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ABSTRACT 

 

 

 

 

A significant pattern mining is one of the most important researches and a major 

concern in data mining. The significant patterns are very useful since it can reveal a 

new dimension of knowledge in certain domain applications. There are three 

categories of significant patterns named frequent patterns, least patterns and 

significant least patterns. Typically, these patterns may derive from the absolute 

frequent patterns or mixed up with the least patterns. In market-basket analysis, 

frequent patterns are considered as significant patterns and already make a lot of 

contribution. Frequent Pattern Tree (FP-Tree) is one of the famous data structure to 

deal with batched frequent patterns but it must rely on the original database. For 

detecting the exceptional occurrences or events that have a high implication such as 

unanticipated substances that cause air pollution, unexpected degree programs 

selected by students, unpredictable motorcycle models preferred by customers; the 

least patterns are very meaningful as compared to the frequent one. However, in this 

category of patterns, the generation of standard tree data structure may trigger the 

memory overflow due to the requirement of lowering the minimum support 

threshold. Furthermore, the classical support-confidence measure has many 

limitations such as tricky in choosing the right support-confidence value, misleading 

interpretation based on support-confidence combination and not scalable enough to 

deal with significant least patterns. Therefore, to overcome these drawbacks, in this 

thesis we proposed a Hybrid Model for Discovering Significant Patterns (Hy-DSP) 

which consist of the combination of Efficient Frequent Pattern Mining Model (EFP-

M2), Efficient Least Pattern Mining Model (ELP-M2) and Significant Least Pattern 

Mining Model (SLP-M2). The proposed model is developed using the latest .NET 

framework and C# as a programming language. Experiments with the UCI datasets 

showed that the Hy-DSP which consist of DOSTrieIT and LP-Growth* 

outperformed the benchmarked CanTree and FP-Growth up to 4.13 times (75.78%) 
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and 10.37 times (90.31%), respectively, thus verify its efficiency. In fact, the number 

of patterns produce by the models is also less than the standard measures. 
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ABSTRAK 

 

 

 

 

Melombong corak yang signifikan dari pangkalan data adalah merupakan satu 

perkara yang penting dalam komuniti perlombongan data. Corak yang signifikan 

adalah sangat berguna kerana ia akan menghasilkan ilmu pengetahuan berdimensi 

baru dalam sesetengah domain aplikasi.  Secara umumnya, corak sebegini boleh 

dihasilkan melalui corak kerap berkepastian atau gabungannya dengan corak jarang. 

Dalam analisa pasar-bakul yang umum, corak kerap dikategorikan sebagai corak 

signifikan dan telah membuat pelbagai sumbangan. Corak kerap berpokok (FP-Tree) 

adalah merupakan salah satu struktur data yang sangat popular bagi mengendalikan 

perlombongan corak kerap secara jujukan namun ia memerlukan kebergantungan 

terhadap pangkalan data asal. Bagi mengesan keberlakuan atau kejadian terkecuali 

yang berimpak tinggi seperti kehadiran bahan diluar ramalan yang menyebabkan 

pencemaran udara, pemilihan program-program ijazah diluar jangkaan oleh pelajar, 

kegemaran terhadap model-model motorsikal diluar dari kebiasaan oleh pelanggan; 

semestinya corak jarang adalah lebih bermakna berbanding dengan corak kerap. 

Walau bagaimanapun, penghasilan corak ini secara struktur data pokok yang 

standard akan melimpahkan ingatan komputer disebabkan oleh penetapan sokongan 

minima yang sangat rendah. Selain daripada itu, rangka kerja sokongan-keyakinan 

mempunyai banyak kelemahan seperti kerumitan dalam memilih nilai sokongan-

keyakinan yang bersesuaian, pentafsiran maklumat yang kurang tepat bagi kombinasi 

nilai sokongan-keyakinan dan kurang perluasan bagi mengendalikan corak jarang 

yang signifikan. Oleh yang demikian, bagi mengatasi masalah ini, tesis ini 

mencadangkan Model Hybrid bagi Mencari Corak yang Signifikan (Hy-DSP) yang 

terdiri daripada kombinasi Model Corak Kerap yang Efisien (EFP-M2), Model Corak 

Jarang yang Efisien (ELP-M2) dan Model Corak Jarang yang Signifikan (SLP-M2). 

Model yang dicadangkan ini dibangunkan dengan menggunakan Rangkakerja .Net 

dan bahasa pengaturcaraan C#. Eksperimen dengan set data UCI menunjukkan Hy-

DSP yang mengandungi DOSTrieIT dan LP-Growth* dapat mengatasi CanTree dan 
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FP-Growth masing-masing sebanyak 4.13 kali (75.78%) dan 10.37 kali (90.31%), 

dan ini mengesahkan keefisiensinya. Malahan, jumlah corak yang dihasilkan oleh 

model-model ini adalah lebih sedikit berbanding dengan penggunaan ukuran yang 

piawai.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

In this chapter, the background of the research is outlined, followed by problem 

statements, the objectives and the scopes of the research, process of methodology, 

contributions and lastly, the thesis organization. 

 

 

1.1 Research Background 

 

 

With the rapid development of data collection and storage technology, most of the 

organization can be easily to accommodate with large volume of data. However, 

extracting useful and meaningful information is extremely very challenging and quite 

subjective. Most of the tradition data analysis tools and algorithms are not able to 

deal with vast amounts of data efficiently. Indeed, some explanations or 

interpretation cannot be addressed properly by the existing data analysis techniques. 

As a result, data mining is one of the alternative technologies that merged the 

traditional data analysis techniques for processing vast amounts of data. It has 

emerged as among a rapidly growing research field for over the past decade. Data 

mining is a part and the most influence fields in Knowledge Discovery in Database 

(KDD) process. It originally roots from machine learning but nowadays becomes the 

confluence of machine learning, statistics and databases. 

