2 Summary of the performance results for site2 106

5.3 Comparison of performance detection between AAFD and other

techniques

107

5.4 Fail-stop failure comparison between GHM, Elhadef and AAFD 111

5.5 The comparison of the size of replicas for a data item under different

set of n sites for various replication techniques

113

5.6 The comparison of fail-stop failure occurrences by number of replica 113

5.7 The recovery time comparison for the five protocols under 114

different set of n sites

5.8 The components availabilities of an interdependent distributed 116

system

5.9 TRDT high availability for various servers 119

5.10 NRDT high availability for various servers 122

5.11 The availabilities predictions comparison between NRDT 123

and TRDT

5.12 TRDT availability prediction over an extended period of 10 123

years

5.13 NRDT availability prediction over an extended period of 10 124

years

xiii

5.14 The availability prediction comparison for NRDT and TRDT 124

over an extended period of 10 year

xiv

LIST OF FIGURES

2.1 Availability in series 12

2.2 Availability in parallel 12

2.3 Availability in joint parallel with series 13

2.4 The Heartbeat model for object monitoring 19

2.5 The Pull model for object monitoring 20

2.6 The architecture of the GHM failure detection 21

2.7 The values of S as a histogram 26

2.8 The probability of cumulative frequencies of the values in S 27

2.9 Data replica distribution technique when N = 2n 34

2.10 Application architecture of TRDT 35

2.11 A tree organization of 13 copies of a data object 38

2.12 An example of a write quorum required in TQ technique 39

2.13 Node with master/primary data file 41

2.14 Examples of data replication in NRDT 42

2.15 A NRDT with 5 nodes 42

3.1 Communication model for the proposed failure detection

methodology

47

3.2 Affirmative adaptive failure detection (AAFD) framework 49

3.3 The AAFD timeline diagram 51

3.4 AAFD algorithm 54

3.5 NRFR logical structure for recovery 57

3.6 The NRFR Framework 63

xv

3.7 Trace and validate neighbour nodes 64

3.8 A failover neighbour activates the virtual IP and starts the

effected services

66

3.9 NRFR algorithm 65

3.10 Web service architectural model for applying NRFR 69

3.11 Utilising NRFR for auto recovering in web services 71

4.1 High level conceptual design for experimental

implementation

76

4.2 Physical design of the experimental environment 77

4.3 VMware virtualisation environment with resources 78

4.4 VMware screenshot for Site3 terminal 79

4.5 The configuration of local IP address for each sites member 80

4.6 The users list in HBM assigned to all registered sites user 81

4.7 Setup auto run on boot for HB generator daemon 82

4.8 HBM auto detection script at HBM server 82

4.9 Command to start, stop, or restart hb_gen 83

4.10 The AAFD and NRFR implementation diagram 86

4.11 Experimental test scenarios diagram 89

4.12 Site3 starts hb_gen service 90

4.13 Screen shot for running HBM.sh script at HBM server 91

4.14 hb.dat file 91

4.15 Site3 restart the hb_gen service 92

4.16 HBM detects Site3 exceed maximum amount of time but still
alive

93

4.17 Site3 run service network stop 94

4.18 HBM detects fail-stop failure on Site3 94

4.19 Fail-stop failure recovery procedure on IS 95

4.20 Site2 with two IP numbers 96

5.1 Frequency of Heartbeat inter-arrival times for Site1 in Histogram 98

5.2 Frequency of Heartbeat inter-arrival times for Site2 in

Histogram

98

5.3 Heartbeat inter-arrival times for Satzger et al.(2008) 99

5.4 Example of inter-arrival time on site2 for 100 HB in sequence

manner

101

xvi

5.5 Gillen failure detection technique 102

5.6 Elhadef failure detection technique 103

5.7 Khilar failure detection technique 103

5.8 AAFD failure detection technique 104

5.9 The comparison of detection performance for all techniques 105

5.10 Failure detection patterns for Site1 108

5.11 Fail-stop failure detection comparison 109

5.12 Fail-stop failure detection for AAFD technique 109

5.13 Fail-stop failure detection for Elhadef technique 110

5.14 Fail-stop failure detection for GHM technique 110

5.15 The recovery time comparison for five techniques 114

5.16 The serial architectural design for the interdependent

distributed system

117

5.17 TRDT architectural design for distributed online servers 118

5.18 The NRDT servers structural design 120

5.19 NRDT design combines parallel with serial architecture 121

5.20 Comparison of availability prediction between NDRT and

TRDT for 10 years

124

xvii

LIST OF SYMBOLS AND ABBREVIATIONS

AAFD - Affirmative Adaptive Failure Detection

CH - Cluster Head

CPU - Centre Processing Unit

DC - Data Collector

FTP - File Transfer Protocol

GHM - Globus Heartbeat Monitor

HB - Heartbeat

HBM - Heartbeat Monitor

IS - Index Server

MTBF - Mean Time Between Failures

MTTF - Mean Time To Failure

MTTR - Mean Time To Repair

NRDT - Neighbour Replication Distributed Technique

OS - Operating Systems

ROWA - Read-One Write-All

SLAs - Service Level Agreements

SPOF - Single Point Of Failure

SSH - Secure shell protocol

TRDT - Two-Replica Distributed Technique

TQ - Tree Quorum

VT - Voting

xviii

LIST OF APPENDICES

APPENDIX TITLE

PAGE

A Heartbeat node2 (192.168.0.12) 138

B HBM.sh script (failure detection Script) 142

C RecoverPerform.sh script (Recovery Script) 147

D HMax prediction time 154

E VITA 157

CHAPTER 1

INTRODUCTION

 In this chapter, the background of the research is outlined, followed by

problem statements, objectives, contributions, scope of the research and lastly, the

organization of the thesis.

1.1 Research background

Availability is one of the most important issues in distributed systems (Renesse &

Guerraoui, 2010; Deris et al., 2008; Bora, 2006). With greater numbers of computers

working together, the possibility that a single computer failure can significantly

disrupt the system is decreased (Dabrowski, 2009). One of the benefits of a distributed

system is the increase of parallelism for replication (Renesse & Guerraoui, 2010).

Replication is a fundamental technique to achieve high availability in distributed and

dynamic environments by masking errors in the replicated component (Noor &

Deris, 2010; Bora, 2006). Thus, replication is very important in providing high

availability and efficient distributed system. Distributed systems can therefore lend

themselves in providing high availability (Mamat et al., 2006).

A fail-stop system is one that does not produce any data once it has failed. It

immediately stops sending any events or messages and does not respond to any

messages(Arshad,2006). This type of failures is common in today’s large computing

systems. When a fail-stop failure occurs, a prompt and accurate failure detection with

minimum time to recover are critical factors in providing high availability in

distributed systems. If these factors can efficiently and effectively be handled by a

 2

failure detection and recovery technique, it can provide a theoretical and practical

high availability solution for a distributed system.

