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ABSTRACT 

 

 

 

 
This thesis presents analytical and numerical investigations of optical soliton 

transmission in optical fibre communication systems. The basic principles of 

nonlinear pulse propagation in optical fibre are discussed followed by discussion of 

the main limitations for an amplified soliton based system. The goal of this work is to 

study in-depth the soliton propagation and to analyse the bit pattern noise analysis and 

multi-slot analysis of system performance. First, a performance comparison of 

mqocss, VPI and OptSim for single and WDM transmission systems is presented. The 

purpose of this comparison is to assess the degree of variability between 

independently written numerical simulation codes and the commercial software 

available in the market.   Secondly, a study of average soliton systems with 35, 50 and 

70 km amplifier spacing is presented both analytically and numerically. The 

effect of modifying the existing rule of thumb formulae is presented in terms of a 

design diagram.  This is then compared to the numerical simulations. The introduction 

of optimum jitter parameter, αsq = 0.05 in the formulation of GH limitation and 

optimum ratio of Belec to Bopt, BRAT = 0.4, of the ASE limitation improve the better 

comparison between analytical and numerical results.  A series of design diagram with 

Gordon-Haus (GH) jitter, signal to noise ratio (SNR) and soliton collapse limited 

transmission is also introduced. The same study has been repeated for guided soliton 

systems.  Finally a significant portion of this work is devoted to the noise analysis of 

GH and SNR limited system transmission. A novel technique is introduced which is 

designed to distinguish between the effects of dispersion and jitter in analysing the 

limitations of system performance.  These are represented in the form of probability 

distribution function on amplitude and timing jitter, by introducing the two methods 

(A and B), referring to the eye diagrams of the system limitations.  Another technique 

analysis is presenting the energy plots of  En+1 and En-1,  the energy adjacent to bit 

under consideration. The plot also explains the limitation due to amplified soliton, 

ASL. 

 

Key words: Optical amplification, Guiding Centre Soliton, Guided Soliton, GH and 

SNR limited transmission, Noise analysis. 
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ABSTRAK 

 

 

 

Tesis ini membentangkan penyelidikan secara analitik dan numerik bagi penghantaran 

„soliton‟ optik di dalam sistem komunikasi gentian optik. Prinsip asas perambatan 

denyut tak linear dalam gentian optik akan dibincangkan diikuti dengan  perbincangan 

had-had perambatan bagi sistem soliton yg diamplifikasikan.  Objektif kajian ini 

adalah untuk  mendalami perambatan soliton seterusnya menganalisis prestasi sistem 

pada corak hingar untuk setiap „bit‟ dan „multi bit‟. Perkara pertama yang 

dibincangkan ialah perbandingan dari segi prestasi di antara mqocss, VPI and OptSim 

bagi sistem penghantaran  tunggal dan sistem penghantaran WDM. Tujuan 

perbandingan ini ialah untuk menilai darjah kebolehubahan di antara kod 

pengaturcaraan  dan perisian komersil.  Kedua, kajian tentang sistem “average 

soliton”.  Reka bentuk sistem dan  hasil dapatan pada jarak penguat  35, 50 dan 70 km 

(yang membentuk keseluruhan jarak 3500 km) akan di bincangkan secara analitik dan 

numerik termasuk kesan mengubah parameter-parameter kepada formula sedia ada. 

Pengenalan kepada nilai optimum “jitter” , αsq = 0.05 dalam formulasi had GH dan 

nilai optimum nisbah Belec to Bopt , BRAT = 0.4 pada had ASE  menambah baik 

perbandingan antara output analitik dan numerik.   Di bahagian ini juga diperkenalkan 

gambarajah rekabentuk sistem penghantaran yang terhad kepada Gordon Haus (GH), 

nisbah isyarat-hingar (SNR) dan „keruntuhan‟ soliton. Kajian serupa juga dibuat untuk 

“guided soliton” dan analisis yang sama diulang untuk sistem ini. Akhirnya bahagian 

terpenting  ditumpukan kepada analisis hingar sistem penghantaran yang dihadkan 

oleh GH and SNR. Satu teknik baru diperkenalkan untuk membezakan di antara 

kesan-kesan “dispersion” dan “jitter”  dalam menganalisis prestasi bagi sistem 

tersebut. Analisis yang dilakukan adalah dalam bentuk fungsi taburan kebarangkalian 

pada amplitud dan masa, dengan memperkenalkan dua cara (A dan B) merujuk kepada  

bentuk “eye diagram” bagi setiap had system.  Teknik lain ialah mempamerkan plot 

tenaga di  En+1 and En-1,  iaitu tenaga bersebelahan “bit” yang dikaji. Plot tenaga ini 

juga boleh menerangkan had yang disebabkan oleh soliton yang dikuatkan, ASL. 