 In data mining, discovering significant patterns from large data repositories 

are quite challenging. Efficient data structures, algorithms and measures are among 

the fundamental components that need to be incorporated in dealing with this 

problem. Until this recent and based on the past studies, tree-based data structure is a 

great solution in keeping the massive data. However, by having a good data structure 



2 

 

alone is still not sufficient. Thus, efficient algorithm to extract and generate the 

desired patterns in a timely manner is becoming a necessity. In addition, those 

patterns must be also assigned with some measure in an attempt to rank and identify 

which patterns that is really significant. In more advanced cases, items may have 

their own value and they are not limited to hold only “1” and “0” values. Therefore, 

new measures that can easily handle the item with individual weight become a 

fundamental and must be further explored. 

Until recently, designing a complete model that can integrate together the 

different types of data structures, algorithms and measures are very complicated and 

nearly unfocused (Zhou and Yau, 2007). Most of the previous models are not 

designed for integration.  In fact, the integration of different models always required 

additional adoption and reconciliation of the fundamental functionality (Ziegler and 

Dittrich, 1997). In data mining, the integrated model is very important since it can 

help the organization to decide which patterns mining problems that they really want 

to resolve. Therefore, an efficient model for mining significant patterns with 

integration capability needs to be developed and well experimented. 

 

 

1.2 Problem Statement 

 

 

Mining patterns or Association Rules (ARs) from any application domains is 

considered as one of the important research areas in data mining. It is a basic step in 

deriving a suitable hypothesis and finding associations among items (parameters or 

values). For example, the retail transaction is aimed at finding the association 

between the most frequent items that are bought together. By understanding the 

customers’ behavior, it can help the management to perform promotional strategies, 

determine potential buyers, increase profit-sales etc. This pattern is also known as 

frequent pattern. Apriori (Agrawal et al., 1993) was the first algorithm to capture sets 

of frequently bought products at the stores. Since mining frequent pattern is very 

useful in market-basket analysis, thus frequent pattern can be classified as significant 

pattern. 

 In some cases, frequent pattern is not really the patterns that they are looking 

for. In fact, co-occurrence of the regular items that appear too frequent could be less 

meaningful in certain application domains. Therefore, detecting exceptional 
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occurrences or events, that resultant of a decisive implication is very important as 

compared to regular or well-known pattern. Moreover, least pattern can also provide 

new insights and exciting knowledge for further exploration. For example, cancer is 

a dangerous disease and has been identified as a very common cause of death. The 

least combination of cancer symptoms that resultant of high implication can provide 

a very useful insight for doctors. Other examples are to detect the least pattern at 

nuclear plant for hazard processes, banking industries for fraudulent credit-card, 

networking systems for intruders or viruses, etc.  Indeed, the occurrences of 1% 

(least transactions) from 100,000 transactions are becoming very interesting and 

reasonable for further analyzing since it is basically equivalent to 1000 cases. Since 

mining least pattern is very useful in certain application domain, thus least pattern 

can be classified as significant pattern. 

 From the above explanation, all items are assumed to have an equal weight or 

also known as binary weight (1 or 0). However, in certain cases, some items might 

hold their own weight. In fact, the weight can be used to represent the importance of 

the item in the transactional databases such as the price, profit margin, quantity, etc. 

For instance, in market-basket analysis the manager may keen to find out the patterns 

with the highest profit margins.  Let assume that the profit of selling the smart phone 

is more than selling the cell phone accessories. Hence, the association between SIM 

card and smart phone is more significant than the association between SIM card and 

cell phone accessories. However, without considering the profit margin for each 

individual item, it is impossible to discover the most significant pattern. Thus, the 

transactional items should be able to hold their own weight rather than the typical 

binary value. Since the mining significant least pattern (least pattern with weight) is 

very useful in certain cases, thus significant least pattern can be classified as 

significant pattern. 

 In the first case i.e. frequent pattern, several works have been performed in 

the past decades.  Frequent pattern tree (FP-Tree) (Han et al., 2000) has become one 

of the great alternative data structures to represent the vast amount of transactions of 

database in a compressed manner. For further improvement, several variations of 

constructing or updating the FP-Tree have been proposed and it can be categorized 

into multiple and single database scans. For the first category and including FP-Tree 

(Han et al., 2000), the related studies are Ascending Frequency Ordered Prefix-Tree 

(AFOPF) (Liu et al., 2004), Adjusting FP-Tree for Incremental Mining (AFPIM) 
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(Koh et al., 2004) and Extending FP-tree for Incremental Mining (EPFIM) (Li et al., 

2006). The related researches in the second category are Compressed and Arranged 

Transaction Sequence (CATS) tree (Cheung & Zaïane., 2003), Fast Updated FP-Tree 

(FUFPT) (Hong et al., 2008), Branch Sorting Method (BSM) (Tanbeer et al., 2009) 

and Batch Incremented Tree (BIT) (Totad et al., 2010).  

However, there are two major drawbacks encountered from the past studies. 

First, the construction of FP-Tree is still based on extracting the patterns that fulfills 

the support threshold from the semi structured of its original databases. Second, if the 

existing databases are suddenly updated, the current FP-Tree must be rebuilt again 

from the beginning because of the changes in items and patterns supports. In some 

research extensions, the structure of FP-Tree will be reorganized with extensive 

modification operations (deletion and insertion) due to the addition of new 

transactions into databases. Therefore, computationally extensive in constructing FP-

Tree is still an outstanding issue and need to be resolved to ensure efficiency in 

mining frequent patterns.  

 In the second case i.e. least pattern, several researches have been carried out 

to overcome this problem. Therefore, various approaches have been suggested in the 

literature such as Cfarm Algorithm (Khan et al., 2011), Automatic Item Weight 

Generation (Koh et al., 2011), Weak Ratio Rules (Jiang et al., 2011), FGP Algorithm 

(Giannikopoulos et al., 2010), ConSP (Lu et al., 2010), Multiple Support-based 

Approach (Kiran & Reddy, 2009),  Non-Coincidental Sporadic Rules (Koh et al., 

2006), ODAM (Ashrafi et al., 2004), Fixed Antecedent and Consequent (Ashrafi et 

al., 2007), Exceptionality Measure (Taniar et al., 2008), (Zhou et al., 2010),  Apriori-

inverse (Koh and Rountree, 2005), Relative Support Apriori Algorithm (Yun et al., 

2003), Multiple Minimum Support (Liu et al., 1999), Pushing Support Constraints 

(Wang et al., 2003), Transactional Co-Occurrence Matrix (Ding, 2005). 