Since current distributed computing such as grid computing and cloud

computing become larger, increasingly dynamic and heterogeneous. These

distributed systems become more and more complicated. Failures or errors are

arising due to the inherently unreliable nature of the distributed environment include

hardware failures, software errors and other sources of failures. Many failure

detection and recovery techniques have been adopted to improve the distributed

system availability. In addition to the outstanding replication technique for high

availability, failure detection and recovery is an important design consideration for

providing high availability in distributed systems (Dabrowski, 2009; Stelling et al.,

1998; Abawajy, 2004b; Flavio, 2006).

Therefore, failure detection and recovery in distributed computing has

become an active research area (Dimitrova & Finkbeiner, 2009; Siva & Babu 2010;

Khan, Qureshi & Nazir, 2010; Montes, Sánchez & Pérez, 2010; Costan et al., 2010).

Research in failure detection and recovery distributed computing aims at making

distributed systems high availability by handling faults in complex computing

environments. In order to achieve high availability, an autonomous failure detection

and recovery service need to be adopted. An autonomous failure detection and

recovery service is able to detect errors and recover the system without the

participation of any external agents, such as human. It can be restored, or has the

ability of self-healing, then back to the correct state again (Arshad, 2006). If no

failure detection and recovery is provided, the system cannot survive to continue

when one or several processes fail, and the whole program crashes.

Failure detection (or fault detection) is the first essential phase for developing

any fault tolerance mechanism or failure recovery (Avizienis et al., 2004). Failure

detections provide information on faults of the components of these systems (Stalin

et al., 1998).

Failure recovery is the second phase in developing any recovery mechanism

(Avizienis et al., 2004). Replication is one of the core techniques that can be utilised

for failure recovery in distributed and dynamic environments (Bora, 2006).

Exploitation of component redundancy is the basis for recovery in distributed

systems. A distributed system is a set of cooperating objects, where an object could

be a virtual node, a process, a variable, an object as in object-oriented programming,

 3

or even an agent in multi-agent systems. When an object is replicated, the application

has several identical copies of the object also known as replicas (Helal, Heddaya &

Bhargava , 1996; Deris et al., 2008). When a failure occurs on a replica, the failure is

masked by its other replicas, therefore availability is ensured in spite of the failure.

Replication mechanisms have been successfully applied in distributed applications.

However, the type of replication mechanisms to be used in the application is decided

by the programmer before the application starts. As a result, it can only be applied

statically. Thus, the development of autonomous failure detection and recovery

model with suitable replication technique and architectural design strategy is very

significant in building high availability distributed systems.

1.2 Problem statements

A study has found fault-detection latencies covered from 55% to 80% of non-

functional periods (Dabrowski et al., 2003). This depends on system architecture and

assumptions about fault characteristics of components. These non-functional periods

happened when a system is uninformed of a failure (or failure detection latency) and

periods when a system attempts to recover from a failure (failure-recovery latency)

(Mills et al., 2004). Even though the development of fault detection mechanism in

large scale distributed system is subject to active research, it still suffers from some

weaknesses (Dabrowski, 2009; Pasin, Fontaine & Bouchenak, 2008; Flavio, 2006).

i) Failure detection trade-offs between accuracy and completeness. Current

failure detection approaches suffer from the weaknesses of either fast detection

with low accuracy or completeness in detecting failures with a lengthy timeout.

Inaccurate detection may result in the recovery malfunction while delays in

detecting a failure will subsequently delay the recovery action. These trade-offs

need to be improved.

ii) Choosing the right replication architectural design strategies are very crucial in

providing high availability and efficient distributed system. This is because

keeping all of the replicas requires extra communication as well as processing

and may delay the recovery process. This will cause the system to be down for

a considerable period of time. In contrast, insufficient replicas can jeopardise

the availability of the distributed system.

 4

iii) Although the idea and theory of replication is convincing and robust, practical

implementation of replication technique is difficult to be modelled in real

distributed environment (Christensen, 2006). This is due to the complexity in

the implementation of replication and check pointing techniques. Therefore

they have been studied more theoretically through the use of simulation

technique (Khan, Qureshi & Nazir, 2010). Thus, most of them only discussed

the simulation of the theories rather than its implementation.

iv) Many existing failure recovery techniques have a considerable period of

downtime associated with them. This downtime can cause a significant

business impact in terms of opportunity loss, administrative loss and loss of

ongoing business. There is a need not just to reduce the downtime in the failure

recovery process but also to automate it to a significant degree in order to avoid

errors that are caused by manual failure recovery techniques.

1.3 Objectives

The main objectives of this dissertation can be summarized as follows:

i) To propose new approaches for failure detection and an autonomous failure

recovery in distributed system by introducing;

• A new framework for continuous failure detection,

• A new framework for automated failure recovery

ii) To implement failure detection and autonomous failure recovery based on

the proposed approach.

iii) To compare and analyse the performance of the proposed method with

existing approaches.

1.4 Scope

The focus of this research is to continuously monitor the failure detection and to

automate the failure recovery in an unpredictable network within Neighbour Replica

Distributed environment with the assumption that failure model is fail-stop failure.

 5

1.5 Contributions

There are four major contributions in this thesis;

i) Introduced new continuous failure detection approach. The approaches have

improved the detection accuracy and completeness as well as reducing

detection time.

ii) Proposed an autonomous failure recovery approach in a neighbour replica

distributed system that can reduce computation time for failure recovery. The

failure recovery approach also has the capability to determine and select the

neighbour with the best optimal resources which can optimise the system

availability.

iii) The implementation of continuous failure detection and autonomous failure

recovery frameworks using Linux Shell script and tools in the neighbour

replica distributed system. The implementation results showed that

affirmative adaptive failure detection (AAFD) is able to achieve a complete

and accurate detection with prompt timing while neighbour replica failure

recovery NRFR can minimise the recovery time. Hence, by reducing failure

detection latency and recovery processing time, the proposed approaches are

able to reduce the Mean Time To Repair (MTTR) significantly as well as

maximise the system availability or Mean Time Between Failure (MTBF). In

addition, the implementation demonstrated that the proposed failure detection

and recovery is theoretically sound as well as practically feasible in providing

high availability distributed system.

iv) Modelled a realistic and practical logical structure for high availability in

complex and interdependent distributed environment. This model provided

availability predictions for neighbour replica distribution technique (NRDT)

and two replica distribution technique (TRDT).

1.6 Thesis organisation.

The work presented in this dissertation is organized into six chapters. The rest of this

document is organized as follows. Chapter two describes preliminary concepts and

related works that are selected from related research. Chapter three proposed a

 6

methodology for failure detection and failure recover in neighbour replica distributed

architecture. This chapter discusses in detail the proposed methodology. The

implementation of proposed failure detection and recovery is presented in Chapter

four. Chapter five presents the results and analysis of the proposed approach

implementation and provide in-depth discussion of the implementation results.

Lastly, Chapter six describes the conclusions and possible future work in relation to

this dissertation.

 7

CHAPTER 2

LITERATURE REVIEW

This chapter describes related background knowledge and reviews existing literature

on failure detection and recovery. The background knowledge would provide the

information on failure detection metrics, the behaviour of failed systems and

interaction policies. Furthermore, this chapter also discusses and reviews existing

related researches on failure recovery in distributed system which includes, check-

pointing and replication techniques. Since one of the objectives of this thesis is to

automate failure recovery, this chapter will provide detailed review of replication

techniques that best suited the high availability distributed system with self recovery

characteristics. This includes the costs of resources and communication for

replication as well as architectural complexity which will affect the recovery time. It

also highlights the advantages and disadvantages of recent work that have been done

in these fields.

