
DYNAMIC LEVELING CONTROL OF A WIRELESS

SELF-BALANCING ROV USING FUZZY LOGIC CONTROLLER

MOHAMMAD AFIF BIN AYOB

A thesis submitted in

fulfilment of the requirement for the award of the

Masterof Electrical Engineering

Faculty of Electrical and Electronic Engineering

UniversitiTun Hussein Onn Malaysia

JANUARY 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/42953893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 v

ABSTRACT

A remotely operated vehicle (ROV) is essentially an underwater mobile robot that is

controlled and powered by an operator outside of the robot working environment.

Like any other marine vehicle, ROV has to be designed to float in the water where its

mass is supported by the buoyancy forces due to the displacement of water by its

hull. Vertically positioning a mini ROV in centimetres resolution underwater and

maintaining that state requires a distinctive technique partly because of the pressure

and buoyancy exerted by the water towards the hull and partly because of the random

waves produced by the water itself. That being said, the aim of the project is to

design and develop a wireless self-balancing buoyancy system of a mini ROV using

fuzzy logic controller. A liquid level sensor has been implemented to provide

feedback to the Arduino microcontroller. A user-friendly graphical user interface

(GUI) has been developed for real-time data monitoring as well as controlling the

vertical position of the ROV. At the end of the project, the implemented fuzzy

control system shows enhanced and better performance when compared with one

without a controller, a proportional-derivative (PD) controller, and a proportional-

integral-derivative (PID) controller.

 vi

ABSTRAK

Sebuahkenderaan yang dikendalikandarijauh (ROV) padaasasnyaadalah robot

mudahalih yang beroperasi di dalam air yang dikawaldandikuasaiolehpengendalidi

luarpersekitarankerja robot.Sepertimanakenderaanmarinyang lain, ROV

direkauntukterapung di dalam air dimanajisimnyadisokongolehdayakeapungan yang

disebabkanolehanjakan air olehstrukturkenderaan. Menyelaraskedudukan ROV

minisecaramenegakdalamresolusisentimeterdi dalamair

danmengekalkankeadaanitumemerlukantekniktersendirisebahagiannyakeranatekanan

dankeapungan yang dikenakanoleh air

kearahbadankenderaandansebahagiannyakeranagelombangrawak yang

dihasilkanoleh air itusendiri.Disebabkanhalini,

tujuanprojekiniadalahuntukmerekabentukdanmembangunkankeseimbangansendirike

apungansistemsebuah ROV mini

menggunakanpengawallogikkabur.Sebuahpenderiacecairtelahdigunakanuntukmembe

rimaklumbalaskepadamikropengawal Arduino.Satuantaramukamesrapenggunagrafik

(GUI) telahdibangunkanuntukmemantaudata

secaramasasebenarsertamengawalkedudukanmenegakdaripada

ROV.Padaakhirprojek, sistemkawalankabur yang

dilaksanakanmenunjukkanprestasiyang

dipertingkatkandanlebihbaikapabiladibandingkandengansatutanpapengawal,

pengawalberkadar-derivatif (PD), danpengawalberkadar-integrasi-derivatif (PID).

 vii

CONTENTS

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 CONTENTS vii

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xii

 LIST OF APPENDICES xiii

CHAPTER 1 INTRODUCTION 1

 1.1 Report outline 1

 1.2 Introduction 2

 1.3 Problem statement 2

 1.4 Aim and objectives 3

 1.5 Scopes and limitations 3

CHAPTER 2 LITERATURE REVIEW 4

 2.1 Introduction 4

 2.2 Related work 4

 2.3 Research comparison 11

CHAPTER 3 METHODOLOGY 13

 3.1 Introduction 13

 3.2 System architecture 14

 viii

 3.3 Hardware design 15

 3.3.1 Mechanical 15

 3.3.2 Electronics 17

 3.3.2.1 Arduino Uno R3 mainboard 17

 3.3.2.2 Liquid level sensor 18

 3.3.2.3 Device connection 20

 3.4 Software design 21

 3.4.1 Wireless communication 21

 3.4.2 Fuzzy logic controller 22

 3.4.3 Graphical user interface (GUI) 25

CHAPTER 4 RESULTS AND ANALYSIS 27

 4.1 Hardware development 27

 4.1.1 Mechanical 27

 4.1.2 Electronics 29

 4.1.2.1 Micro pumps performance 29

 4.1.2.2 Liquid level sensor 30

 4.2 Software development 31

 4.2.1 Fuzzy logic controller 31

 4.2.2 Real-time response 35

CHAPTER 5 CONCLUSION AND RECOMMENDATION 39

 5.1 Conclusion 39

 5.2 Recommendation for future work 39

 REFERENCES 41

 VITA 43

 ix

LIST OF TABLES

TABLE TITLE PAGE

2.1 Comparison between each research 11

3.1 Arduino Uno R3 mainboard specification 17

3.2 Liquid level sensor specification 19

3.3 Fuzzy associative memory matrix (FAMM) 24

4.1 Flow rate capacity for micro pumps 29

4.2 ROV level consistency test 30

4.3 Fuzzy logic, PD and PID controller comparison 34

 x

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 ROV plant closed-loop system 5