 

Perkataan kunci: Penguatan optik, Guiding Centre Soliton, Guided Soliton, 

Penghantaran terhad GH dan SNR, analisis hingar. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION TO FIBRE-OPTIC TRANSMISSION 

 

 

 

1.1 Historical perspective of fibre optic communication system 

 

The rapid progress of optical communications is basically stimulated by the 

continuous increase in the demand for telecommunication services. Researchers and 

designers of optical networks live in a permanent quest for new techniques to augment 

the capacity and flexibility of the existing communications systems/networks, and also 

for the development of new concepts to meet the requirements of long distance and/or 

high capacity transmission systems.  Optical communication has been proven to be the 

only reasonable choice to meet such a demanding requirement (Senior J.M., 1992). 

Optical fibre can transmit ultra high speed information with extremely low loss over a 

wide range of wavelengths. By virtue of this outstanding property, fibre-optic 

communication technologies have been applied to a variety of transmission systems 

throughout the world, such as international undersea networks and terrestrial links 

(Agrawal G.P., 2002). 

In the early 1960s the idea of optical waves for communications was faced 

with two main problems; those were the availability of a suitable source of such waves 

and the need for a suitable medium of transmission delayed the progress. Both 

problems were solved by the invention of lasers in 1960 and the availability of GaAs 

semiconductor lasers in 1970, the first proposal of glass fibre and the subsequent 

development of low loss glass fibre that can guide the optical waves over long 

distances (Senior J.M., 1992). An optical communication system based on a single 

mode fiber transmitted 2 Gb/s over 40 km in 1981 (Yamada J. I., Kimura T., 1981).  

The communication technology has shown rapid progress since then. In just 20 years 

the bit rates have increased to 40 Gb/s and more. Below is the summary of time line 
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on progress and development of fibre optic communication systems (Mollenauer L.F., 

1986, Mollenauer L.F., 1988, Mollenauer L.F, S.G.E, Haus  H.A., 1991, Hasegawa A, 

Kodama Y., 1990, Hasegawa A., Kodama Y., 1991). 

 

 1960:  Invention of the laser 

 1970:  The first optical fibre was fabricated, with losses of 20 dB/km, and 

operating in the region of 1  m 

 1978:  Commercial operation of the first generation of optical communication 

systems 

                     - multimode fibres, near 0.8  m 

                     - up to 10 km spacing between repeaters 

                     - bit rates around 45 Mb/s 

 Beginning of the 80‟s:   Second generation of optical communication systems 

                     - multimode fibres, near 1.3  m 

                     - up to 20 km spacing between repeaters 

               - bit rates around 100 Mb/s 

 1987:  Commercial operation of the second generation of optical 

communication systems 

                     - monomode fibres, near 1.3  m 

                     - up to 50 km spacing between repeaters 

               - bit rates around 1.7 Gb/s 

 Second of the 80‟s:  third generation of optical communication systems 

                     - monomode fibres, near 1.55  m 

                     - 60-70 km spacing between repeaters 

               - no improvement on bit rate 

 End of the 80‟s: development of EDFA‟s 

                - reduced coupling losses 

    - amplification process: stimulated emission 

    - 30 dB gain 

    - low pump powers: 30 mW 

 Beginning of the 90‟s: commercial operation of the third generation of optical 

communication systems, with bit rates around 2.5 Gb/s, and deploying 

EDFA‟s 

 Mid 90‟s: modern optical communication systems of the fourth generation 

    - EDFA‟s 

    - coherent detection 

 WDM technology 

                - terrestrial and submarine transmissions 

 Suggestion and development of dispersion compensation techniques 

    - motivation for the fifth generation of optical communication   

          systems, based on optical solitons 
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1.2 Solitons in optical communication 

 

Solitons have been studied in many fields of science; however, the most promising 

applications of soliton theory are in the field of optical communications. In such 

systems information is encoded into light pulses and transmitted through optical fibers 

over large distances. Optical communication systems are no longer the pipedreams of 

the future. Commercial systems have been in operation since 1977. The transatlantic 

undersea optical cable has been developed, which is expected to transmit around 

40,000 telephone conversations simultaneously. The development of optical fibres, 

which are the basis of such systems, has lead to a revolution in communications 

technology.  

 In 1973 Hasegawa and Tappert proposed that soliton pulses could be used in 

optical communications through the balance of nonlinearity and dispersion. They 

showed that these solitons would propagate according to the nonlinear Schrodinger 

equation (NLSE), which had been solved by the inverse scattering method a year 

earlier by Zakharov and Shabat. At that time there was no capability to produce the 

fibres with the proper characteristics for doing this and the dispersive properties of 

optical fibres were not known. Also, the system required a laser which could produce 

very short pulse widths, which also was unavailable. Mollenauer, Stollen and Gordon 

(1985, 1986, 1988, 1991) at AT&T Bell Laboratories then experimentally 

demonstrated the propagation of solitons in optical fibers. 

 The original communications systems employed pulse trains with pulse widths 

of about one nanosecond. However, there was still some distortion due to fibre loss. 