2.1 Introduction

Schmidt (2006) defined availability as the frequency or duration in which a service

or a system component is available for use. If this component is needed to provide

the service, outage of a component is also applicable for service availability. In

addition, any features that could help the system to stay operational despite the

occurrences of failures will also be considered as availability.

 8

The base availability measurement is the ratio of uptime to total elapsed time

(Schmidt, 2006):

2.2 Availability and unavailability

In availability engineering and availability studies, unavailability values are

generally used as compared to the availability values. According to ITEM Software

Inc. (2007), unavailability or Q(t), is the probability that the component or system is

not operating at time t, given that is was operating at time zero. Conversely,

availability, A(t), represents the probability that the component or system is operating

at time t, given that it was operating at time zero. Both Q(t) and A(t) has a numerical

values from 0 to 1 and has no units (ITEM Software Inc, 2007). The unavailability,

Q(t) can also be defined as the component or system probability is in the non-

functional state at time t and is equal to the number of the non-functional

components at time t divided by the total sample. Since a component or system must

be either in the operating or non-operating state at any time, the following

relationship holds true:

A(t) + Q(t) = 1 or Unavailability Q(t) = 1 – A(t) (2.2)

In this relation, the probability of availability with the absent of unavailability

can be calculated. Both parameters can be used in availability assessments, safety

and cost related studies.

2.2.1 Probability of availability

The goal of failure detection and failure recovery study is to reduce the sudden

unavailability so that computer systems can improve availability.

 Operational

 Availability = --------------------------------------

 Operational + Non- Operational

(2.1)

 9

Based on equation 2.1, the probability of availability can be expressed as

MTTR+ MTBF
MTBFty Availabili = (2.3)

Availability of a system can also be referred to as the probability that a

system will be available over a time interval T (Jia & Zhou, 2005). In other words,

availability is a conditional probability that a system survives for the time interval [0,

t], given that it was operational at time t=0. That is, the availability A of a system is a

function of time, t, as given in the following equation.

A(t) = Pr{0 failures in [0,t] | no failure at t = 0} (2.4)

Jia & Zhou (2005) have also expressed availability in terms of operational

and failure nodes. Equation 2.5 gives the value of A(t) where No (t) represents the

number of nodes that are operating correctly at time t, Nf (t) the number of nodes that

have failed at time t, and N be the number of nodes that are in operation at time t.

)()(
)()(

)(
tNtN

tN
N

tN
fo

ootA
+

== (2.5)

Similarly, unavailability, (Q) is defined by Jia & Zhou (2005) as:

)()(
)()(

)(
tNtN

tN
N

tN

fo

fftQ
+

== (2.6)

2.2.2 Mean Time Between Failures (MTBF)

Reliability of repairable items can be measured using Mean Time Between Failures

(MTBF). MTBF basically refers to the amount of time passed before a component,

assembly, or system fails, when subjected to constant failure rate. Or it is simply the

expected value of time between two consecutive failures. For constant failure rate

systems, MTBF can also be calculated as the inverse of the failure rate, λ.

 10

2.2.3 Mean Time To Failure (MTTF)

 Mean Time To Failure (MTTF) on the other hand is used to measure the reliability

of non-repairable systems (ITEM Software Inc, 2007). It represents the expected

mean time before the occurrence of the first failure. For constant failure rate systems,

MTTF is the inverse of the failure rate λ. If failure rate λ, is in failures/million hours,

MTTF = 1,000,000 /Failure Rate, λ, or;

hoursfailures
MTTF 610/

1
λ

=

(2.7)

Typically, MTBF is applicable to components that could be repaired and returned to

service whereas MTTF applies to parts that would no longer be used upon failure.

However, MTBF can also be used for both repairable and non-repairable items.

According to the European Power Supply Manufacturers Association (2005), MTBF

refers to the time until the first (an only) failure after t0.

2.2.4 Mean Time to Repair (MTTR)

Mean Time To Repair (MTTR) refers to the duration of time between failure and

completion of any corrective or preventative maintenance repairs (ITEM Software

Inc. 2007). The term only applies to repairable systems.

2.2.5 Failure Rates

The probability of availability is based on failure rates. Every product has a failure

rate, λ which is the number of units failing per unit time. Conditional Failure Rate or

Failure Intensity, λ(t), on the other hands provides a measure of reliability for a

product. ITEM Software Inc. (2007) defined λ(t), as the expected number of times an

item will fail in a specified time period, given that it was as good at time zero and is

working at time t. A failure rate of 0.2%/1000 hours or 2 failures per million hours

(fpmh) or 500,000 hours/failure can be expressed as:

fpmh2
10

2
1000

1*100
2.0

6 == (2.8)

 11

By considering a node with 0.2% of failure per 1000 hours, the probability of

failures, Q(t), (sudden unavailability) per year could be calculated as:

0.01752365*241000
1

100
2.0 ** = ,

Since availability is given by A(t)= 1- Q(t), therefore A(t) = 1- 0.01752 =

0.98248.

If in three year, the unavailability is;

Q(t) = 0.052563*365*24*1000
1*100

2.0 = (2.9)

Thus, the availability for three year is;
 A(t)= 1- Q(t) = 1- 0.05276 = 0.94724 (2.10)

Based on this equation, it can be calculated that in 3 years (26,280 hours) the

availability, A(t) is approximately 0.95. This means that if such a unit is operational

24 hours a day for 3 years, the probability of it surviving that time is about 95%. The

same calculation for a ten year period will give A(t) a value of about 84%.

2.2.6 System availability

System availability is calculated by structuring the system as an interconnection of

parts in series and parallel. In order to decide if components should be placed in

series or parallel, Pre (2008) applies the following rules:

i) The two parts are considered to be operating in series if failure of a part leads

to the combination becoming inoperable.

ii) The two parts are considered to be operating in parallel if failure of a part

leads to the other part taking over the operations of the failed part.

2.2.6.1 Availability in series

Two parts, x and y are considered to be operating in series if failure of either of the

parts results in failure of the combination. For this combined system, it is only

available if both Part X and Part Y works.

 12

Hence, the serial availability of the combined system is given by the product

of the two parts as shown in the following equation (Pre, 2008):

A = Ax * Ay (2.11)

Figure 2.1: Availability in series

Based on the above equation, the combined serial availability of two

components is always lower than the availability of its individual components.