2.2 ROV control strategy 6

2.3 Depth control simulation 6

2.4 Schematic diagram of a sperm whale’s head 7

2.5 VBS depth controller 8

2.6 VBS trim controller 8

2.7 VBS circuit diagram 9

2.8 ROV pneumatic control system 10

3.1 Flowchart of project activities 14

3.2 Device interfacing with Arduino Uno mainboard

microcontroller

15

3.3 ROV prototype design 16

3.4 Arduino Uno R3 mainboard 17

3.5 eTape liquid level sensor 18

3.6 Typical output of liquid level sensor 19

3.7 Device connection diagramto Arduino Uno microcontroller

board

20

3.8 Pairing two XBee modules in X-CTU 22

3.9 Components of fuzzy logic controller 23

3.10 Vertical positioning of a mini ROV control using fuzzy

logic controller

24

3.11 Membership function for error and delta error 25

3.12 ROV GUI for level control and data monitoring 25

 xi

4.1 ROV physical construction 28

4.2 Submerging ROV underwater 28

4.3 Simulated open loop controller for ROV leveling control

system

31

4.4 A mini ROV open loop response 31

4.5 Fuzzy logic control block 32

4.6 Fuzzy logic control system response 32

4.7 Fuzzy logic control and PD control block 33

4.8 Fuzzy logic control and PID control block 33

4.9 Comparison of output response between fuzzy logic control

and PD control system

34

4.10 Comparison of output response between fuzzy logic control

and PID control system

34

4.11 ROV rising response from 0cm to 1cm 35

4.12 ROV sinking response from 1cm to 0cm 36

4.13 ROV sinking response from 1cm to -1cm 36

4.14 ROV rising response from 1cm to 2cm 37

4.15 ROV sinking response from 2cm to 0cm 37

 xii

LIST OF ABBREVIATIONS

AUV Autonomous Underwater Vehicle

COG Center of Gravity

DC Direct Current

FAMM Fuzzy Associative Memory Matrix

GND Ground

GUI Graphical User Interface

I/O Input/Output

ICSP In-Circuit Serial Programming

LED light emitting diode

LQ-PID Least Squares Prediction Fuzzy Compensated PID

LQR Linear Quadratic Regular

LSM Least Squares Method

MISO Master In Slave Out

MOSI Master Out Slave In

NM-FPID Normal Fuzzy Compensated PID

PD Proportional Derivative

PID Proportional-Integral-Derivative

PVC Polyvinyl Chloride

PWM Pulse Width Modulation

RF Radio Frequency

ROV Remotely Operated Vehicle

RST Reset

SCK Serial Clock

USB Universal Serial Bus

VBS Variable Buoyancy Control System

 xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Arduino coding 44

B MATLAB GUI coding 50

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

A remotely operated vehicle (ROV) is essentially an underwater mobile robot that is

controlled and powered by an operator outside of the robot working environment via

an umbilical cable or a remote control. A ROV differs from autonomous underwater

vehicle (AUV) in a way that ROV always take command from its operator and takes

no action autonomously. The boundless functionality of modern ROVs have brought

great impact to the society from operations in both offshore and inshore by

commercial, government, military and academic users [1].

Like any other marine vehicle, ROV has to be designed to float in the water

where its mass is supported by the positive buoyancy forces due to the displacement

of water by its hull. The provision of special tankage is required for the transition

from surface to submerge and to sustain the balance between mass and buoyancy

while submerges. The changes in buoyancy occur corresponding to the deepness the

vehicle travels [2] consequently making the state of equilibrium in depth tends to be

unstable with the vessel at rest. Since changes in buoyancy occur with depth, vehicle

structures, including the hull, lose displacement as they compress [3] and thus will

affect its vehicle stability. Subsequently, a special control device would have to be

provided for the vessel to stay at a particular level.

2

1.2 Problem statement

ROV control presents several complications because of the nonlinearities model

uncertainties and the influence of the external surroundings. Vertically

positioning a mini ROV in centimeters resolution underwater and maintaining that

state requires a distinctive technique. The reason is because of the pressure and

buoyance force exerted by the water towards the vessel and also because of the

random waves produced by the water itself. The study and design of a self-leveling

control system for a mini ROV is significantly important because of numerous

applications that can take benefits from it. Such examples include subsea

installations, inspecting the hazardous inside of nuclear power plants, object location

and recovery, and repairing complex deep water production systems.

1.3 Aim and objectives

The aim of the project is to design and develop a wireless self-leveling buoyancy

system of a mini ROV by using fuzzy logic controller that has the ability for precise

depth control. The objectives of this project on the other hand are as follows:

(i) To improve a remotely controlled mini ROV by using a microcontroller with

feedback sensor.

(ii) To develop a self-balancing buoyancy system for a mini ROV based on a

liquid level sensor.

(iii) To design the fuzzy controller for a self-leveling buoyancy system of a mini

ROV.

(iv) To develop a wireless communication between a mini ROV and a computer.

(v) To test the performance of the developed system in order to fulfill the

requirement.

1.4 Scopes and limitations

The scopes and limitations of the project are given below:

(i) The control system used in this research was fuzzy logic control.

(ii) An Arduino Uno was applied for embedding the program.

3

(iii) All communications with the mini ROV have been conducted wirelessly

within the X-CTU and MATLAB graphical user interface (GUI).

(iv) The wireless system module was implemented by using XBee S2 1mW Wire

Antenna with ZigBee 2.4GHz radio frequency (RF) protocol.

(v) The size of the mini ROV was less than 1m
2
 area and weighed less than 2kg.

(vi) The mini ROV used non-submersible direct current (DC) controlled water

pump to vertically level its position.

(vii) The self-balancing system is based on the attached liquid level sensor that

provided feedback to the fuzzy logic controller.

(viii) The testing of the mini ROV was done in calm and shallow water (<1m).

1.5 Report outline

The project in this report is divided into five chapters. The first chapter which is the

project introduction represents the overview of the project that include the

declaration of the problems, the objectives of the project, the limitations of the study,

and the contributions to the research area.

Chapter 2 covers the review of each critical points of current knowledge

including essential findings as well as theoretical and methodological contributions

to a particular topic.

Chapter 3 explains the systematic study of methods that have been applied

within the project that consists of project activities, system architecture, hardware

design and software design.

Chapter 4 discusses and compares the data of results and analysis that has

been obtained from the testing of hardware and software throughout the project

development. The testing is divided into two parts; interface testing and system

testing. The interface testing discusses all peripherals that are interfaced to the

microcontroller while the system testing focuses on the high-level software

operation.

Chapter 5 is the final chapter that provides the conclusion of the system

design and development. Additionally, it discusses the promising direction of

recommendation in future work based on the expected results presented in Chapter 4.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In order to design and develop a dynamic leveling control of a wireless mini ROV,

extensive research on buoyancy and depth control of the vehicle need to be fulfilled.