This was corrected by placing electronic repeaters every several tens of kilometres. In 

the mid 1980's it was proposed that by sending in an additional pump wave along the 

fibre, the fibre loss could be compensated through a process known as Raman 

scattering. In 1988, Mollenauer and his group showed that this could indeed be done 

by propagating a soliton over 4000 km without the need for electronic repeaters. This 

was one of the first demonstrations of an all-optical transmission system. Such 

systems became even more common with the development of the Erbium amplifier. 
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Below is a summary of the time line on significant progress and development of 

solitons in optical communication systems. 

 1838:  observation of solitary waves in water 

 1895: mathematical description – KdV equation 

 1972: optical solitons as solutions to the NLSE 

 1973: dispersion and nonlinear phenomena 

 1980: experimental demonstration on propagation of soliton in optical fibres 

by Mollenauer, Stolen and Gordon. This is followed by extensive experiments 

conducted by the group at Bell Laboratories and confirmed the predictions of 

nonlinear Schrödinger equation. 

 1986: The analysis of nonlinear effect (Gordon-Haus effect) by Haus H. A 

and Gordon J. P when ASE noise from amplifiers  is considered in the system. 

 1990: EDFAs –pioneering work in the development of diode-pumped 

Erbium-doped amplifiers by Desurvive, Mears, Tachibana, Zynskind 

(worldwide) 

 90‟s: soliton control techniques for example sliding guiding filter concept 

introduced by Gordon et al 1992, Mollenauer et al. 1993, in an attempt to push 

the transmission capacity to a higher limits. 

 1998:   40 channel WDM, combining optical solitons of different wavelengths, 

demonstrated a data transmission of 1 terabit per second (1,000,000,000,000 

units of information per second). 

 2001: the practical use of solitons deployed submarine telecommunications 

equipment in Europe carrying real traffic using John Scott Russell's solitary 

wave. 

 

1.3 Objectives of Study 

 

 Analytical and numerical investigations of an optical soliton transmission in 

optical fibre communication systems are studied.  Specifically the main aim of this 

work is to analyse the noise resulted from this study with the following objectives: 

 

1. To investigate the soliton propagation in fibre optics. 

http://www.fact-index.com/b/bi/binary_prefix.html
http://www.fact-index.com/t/te/telecommunication.html
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2. To model the propagation of soliton in fibre optics with the use of non-linear 

Schrödinger equation. 

3. To numerically simulate the systems. 

4. To compare and contrast the output between the analytical and the numerical 

simulations. 

5. To perform analysis on the noise in the system used. 

 

In general, these objectives have been achieved using two soliton systems namely 

the guiding centre soliton and the guided soliton which will be elaborated in 

chapter 5 and 6, respectively. 

 

1.4 Problem Statement  

 

In designing a soliton transmission system, there are several effects which 

must be taken into consideration.  The design of the system depends not only on 

the system length but also on the data rate and amplifier span which are required.  

As shall be seen there must be compromises made in the system design brought 

about by the requirements of low timing jitter on arrival at the detector, high signal 

to noise ratio and an acceptable average power.  

This study shows two system designs. First is the transmission of soliton in 

fibre with amplifier which is named as guiding centre soliton system and second is 

the guided soliton system where filter is included in the transmission line after 

every amplifier. With a transmission distance is limited to 3500 km, one of the 

most serious problems which must be overcome if these systems are to become 

viable is a consequence of the amplification of the signal along the transmission 

line.  Amplifiers must be included in order to compensate for the loss of the 

optical fibre and any other components which are included in the system. However 

the inclusion of amplifier introduce some noise into the system as well as 

amplifying the signal. Noise degrades the signal to noise ratio.  In a nonlinear 

soliton system the effect is more drastic and the ability of the soliton to re-adjust to 

accommodate small changes lead to a random timing jitter, known as Gordon-

Haus jitter, as the soliton propagates (Gordon G. P., Haus H. A, 1986).  Including 

a filter in a transmission line can reduce the rate of Gordon-Haus jitter build up in 
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a soliton system but introduces an additional loss. This can be improved by a small 

increase in gain in the amplifier. 

What is needed in this study is to look into the limitations imposed on these 

systems, particularly limitations due to timing jitter (GH jitter) and amplitude jitter 

(SNR ). How these limitations differ from each other by studying the noise 

produced at the end of the propagation. Keeping this in mind, the model based on 

the receiver design for systems impaired by pulse jitter is proposed. This will give 

the analysis on the system performance in terms of the probability distribution 

function in the form of amplitude and of time.  Analysis on the energy in time 

slots adjacent to the bit under consideration can also be done.  

 

1.5 Scope and Delimitation 

 

The study focuses on the limitations of the soliton propagation in an optical 

fibre giving emphasize on the amplified soliton emission (ASE) and on the Gordon 

Haus  (GH) limitations. The study is delimited by a distance of propagation up to 

3500 km only. The systems used are also delimited to guiding centre soliton (GCS) 

and guided soliton (GS), and only on a single-channel soliton transmission. 

 

1.6 Chapter Overview 

 

 

An overview of the chapter contents is as follows: 

 Chapter 1. A brief history of optical fibre and soliton in optical communication  

systems development. 