2.2.6.2 Availability in parallel

Two parts, x and y, are considered to be operating in parallel if either part is

available. Only when both parts fail, the combination is considered failed. Hence,

this combination enables the design of a high availability system which makes it

suitable for mission critical systems. Equation 2.12 gives the availability for parallel

systems (Pre, 2008):

A = 1 - (1 - Ax)(1 - Ay) (2.12)

Figure 2.2: Availability in parallel

2.2.6.3 Availability in joint parallel and series environment

In real environment, however, it is common to have two or more sets of parallel

components connected in series. If this is the case, the availability A can be defined

as:

A = (1 - (1 – Aw)(1 - Ax)) * ((1 - (1 – Ay)(1 - Az)) (2.13)

Part x

Part y

Part x Part y

 13

Figure 2.3: Availability in joint parallel with series

2.2.7 Availability in distributed system

Data availability in parallel distributed systems could be improved by storing

multiple copies of data at different sites. With this redundancy, data could be made

available to users despite site and communication failures. In the parallel distributed

system, the system works unless all nodes fail. Connecting machines in parallel

contribute to the system redundancy reliability enhancement.

Let A = availability, Q = unavailability, then the system unavailability as

given by Koren and Krihna (2007) is as follow:

 Q = Q1 * Q2 * Q3 *...* Qn

Q = (1 – A1) * (1 – A2) * (1 – A3) * (1 – An)

(2.14)

Thus, the availability of the distributed parallel system can be calculated as:

AS = 1- QS =1- (Q1* Q2 * Q3 *...* Qn)

 = 1- [(1 – A1) * (1 – A2) * ..* (1 – An)]

 = ∏
=

−−
n

i
iA

1
)1(1

(2.15)

To illustrate this, let us take a system that consists of three nodes connected in

parallel. The availability of these nodes are 0.9, 0.95 and 0.98 respectively. The

overall system availability is given by:

A = 1-(1-0.9)*(1-0.95)*(1-0.98) = 1-0.1*0.05*0.02 = 1-0.0001

 A = 0.99990

(2.16)

Part w

Part x

Part y

Part z

 14

2.2.8 The k-out-of-n availability model in distributed system

A k-out-of-n configuration refers to independent nodes that have some identical data

or services (Koren & Krihna, 2007). Based on this configuration, failure of any

nodes would not affect the remaining nodes and all nodes have the same failure

distribution. The availability of each node could be evaluated using the binomial

distribution, or:

(2.17)

Where,

• n is the total number of units in distributed parallel.

• k is the minimum number of units required for system success.

• R is the reliability of each unit.

2.3 Terminology

Flavio (2006) described a fault as either software or a hardware defect. An error is an

incorrect step, process, or data definition. A failure is a deviation from the expected

correct behaviour. As an example, if a programmer introduces an invalid set of

instructions, and the execution of these instructions causes a computer to crash, then

the introduction of these instructions into the program is the fault, executing them is

the error, and crashing the computer is the failure.

The following terms are mostly based on the book published by IBM

entitled “Achieving High Availability on Linux for System Z with Linux-HA

Release 2” by Parziale et al., (2009).

i) High availability

High availability is the maximum uptime of a system. A system that is

developed to be high availability resists failures that are caused by planned or

unplanned outages. The terms stated in Service level agreements (SLAs)

decide the degree of a system’s high availability.

∑
=

n

kr

n
r

 1
n-r

)(RR
r

−RS (k,n,R) =

 15

ii) Continuous operation

Continuous operation is an uninterrupted or non-disruptive level of operation

where changes to hardware and software are apparent to users. Planned

outages normally take place in environments that are designed to provide

continuous operation. These kinds of environments are designed to avoid

unplanned outages.

iii) Continuous availability

Continuous availability is an uninterrupted, non-disruptive, level of service

that is provided to users. It provides the highest level of availability that can

possibly be achieved. Planned or unplanned outages of hardware or software

cannot exist in environments that are designed to provide continuous

availability.

iv) Failover

Failover is the procedure in which one or more node resources are transferred

to another nodes or nodes in the same cluster because of failure or

maintenance.

v) Failback

Failback is the procedure in which one or more resources of a non-functional

node are returned to its original owner once it becomes available.

vi) Primary (active) node

A principal or main node is a member of a cluster, which holds the cluster

resources and runs processes against those resources. When the node is

conciliated, the ownership of these resources stops and is passed to the

standby node.

vii) Standby (secondary, passive, or failover) node

A standby node, also known as a passive, secondary or failover node is a

member of a distributed system that is able to access resources and running

processes. However, it is in a standby position until the principal node is

conciliated or has to be stopped. At that point, all resources fail over to the

standby node, which becomes the active node.

viii) Single point of failure

A single point of failure (SPOF) exists when a hardware or software

component of a system can potentially bring down the entire system without

 16

any means of quick recovery. High availability systems tend to avoid a single

point of failure by using redundancy in every operation.

ix) Cluster

A cluster is a group of nodes and resources that act as one entity to enable

high availability or load balancing capabilities.

x) Outage

For the intention of this thesis, outage is the failure of services or applications

for a particular period of time. An outage can be planned or unplanned:

• Planned outage

Planned outage takes place when services or applications are

interrupted because of planned maintenance or changes, which are

expected to be reinstated at a specific time.

• Unplanned outage

Unplanned outage takes place when services or applications are

interrupted because of events that are out of control such as natural

disasters. Unplanned outages can also be caused by human errors and

hardware or software failures.

xi) Uptime

Uptime is the duration of time when applications or services are available.

xii) Downtime

Downtime is the duration of time when services or applications are not

available. It is usually calculated from the time that the outage takes place to

the time when the services or applications are available.

xiii) Service level agreement

Service Level Agreements (SLAs) ascertain the degree of responsibility to

maintain services that are available to users, costs, resources, and the

complexity of the services. For example, a banking application that handles

stock trading must maintain the highest degree of availability during active

stock trading hours. If the application goes down, users are directly affected

and, as a result, the business suffers. The degree of responsibility varies

depending on the needs of the user.

 17

2.4 Failure detection

Failure detection is a process in which information about faulty nodes is collected

(Siva & Babu, 2010). This process involves isolation and identification of a fault to

enable proper recovery actions to be initiated. It is an important part of failure

recovery in distributed systems.

Chandra & Toueg (1996) characterize failure detectors by specifying their

completeness and accuracy properties (Elhadef & Boukerche, 2007). The

completeness of a failure detector refers to its capability of suspecting every faulty

node permanently. While, the accuracy refers to its capability of not suspecting fault-

free ones.

Stelling et al. (1999) considered the main concerns or requirements that

should be addressed in designing a fault detector for grid environments. These

include:

i) Accuracy and completeness. The fault detector must identify faults

accurately, with both false positives and false negatives being rare.

ii) Timeliness. Problems must be identified in a timely manner in order for

responses and corrective actions to be initiated as soon as possible.

Chen et al. (2000) analysed the quality of service (QoS) of failure detectors

and proposed that the measurement of QoS should adhere to the following metrics:

i) Detection time (TD): TD is the time that passes from q’s crash to the time

when q starts to suspect p permanently.

ii) Mistake recurrence time (TMR): The mistake recurrence is the time between

false detections.

In order to formally classify the QoS metrics, Chen et al. (2000) identified

state transitions of a failure detector as “when a failure detector monitors a monitored

process, at any time, the failure detector’s state either trusts or suspects the monitored

process’s liveness. If a failure detector transfers from a trust state to a suspect state,

then an S-transition occurs, if a failure detector transfers from a Suspect state to a

Trust state then a T-transition occurs”. Ma (2007) recommended a set of QoS metrics

to measure the completeness, accuracy and speed of unreliable failure detectors. QoS

in this context means measures that indicate (1) how fast a failure detector detects

actual failures, and (2) how well it avoids false detections.