This chapter will discuss previous studies that have been accomplished by other

researchers in the same area. Comparison of the studies is given at the end of the

discussion.

2.2 Related work

Folcher and Rendas [4] address the identification and the control of the vertical

motion of the ROV Phantom 500. They split the matter in two decoupled problems:

the propeller motion and the diving motion. The ROV can be controlled from the

surface either manually by using joysticks or automatically by a surface computer. It

is well equipped with a 3 axis compass, a depth (pressure) sensor, an altimeter, a

sonar profiler, a video camera, and incremental encoders for the thrusters.

Root locus techniques are applied in designing each of the controllers in

order to recognize the dynamic models. This method achieves acceptable transient

control objectives by fixing the root location of the closed loop poles. In conjunction

with higher level controllers, these body motion controllers are used for the guidance

of the vehicle (where an algorithm for guidance along seabed boundaries using

vision is presented).

5

The controller generates the control signal Δ(n), as a function of the reference

signal , and of the measured output . Equation 2.1 shows the controller in

z-plane, where is the transfer function of the controller.

 () (2.1)

The closed-loop block diagram of the plant is illustrated in Figure 2.1. In this

figure, models the discrete time dynamics of the sample data system in

series with a zero order hold. A major downside of the current system is that it relies

on simplified decoupled models, and thus valid only under specific operating points

(where some velocities and accelerations can be neglected).

K(z)
Ωr(z)

+- G(z)
Δ(z) Ω(z)

Figure 2.1: ROV plant closed-loop system

Tang and Luojun [5] developed a nonlinear depth control method for ROV.

The method establishes the vertical motion model and uses least squares method

(LSM) fitting multi-order output response of the control system. The fuzzy

compensation is used to achieve overshoot suppression combined with proportional-

integral-derivative (PID) controller. The LSM process the multi-order data fitting

and generates the nonlinear predictor, where the predictor error is normalized as the

input to the fuzzy controller.

The lead compensates to the control value is generated by the fuzzy

controller by using fuzzy rules. At the end, the system uses PID control method in

main control channel and fuzzy nonlinear compensation control method in the

feedback forward channel to achieve the whole control system. The process for the

control strategy is shown in Figure 2.2.

6

PID

+-

Error ESet D output
X X Executing

agency X ROV

Fuzzy controller

Normalize

X

LSM

Sensor

-Predictor

Noise
+

Figure 2.2: ROV control strategy

The comparison of simulation waveforms between normal fuzzy

compensated PID (NM-FPID), normal PID controller, and the proposed least squares

prediction fuzzy compensated PID (LQ-PID) is described in Figure 2.3. The

simulation results show that the PID with prediction and fuzzy compensation control

system response has a certain overshoot suppression performance and the system

response speed faster than that of normal PID.

Figure 2.3: Depth control simulation

Normal PID

NM-FPID

LQ-PID

7

Shibuya, et al. [6] developed an underwater mobile robot with a buoyancy

control system based on the spermaceti oil hypothesis originated back in 1970s [7].

The hypothesis insists that sperm whales melt and congeal their spermaceti oil that is

located in their head and change the volume of the oil to control their own buoyancy.

The anatomy of a sperm’s whale head is presented in Figure 2.4. The spermaceti

organ that contains capillaries is located in the head. The nasal passage that goes

around the organ acts as a coolant and heating element for the spermaceti oil. To

choose the best materials as a spermaceti oil substitute, the densities of four

materials at both liquid and solid states were measured. Afterwards, the buoyancy

differences between both states were calculated. The experiment resulted in paraffin

wax as the best substance.

Nasal
passages

Blowhole Spermaceti oil

Figure 2.4: Schematic diagram of a sperm whale's head

It is noted that although the mobile robot can surface and submerge, it is not

able to control depth and at least following problems must be solved to tackle this

matter. First, sensors to detect depth of the robot, such as a depth-pressure sensor,

must be added to the robot. Second, the heating method should be improved to

shorten the time for melting paraffin wax, because the response time will affect

robot's depth control ability greatly. Additionally, temperature of the paraffin wax

should be controlled to regulate wax's volume and robot's buoyancy precisely.

8

Tangirala and Dzielski [2] developed a variable buoyancy control system

(VBS) for a large AUV to launch in shallow water (<10m) and to hover without

propulsion. The vehicle is equipped with two VBS tank to meet these requirements.

The resulting control problem is that the control variable (pump rate) is proportional

to the third derivative of the sensed variable (depth). There are significant delays and

forces are nonlinear (including discontinuous). The VBS control software operates in

two modes: depth control mode as in Figure 2.5 and trim control mode as in Figure

2.6.

Depth
Command

Quantizer

Derivative
Wave
Filter

Derivative
Wave
Filter

Depth

Depth

+
-

+
-

Kp Kd +
-

+1,0,-1

Figure 2.5: VBS depth controller

Moving
Average

Hydro-
dynamics

Tank
Geometry

Elevator

Pitch

Force

Moment

Fwd Mass

Aft Mass

Figure 2.6: VBS trim controller

The AUV is launched from the surface using the VBS depth controller

implementing a proportional derivative (PD) type of control law in conjunction with

the fins. Logic and filtering are used to sequence operational modes and to reject

low-frequency disturbances such as waves. While this depth control strategy is

shown to be more than adequate to launch the vehicle, it cannot hovers due to the

limit time cycle. Vehicle trim is achieved and maintained by the VBS trim controller

that uses a model-based approach to determine the force/moment combination that

trims the vehicle using a moving average of the pitch and elevator angles.

9

 A long cruising range AUV equipped with a VBS system was developed by

Zhao, et al. [8] and it was found that buoyancy is the resultant force between the

AUV weight and the buoyancy of its displacement volume. The VBS of the long

cruising range AUV was constructed with an oil tank, a rubber bladder which can

regulate its displacement volume and a set of hydraulic drives system. The whole

construction can bear the ambient sea water pressure when it works in 1000m depth.