 Chapter 2. An introduction to pulse propagation in optical fibres, which 

includes the basic propagation equation, and condition and characteristic of 

propagation of optical solitons. 

 Chapter 3. Introduces the amplified soliton; this includes the limiting factors 

imposed by optical fibres and amplifiers (EDFA), the soliton control technique 

and an introduction to the concept of design diagram. 

 Chapter 4. A review of commercial simulation software, VPI and Optsim, in 

the study of optical transmission systems. These simulators are compared with 

a simulator written at Aston. 
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 Chapter 5. Studies the average soliton system by comparing the analytical 

model with the numerical simulations. 

 Chapter 6. Studies the guided soliton system; look at the effect of putting the 

filter in the system. Again the numerical and analytical simulations are 

compared.  

 Chapter 7. Studies the bit pattern noise analysis in terms of their probability 

distribution functions for GH and ASE limitation, both in average soliton and 

guided soliton systems.  

 Chapter 8. Studies the multi-slot analysis of system performances which 

introduces a new analysis of system performance based on considering the 

energy in time slots adjacent to the bit under consideration. 

 Chapter 9. Finally conclusions for the thesis are presented along with 

suggestions for future work. 
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CHAPTER 2 

 

 

 

 

PULSE PROPAGATION IN OPTICAL FIBRES 
 

 

 

The telecommunications industry discovered the optical fibre as a medium for 

efficient information transfer between locations being several kilometers apart from 

each other, with the invention of low-loss optical fibres (Horiguchi M, H.O 1976). A 

multitude of different fibre types are commercially available, which offer different 

signal propagation characteristics. For details, see (http://www.corningfiber.com, 

http://www.lucent,http://www.furukawa.jp).   

 In the following section, the basic propagation equation for a single-mode 

optical fibre is presented.  Following the introduction of the nonlinear Schrödinger 

equation, NLSE, a discussion on pulse propagation governed by group velocity 

dispersion GVD, self phase modulation SPM and a combination of GVD and SPM is 

presented.  

 

2.1 Basic Propagation Equation 

 

In this section, the propagation equation for the slowly varying amplitude of the 

electric field in optical single-mode fibres is presented. Details of the derivation can 

be found in Marcuse D (1991) and Agrawal G.P (2007). 

 Starting from Maxwell‟s equations, the optical field evolution in a dielectric 

medium can be described by the wave equation as follows 

  0
1

2

2

02

2

2










 P

t
E

tc
E


    (2.1) 

where EE 


 is the curl of the electric field vector, 

NLL PPP


  is the electric polarisation vector, with LP


  is the linear 

polarisation and NLP


 is the non linear polarisation 
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 c  is the speed of light in vacuum, 

 0  is the vacuum permeability 

For silica-based optical fibres, P


 can be described via E


as follows 

 3)3()1(

2

0

1
EE

c
P





     (2.2) 

where )1(  is the first order susceptibility, defining the linear evolution behaviour, 

 )3(  is the third order susceptibility, responsible for the nonlinear 

 propagation characteristics.  Equation 2.2  is related to the ratio of the 

 nonlinear, 2n  and 0n  linear refractive index via  3)3(

0

2 Re
8

3
E

n

n 
 . 

 Assuming that the fundamental mode of the electric field is linearly polarized 

in the x or y direction (with z being the propagation direction), its value can be 

approximately described using the method of separation of variables by  

 )](exp[),(),(Re),,,( 00 ztjtzAyxFtzyxE     (2.3) 

where  ),( yxF  is the transversal field distribution, 

 ),( tzA  is the complex field envelope (or slowly varying amplitude) 

 describing electric field evolution in the propagation direction z and time t , 

with 
2

A  corresponding to the optical power. 

 For single-mode fibre, SMF, the fundamental transverse mode, HE11, is 

approximately given by a Gaussian distribution over the fibre radius. ),( tzA  is 

determined as a solution of the generalized nonlinear Schrödinger equation, which is 

given by 

AAAiA
t

i
A

t
A

z 22

2

2

2

21


 














   (2.4) 

where A(z,t) is the slowly varying amplitude of the electric field 

 1 and 2  are chromatic dispersion where the pulse envelope moves with 

 group velocity 11 gv  and the effects of group-velocity dispersion 

 GVD are governed by 2  

   is the fibre nonlinear coefficient 

   is the fibre losses coefficient 
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 Equation (2.4) describes the evolution of the slowly varying field amplitude 

over a nonlinear, dispersive fiber. It describes the most important propagation effects 

for pulses of widths larger than 5 ps. It can, however, be extended to include higher 

order GVD and other nonlinear effects (such as stimulated Raman scattering and pulse 

self-steepening) which might be of importance for ultra-short pulse propagation or 

wide bandwidth applications. 