 18

2.5 Behaviour of failed systems

In distributed systems, failures do occur. The types of failures can cause the system

to behave in a certain way. While there are slight discrepancies in literature regarding

their definitions (Satzger et al., 2008), Arshad (2006) classifies possible behaviour of

systems following a failure into three types which are:

i) A crash-recovery failure model is a fail-stop failure in which once it has

failed, it would not be able to output any action or trigger any events.

ii) A byzantine system is one that does not stop after a failure but instead

behaves in an inconsistent way. It may send out wrong information, or

respond late to a message.

iii) A fail-fast system is one that behaves like a Byzantine system for some time

but moves into a fail-stop mode after a short period of time.

This thesis focuses on distributed system components or nodes that have fail-

stop behaviour. It does not matter what type of faults or failures that have caused this

behaviour but it is necessary that the system does not perform any operation once it

has failed. In other words it just stops doing anything following a failure.

2.6 Interaction policies

The failure detectors and the monitored components commonly communicate

through either two interaction protocols. One is the heartbeat model and the other is

the pull or ping model. These behaviours of monitoring protocols are used by failure

detector to monitor system components (Felber et al., 1999).

2.6.1 The Heartbeat model

The heartbeat model or push model is the most common technique for monitoring

crash failure (Mou, 2009). Many state-of-the-art failure detector approaches were

based on heartbeats (Hayashibara & Takizawa 2006; Satzger et al., 2007; Satzger et

al., 2008; Dobre et al., 2009; Noor & Deris, 2009).

In the push model, the direction of control flow matches the direction of

information flow. In addition, the model has active monitorable objects. These

 19

objects will periodically send heartbeat messages to inform other objects that they

are still alive. If no heartbeat is received by the monitor within specific time bounds,

it starts suspecting the object. Since only one-way messages are sent in the system,

this method is efficient. If several monitors are monitoring the same objects, the

model may be implemented with hardware multicast facilities.

Figure 2.4: The Heartbeat model for object monitoring

Figure 2.4 illustrates the monitoring objects of the heartbeat model (Felber et

al., 1999). The abstraction of the roles of objects involved in a monitoring system is

performed by three interfaces namely monitors, monitorable objects and notifiable

objects. Monitors (or failure detectors) basically collect information about

component failures. Objects that may be monitored hence enable failures to be

detected are termed as Monitorable objects. Notifiable objects refer to objects that

can be registered are asynchronously notified by the monitoring service about object

failures.

2.6.2 The Pull model

In the pull model which is also known as ping model, the flow of information is in

the opposite direction of control flow, i.e., only when requested by consumers. If

compared with the push model, monitored objects in this model are passive. The

monitors periodically send liveness requests to check the status of the monitored

objects. If a monitored object replies, it means that it is alive. Since two-way

messages are sent to monitored objects, this model is normally regarded as less

efficient and less popular than the push model. However, the pull model is easier to

use because the monitorable objects are passive and do not have to know the

 Time
out

Monitor

Time

I’m
Alive

Suspect
N1

I’m
Alive

I’m
Alive

Failure
Monitorable
Object :N1

 20

frequency at which the monitor expects to receive messages. Figure 2.5 illustrates

how the pull model is used for monitoring objects and the messages exchanged

between the monitor and the monitorable object (Felber et al., 1999).

Figure 2.5: The Pull model for object monitoring

2.7 Existing failure detection techniques

Failure detection techniques in distributed systems have received much attention by

many researchers. There were many failure detection protocols or techniques that

have been proposed and implemented. Most of these implementations were based on

timeouts.

2.7.1 Globus Heartbeat monitor

Stelling et al., (1999) proposed Globus Heartbeat Monitor (GHM) for a failure

detection service in grid computing, which have became one of the most popular

fault detector services in grid environment. GHM is based on two-layer architecture:

the lower layer includes local monitors and the upper layer contains data collectors.

The local monitor performs two functions: (i) monitors the host on which it runs, and

(ii) selects processes on that host. It periodically sends heartbeat messages to data

collectors including information on the monitored components. On receiving

heartbeats from local monitors, the data collectors are responsible for identifying

failed components, and notifying applications about relevant events concerning

monitored components. This approach improves the failure detection time in a grid.

 Time
out

Monitor

Time

Suspect
N1

FailureMonitorable
Object :N1

Are you
Alive?

Yes

Are you
Alive?

Yes

Are you
Alive?

 21

Each local monitor in this approach broadcasts heartbeats to all data

collectors. Globus toolkit has been designed to use existing fabric components,

including vendor-supplied protocols and interfaces (Hayashibara & Takizawa, 2006).

Figure 2.6: The architecture of the GHM failure detection (Stelling et al., 1999)

The architecture of the GHM failure detection service grid shown in Figure

2.6 may change its topology by component leaving/joining at runtime but the

proposed architecture is static and does not adapt well to such changes in a system

topology. Recently, International Business Machines (IBM) (Parziale et al., 2009)

have utilised the Heartbeat Release 2 (released in 2005) in achieving high availability

on Linux for IBM System Z. This heartbeat is able to scale up to 16 nodes. However,

the Heartbeat Release 2 still maintains the fixed interval time and timeout delay as

Heartbeat Release 1. However, few bottlenecks have been identified as put by

Abawajy (2004b) “they scale badly in that the number of members that are being

monitored require developers to implement fault tolerance at the application level”.

Pasin, Fontaine and Bouchen (2008) also found that they are difficult to implement

and have high-overhead.

Failure Detection and Recovery Services (FDS) improves the GHM with

early detection of failures in applications, grid middleware and grid resources

(Abawajy, 2004b). The classical heartbeat approach suffers from two main

weaknesses;

i) The detection time depends on the last heartbeat.

Data
Collector

Host l
Local Monitor

Minitored
Process

Process registration

Process status
inquiry

Data
Collector

Host N
Local Monitor

Minitored
Process

Process registration

Process status
inquiry

■■■

 22

ii) It relies on a fixed timeout delay that does not take into account the network

and system’s load.

The first weakness may have a negative impact on the accuracy of the failure

detector since premature timeouts may occur. For the second weakness, a node may

be mistakenly suspected as faulty if it slows down due to heavy workload or if the

network suffers from links failure that may delay the delivery of messages.

2.7.2 Scalable failure detection

Gillen et al. (2007) have designed an adaptive version of the Node-Failure Detection

NFD subsystem. In this version, the failure-detection thresholds used by individual

Monitors are increasingly adjusted on a per-node basis. A simplistic approach was

used to monitor adaptation. Every time the monitor detected a false positive on that

node, the Monitor’s detection threshold, Th for a node is multiplied by a configurable

value, k. In the implementation, they set the value of threshold to 2 (the same value

of k is used for all nodes.) Th+1 = k(Sn).They concluded that the best way to avoid a

large number of false positives caused by dropped heartbeat packets is to set Th to

be at least twice the heartbeat generation period. This enables the system to avoid

declaring a false failure in the case of disjointed single-packet losses without

incurring the overhead from sending more packets.