The circuit diagram of the VBS for the AUV is shown in Figure 2.7. The

displacement volume of the bladder is controlled by pumping the oil between the oil

tank and the oil bladder with the hydraulic pump. This is to make the buoyancy of

the AUV is altered without changing its weight. When the VBS computer receives

the buoyancy adjustment command from the operator, it calculates the number of

pump revolutions according to the ambient pressure of the AUV. It will then sends

the pulse width modulation (PWM) signals to the driver of the DC motor.

M

T T

TT

T

T

+

- C

- -

- -A B

P
T

T

D

P

1

2

3

4

10

8

5

6

7

Q

W

1. Hydraulic pump
2. DC motor
3. Check valve
4. Four-way three position valve
5. Two-way two position valve
6. Flow control valve
7. Oil tank
8. Flow rate gauge
9. Oil bladder
10. Wire potentiometer
Q. Pressure spherical shell
W. Sea water

Figure 2.7: VBS circuit diagram

10

Wasserman, et al. [9] developed a dynamic buoyancy control of a tethered

ROV using a variable ballast tank. The dynamic buoyancy control solution for the

small-scale ROV is a pneumatic system that includes an air-filled ballast tank as

depicted in Figure 2.8 with visual feedback from underwater cameras. The major

parts of the system are the air source, the manifold and solenoids (used as the control

system for the air), the pneumatic grippers, and the buoyancy control ballast tank.

Plastic tubing is used as air lines between the major components.

The source of the air is a surface tank that is brought to the ROV through a

single hose in ROV’s tether and is always pressurized. The ballast tank would be

originally filled with water where a small hose would then expel the water from the

tank and fill it with air to control its buoyancy.

Manifold

Regulator

Ballast Tank

Pneumatic
Piston

Gripper

Solenoid
Valves

Pressurized tank on
surface

Pneumatic
Lines

Figure 2.8: ROV pneumatic control system

11

2.3 Research comparison

The comparisons for each of the previous studies regarding the buoyancy and depth

control for ROV are summarized in Table 2.1.

Table 2.1: Comparison between each research

No. Research Title Advantages Disadvantages

1 Identification and Control

of the Phantom 500 Body

Motion [4]

 Achieved controllable

depth using root locus

techniques

 Complex

 Real-life

implementation not

tested

2 A Novel ROV Depth

Control Based on LSM

Fitting Predictor and Fuzzy

Compensation [5]

 Achieved vertical

motion controlled by

combining various

method

 Complicated

 Steady state output

not accurate

 Inaccurate depth

control

3 Underwater Robot with a

Buoyancy Control System

Based on the Spermaceti

Oil Hypothesis [6]

 Controllable pitch

and roll

 Difficult to acquire

information about

wax densities

 No mechanism to

cool down paraffin

wax

 Inaccurate depth

control

4 A Variable Buoyancy

Control System for a Large

AUV [3]

 Logic and filtering

system to reject low

frequency

disturbances

 Significant delays,

forces are nonlinear

and highly uncertain

 Inaccurate depth

control

5 A Variable Buoyancy

System for Long Cruising

Range AUV [8]

 Energy saving in

deep water

 Complicated design

and operation

 High energy

consumption (1KW)

 Inaccurate depth

control

6 Dynamic Buoyancy

Control of an ROV using a

Variable Ballast Tank [9]

 Large surface tank

can provide high

pressure air for a

much larger number

of cycles of the

grippers

 Compressed air

supply above the

surface makes it not

portable

 Inaccurate depth

control

12

 From the research comparison in Table 2.1, it can be seen that there are no

studies that are perfect. Some of the studies seem to have a highly complicated

system with great simulation results and the ROV are able to surface and submerge

underwater. Nevertheless, they still cannot possess the ability to be positioned at a

specific depth accurately. Therefore, the mini ROV in this project is developed to

have the capability on precise depth control with a self-balancing buoyancy system

by using a rather direct and simpler approach for prototyping purpose.

13

CHAPTER 3

METHODOLOGY

3.1 Introduction

The project development of this study as shown in Figure 3.1 is divided into two

parts namely Part 1 and Part 2. Each part represents the work to be done for Master

Project 1 and Master Project 2 respectively. Part 1 starts by first identifying the

problems that exist in the current system of a ROV. Extensive literature reviews has

been done on related knowledge to assist in any ways that it may. Such reviews are

based on international publications, engineering-related websites, and engineering

books. Detail research in hardware is needed for the mini ROV electrical and

electronic development in terms of availability, performance, and technical supports.

The system requirement was then determined to proceed on this project.

 The next step that is in Part 2 is followed by planning on the design of the

hardware and software part of the mini ROV system. The low-level software is an

interfacing subroutine for associated components that consist of a personal computer,

XBee wireless modules, Arduino Uno mainboard, motor control, and liquid level

sensor. The interface testing had to be done to ensure the functionality of the

hardware and software modules are compatible with the microcontroller. If the

testing fail, the problem should be verified either it is due to hardware components or

software parameters.

14

Subsequently, if the overall system is working, high-level software that is the

application to control the mini ROV movement and depth control is developed.

Upon completing the system software, the overall system needs to be tested and

analyzed to verify its functionality and performance.

Figure 3.1: Flowchart of project activities

Problem
Statement

Literature
Review

Hardware &
Software Support

System
Requirement

Hardware
Prototype

Low-Level
Software

Interface Testing

System OK?

Hardware
Troubleshoot

Coding
Modification

High-Level
Software

No No

End

System OK?

Performance
Evaluation

Yes

Yes

No

Part 1

Part 2

15

3.2 System architecture

Figure 3.2 shows the interface between all devices that has been implemented to the

mini ROV system by using master and slave setup. Controlling the mini ROV is

done in a Windows GUI by a human operator with a personal computer. The

computer is serially connected to the SKXBee board while simultaneously receive

data and feedback from the onboard sensor of the mini ROV. Connection between

master and slave control is made by using XBee series 2 wireless module. The

module which is ZigBee compliant is chosen since it provides low transmission

power rate and is suitable to use in short range data transmission [10].