 In order to further simplify equation (2.4) it is helpful to use a frame of 

reference moving with the pulse at the group velocity 11 gv by making the 

transform  

  zt
v

z
tT

g

1 .    (2.5) 

Equation (2.4) then becomes 

  AAAiA
T

i
A

z 22

2

2

2

2


 









   (2.6) 

where it includes the effects of group velocity dispersion, nonlinearity and loss. In the 

case where fibre loss is neglected ( 0 ), equation (2.6) is known as the nonlinear 

Schrödinger equation (NLSE) 

 To discuss the solutions of  equation 2.6 in a normalized form (Agrawal G.P 

2007), we introduce, 

 
0T

T
 ,   

0P

A
U     (2.7) 

where 0T  is the rms pulse width and 0P is the peak power of the pulse.  

Equation (2.6) becomes        0
2

2

2

2

2 








AAi

T

Ai

z

A



  and from equation 2.7, 

   
2

0

2
1

TT













 and 

0

1

PA

U





   (2.8) 

Now,    0
2

2
2

2

2

2 
























AAi

t

Ai

z

U

U

A







    

  0
2

2

2

2

2

0

2
0 









AAi

A

T

i

z

U
P 




  (2.9) 

Multiplying i to equation (2.9), 

    0
2

1 2

2

2

2

0

2
0 









AA

A

Tz

U
Pi 




   (2.10) 
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but dispersion length, 


2

0T
LD  , then equation (2.10) becomes 

   0
2

1 2

2

2

0 








AA

A

Lz

U
Pi

D




   (2.11) 

Dividing equation (2.11) by 0P  becomes  

   0
2

1

0

2

2

2

0











P

AAA

PLz

U
i

D




   (2.12) 

Using equation (2.7),  

   
0P

A
U    then  

0

1

PA

U





   

 (2.13) 

Then  
z

A

PA

U

z

A

z

U



















0

1
 and 

A

UAU
2

2

2

2

2

2















  

    

2

2

2

2

2























U

AUA


             (2.14) 

 

Substitute equations (2.13),(2.14) in (2.12), 

   0
2

1

0

22

2

2

0






















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U
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
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     0
2

1

0

2

2

2
2

0

0











P

AAU
P

PLz

U
i

D


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  (2.15) 

or rewrite equation (2.15),  0
2

0

2

2

2
0











P

AAU

L

Ps

z

U
i

D




   (2.16) 

Where 









0;1

0;1
)sgn(

2

2

2



s   

and  again, from equation (2.7), 
0P

A
U      0PUA    0

22
PUA   

the last term in equation (2.15) becomes. 
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  (2.17) 
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Therefore the propagation equation in (2.16) is conveniently rewritten as, 

 UU
L

Us

L

P

z

U
i

NLD

2

2

2
0 1

2












   (2.18) 

where )sgn( 2s . DL  and 01 PLNL   are the dispersion length and nonlinear length 

respectively. 

 The dispersion length DL and the nonlinear length NLL  provide the length 

scales over which the dispersive or nonlinear effects become important for pulse 

evolution along the fibre length L.  When the fibre length L is such that NLLL   and 

DLL  , neither dispersive nor nonlinear effects play a significant role during pulse 

propagation.  When the fibre length L is such that NLLL   and DLL  , the pulse 

evolution is governed by GVD and the nonlinear effects play a minor part; the width 

of the pulse increases.  When the fibre length L is such that DLL   and NLLL  , the 

pulse evolution is governed by SPM and dispersive effects play a minor part; the pulse 

suffers spectral broadening. This can happen for relatively wide pulses with a peak 

power WP 10  .  When the fibre length L is such that DLL   and NLLL   or L is 

longer or comparable to both DL and NLL , both dispersion and nonlinearity have a 

significant effect on the pulse propagation leading to a qualitatively different 

behaviour compared with that expected from GVD and SPM alone. 

 

 

2.1.1 Pulse propagation governed by Group-velocity Dispersion (GVD) 

 

 

In  this  section, the linear regime where the effect of  dispersion dominates  over  

nonlinearity is  considered, when NLLL   and DLL   or equivalently, 

2

2

00



 TP

L

L

NL

D  <<1 . GVD involves the temporal broadening of a pulse as it propagates 

through an optical fiber.  It determines how much an optical pulse would broaden on 

propagation inside the fibre.  To study the effect of GVD alone,   is set to zero in 

equation (2.6) and can be rewritten as, 

   AA
T

i
A

z 22 2

2

2


 









   (2.19) 
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 The loss has no effect on the dispersive behaviour as it can be eliminated by using the 

normalised amplitude ),( TzU  defined by  

   ),()2exp(),( 0 TzUzPTzA     (2.20) 

then 
)2/exp(

1

0 zPA

U







.   