2.7.3 Adaptive failure detection

Adaptive failure detectors can adapt to change network conditions (Chen, 2002;

Hayashibara et al., 2004). The approaches were based on periodically sent heartbeat

messages. A network can behave significantly different during high traffic times and

low traffic times with respect to probability of message loss, the expected delay for

message arrivals, and the variance of this delay. In order to meet the current

conditions of the system, adaptive failure detectors will arrange their parameters

accordingly. In this case, the parameter is the predicted arrival time of future

heartbeat message. For example, the next heartbeat message will arrive within 2

seconds. Thus, this makes adaptive failure detectors highly desirable. In large scale

networks, adaptive approaches were proved to be more efficient than approaches

 23

with constant timeout (Khilar, Singh & Mahapatra, 2008; Gillen et al., 2000; Satzger

et al., 2008).

Chen et al. (2002) have proposed a well-known implementation for a failure

detector that adapts to changes in network conditions. It was based on a probabilistic

analysis of a network traffic called adaptive failure. Adaptive failure detectors are

extended implementations that adapt dynamically to their environment (i.e., network

condition) and to change application behaviour. These adapters are basically

implemented based on the concepts of unreliable failure detectors or the legacy

timeout-based failure detection. A timeout is adjusted according to network condition

and requirement from an application. This technique compute an estimation of the

arrival time of the next heartbeat using arrival times sampled in the recent past. The

timeout is set according to this estimation and a safety margin, and recomputed for

each interval. The safety margin is set by application QoS requirements (e.g., upper

bound on detection time) and network characteristics (e.g., network load). Based on

data failure samples, detectors generate a suspicion value which indicates whether a

node has failed or not. Failure detectors differ in the way the suspicion value is

computed but they all are dependent on the input from the sample base.

Bertier & Marin (2002) have integrated Chen’s estimation with another

estimation developed by Jacobson (1998) for a different context. Their approach is

similar to Chen’s, however they did not use a constant safety margin but computed it

with Jacobson’s approach. Elhadef & Boukerch (2007) proposed a method to

estimate the arrival time of the heartbeat messages where the arrival time of the next

heartbeat of a node is computed by averaging the n last arrival times. In their

implementation, Bertier’s approach is improved and utilised. Process p manages a

list S based on the information it receives about the inter arrival times of the

heartbeats. The equation for heartbeat arrival prediction for this approach is given

as:-

||
 11n S

S
S

n

i
i∑

==+ (2.18)

where

S = [1.083s, 0.968s, 1.062s, 0.993s, 0.942s, 2.037s, . . .]

Si = {x | x ∈ S and x ≠ ∅}

sn+1 = Inter arrival time of next heartbeat message.

 24

Khilar, Singh & Mahapatra (2008) have proposed an adaptive failure

detection service for large scale ad hoc networks using an efficient cluster based

communication architecture. This failure detection service (after this, it is called

Khilar’s approach) adapted the detection parameter to the current load of the wireless

ad hoc network. In this proposed approach, a heartbeat based testing mechanism is

used to detect failure in each cluster and take the advantage of cluster based

architecture to forward the failure report to other cluster and their respective

members. In Khilar’s failure detection approach, each cluster head maintains a

heartbeat table received for each member node. Cluster head, CH also stores the

arrival time of last n heartbeat messages for each member node. Initially, the table

has a fixed timeout period for each node. When a heartbeat from a particular member

is received, a new freshness point is calculated using the arrival time of this heartbeat

and previous heartbeat messages and new timeout period is set to be equal to this

freshness point, Sn+1 = Sn or Hmax = Sn.

2.7.4 Lazy Failure Detection

Lazy Failure detection approach (Fetzer et al., 2001) attempt to reduce the

networking overhead that arises e.g. from sending heartbeat messages. To achieve

this, detection processes monitor each other by using application messages whenever

possible to get information on processor failures. This protocol requires each

message to be acknowledged. Only when two processes are not communicating, then

failure detection messages are used (Satzger et al., 2008).

A heartbeat-style failure detector is referred to as lazy if it uses a technique to

reduce the networking overhead caused by sending heartbeat messages. In other

word, this approach only send heartbeat messages if it really have to and is thus

called lazy. In this context, it is important to distinguish between application

messages and heartbeat messages. While the former are sent by the application and

unavoidable, heartbeat messages are sent by failure detectors.

Satzger et al. (2008) proposed a lazy monitoring approach aims at reducing

the network load without the negative effects on the detection time. Quite the

contrary, it allows for a better training of the failure detector as it provides more data

and thus can further improve the quality of the generated suspicion information. This

 131

REFERENCES

Abawajy J. (2004a). Fault-tolerant scheduling policy for Grid computing systems.

 Proceedings of the 18th International Parallel and Distributed Processing

Symposium, April 2004. Los Alamitos, CA: IEEE Computer Society Press.

pp. 238–244.

Abawajy, J. (2004b). Fault detection service architecture for Grid computing

systems. LNCS, 3044. Berlin, Heidelberg: Springer-Verlag. pp. 107–115.

Agrawal, D. and El Abbadi, A. (1992). The generalized tree quorum protocol: an

efficient approach for managing replicated data. ACM Trans. Database

System. pp. 689-717.

Ahmad, N. (2007). Managing replication and transactions using neighbour

replication on data grid Database design. Ph.D. Thesis. Universiti Malaysia

Terengganu.

Amazon.com Inc. (2010). Amazon Simple Storage Service (Amazon S3). Retrieved

on September 12, 2010 from http://aws.amazon.com/s3

Andrieux, A., Czajkowski, K., Dan, A., Keakey, K., Ludwig, H., Nakata, T., Pruyne,

J., Rofrano, J., Tuecke, S. & Xu, M. (2007). Web services agreement

specification (WS-Agreement). GFD.107, Open Grid Forum.

Andrzejak, A., Graupner, S., Kotov, V. & Trinks, H. (2002). Algorithms for self-

organization and adaptive service placement in dynamic distributed systems.

HPL-2002-259, Hewlett Packard Corporation.

Arshad N. (2006). A Planning-Based Approach to Failure Recovery in Distributed

Systems. Ph.D. Thesis. University of Colorado.

Avizienis, A., Laprie, J., Randell, B., & Landwehr, C. (2004). Basic concepts and

taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 1(1), pp. 11–33.

 132

Bertier, M. & Marin, P. (2002). Implementation and performance evaluation of an

adaptable failure detector. Proceedings of the Intl. Conf. on Dependable

Systems and Networks. pp. 354 – 363.

Bora S. (2006). A Fault Tolerant System Using Collaborative Agents. LNAI, 3949.

Berlin, Heidelberg: Springer-Verlag. pp. 211– 218.

Boteanu A, Dobre C, Pop F & Cristea, V (2010). Simulator for fault tolerance in

large scale distributed systems. Proceedings of the 2010 IEEE 6th

International Conference on Intelligent Computer Communication and

Processing. pp. 443-450.