SKXBEE
with XBee

Module

MATLAB
GUI

Arduino Uno
Mainboard

Liquid Level
Sensor

XBee Shield
with XBee

Module

2 Amp
Motor

Driver Shield

DeviceHost

Figure 3.2: Device interfacing with Arduino Uno mainboard microcontroller

16

3.3 Hardware design

The hardware section gives further explanations on both mechanical and electronic

parts. The mechanical part explains the prototype of the mini ROV design while the

electronic part describes the interfacing between all of the electronic devices.

3.3.1 Mechanical

The mini ROV of this project was designed by using SolidWorks with every details

and considerations taken into account. The prototype design is shown in Figure 3.3.

The final version however had rather underwent some modifications and tweaks to

cope with the overall system of this project.

Figure 3.3: Mini ROV prototype design

The prototype design has two separated hull; the lower partition to

accommodate the water intake while the upper for the electronic components. There

are two check valves located just below the upper partition. Both valves function to

stabilize the pressure inside the lower partition to be the same as the outside

atmospheric pressure whenever water is pumped in or out of the hull.

17

Since fluid pressure increases with depth and that the increased pressure

exerted in all directions, thus there is an unbalanced upward force on the bottom of a

submerged object [11]. To overcome this problem, four small cylindrical hulls are

strategically placed around the main structure to further provide stability when the

mini ROV is submerged into water. These hulls also help in increasing its positive

buoyancy in order to compensate the weight of the mini ROV and can be manually

adjusted for prototyping purpose.

The liquid level sensor is attached to the outside of the mini ROV.

Archimedes principle stated that the buoyant force on a submerged object is equal to

the weight of the fluid that is displaced on by the object [12]. In other words, when a

solid body is partially or completely immersed in water, the apparent loss in weight

will be equal to the weight of the displaced liquid. Since the amount of the displaced

liquid is directly proportional to the height of the mini ROV being submerged, hence

placing the sensor on the outside of the mini ROV is suitable and a fast way to

properly determine its vertical position.

3.3.2 Electronics

3.3.2.1 Arduino Uno R3 mainboard

The Arduino Uno R3 mainboard as given in Figure 3.4 is an open-source electronic

board based on the ATmega328 microcontroller. It has 14 digital input/output (I/O)

pins of which 6 can be used as PWM outputs, 6 analog inputs, a 16 MHz crystal

oscillator, a universal serial bus (USB) connector to download a program, a power

jack, and a reset button. Table 3.1 summarizes the main specification of the Arduino

mainboard [13]. It contains everything needed to support the microcontroller and is

highly recommended for fast prototyping of a system. The coding to develop the

program for the mini ROV system in this project is presented in APPENDIX A.

18

Figure 3.4: Arduino Uno R3 mainboard

Table 3.1: Arduino Uno R3 mainboard specification

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM outputs)

Analog Input Pins 6

DC Current per I/O Pin 40mA

DC Current for 3.3V Pin 50mA

Clock Speed 16MHz

3.3.2.2 Liquid level sensor

The liquid level sensor is a solid state, continuous (multi-level) fluid level sensor for

measuring levels in water, non-corrosive water based liquids and dry fluids

(powders) [14]. The sensor as shown in Figure 3.5 is manufactured by Milone

Technologies using printed electronic technologies which employ additive direct

printing processes to produce functional circuits. The sensor's envelope is

compressed by hydrostatic pressure of the fluid in which it is immersed resulting in a

change in resistance which corresponds to the distance from the top of the sensor to

the fluid surface.

19

Figure 3.5: eTape liquid level sensor

The sensor provides a resistive output that is inversely proportional to the

level of the liquid, in which case when the liquid level is low, the output resistance

will be high, and vice versa. The sensor has its own marking printed in centimeters

and inches making it easier to manually monitor the fluid level. The specification of

the sensor is given in Table 3.2. The sensor can be modeled as a variable resistor

(300 - 1500Ω ±10%) and the typical output of the sensor is given in Figure 3.6 [14].

Table 3.2: Liquid level sensor specification

Sensor Length 10.1″ (257mm)

Active Sensor Length 8.4″ (213mm)

Resolution < 0.01″ (0.25mm)

Width 1.0″ (25.4mm)

Sensor Output 1500Ω empty, 300Ω full, ±10%

Temperature Range -9°C - 65°C

Resistance Gradient 140Ω/inch (56Ω/cm), ±10%

Power Rating 0.5W (VMax = 10V)

20

Figure 3.6: Typical output of liquid level sensor

To get the readings of the sensor when it is submerged, the following formula

in Equation 3.1 is applied. The initial point at mark 15cm of the sensor has been

chosen. The SensorValue is the current reading of the sensor in terms of resistance.

The value 354 is the sensor reading at the initial point while the value 290 is the

sensor reading 2cm above the initial point. The whole equation is multiplied by 2

since the range of the sensor calibration in this project is 2cm. The output of the

equation will give the position of the sensor in centimeters resolution.

 (3.1)

3.3.2.3 Device connection

The connection diagram for interfacing Arduino Uno microcontroller with the liquid

level sensor, XBee shield (with XBee module), DC pumps, and 2A DC motor driver

are given as in Figure 3.7. The supply voltage to power ON the whole system is a

7.4V DC connected to the Vin port of Arduino. The microcontroller shared the same

pin connections for 5V, GND (ground), and RST (reset) port with the 2 amp motor

driver shield which uses a L298P chip that can drives two 7 to 12V DC motors with

a maximum of 2A current. Since the motor shield is specifically custom-made for

the Arduino Uno mainboard and alike, it can be directly mounted on top of the board

without having to do any modifications.

21

A7A4 A5 A6

ICSP

TX

RX

GND VinRST 5V

GND5V A0

M1+

M1-

M2+

M2-

Liquid Level Sensor

2 Amp Motor Driver Shield

XBee Shield with
XBee Module

DC Pump 1

DC Pump 2

Figure 3.7: Device connection diagram to Arduino Uno microcontroller board

The micro DC pumps that are used in this system are suitable to work for

both pumping water and air. They are both being supplied with a supply voltage of

4.8V whenever they are triggered by the microcontroller. Turning ON the pump is

done by using PWM signal with a maximum speed of 255 while sending a signal 0

on the other hand will turn OFF the motors. The working voltage of the pump is 3 to

7.4V while the working current is 75mA. The motor driver shield is needed since the

Arduino pin can only supply up to 40mA for each of the I/O pins.