Even though there are quite a number of improvements that have been 

achieved, there are still three major drawbacks that have been encountered. The first 

two non-trivial costs are contributed by the implementation of Apriori-like algorithm. 

First, the cost of generating a complete set of candidate itemsets. For k-itemset, 

Apriori will produce up to 2
k
 – 2 total candidates. Second, cost of repeatedly 

scanning the database and check all candidates by pattern matching activities. The 

last drawback is nearly all of the proposed measures to discover the least patterns are 
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embedded with standard Apriori-like algorithm. The point is this algorithm is 

undoubtedly may suffer from the “rare item problem”. 

In the third case i.e. significant least pattern, there are quite limited studies 

that have been conducted until this recent as compared to the first and second 

category. In this category, the item may carry its own individual weight. Among the 

famous weighted items measures are Minimal rare itemset (Szathmary et al., 2010), 

Weighted ARs (Cai et al., 1998), Auto-counted Minimum Support (Selvi et al., 

2009) and Weighted Association Rule Mining (Tao et al., 2003).  

However, from the proposed measures, there are two shortcomings detected 

from the past literature. First, the restoration of least pattern is very computationally 

extensive and may generate a huge number of unnecessary patterns if their proposed 

measure is set close to zero. Second, all of these approaches are based on the 

standard Apriori-like algorithms which will finally trigger the “rare item problem” 

during discovering the desired patterns. 

 

 

1.3 Research Objectives 

 

 

In order to ensure this research can successfully arrive at the destiny, several research 

objectives have been critically designed and derived. The main objectives are: 

(i) To design a hybrid model which consists of the integration of three different 

models for efficiently mining frequent, least and significant patterns. 

(ii) To implement the proposed hybrid model by developing a prototype using 

.Net Framework and C# as a programming language. 

(iii) To evaluate the hybrid model in the developed prototype in term of 

efficiencies and significances using real and benchmarked datasets. 

 

 

1.4 Research Scopes 

 

 

The scopes of the study refer to the types of the datasets that have been employed in 

the series of experiments. The main scopes are: 
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(i) Only three (3) benchmarked datasets from the Frequent Itemset Mining 

Dataset Repository (FIMI) are employed for the performance evaluations 

called Retail, T10I4D100K and Mushroom datasets. 

(ii) Only three (3) real datasets are used for the significant evaluations called 

Kuala Lumpur Air Pollution, UMT Student Enrolment and MODENAS 

Motorcycle Production datasets. 

(iii) Only two (2) benchmarked tree data structures are employed for the 

comparison purposes namely FP-Tree and CanTree. 

(iv) Only FP-Growth algorithm is employed as a benchmarked algorithm for 

performance analysis in the experiments. 

 

 

1.5 Research Methodology Process 

 

 

Research methodology defines what the activity of research is, how to proceed, how 

to measure progress, and what constitutes success. Therefore, several organized 

stages, purposes, processes and outcomes are precisely and clearly outlined.  Figure 

1.1 depicts the incremental development paradigm of research methodology process. 

 

 
 

Figure 1.1: Research Methodology Process 
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1.5.1 Comprehension of Domain Models 

(i) Purpose: Discovering the related domain models for significant 

patterns mining models such as Frequent Association Rules (FAR), 

Least Association Rules (LAR) and Significant Least Association 

Rules (SLAR). 

(ii) Process: Reviewing the research papers and relevant documentations 

from journals, proceeding, thesis and books. 

(iii) Outcome: Completion of literature review chapter 

1.5.2 Evaluation of Existing Patterns Mining Models 

(i) Purpose: Deep understanding of the current data structures and 

algorithms for significant pattern mining models. 

(ii) Process: Implementing the selected data structures and algorithms for 

comparison purposes in the future. 

(iii) Outcome: Completion of introduction and literature review chapters, 

experimental results and a framework for future works.   

1.5.3 Development of the purposed hybrid model 

(i) Purpose: First, designing new models for different categories of 

significant patterns mining models. Second, designing a hybrid model 

by integrating all models. Third, fine-tuning and embedding the 

elements of efficiencies and significances.  

(ii) Process: Designing new models and a hybrid model which containing 

the components of efficient algorithms, flexible data structures and 

novel measures. 

(iii) Outcome: First, the completion of the proposed prototype which 

consist of the efficient frequent pattern model, efficient least pattern 

mining model and significant least pattern mining model. Second, 

completion of compiling all artifacts in the proposed models into 

methodology chapter.  

1.5.4 Implementation of the proposed hybrid model 

(i) Purpose: Implementing the proposed hybrid model in the prototype 

and ensuring workability. 

(ii) Process: Implementing the proposed hybrid model by converting all 

algorithms, data structures and measures into C# programming which 

is running on .Net framework. 
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(iii) Outcome: Completion of the workable prototype to mine different 

category of the significant patterns. 

1.5.5 Evaluation of the proposed hybrid model 

(i) Purpose: Comparing the performance of the proposed models with 

other models in term of the efficiencies and significances. 

(ii) Process: First, evaluating the efficiency of the algorithms and data 

structures in the proposed models against the algorithms and data 

structures in the benchmarked models, respectively. Second, analyzing 

the significances of the generated patterns based on the proposed 

measures against the other standard measures. 

(iii) Outcome: First, the completion of the result and discussion chapter 

based on the experiments. Second, completion of abstract and 

conclusion chapters which derived from the findings. 

1.5.6 Documentation 

(i) Purpose: Documenting all the research artifacts into proper research 

articles and thesis. 

(ii) Process: First, writing conference proceedings and journal papers to 

prove the novelty of the research efforts. Second, compiling research 

artifacts into a conclusion chapter. 

(iii) Outcome: Completion of a thesis, conference proceedings, book 

chapters and journal papers. 