Budati K, Sonnek J, Chandra A & Weissman J. (2007). RIDGE: Combining

reliability and performance in open Grid platforms. Proceedings of the 16th

International Symposium on High Performance Distributed Computing

(ISHPDC2007). New York, USA: ACM Press. pp. 55–64.

Chen, W., Toueg, S. & Aguilera, M.K. (2000). On the quality of service of failure

detectors. Proceedings of the International Conference on Dependable

Systems and Networks New York. IEEE Computer Society Press.

Chen, W. Toueg, S. & Aguilera, M.K. (2002). On the QoS of failureDetectors.

IEEE Trans. Computers, 51(5), pp. 561–580.

Chervenak, A., Vellanki, V.& Kurmas, Z. (1998) Protecting file systems: A survey

of backup techniques. In: Proc. of Joint NASA and IEEE Mass Storage

Conference. Los Alamitos: IEEE Computer Society Press.

Christensen N. H. (2006). A formal analysis of recovery in a preservational data

grid. Proceedings of the 23rd IEEE Conference on Mass Storage Systems and

Technologies, College Park, Maryland USA.

Cooper M. (2008). Advanced Bash-Scripting Guide, An in-depth exploration of the

art of shell, Retrieved on October 9, 2008 from http://theriver.com.

Costan, A. Dobre, C. Pop, F. Leordeanu, C. & Cristea, V. (2010). A fault tolerance

approach for distributed systems using monitoring based replication.

Proceedings of the 2010 IEEE 6th International Conference on Intelligent

Computer Communication and Processing. pp. 451-458.

Dabrowski, C., Mills, K. & Rukhin, A. (2003). A Performance of Service-Discovery

Architectures in Response to NodeFailures, Proceedings of the 2003

International Conferenceon Software Engineering Research and Practice

(SERP'03): CSREA Press. pp. 95-10.

 133

Dabrowski, C. (2009). Reliability in grid computing, Concurrency Computation: Practice

and Experience. Wiley InterScience.

Deris, M.M. (2001). Efficient Access of Replicated Data in Distributed Database

Systems. Ph.D. Thesis, Universiti Putra Malaysia.

Deris, M.M. , Abawajy, J. H. & Mamat, A. (2008). An efficient replicated data

access approach for large-scale distributed systems. Future Generation

Comp. Syst. 24(1), pp. 1-9.

Deris M.M., Ahmad N, Saman M. Y., Ali N. & Yuan Y. (2004). High System

Availability Using Neighbor Replication on Grid. IEICE Transactions 87-D

(7), pp. 1813-1819.

Dimitrova, R. & Finkbeiner, B. (2009). Synthesis of Fault-Tolerant Distributed

Systems LNCS, 5799. Berlin Heidelberg: Springer-Verlag. pp. 321–336.

Elhadef, M & Boukerche, A. (2007). A Gossip-Style Crash Faults Detection Protocol

for Wireless Ad-Hoc and Mesh Networks. Proceedings of Int. Conf. IPCCC.

pp. 600-602.

European Power Supply Manufacturers Association. (2005). Guidelines to

Understanding Reliability Prediction. Wellingborough, Northants, U.K.

Felber, P D´efago, X. Guerraoui, R. & Oser, P. (1999). Failure detectors as first

class objects. Proceedings of the 9th IEEE Int’lSymp. on Distributed Objects

and Applications. pp. 132–141.

Fetzer C. Raynal M. & Tronel F. (2001). An adaptive failure detection protocol.

Proceedings of the 8th IEEE Pacific Rim Symp. on Dependable Computing.

pp. 146 - 153.

Figgins, S. Siever, E. & Weber, A. (2003). Linux in a Nutshell, 4th Edition O'Reilly,

USA.

Flavio, J. (2006). Coping with dependent failures in distributed systems. Ph.D.

Thesis, University of California, San Diego.

Genaud, S. & Rattanapoka, C. (2007). P2P-MPI: A peer-to-peer framework for

robust execution of message passing parallel programs on Grids. Journal of

Grid Computing, 5(1), pp. 27–42.

Gillen, M. Rohloff, K. Manghwani, P. & Schantz, R (2007). Scalable, Adaptive,

Time-Bounded Node Failure Detection. Proceedings of the 10th IEEE High

Assurance Systems Engineering Symposium (HASE '07). DC, USA.

 134

Goodale. T, Allen, G., Lanfermann, G., Masso, J., Radke, T., Seidel, E., Shalf, J.

(2003). The cactus framework and toolkit: Design and applications. LNCS,

2565. Berlin Heidelberg: Springer. pp. 15–36.

Hayashibara, N. Defago, X. Yared R.& Katayama T. (2004).The f accrual failure

detector. In 23rd IEEE International Symposium on Reliable Distributed

Systems(SRDS’04): IEEE Computer Society. pp. 66–78.

Hayashibara, N. & Takizawa, M. (2006).Design of a notification system for the φ

accrual failure detector. Proceedings of the 20th International Conference on

Advanced Information Networking and Applications - Volume 1 (AINA'06).

pp. 87-97.

Helal, A., Heddaya, A. & Bhargava, B. (1996). Replication Techniques in

Distributed Systems: Kluwer Academic Publishers.

Hwang, S. & Kesselman, C. (2003). Introduction Requirement for Fault Tolerance in

the Grid, Related Work. A Flexible Framework for Fault Tolerance in the

Grid. Journal of Grid Computing 1, pp. 251-272.

ITEM Software, Inc.(2007) , Reliability Prediction Basics, Hampshire ,U.K.

Jia, W. & Zhou, W. (2005), Distributed Network Systems: From Concepts to

Implementations. Springer Science and Business Media.

Khan, F.G., Qureshi, K. & Nazir, B. (2010). Performance evaluation of fault

tolerance techniques in grid computing system. Computers & Electrical

Engineering Volume 36, Issue 6, Elsevier B.V. pp. 1110-1122.

Khilar, P. Singh, J.& Mahapatra, S. (2008). Design and Evaluation of a Failure

Detection Algorithm for Large Scale Ad Hoc Networks Using Cluster Based

Approach. International Conference on Information Technology 2008, IEEE.

Koren, I. & Krishna C. M. (2007), Fault-Tolerant Systems. San Francisco, CA:

Morgan-Kaufman Publishers.

Parziale, L., Dias, A., Filho, L.T., Smith, D., VanStee, J. & Ver, M. (2009).

Achieving High Availability,on Linux for System z with Linux-HA Release 2.

International Business Machines Corporation (IBM).

Lac C & Ramanathan S.(2006). A resilient telco Grid middleware. Proceedings of

the 11th IEEE Symposium on Computers and Communications. Los

Alamitos, CA: IEEE Computer Society Press. pp. 306–311.

 135

Lanfermann, G, Allen G, Radke T, Seidel E. Nomadic. (2002). Fault tolerance in a

disruptive Grid environment. Proceedings of the 2nd IEEE/ACM

International Symposium Cluster Computing and the Grid. Los Alamitos,

CA: IEEE Computer Society Press. pp. 280–282.