22

The liquid level sensor uses 5V, GND, and analog A0 port from Arduino.

The XBee shield that is attached with the XBee module is connected to the

microcontroller via the in-circuit serial programming (ICSP) header. The XBee

module works as a transceiver; therefore it transmits and receives data via the TX

and RX pin. The ICSP header of the Arduino consists of a Master In Slave Out

(MISO), Master Out Slave In (MOSI), Serial Clock (SCK), +5V, ground, and reset

pin. Similar to the motor shield, it can be stacked right on top of the board while still

having all required pins connected.

3.4 Software design

The software section gives explanations regarding the wireless communication setup

between the Arduino microcontroller and computer. Other details include fuzzy logic

control that is used in this project and the GUI for the control and data monitoring of

the mini ROV.

3.4.1 Wireless communication

Every XBee modules have their own unique addresses. In order to get the wireless

communication to work, both of the source and destination address of the XBee

modules need to be paired with each other. There are two ways to do the setup; one

by using a small list of programming code while another is simply by using the X-

CTU software provided by Digi International. X-CTU is a free software that not only

can be used to set the communication parameters on the XBee but also a monitoring

platform to transmit and receive data communications.

Figure 3.8 shows the X-CTU software within the Modem Configuration tab.

The window on the left is the XBee that had been set to be the coordinator while the

window on the right is the XBee that had been set to be the router. Both modules

need to be setup one at a time by attaching it to the SKXBEE board and link it to the

computer via USB cable. In X-CTU, one of them needs to be set as a Coordinator

AT while the other as a Router AT. The selection can be chosen from the Function

Set dropdown menu.

23

F
ig

u
re 3

.8
: P

airin
g
 tw

o
 X

B
ee m

o
d
u
les in

 X
-C

T
U

24

The destination address high and low for each module needs to be the exact

address as the source address high and low for the other module. This can be done by

simply copy the value of the source address from one module and paste it to the

destination address of the other module. The same method applied for both XBee

modules.

3.4.2 Fuzzy logic controller

There are various controller design theories that can be used to maintain the leveling

control of the mini ROV system such as fuzzy logic controller, PID controller,

adaptive controller, pole placement, linear quadratic regular (LQR), and robust

control. In this study, fuzzy logic controller is used to control the vertical motion of

the mini ROV. The components of fuzzy logic controller are shown in Figure 3.9. It

generally comprises of four principal modules; fuzzifier, knowledge base, inference

engine, and defuzzifier.

Fuzzifier Defuzzifier
Inference

Engine

Knowledge
Base

Fuzzy Controller

Process

Process output &
state

Crisp control
signal

Figure 3.9: Components of fuzzy logic controller

42

REFERENCES

1. Marine Technology Society (2010). ROV Applications – What ROVs Can

Do. Retrieved on April 5, 2012, from http://www.rov.org/rov_applications

.cfm

2. Psarros, D., Papadimitriou, V., and Chatzakos, P., A service robot for

subsea flexible risers, IEEE Robotics & Automation Magazine, 2010, Vol. 7,

pp. 55-63. Retrieved July 17, 2012, from IEEE database.

3. Tangirala, S. and Dzielski, J. “A Variable Buoyancy Control System for a

Large AUV,” IEEE Journal of Oceanic Engineering, Vol. 32, No. 4, 2007,

pp. 762-771. doi: 10.1109/JOE.2007.911596.

4. Folcher, J. P. and Rendas, M. J. "Identification and Control of the Phantom

500 Body Motion," MTS/IEEE Conference and Exhibition of OCEANS

2001, Honolulu, 5-8 November 2001, pp.529-535.

5. Tang, Z. and Luojun, P. Y., “A Novel ROV Depth Control Based on LSM

Fitting Predictor and Fuzzy Compensation,” 3rd International Conference on

Advanced Computer Theory and Engineering (ICACTE), 2010, Chengdu,

20-22 August 2010, V2-612 - V2-614.

6. Shibuya, K, Kado, Y., Honda, S., Iwamoto, T. and Tsutsumim, K.,

“Underwater Robot with a Buoyancy Control System Based on the

Spermaceti Oil Hypothesis,” Proceedings of the 2006 IEEE/RSJ Interational

Conference on Intelligent Robots and Systems, Beijing, 9-15 October 2006,

pp. 3012-3017.

7. Clarke, M. R. “Buoyancy Control as a Function of the Spermaceti Organ in

the Sperm Whale,” Journal of the Marine Biological Association of the

United Kingdom, Vol. 58, Issue 1, 1978, pp. 27-71. doi:

http://dx.doi.org/10.1017/ S0025315400024395

43

8. Zhao, W., Xu, J., and Zhang, M., “A Variable Buoyancy System for Long

Cruising Range AUV,” 2010 International Conference on Computer,

Mechatronics, Control and Electronic Engineering (CMCE), Harbin, 24-26

August 2010, pp.585-588.

9. Wasserman, K. S., Mathieu, J. L., Wolf, M. I., Hathi, A., Fried, S. E. and

Baker, A. K., “Dynamic Buoyancy Control of an ROV using Variable Ballast

Tank,” Proceedings of OCEANS 2003, Massachusetts, 22-26 September

2003, pp. 2888-2893.