The normalized amplitude ),( TzU  satisfies the partial differential equation 

   
2

2

2
2

1

T

U

z

U
i









    (2.21) 

A solution to this equation can be found when operating in the Fourier domain to 

transform ),( TzU  to produce ),(
~

zU   whose relationship is given by 

   




 


dTizUTzU )exp(),(
~

2

1
),(   (2.22) 

This satisfies the ordinary differential equation (ODE) 

   U
z

U
i

~

2

1
~

2

2



   (2.23) 

The homogeneous solution of this equation is  

   )
2

exp(),0(
~

),(
~ 2

2 z
i

UzU     (2.24) 

where ),0(
~

U , the Fourier transform of the pulse at z = 0, is given by 

   




 dTTiTUU )exp(),0(),0(
~

   (2.25) 

Equation 2.24 shows the effect of GVD alone, which causes a phase change of all the 

frequency components of the initial signal ),0(
~

U  proportional to the propagation 

distance z. The phase changes given by 
2

2

2 z
   can lead to an alteration of the 

pulse shape as the pulse propagates.  This solution shows that these phase changes 

vary as the square of the frequency through the 2 term. The phase change is also 

proportional to 2  which indicates the phase behaviour is different in the anomalous 

and normal dispersion regions depending on the sign of 2 . 
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The general time domain solution can be found by substituting equation 2.24 in 

equation 2.22 to give 

   




 


dTiz
i

UTzU )
2

exp(),0(
~

2

1
),( 2

2  (2.26) 

 In order to study the effect of GVD on a pulse after transmission, it is useful to 

consider the case of a Gaussian pulse as its mathematical form lends itself to this 

mathematical analysis because it is easily integrable.  The Gaussian input pulse is 

given by (Marcuse D, 1980). 

     )
2

exp(),0(
2

0

2



T
TU              (2.27) 

where 0  is the half width e1  intensity point of the initial pulse. For a Gaussian 

pulse, this can also be expressed in terms of the full width at half maximum through 

                                              00

21 665.1)2(ln2  FWHMT            (2.28) 

Using this input pulse and carrying the substitution and integrations in equations    

2.25-2.27 gives the amplitude at any point z along the fibre (Agrawal G.P 2001). 
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  (2.29) 

The solution shows the pulse maintains a Gaussian shape as it propagates but the pulse 

broadens temporally with transmission that is the width increases with z as 

    

2

0 1 









D

z
L

z
    (2.30) 

where 2

2

0 TLD  .  This equation shows that the shorter the pulse the more quickly 

the dispersive broadening as the rate of broadening is inversely proportional to DL .  

Figure 2.1 is a straightforward plot from equation 2.30 showing the shortest pulse 

broadens more quickly than other pulses.  The pulse width of the shortest pulse 

broadens significantly more with distance than other pulses.  The initial widths, τ0 1-5 

were chosen to make a comparison on how quickly the broadening effect with 

pulsewidth. 
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Figure 2.1: A plot of equation 2.30 for normalized pulsewidth versus normalized 

distance for different Gaussian pulses with initial width=1,3 and 5 (for 12  ). 

 

 

Comparing equation 2.7 with 2.9, it can be seen that the pulse frequency components 

have been subjected to a phase change. It can be seen from Marcuse D (1980), by 

rewriting equation 2.9 in the form,  

   )],(exp[),(),( TziTzUTzU    (2.31) 

where  
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The instantaneous frequency change across the pulse is given by the derivative of the 

time dependence of the phase ),( Tz  that is 
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 Equation 2.33 shows that the frequency changes linearly across the pulse and 

that is referred to as the linear frequency chirp.  It depends on the sign of 2 .  In the 

normal dispersion regime ( 02  )   is negative when 0T  at the leading edge of 

the pulse but increases across the temporal profile of the pulse and vice versa with the 

anomalous dispersion regime. Comparing with equation 2.30 for an unchirped pulse, 

the amount of spectral broadening is independent of the sign of 2  and the pulse 

broadens in the same amount for normal and anomalous dispersion regimes for any 

given value of DL . The effect is somewhat different when launching a Gaussian pulse 

that is linearly chirped and whose function is 
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where C is a chirp parameter.  The function in terms of z is derived as in (Agrawal 

G.P. 2001). 
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from which the broadening factor with distance is given by the relation (Marcuse D, 

1981)  
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GVD parameter 2  and chirp parameter C determine the broadening factor in this 

equation.  In the normal dispersion region ( 02  ), for the case when the pulse is 

positively chirped ( 02 C ), broadening occurs immediately after transmission but it 

undergoes a narrowing process when the pulse is negatively chirped ( 02 C ) as in 

Figure 2.2. 
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Figure 2.2: A plot of equation 2.36.  Broadening factor for a chirped Gaussian pulse a 

a function distance for unchirped Gaussian pulse, positive and negative chirp.  The 

pulse with positive chirp undergoes compression before broadening 

 

 In this section, the GVD parameter 2  has been used throughout.  It is 

commonly  more interesting to determine the dependence of the inverse of the group 

velocity on wavelength rather than on frequency. This dependence is described by the 

C = -3 

C = 3 

C = 0 

Dispersion length, LD 
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dispersion parameter D and its slope with respect to wavelength, λ. The following 

relationships hold 
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D is typically measured in units ps/nm-km. It determines the broadening for a pulse of 

bandwidth  after propagating over a distance z, or equivalently, the time offset of 

two pulses after a distance z, which are separated in the spectral domain by  . The 

relationship between dispersion and wavelength is described in Figure 2.3 and 

between normal and anomalous dispersion and wavelength, in Figure 2.4. 