Li, M. (2006) Fault Tolerant Cluster Management, Ph.D. Thesis in Computer

Science University of California, Los Angeles.

Limaye, K., Leangsuksum, B., Greenwood, Z., Scott, S., Engelmann, C., Libby, R. &

Chanchio, K. (2005). Job-site level fault tolerance for cluster and Grid

environments. Proceedings of the IEEE International Conference on Cluster

Computing. Los Alamitos, CA: IEEE Computer Society Press. pp. 1–9.

Love, R. (2007). Linux System Programming, O’Reilly Media, United States of

America.

Luckow, A. & Schnor, B. (2008). Migol: A Fault-Tolerant Service Framework for

MPI Applications in the Grid. Future Generation Computer Systems –The

International Journal of Grid Computing: Theory, Methods and application,

24(2), pp. 142–152.

Ma, T. (2007). Quality of Service of Crash-Recovery Failure Detectors, Ph.D.

Thesis, Laboratory for Foundations of Computer Science School of

Informatics University of Edinburgh.

Mamat, A, Deris, M. M. Abawajy, J.H. & Ismail, S. (2006). Managing Data Using

Neighbor Replication on Triangular-Grid Structure. LNCS, 3994. Berlin

Heidelberg: Springer-Verlag. pp. 1071 – 1077.

Mamat, R., Deris, M.M. & Jalil, M. (2004). Neighbor Replica Distribution

Technique for cluster server systems. Malaysian Journal of Computer

Science, 17(.2), pp. 11-20.

Mills, K., Rose S., Quirolgico, S., Britton, M. & Tan, C. (2004). An autonomic failure

detection algorithm. SIGSOFT Softw. Eng. Notes, 29(1), pp. 79–83.

Montes, J., Sánchez, A. & Pérez, M.S. (2010) "Improving Grid Fault Tolerance by

Means of Global Behavior Modeling," Ninth Parallel and Distributed

Computing, International Symposium on. pp. 101-108.

Natrajan, A., Humphrey, M. & Grimshaw, A. (2001). Capacity and capability

computing in legion. Proceedings of the International Conference on Computational

Sciences, Part I. Berlin Heidelberg: Springer-Verlag. pp. 273–283.

 136

Noor, A.S.M. & Deris, M.M. (2010). Failure Recovery Mechanism in Neighbor

Replica Distribution Architecture. LNCS, 6377. Berlin Heidelberg: Springer-

Verlag. pp. 41–48.

Ozsu, M.T. & Valduriez, P.(1999). Principles of Distributed Database Systems,2nd

Ed., Prentice Hall,

Pasin, M., Fontaine, S. & Bouchenak S. (2008). Failure Detection in Large-Scale

Distributed Systems: A Survey. In 6th IEEE Workshop on End-to-End

Monitoring Techniques and Services (E2EMon 2008), Brazil.

Platform Computing Corporation. (2007). Administering Platform Process Manager,

version 3.1, USA.

Pre, M.D. (2008). Analysis and design of Fault-Tolerant drives. Ph.D. Thesis,

University of Padova.

Renesse R. V. & Guerraoui, R. (2010). Replication Techniques for Availability.

LNCS, 5959. Heidelberg Berlin: Springer-Verlag. pp. 19-40.

Renesse, R. Minsky, Y. & Hayden, M. (1998). A Gossip-Style Failure Detection

Service, Technical Report, TR98-1687.

Marechal, S. (2009). VMware Unveils VMware Tools as Open Source Software.

Retrieved on 2009-07-01 from

http://lxer.com/module/newswire/view/92570/index.html

Satzger, B. Pietzowski, A. Trumler, W.& Ungerer,T. (2007). A new adaptive accrual

failure detector for dependable distributed systems. SAC ’07: ACM

Symposium on Applied Computing. New York, USA: ACM Press.

Satzger, B., Pietzowski, A., Trumler, W & Ungerer, T. (2008). A Lazy Monitoring

Approach for Heartbeat-Style Failure Detectors, Proceedings of the 3rd

International Conference on Availability, Reliability and Security. pp. 404-

409.

Shen, H. H., Chen, S. M., Zheng, W. M. & Shi, S. M. (2001). A Communication

Model for Data Availability on Server Clusters. Proceedings of the Int’l.

Symposium on Distributed Computing and Application. Wuhan. pp. 169-171.

Siva, S.S. & Babu, K.S. (2010). Survey of fault tolerant techniques for grid.

Computer Science Review, 4(2): Elsevier Inc. pp. 101-120.

Siva, S.S., Kuppuswami, K. & Babu, S. (2007). Fault tolerance by check-pointing

mechanisms in grid computing. Proceedings of the International Conference

on Global Software Development, Coimbatore.

 137

Schmidt, K. (2006). High Availability and Disaster Recovery: Concepts, Design,

Implementation. Springer-Verlag.

So K. C.W. & Sirer, E.G. (2007). Latency and Bandwidth-Minimizing Failure

Detector. Proceedings of the EuroSys.

Srinivasa, K. G. Siddesh, G. M. & Cherian, S. (2010).Fault-Tolerant middleware for

Grid Computing . Proceedings in the 12th IEEE International Conference on

High Performance Computing and Communications. Melbourne, Australia:

pp. 635-640.

Stelling, P. Foster, I. Kesselman, C. Lee & C. Laszewski, G. (1998) A Fault

Detection Service for Wide Area Distributed Computations. Proceedings of

the HPDC. pp. 268-278.

Townend, P., Groth, P., Looker, N. & Xu, J. (2005). FT-grid: A fault-tolerance

system for e-science. Proceedings of the Fourth UK e-Science All Hands

Meeting. Engineering and Physical Sciences Research Council: Swindon,

U.K.

Valcarenghi, L. & Piero, C. (2005). QoS-aware connection resilience for network-

aware Grid computing fault tolerance. Proceedings of the 7th International

Conference on Transparent Optical Networks, July 2005. Los Alamitos, CA:

IEEE Computer Society Press. pp. 417–422.

Wang, Y. Li, Z. & Lin, W. (2007). A Fast Disaster Recovery Mechanism for Volume

Replication Systems. HPCC, LNCS, 4782, pp. 732–743, 2007.

Weissman, J. & Lee, B. (2002). The virtual service Grid: An architecture for

delivering high-end network services. Concurrency and Computation:

Practice and Experience, 14(4), pp. 287–319.

Verma. D, Sahu, S., Calo S., Shaikh, A., Chang, I. & Acharya, A. (2003). SRIRAM:

A scalable resilient autonomic mesh. IBM Systems Journal, 42(1). pp. 19–28.

Wrzesinska, G. Nieuwpoort, R. G. Maassen, J. & Bal, H. E.(2005). Fault-tolerance,

malleability and migration for divide-and-conquer applications on the grid.

Proceedings of IEEE. International Parallel and Distributed Processing

Symposium, IEEE.

Xiong, N., Yang, Y., Cao, M., He, J. & Shu, L. (2009). A Survey on Fault-Tolerance

in Distributed Network Systems. IEEE International Conference on

Computational Science and Engineering, 2, pp. 1065-1070.