 

 

1.6 Thesis Contribution and Organization 

 

 

Specifically, this thesis makes fives (5) contributions in the field of data mining as 

follows: 

(i) Hybrid Model for Discovering Significant Patterns (Hy-DSP). This model 

consists of the integration of three different models called Efficient Frequent 

Pattern Mining Model (EFP-M2), Efficient Least Pattern Mining Model 

(ELP-M2) and Significant Least Pattern Mining Model (SLP-M2) to 

efficiently mine frequent pattern, least pattern and significant least pattern, 

respectively. These patterns are also known as significant pattern. Besides 

employing the existing new data structures, algorithms and measures from the 
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current models, Hy-DSP also introduced a new algorithm called Least Trie 

Transformation Technique Algorithm (LT3A) for integration purposes. In 

Hy-DSP, three categories of significant patterns based on the specific 

requirement of the application domains can be easily produced. Experiments 

with the FIMI datasets showed that Hy-DSP which consist of a new Disorder 

Support Trie Itemset (DOSTrieIT) data structure and enhanced LP-Growth 

algorithm (LP-Growth*) outperformed the benchmarked CanTree data 

structure and FP-Growth algorithm up to 4.13 times (75.78%) and 10.31% 

times (90.31%), respectively, thus verify its efficiencies. 

(ii) EFP-M2 introduces the DOSTrieIT data structure. In this model, the 

construction of FP-Tree totally relies on the flexibility of DOSTrieIT in 

handling the updatable database. EFP-M2 is different from typical 

construction of FP-Tree which is wholly depending on the main source of the 

original database. A new technique called Trie Transformation Technique 

(T3) is also employed to transform the data from DOSTrieIT into FP-Tree. 

Moreover, two new algorithms are directly involved in this model namely 

Fast Online Trie Algorithm (FOLTA), T3 Algorithm (T3A) and enhanced 

FP-Growth algorithm (FP-Growth*). The frequent pattern that has been 

extracted from EFP-M2 is known as FAR and classified as significant 

pattern. Experiments with the FIMI datasets showed that FP-Growth* 

algorithm is on average faster at 7,947.27 times (99.34%) than FP-Growth in 

generating the frequent pattern.  

(iii) ELP-M2 efficiently constructs and mine least patterns from its original 

database. It consists of an enhanced trie data structure called Least Pattern 

Tree (LP-Tree). The construction of the LP-Tree is derived from the original 

database. A new algorithm called LP-Tree algorithm (LP-TA) is used to 

construct LP-Tree data structure. To mine the entire least patterns, LP-

Growth algorithm is employed. The least pattern that has been extracted from 

ELP-M2 is also known as LAR and classified as significant pattern. 

Experiments with the FIMI datasets showed that LP-Growth algorithm is on 

average faster at 1.38 times (26.37%) than FP-Growth in producing the least 

pattern. Moreover, the average number of iterations during constructing LP-

Tree is 96.94% lesser than FP-Tree. 
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(iv) SLP-M2 efficiently constructs and mine significant least patterns from its 

original database. This model also employs the pervious LP-Tree data 

structure and previous algorithms namely T3A, LP-TA and LP-Growth. Two 

extra measures called Critical Relative Support (CRS) and Weighted Support 

ARs (WSAR*) are introduced in this model. These measures are then applied 

to the least patterns in an attempt to prune and finally mine the rules that are 

really significant. The least pattern that satisfies the threshold value from the 

respective measures is known as SLAR and classified as significant pattern. 

Experiments with the three real datasets showed that, the average number of 

SLAR produced by our proposed measures is still lowest as compared to the 

other standard measures. 

(v) Hybrid Framework for Discovering Significant Patterns (Hyf-DSP). This 

framework is based on the simplification of Hy-DSP. In comparative studies, 

an asterisk (*) is only added at end of LP-Growth (becomes LP-Growth*) if 

the data source is referred to DOSTrieIT.  

 

The rest of this thesis is organized as follows: Related work is presented in 

Chapter 2. The basic terminology of ARs is formulated in Chapter 3. The proposed 

models and framework are explained in Chapter 4. Comparison tests are reported in 

Chapter 5. The conclusions and future research directions are mentioned in Chapter 

6. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

In this section, the basic concepts and related works including KDD, data mining, 

significant patterns, trie data structure, pattern measures, ARs mining, ARs, frequent 

pattern algorithms, significant pattern algorithms, FP-Tree, CATS-Tree, Can-Tree, 

correlation analysis, multiple supports, relative Support, weighted ARs and weighted 

support ARs are discussed in details. 

 

 

2.1 Knowledge Discovery in Database 

 

 

Knowledge Discovery in Database (KDD) is a multi-steps process to discover novel, 

implicit, previously unknown, and potentially useful of information from database 

repositories. The term KDD is always used interchangeable with data mining. In fact, 

KDD is the application of the scientific methods for data mining. Data mining is one 

of the processes in KDD. Until this recent, several variations to describe the phases 

or steps performed in the KDD process model have been put forward. The total steps 

involved can be in the range of 4 until 12. Although the total number of steps may 

differ, most of the descriptions show consistency in their content. One of the broad 

descriptions of the KDD process model is introduced by Fayyad et al. (1996). 

According to him, the KDD process model contains five fundamental steps which are 

problem identification, data extraction, data pre-processing, data mining, and pattern 

interpretation or presentation (Fayyad et al., 1996). The core part of KDD process is 

shown in Figure 2.1. 
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Figure 2.1: An Overview Process of KDD (Fayyad et al., 1996) 

 

The focus of the first step in KDD is to understand the domain applications, 

the prior knowledge and general goal of knowledge discovery. A statement on what 

to be accomplished is clearly defined. The second step is to select the dataset with 

appropriate number of attributes for further exploration. It may consist of human 

experts or KDD tools to help in analyzing the initial data. The third step is to ensure 

data is valid by removing the outliers or noisy data (data cleaning). It is important to 

decide the best strategy on how to do about the missing data value. The fourth step is 

to select the suitable algorithm and technique for data transformation.  Some 

attributes and instance are added or removed from the target data. The fifth step is to 

present the best model of mined patterns by applying certain data mining algorithms. 