 

 

Figure 2.3: Variation of the dispersion parameter D with wavelength for a standard  

   monomode fibre showing that zero dispersion occurs at m 3.1  (Li T., 1985). 

 
Figure 2.4: Anomalous and normal dispersion regimes (Li T., 1985). 
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2.1.2 Pulse propagation governed by  SPM 

 

In this section, the effect of dispersion term in equation 2.18 is considered to be 

negligible compared to the nonlinear term. In that case the pulse evolution is governed 

by nonlinear effect that leads to spectral broadening of the pulse (Agrawal G.P. 2001).  

This happens when the fibre length L is such that NLD LLL    or equivalently.  

1
2

2

00 


 TP

L

L

NL

D    (2.38) 

In standard single mode fibres, this condition holds  for  relative  long pulses 

( ps1000  )  and  peak  power P0 ~ 1W .   

To study the effect of SPM mathematically (where the effect of dispersion 02   and 

taking into account the effect of loss, α in equation 2.6 and using the same process in 

section 2.1.1, we have 

UU
L

z
i

z

U

NL

2)exp( 





               (2.39) 

where   accounts for fibre loss, which plays an important part in the pulse 

propagation and )1( 0PLNL  is the nonlinear length.  The nonlinear parameter,   is 

related to the nonlinear index coefficient n2 by  effcAn 02  .  Equation 2.39 can be 

solved to give the solution 

   )),(exp(),0(),( TziTUTzU NL   (2.40) 

where ),0( TU is the input pulse amplitude at z = 0 and NL  is the nonlinear phase 

shift  which increases with fibre length, L given by 

     
NL

eff

NL
L

z
TUTz

2
),0(),(  .   (2.41) 

 

with the effective transmission distance effz  (which is smaller than z due to fibre 

losses) given by 

      )exp(1 zzeff     (2.42) 

The maximum pulse shift occurs at the centre of the pulse T = 0 with magnitude of 

   effNLeff zPLz 0max      (2.43) 

where 1

0 )(  PLNL  . 
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This shows the physical significance of NLL   that is the effective propagation distance 

at which  1max  . 

To impose a frequency chirp on the pulse, take the partial derivative of the phase shift 

in equation 2.41 with respect to T, 
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T NL
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This frequency chirp is now time dependent and increases with magnitude as the 

propagation distance increases.  New frequencies are self-generated leading to spectral 

broadening.  To see the SPM effect in spectral broadening consider a super- Gaussian 

pulse with an initial field given by 
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The SPM-induced chirp )(T  for this pulse is  
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where m is the order of super Gaussian pulse (m=1 is for Gaussian). 

From equation 2.45 and 2.46 the relationship between phase and the corresponding 

time is plotted using m = 1 and m = 4 and is presented in figures 2.5 and 2.6.  
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Figure 2.5: A plot of equation 2.46. The effect of transmission of a pulse with a unit 

width T0 and effective transmission distance equal to the non linear length LNL.  

Amplitude of 1st and 4th order Gaussian pulses with time. 
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Figure 2.6: A plot of equation 2.46. The effect of transmission of a pulse with a unit 

width T0 and effective transmission distance equal to the non linear length LNL.  

Induced chirp caused by phase changes across 1st and 4th order Gaussian pulses. 

 

 

2.1.3 Pulse Propagation Governed by GVD and SPM 

 

Previously GVD and SPM were treated separately.  In this section the case is 

considered when the fibre length DLL   and NLLL   where dispersion and 

nonlinearity act together as the pulse propagates along the fibre.  Temporal and 

spectral changes that occur when the effect of GVD and SPM are combined, are 

considered in this section. 

To start with, consider the lossless case of equation 2.6.   The NLSE equation can then 

be written as 

   AA
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This equation can be normalized using 
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to give 
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where N is defined as   
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Eliminating N from equation 2.52 by introducing ALNUu D  to take the 

standard form of NLSE: 
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where 1)sgn( 2   is taken for anomalous GVD; for normal dispersion regime, the 

dispersive term (2
nd

 term in equation 2.54) should be negative. 

The parameter N governs the relative importance of the effects of GVD and SPM on 

the pulse propagation: 

 1N : dispersive effects are dominant 

 1N : nonlinear effects are dominant 

 1N :   both dispersive and nonlinear effects are important 

 1N :   SPM and GVD are in the anomalous and normal dispersion regimes 

Consider again equations 2.33 and 2.46.  The evolution of the shape of an initially 

unchirped Gaussian pulse in a normal-dispersion regime of a lossless fibre is shown in 

figure 2.7.  The pulse broadens more rapidly with the presence of SPM (N=1).  This 

can be understood by recalling that new frequency components that are red-shifted 

near the leading edge and blue-shifted near the trailing edge of the pulse, are generated 

continuously as it propagates down the fibre.  “In the normal-dispersion regime, the 

red components are traveling faster than the blue components, SPM leads to an 

enhanced rate of pulse broadening compared with the expected from GVD alone” 

(Agrawal G.P, 2001). But the situation is different when considering pulses 

propagating in the anomalous-dispersion regime as in figure 2.8.  This is due to a 

negative sign of 2  in equation 2.33.  “The pulse broadens initially at a rate much 

lower than that expected in the absence of SPM and then appears to reach a steady 

state for DLz 4 ”  (Agrawal G.P 2001). 
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Figure 2.7:     Evolution of pulse shapes over a distance z/LD for an initially unchirped  

              Gaussian pulse propagating in the normal dispersion regime of the  

                       fibre (Agrawal G.P,2001). 