10. MaxStream, (2007). XBee Series 2 OEM RF Modules. Retrieved May 14,

2012, from p. 4 at ftp://ftp1.digi.com/support/documentation/90000866_A

.pdf

11. Nave, R. (1998), Pressure. Retrieved on May 24, 2012, from

http://hyperphysics.phy-astr.gsu.edu/hbase/pbuoy.html

12. Carrol, B. (2009), Archimedes Principle. Retrieved on May 24, 2012, from

http://physics.weber.edu/carroll/archimedes/principle.htm

13. Arduino, (2012), Arduino Uno. Retrieved on May 26, 2012, from

http://arduino.cc/en/Main/ArduinoBoardUno

14. Milone Technologies, (2012), eTape Specification. Retrieved on May 26,

2012, from p. 1 at http://www.milonetech.com/uploads/eTape_Datasheet_

12110215TC-8.pdf

15. Xu, M., “Adaptive Fuzzy Logic Depth Controller for Variable Buoyancy

System of Autonomous Underwater Vehicles,” Proceedings of the Third

IEEE Conference on Fuzzy Systems, Florida, 26-29 June 1994, pp. 1191-

1196.

16. Salim, M. A., Noordin, A., and Jahari, A. N., “A Robust of Fuzzy Logic and

Proportional Derivative Control System for Monitoring Underwater

Vehicles,” Second International Conference on Computer Research and

Development, Melaka, 7-10 May 2010, pp. 849-853.

44

VITA

 The author was born in January 8, 1988, in Ipoh, Perak, Malaysia. He went to

High School Batu Pahat (HSBP) in Batu Pahat, Johor for his secondary school. He

pursued his degree at the Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja,

Johor, and graduated with the B.Eng. (Hons) in Electronic and Electrical

Engineering in 2011. Upon graduation, he attended the Graduate Studies of the

UTHM and was admitted into the Master program in Electrical Engineering in 2011.

45

LIST OF PUBLICATIONS

1. Ayob, M. A., Hanafi, D., Johari, A., Dynamic leveling control of a wireless

self-balancing ROV using fuzzy logic controller, in SCIRP Intelligent Control

and Automation (ICA 2012), 2012. (submitted)

2. Ayob, M. A., Hanafi, D., Johari, A., Dynamic leveling control of a wireless

self-balancing ROV using fuzzy logic controller, in 5th International

Conference On Postgraduate Education (5th ICPE), UiTM, 18-19 December

2012. (participant)

46

Arduino coding

1 int RiseMotorSpeed = 5; //pwm //motor 1

2 int SinkMotorSpeed = 6; //pwm //motor 2

3 int RiseMotorEn = 4; //enable pin

4 int SinkMotorEn = 7; //enable pin

5

6 int LED = 13;

7

8 float x[3], input[2], sensor, sensorValue;

9 float fsE[2], sectorE[2], fsDE[2], sectorDE[2], centerout[2];

10

11 float Mfout1, Mfout2;

12

13

14 //***//

15 //Declaration of Fuzzy Set for Input 1 (Error) //

16 //***//

17

18

19 float

20 a1 = 0, b1 = -1, c1 = -0.5,

21 a2 = -1, b2 = -0.5, c2 = 0,

22 a3 = -0.5, b3 = 0, c3 = 0.5,

23 a4 = 0, b4 = 0.5, c4 = 1,

24 a5 = 0.5, b5 = 1, c5 = 0;

25

26 //F=[a1 b1 c1;a2 b2 c2;a3 b3 c3;a4 b4 c4;a5 b5 c5;];

27

28

29 //***//

30 //Declaration of Fuzzy Set for Input 2 (DeltaError) //

31 //***//

32

33

34 float

35 a6 = 0, b6 = -1, c6 = -0.375,

36 a7 = -0.75, b7 = -0.375, c7 = 0,

37 a8 = -0.375, b8 = 0, c8 = 0.375,

38 a9 = 0, b9 = 0.375, c9 = 0.75,

39 a10 = 0.375, b10 = 1, c10 = 0;

40

41 //G=[a6 b6 c6;a7 b7 c7;a8 b8 c8;a9 b9 c9;a10 b10 c10;];

42

43

44 //***//

45 //Rules Designation (25 Rules) //

46 //***//

47

48

49 float co1[5] = { -1.0, -0.5, -1.0, -0.5, -1.0 };

50 float co2[5] = { -1.0, -0.5, -0.3, -0.5, -1.0 };

51 float co3[5] = { +0.0, +0.0, +0.0, +0.0, +0.0 };

52 float co4[5] = { +1.0, +0.5, +0.3, +0.5, +1.0 };

53 float co5[5] = { +1.0, +0.5, +1.0, +0.5, +1.0 };

54

55

56

57

58

59 // the setup routine runs once the reset button is pressed:

60 void setup() {

61 // initialize serial communication at 9600 bits per second:

62 Serial.begin(9600);

63 pinMode(RiseMotorEn, OUTPUT);

64 pinMode(SinkMotorEn, OUTPUT);

65 digitalWrite(RiseMotorEn, HIGH);

66 digitalWrite(SinkMotorEn, HIGH);

67

68 pinMode(LED, OUTPUT);

69 digitalWrite(LED, HIGH);

70

APPENDIX A

47

71 input[0] = 0;

72 input[1] = 0;

73 x[2] = 0;

74 }

75

76

77

78 // the loop routine runs over and over again forever:

79 void loop() {

80

81 //***//

82 //Declaration of Fuzzy Set for Input 1 (Error) (INPUT) //

83 //***//

84

85

86 for (int L=0; L<=5; L++) { //delay 1s

87 digitalWrite(LED, LOW);

88 delay(200);

89 digitalWrite(LED, HIGH);

90 delay(200);

91 }

92

93 sensorValue = analogRead(A0);

94 //sensor = ((512-sensorValue)/(512-1023)); // test with POT

95 sensor = ((334-sensorValue)/(334-300))*2; // LLV. 0 = 15cm

96

97 //delay(3000);

98 if (!Serial.available()); { // wait until there is signal send from computer

99 input[0] = Serial.read();

100 }

101 if (input[0] == 45) { // read -ve input. -ve == 45

102 while (!Serial.available());

103 input[0] = Serial.read();

104 input[0] = -(((input[0]-48)/2)*1.75);

105 input[1] = input[0];

106 }

107

108 else if (input[0] > 45) { // read +ve input

109 input[0] = ((input[0]-48)/2)*1.75;