The sixth step is to examine the model and determine whether it is useful and 

interesting. It is possible to repeat the previous steps to refine the model.  

 

 

2.2 Data Mining  

 

 

Data mining is a process of automatically discover hidden and useful information 

from large database repositories. It is a core step in KDD process. For more broaden 

definition, data mining is “the nontrivial process of identifying valid, novel, 
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potentially useful, and ultimately comprehensible knowledge from database” to assist 

in the decision making process (Fayyad et al., 1996). Data mining techniques are 

employed to find novel, unknown and useful patterns. It also provides the 

functionality to predict the future result.  Not all of the information discovery tasks 

are classified as data mining. For example, searching records from the database 

management system (DBMS) or Internet are the tasks related to information retrieval 

(IR) area. Undeniable, data mining techniques have been deployed to enhance the 

ability of information retrieval systems. As mentioned earlier, data mining is part of 

the KDD process model which transforms the input data into meaning information. 

These input data can be stored in various formats such as in flat files, spreadsheets, 

XML, relational tables, etc. Because of the multi-formats and outliers usually 

occurred in raw data, data pre-processing steps is perhaps the most tedious and time-

consuming in the overall KDD process model. 

Data mining task can be divided into 2 general categories. The first one is a 

predictive task. The main objective of this category is to predict the value of the 

desired attribute by giving the values of others attributes. The desired attribute to be 

predicted is normally known as targeted (dependent) variable and attributes used in 

the prediction are commonly known as explanatory (independent) variables. The 

second part is a descriptive task. The main objective here is to generate patterns 

based on the relationship between the values of attributes. Usually, this part is always 

required further exploration and additional post-processing techniques in explaining 

the obtained results.  

Specifically, the cores of data mining tasks are broken up into association 

analysis, cluster analysis, predictive modelling and anomaly detection. Association 

analysis refers to the task of discovering the patterns or ARs in the data. Apriori 

algorithm (Agrawal et al., 1993) was the first widely accepted solution in association 

analysis. Cluster analysis focuses on clustering the data based on their relatedness. It 

seeks for identifying groups of similar data points in a multidimensional dataset (Jain 

& Dubes, 1998).  Predictive modelling seeks for forecasting the targeted variables by 

providing the explanatory (independent) variables. The most two popular types in 

predictive modelling are classification (discrete target variables) and regression 

(continuous target variables). Anomaly detection emphasizes more on tracing the 

abnormal occurrences from the data. It is also known as noisy or outlier data.  
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2.3 Significant Patterns 

 

 

Significant patterns (Webb, 2007) can be defined as a set of extracting patterns from 

data repositories that are potentially very useful and meaningful for certain 

applications. During the mining processes, certain threshold values will be employed 

as a filtering mechanism to extract these patterns. Any pattern that fails to satisfy the 

user-defined thresholds are pruned out and considered as not important or 

insignificant. Typically, the significances of these patterns highly depend on the 

problems that need to be resolved. In other words, it is closely related to domain-

specific applications. Therefore, for more specific classification, the significant 

patterns can be divided into three core categories; frequent pattern, least pattern and 

significant least pattern. 

Frequent pattern was first introduced by Agrawal (1993) to mine the ARs 

between items and also known as market basket analysis. Besides ARs, it also 

reveals the strong rules, correlation, sequential rules, causality, and many other 

important discoveries. There are two important reasons of finding frequent patterns 

from data repositories. First, frequent patterns can effectively summarize the 

underlying datasets, and provide new information about the data. These patterns can 

help the domain experts to discover new knowledge hiding in the data. Second, 

frequent pattern serves as the basic input for others data mining tasks including 

association rule mining, classification, clustering, and change detection, etc. (Huan et 

al., 2004; Inokuchi et al., 2000; Jin & Agrawal, 2006; Zaki et al., 2003).  In the real 

world, mining the frequent itemset may involve with the massive datasets and highly 

pattern dimensions. Therefore, minimizing the computational cost and ensuring the 

high efficiency in mining activities is very important. Hence, numerous strategies 

and improvement of data structures have been put forward until this recent. 

In some situations, the frequent pattern is not very useful as compared to least 

pattern. In fact, the least pattern might produce something that is very interesting or 

meaningful in certain domain applications. However, the process of extracting 

significant patterns is not straight forward. Usually, special algorithms and measures 

are required to extract the respective patterns. These rules are very important in 

discovering rarely occurring but significantly important, such as air pollution 

detection, critical fault detections, network intrusions etc. and their possible causes. 
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At the moment, many series of ARs mining algorithms are using the minimum 

supports-confidence measure to limit the number of ARs. As a result, by increasing 

or decreasing the minimum support (MinSupp) or confidence (MinConf) values, the 

interesting rules might be missing or untraceable. The extraction of least patterns is 

very challenging for the data mining algorithm (Weiss, 2004). In fact, the standard 

frequent pattern mining algorithms are inefficient at capturing the least patterns (Koh 

et al., 2007; Adda et al., 2007; Selvi et al., 2009; Szathmary et al., 2010). Since the 

complexity of the study, difficulties in the algorithms (Yun et al., 2003) and it may 

require excessive computational cost, there are very limited attentions have been paid 

to discover the significant least patterns. Therefore, designing the new and specific 

algorithm is undeniable very important to specifically deal with least patterns 

(Szathmary et al., 2010).  

 In some cases, the least and frequent patterns are not really the interested 

patterns. The main limitation of the previous two categories of patterns is all items in 

the transaction are assumed to hold an equal weight (1 or 0). However, in certain 

domain applications, the items might hold their own weight to represent the 

importance of the items such as the price, profit margin, quantity etc. Therefore, least 

patterns with weighted items or also known as significant least pattern is considered 

as more interesting and useful. The use of weighted items can lead into prioritize the 

patterns according to their importance rather than typical support and confidence 

measures (Ibrahim & Chandran, 2011). Among the popular studies in this area are 

Multiple Support Apriori Algorithm (Liu et al., 1999), Relative Support Apriori 

Algorithm (Yun et al., 2003), Weighted Association Rules (Cai et al., 1998) and 

Weighted Association Rule Mining (Tao et al., 2003). However, the process of 

mining significant least pattern is also very challenging (Khan et al., 2008) and 

facing the similar difficulties as the least pattern.  