 

 

Figure 2.8:    Evolution of pulse shapes over a distance z/LD for an initially unchirped  

                  Gaussian pulse propagating in the anomalous dispersion regime of the  

                      fibre. (Agrawal G.P, 2001) 

 

 

2.2 Optical solitons: characteristics and conditions for propagation 

 

 

The existence of solitons in optical fibre is a result of interplay between the dispersive 

(GVD) and nonlinearity (SPM) effects.  Optical solitons are pulses that exhibit 

particular shape and intensity, so there is a perfect balance between the frequency 

chirps produced by the GVD in the anomalous dispersion regime and the SPM.  This 

section discusses the properties of solitons in lossless media. The fundamental soliton 
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has a shape which remains unchanged during propagation while higher order solitons 

have a shape which evolves periodically.  This section also looks at the interaction 

between solitons, where two solitons that collide in a fibre recover their shape and 

initial intensity after the collision. 

 

2.2.1 Fundamental and higher order solitons 

 

The mathematical description of solitons employs the NLSE. Consider again equation 

2.54.  The solution to this equation was first solved using the inverse scattering 

method (Zakharov V.E. & Shabat A.B. 1972, Miwa T, 1999).  Consider the first order 

(N=1) solution of NLSE which has the general form of solution 

   )2exp()2(  sec2),( 2 zihzu      (2.55) 

where  is the soliton amplitude.  Normalising )0,0(u  by setting 12   gives the 

fundamental (N=1) soliton solution in the form of hyperbolic-secant, 

   )2/exp()(sec),( izhzu       (2.56) 

This equation indicates that if the hyperbolic-secant pulse whose width 0T  and the 

peak power 0P  are chosen such that 1N  in equation 2.53 then  
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P



      (2.57) 

is launched into an ideal lossless optical fibre, thus it will propagate undistorted 

indefinitely with no change in shape. Equation 2.57 shows that the peak power is 

inversely proportional to the square of the pulsewidth.  The further solution to the 

NLSE is 

   )(sec),0(  hNu      (2.58) 

where N is an integer related to the soliton order. From equation 2.53, the required 

peak power is 2N  times that of a fundamental soliton for the same pulsewidth.   

Higher order solitons, corresponding to 1N , do not maintain their shape during 

propagation along the fibre.  This is due to the unusual evolution process where pulse 

splitting occurs during transmission only for the pulses to reform back into its original 

form at 2/mz  , where m is an integer.  Thus the distance or the soliton period at 

which a higher order soliton recovers its original shape is given by 
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 To understand the reason for the stable solution it is useful to consider the sign 

of the chirps induced on the pulse by GVD and SPM.  The sign of the GVD induced 

chirp depends on the sign of the 2  (positive or negative sign in normal- or 

anomalous-dispersion regime respectively) whilst that of the SPM induced chirp is 

always of the same sign since the frequency shift is opposite to the gradient of the 

pulse power profile. In the anomalous-dispersion regime, the two chirps are opposed 

and can cancel out to form a stable soliton whilst in the normal-dispersion regime they 

have the same sign and do not cancel out, thus accumulate with transmission to 

produce unstable pulses.   

 

 

2.2.2 Interaction between solitons 

 

In order to increase the information carried in the transmission system, it is desirable 

to launch the pulses close together.  Unfortunately the overlap of the closely spaced 

solitons leads to mutual interaction and therefore to serious performance degradation 

of the soliton transmission system.  This is as a result of the small finite tails of the 

soliton that extend into neighboring solitons which in turn form a superposition that 

causes them to propagate at different velocities (Gordon G.P 1983). Another study 

showed that the inclusion of fibre loss also leads to dramatic increase in soliton 

interactions (Blow K.J, Doran N.J 1983).  Several schemes for the reduction of the 

pulse interaction have been proposed; the use of Gaussian-shaped pulses (Chu P.L, 

Desem C. 1983), introduction of  phase difference between neighboring solitons 

(Anderson D., Lisak M. 1986), the use of third order dispersion (Chu P.L, Desem C. 

1985, 1987) are among others. 

 Consider a pair of solitons at the input of transmission line which can be 

described by  

      iqrrhrqhu exp)(secsec),0( 00    (2.60) 

Where 02q  is the initial (normalised) separation ( 002 TTq B and B is the bit rate), r  

is the relative amplitude and    is the relative phase of the two input pulses. The 

interaction of the pulses depends on their relative amplitude, r  and relative phase,  .  

Numerical simulations and calculations have shown that for equal phase( 0 ) and 
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