  

 

2.4 Trie Data Structure 

 

 

Trie data structure (Amir et al., 1997; Borgelt & Kruse, 2002; Brin et al., 1997; 

Haans & Tiwary, 1998) is a popular organization structure for keeping data. It 

emulates a hierarchical data structure with a set of linked nodes. The trie consists of 

root node, a set of nodes (or vertices) and a set of arcs (or edges). In each node of 
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prefix sub-trees, it has three fields: item-name, support and node-link. Item-names is 

the name of items which represented by this node, support is the frequency of this 

item in the portion of the path that reaching this node, and node-link links to the next 

node carrying the same item-name or null if there is no node. Besides the root node, 

other nodes have exactly only one parent. It is possible to reach any node by 

following a unique path of arcs from the root. If arcs are considered as bidirectional, 

there is a unique path between any two nodes. 

 

 

2.5 Pattern Measures 

 

 

The support-confidence framework is the most commonly used measure in 

identifying, and consequently defining the strength of ARs. Support is the number of 

occurrences of some set of attributes (itemsets) in a dataset. It also refers to support 

count. Confidence is to show the support for an AR in a rule set, which is the level of 

"confident" of a rule. However, it has many limitations and not really good in 

determining the desired patterns (Brin, 1997). Hence, several interestingness 

measures have been proposed (Tan et al., 2006; Wu et al., 2010) in the literature to 

mine the preferred patterns. The challenges are, selecting an appropriate measure is 

quite troublesome and not straight forward. As a result, Tan (2006) proposed the best 

approaches for selecting the desired measures based on their list of key properties. 

These mappings exercise help in identifying which measure that can be the most 

appropriate for the respective domain applications. 

 There are two common categories of pattern measures; objective 

interestingness measure and subjective interestingness measure. The objective 

interestingness measure used the items or itemsets support in generating the 

interesting patterns. Examples of the popular objective interestingness measures are 

support, confidence (Apriori et al., 1993), correlation (Brin et al., 1997), IS-measure 

(Tan, 2006) etc. The subjective interestingness measures employed the values 

captured from the data and domain users. Examples of subjective interestingness 

measures are Weighted ARs (Cai et al., 1998), Weighted Association Rule Mining 

(Tao et al., 2003), etc. 
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2.6 Association Rules Mining 

 

 

Association Rules (ARs) mining is one of the most important and well researched 

techniques of data mining. It was first introduced in (Agrawal, et al., 1993). Until 

today, mining of ARs has been extensively studied in the literature (Hipp et al., 

2000). It aims at discovering correlations, frequent patterns, associations or casual 

structures among sets of items in the transaction databases or other data repositories. 

(Zhao et al., 2010). Association is a rule, which implies certain association 

relationships among a set of objects such as occur together or one implies the other 

(Tan et al., 2006). Its main goal is to find associations among items from 

transactional database.  

ARs mining can find an interesting association or correlation relationships 

among a large set of data items (Han & Kamber, 2001). Usually, ARs are considered 

to be interesting if they satisfy both a MinSupp threshold and a MinConf threshold. 

The most common approach to finding ARs is to break up the problem into two parts 

(Dunham, 2003): 

(i) Find all frequent itemsets: By definition, each of these itemsets will occur at 

least as frequently as a pre-determined MinSupp count (Han and Kamber, 

2001). 

(ii) Generate strong ARs from the frequent itemsets: By definition, these rules 

must satisfy MinSupp and MinConf (Han & Kamber, 2001). 

 

 

2.7 Association Rules 

 

 

ARs mining techniques are employed to extract the interesting associations among 

attributes (items or entities) in a database. ARs are dissimilar to traditional 

production rules. It can have multiple attributes of input (antecedent) and output 

(consequence). Moreover, the output attributes for one rule can be an input for 

another rule. In market-basket analysis, ARs are very popular technique since all 

possible combinations of product can be generated. Therefore, with a limited number 

of attributes, it is possible to generate until thousand numbers of ARs.  
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2.8 Frequent Pattern Algorithms 

 

 

Apriori (Agrawal et al., 1994) is the first technique to generate the frequent pattern 

based on generate-and-test strategy. It employs a level-wise searching, where k-

itemsets (an itemset that contains k items) are used to produce  -itemsets. These k-

itemsets are also known as candidate itemsets. There are two main principles adopted 

by Apriori. First, every subset of a frequent itemset is also frequent (also called 

downward closure property). Second, every superset of a non-frequent itemset is also 

non-frequent. Implementation of these principles enables Apriori to reduce the 

searching space by pruning out any non-frequent itemsets at early levels. 

Transactions in the database are repeatedly scanned to match with the patterns appear 

in candidate itemsets. If there is no further extension of itemsets, the algorithm will 

terminate immediately.  

Apriori is considered as one of the most influential algorithm for mining 

frequent itemsets for Boolean ARs. However, it suffers from two nontrivial costs 

(Agrawal et al., 1996). First, the cost of generating the huge number of candidate 

itemsets. Second, the cost of repeatedly scanned the database and check the vast 

number of candidates itemset by pattern matching exercise. As an attempt to 

optimize and increase the Apriori efficiencies, several variations based on Apriori 

have been proposed such as AprioriTid and Apriori-Hybrid (Agrawal et al., 1994), 

Dynamic Itemset Counting (Brin et al., 1997), Direct Hashing & Pruning (Park et al., 

1995), Partition Algorithm (Hipp et al., 2000), High-Dimension Oriented Apriori (Ji 

et al., 2006), Variable Support-based Association Rule Mining (Anad et al., 2009), 

etc. 

Due to the limitation in Apriori algorithms, frequent pattern based algorithms 

without candidate itemsets have been proposed. FP-Growth algorithm uses a 

combination of the vertical and horizontal database layout to store the database in 

main memory. This method constructs a compact data structure known as FP-Tree 

from the original transaction database. The main focus is to avoid cost generation of 

candidate itemsets, resulting in greater efficiency. All the transactions in the FP-tree 

are stored in support descending order. By this implementation, the representation of 

the database in FP-Tree is kept smaller because of the more frequently occurring 

items are arranged closer to the root, the more likely it to be shared. 
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However, the main challenge in FP-Growth algorithm is the vast number of 

conditional pattern trees are recursively generated during the process of mining 

frequent itemsets. In addition, the algorithm also used different type of traversing 

during generating and mining the FP-Tree. These processes have definitely increased 

the computational cost. As a result, several variations of FP-Growth algorithm have 

been proposed such as FP-Growth algorithms are H-Mine Algorithms (Pei et al., 

2001), PatriciaMine (Pietracaprina & Zandolin, 2003), FPgrowth* (Grahne et al., 

2003),  SOTrieIT (Woon et al., 2004), Tcp (He et al., 2005), CFP-Growth (Hu & 

Chen, 2006), ICFP-Growth (Kiran & Reddy, 2009a), etc. 

Besides Apriori-like and frequent pattern based approaches, vertical data 

format is considered as a new dimension of improving the frequent itemsets mining. 

Eclat (Zaki et al., 1997) is the first algorithm to find frequent patterns by a depth-first 

search. It is a method of mining frequent itemsets by transforming the transaction 

database in the horizontal data format into the vertical data format. Apriori and FP-

growth algorithms mine the frequent patterns from typical horizontal data format 

(i.e., {TID: itemset}), where TID is a transaction-id and itemset is a set of items in 

the transaction TID. However for ECLAT, frequent patterns can also be mined to 

data displayed in vertical data format (i.e., {item: TID_set}).  

 Eclat generates candidate itemsets using only the join step from Apriori, since 

the itemsets necessary for the prune step are not available. In comparison with 

Apriori, counting the supports of all itemsets is performed much more efficiently. A 

few years later, Zaki, Hsiao and Gouda (Zaki & Hsiao, 2002; Zaki & Gouda, 2003) 

proposed a new approach to efficiently compute the support of an itemset using the 

vertical database layout. Since the introduction of Eclat, numerous variation of Eclat 

algorithm have been proposed such as VIPER (Shenoy et al., 2000), MAFIA (Burdic 

et al., 2001), dEclat (Zaki et al., 2003), etc. 

 

 

2.9 Significant Pattern Algorithms 

 

 

Detecting rare and low-rank (also known as infrequent, non-frequent, unusual, 

exceptional or sporadic) patterns, patterns with low support but high confidence with 

highly efficient is a difficult task in data mining. This type of patterns cannot be 

revealed easily using traditional patterns mining algorithms. Usually, to capture these 
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patterns via traditional approaches, such as the Apriori algorithm, MinSupp has to be 

set very low, which resultants the generation of a large amount of redundant patterns. 

The problem of discovering rare items has recently captured the interest of the data 

mining community (Adda et al., 2007).  

Liu et al. (1999) proposed Multiple Support Apriori (MSApriori) based on 

level wise-search to discover the rare patterns. Here, the user can specify multiple 

MinSupp to reflect different natures and/or frequencies of items. Thus, each item will 

be associated with a similar of different minimum item support (MIS) value. This 

model enables users to produce rare item rules without causing frequent items to 

generate too many meaningless rules. However, the MSApriori algorithm still adopts 

an Apriori-like candidate set test-and-generate approach and it is always too costly 

and time consuming. It becomes more critical when there are existed long patterns in 

datasets. 

Selvi et al. (2009) introduced Dynamic Collective Support Apriori (DCS-

Apriori) to produce an interesting rare ARs by using two auto-counted MinSupp. 

Dynamic Minimum Support Count (DMS) and Collective Minimum Count (CMC) 

are calculated at every level. In each level onwards, different DMS and CMS values 

are employed to generate candidate and frequent itemsets, respectively. However, the 

model is not yet tested using the real dataset and still suffers from candidate itemset 

generations. 

Szathmary et al. (2007) proposed two different algorithms to mine the rare 

itemsets. The first algorithm is a naive one that relies on an Apriori-style 

enumeration, and the second one is an optimized method that limits the exploration 

to frequent generators only. As part of algorithms, three types of itemsets are also 

defined. First, Minimal Generators (MG) are itemsets with a lower support than its 

subset. Second, Minimal Rare Generators (MRR) are itemset with non-zero support 

and subsets of all frequent items. Third, Minimal Zero Generators (MZG) are itemset 

with zero supports and subsets of all non-zero support of items. 

Szathmary et al. (2010) suggested Break the Barrier (BtB) algorithm to 

extract highly confidence rare ARs with below the barrier. Three main steps are 

involved in BtB. First, it finds the minimal rare itemsets (mRIs). mRIs are also a rare 

generator. Second, to find the closure from the previous mRIs  as an attempt to 

obtain their equivalence classes. Third, to generate the rare ARs from the rare 

equivalence classes. These rules are also called mRG because their antecedents are 
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minimal rare generator.  

Adda et al. (2007) proposed AfRIM that uses a top-down approach which is 

similar to Rarity. Rare itemset search om AfRIM begins with the itemset that 

contains all items found in the database. Candidate generation occurs by finding 

common k-itemset subsets between all combinations of rare k+1-itemset pairs in the 

previous level. Candidates are pruned in a similar way to Rarity Algorithm. AfRIM 

examines itemset that have zero support, which may be inefficient. 

Koh et al. (2005) proposed a novel Apriori-Inverse algorithm to mine the 

least itemset without generating any frequent rules. Apriori-Inverse uses maximum 

support instead of typical MinSupp to generate candidate itemset. Classification of 

interested candidate itemset is for those itemset that fall below a maximum support 

value and above a minimum absolute support value. Two classes of rules are 

produced from this algorithm known as perfectly sporadic rules and imperfectly 

sporadic rules. However, the main challenges are it still suffers from too many 

candidate itemset generations and computational times during generating the least 

ARs.  

Wang et al. (2003) proposed Adaptive Apriori to capture the required itemset. 

Several support constraints are used to each itemset. These constraints exploit the 

dependency chains between items and determine the “best” MinSupp to be pushed to 

each itemset. In case of more than one constraint is applicable to an itemset, the 

lowest MinSupp is chosen. Adaptive Apriori solved the problem of uniform MinSupp 

as faced by Apriori algorithm while generating the candidate itemset. However, this 

algorithm still suffers from necessity of scanning multiple times of database for 

generating the required itemset. 

He et al. (2005) proposed FP-Tree based Correlation Mining (Tcp) algorithm 

to mine complete set of significant patterns called jumping emerging pattern (JEP). 

JEP is a special type of emerging pattern. It is an itemset whose support increases 

abruptly from zero in one dataset, to non-zero in another dataset. Tcp algorithm 

involved with constructing FP-Tree and mining the correlation JEP. It constructs a 

FP-Tree from the transactional database without using the support threshold. In the 

correlation mining, FP-Growth algorithm is utilized to generate all item pairs and 

compute their correlation values. 

Hu and Chen (2006) introduced CFP-growth algorithm, for mining the 

complete set of frequent patterns with multiple MinSupp. As part of the algorithm, 



22 

 

multiple item support tree (MIS-tree) is also introduced. MIS-tree is an extension of 

the FP-tree structure (Han, 2004) for storing compressed and crucial information 

about frequent patterns. As similar to MIS model, each item (node) in MIS-Tree will 

equip with different MIS value. However, this model can only mine the knowledge 

under the constraint of single MIS values rather than setting the multiples MIS 

values. 

Kiran & Reddy (2009a) suggested Improved Conditional Pattern-growth 

(ICFP-growth) which is an extension of FP-growth-like approach to mine rare 

patterns. ICFP-growth is better than CFP-Growth because this approach can prune 

the items that are not contributed to produce the desired pattern. ICFP-growth is 

equipped with various heuristics to efficiently minimize the search space for finding 

the complete set of rare frequent patterns. The notion of “support different” is also 

proposed as a mechanism to ensure efficiency in mining rare frequent patterns. 

Moreover, this approach skips the construction of conditional pattern bases for the 

suffix items (or patterns) which are infrequent. 

 

 

2.10 Frequent Pattern Tree 

 

 

The main bottleneck of the Apriori-like methods is at the candidate itemset 

generation and test. This problem was overcame by introducing a compact data 

structure, called frequent pattern tree, or FP-Tree then based on this structure, an FP-

Tree-based pattern fragment growth method was developed, FP-growth. FP-Growth 

is currently one of the benchmarked and the fastest algorithms for frequent pattern 

mining (Woon et al., 2004). This algorithm is based on a prefix subtree (or paths) 

representation of the transaction database called FP-Tree. FP-Growth requires two 

times of scanning the transaction database. First, it scans the database to compute a 

list of frequent items sorted by descending order and eliminates infrequent items. 

Second, it scans to compress the database into a FP-Tree structure. Then, the 

algorithm mines the FP-Tree by recursively building its conditional FP-Tree. A 

simple example (Tao et al., 2003) of implementing the FP-Tree algorithm is shown 

in Table 2.2 (Transaction and Ordered Items) and Figure 2.2 (FP-Tree Construction), 

respectively.  
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First, the algorithm sorts the frequent items in transactional database and all 

infrequent items are removed. Let say a MinSupp is set to 3, therefore alphabets f, c, 

a, b, m, p are only kept. The algorithm scans the entire transactions start from T1 to 

T5. In T1, it prunes from {f, a, c, d, g, i, m, p} to {f, c, a, m, p, g}. Then, the 

algorithm compresses this transaction into a prefix path tree which f becomes the 

root. Each path on the tree represents a set of transaction with the same prefix. This 

process will execute recursively until the end of the transaction. Once the tree has 

been completely built, then the next pattern mining will be performed. 

However, FP-Tree is not suitable for incremental frequent pattern mining. It 

requires twice database scanning for tree construction and thus very computational 

excessive. Due to this constraint, several works based on FP-Tree extensions have 

been established and one of them was CATS-Tree (Cheung & Zaïane, 2003) data 

structure. 

 
 

Figure 2.2: FP-Tree construction 

 

 

Table  2.1: Transaction and ordered items 

 

TID Items Items (frequent ordering) 

   

T1 a c f m p c f a m p 

T2 a b c f l m o c f a b m 

T3 b f h j o f b 

T4 b c k s p c b p 

T5 a c e f l p m n c f a m p 
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2.11 CATS-Tree   

 

 

CATS-Tree (Cheung & Zaïane, 2003) is an extension model of FP-Tree to improve 

the storage compression and allow frequent pattern mining without generation of 

candidate itemsets. CATS-Tree is a prefix tree and contains all elements of FP-Tree 

including the header, the item links etc.  It requires single database scan to build the 

complete tree. The construction of CATS-Tree is illustrated from Figure 2.3 until 

Figure 2.7 based on the sample transactions in Table 2.1. 

For the first time, a transaction is inserted at the root with the original items 

or nodes order. For the next transactions, if the items of the new transactions are 

similar to the existing nodes, they will be merged together. In certain cases, the 

position of the existing nodes will be adjusted due to the merging process.  

Frequent itemset mining plays a fundamental role in data mining and has 

been received many attentions in the past decade. More than hundreds of papers have 

been published in an attempt to increase its efficiencies via enhancement or new 

algorithm developments. It was first introduced by Agrawal et al. (1993) to mine the 

ARs between items and also known as market basket analysis. Besides ARs, it also 

reveals the strong rules, correlation, sequential rules, causality, and many other 

important discoveries. In the real world, mining the frequent itemset may involve 

with the massive datasets and highly pattern dimensions. Therefore, minimizing the 

computational cost and ensuring the high efficiency in mining activities is very 

important. Hence, numerous strategies and improvement of data structures have been 

put forward until this recent.  

In Figure 2.3, the first transaction (T1: a c f m p) will be inserted at the root of 

empty tree. The order of the nodes in the tree is similar to the original order of items 

in the transaction. At this stage, all nodes have an equal support count, which is 1. 
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