110 input[1] = input[0];

111 }

112

113

114 else {

115 input[0] = input[1];

116 }

117

118

119

120 x[0] = input[0] - sensor; // error

121 x[1] = x[0] - x[2]; // delta error = new error - old error

122 x[2] = x[0]; // old error

123

124 Serial.println(sensor);

125

126

127 //Region a

128 if (x[0] <= b1) {

129 fsE[0] = 1;

130 fsE[1] = 1;

131 sectorE[0] = -2; //NB

132 sectorE[1] = -2; //NB

133 }

134

135 //Region b

136 else if (x[0] > b1 && x[0] <= b2) {

137 fsE[0] = (c1-x[0])/(c1-b1);

138 fsE[1] = (x[0]-a2)/(b2-a2);

139 sectorE[0] = -2; //NB

140 sectorE[1] = -1; //N

141 }

142

143 //Region c

144 else if (x[0] > b2 && x[0] <= b3) {

145 fsE[0] = (c2-x[0])/(c2-b2);

146 fsE[1] = (x[0]-a3)/(b3-a3);

48

147 sectorE[0] = -1; //N

148 sectorE[1] = 0; //Z

149 }

150

151 //Region d

152 else if (x[0] > b3 && x[0] <= b4) {

153 fsE[0] = (c3-x[0])/(c3-b3);

154 fsE[1] = (x[0]-a4)/(b4-a4);

155 sectorE[0] = 0; //Z

156 sectorE[1] = 1; //P

157 }

158

159 //Region e

160 else if (x[0] > b4 && x[0] <= b5) {

161 fsE[0] = (c4-x[0])/(c4-b4);

162 fsE[1] = (x[0]-a5)/(b5-a5);

163 sectorE[0] = 1; //P

164 sectorE[1] = 2; //PB

165 }

166

167 //Region f

168 else if (x[0] > b5) {

169 //else {

170 fsE[0] = 1;

171 fsE[1] = 1;

172 sectorE[0] = 2; //PB

173 sectorE[1] = 2; //PB

174 }

175

176

177 //***//

178 //Declaration of Fuzzy Set for Input 2 (Delta Error) //

179 //***//

180

181

182 //Region a:

183 if (x[1] <= b6) {

184 fsDE[0] = 1;

185 fsDE[1] = 1;

186 sectorDE[0] = -2; //NB

187 sectorDE[1] = -2; //NB

188 }

189

190 //Region b:

191 else if (x[1] > b6 && x[1] <= b7) {

192 fsDE[0] = (c6-x[1])/(c6-b6);

193 fsDE[1] = (x[1]-a7)/(b7-a7);

194 sectorDE[0] = -2; //NB

195 sectorDE[1] = -1; //N

196 }

197

198 //Region c:

199 else if (x[1] > b7 && x[1] <= b8) {

200 fsDE[0] = (c7-x[1])/(c7-b7);

201 fsDE[1] = (x[1]-a8)/(b8-a8);

202 sectorDE[0] = -1; //N

203 sectorDE[1] = -0; //Z

204 }

205

206 //Region d:

207 else if (x[1] > b8 && x[1] <= b9) {

208 fsDE[0] = (c8-x[1])/(c8-b8);

209 fsDE[1] =(x[1]-a9)/(b9-a9);

210 sectorDE[0] = 0; //Z

211 sectorDE[1] = 1; //P

212 }

213

214 //Region e:

215 else if (x[1] > b9 && x[1] <= b10) {

216 fsDE[0] = (c9-x[1])/(c9-b9);

217 fsDE[1] = (x[1]-a10)/(b10-a10);

218 sectorDE[0] = 1; //P

219 sectorDE[1] = 2; //PB

220 }

221

222 else if (x[1] > b10) {

49

223 //else {

224 fsDE[0] = 1;

225 fsDE[1] = 1;

226 sectorDE[0] = 2; //NB

227 sectorDE[1] = 2;

228 }

229

230

231 //***//

232 //Fuzzy Inference System (MAMDANI METHOD) //

233 //***//

234

235

236 if (fsE[0] < fsDE[0]) { //take min

237 Mfout1 = fsE[0];

238 }

239 else

240 Mfout1 = fsDE[0];

241

242

243 if (fsE[1] < fsDE[1]) { //take min

244 Mfout2 = fsE[1];

245 }

246 else

247 Mfout2 = fsDE[1];

248

249

250

251 //***//

252 //Rules Designation (25 Rules) //

253 //***//

254

255 //**************************************Row-1

256

257 int k;

258 for (k = 0; k < 2; k++) {

259 if (sectorE[k] == -2 && sectorDE[k] == -2) {

260 centerout[k] = co1[0];

261 }//co = central output

262

263 else if (sectorE[k] == -2 && sectorDE[k] == -1) {

264 centerout[k] = co1[1];

265 }

266

267 else if (sectorE[k] == -2 && sectorDE[k] == 0) {

268 centerout[k] = co1[2];

269 }

270

271 else if (sectorE[k] == -2 && sectorDE[k] == 1) {

272 centerout[k] = co1[3];

273 }

274

275 else if (sectorE[k] == -2 && sectorDE[k] == 2) {

276 centerout[k] = co1[4];

277 }

278

279 //**************************************Row-2

280

281 else if (sectorE[k] == -1 && sectorDE[k] == -2) {

282 centerout[k] = co2[0];

283 }

284

285 else if (sectorE[k] == -1 && sectorDE[k] == -1) {

286 centerout[k] = co2[1];

287 }

288

289 else if (sectorE[k] == -1 && sectorDE[k] == 0) {

290 centerout[k] = co2[2];

291 }

292

293 else if (sectorE[k] == -1 && sectorDE[k] == 1) {

294 centerout[k] = co2[3];

295 }

296

297 else if (sectorE[k] == -1 && sectorDE[k] == 2) {

298 centerout[k] = co2[4];

50

299 }

300

301 // ************************************Row-3

302

303 else if (sectorE[k] == 0 && sectorDE[k] == -2) {

304 centerout[k] =co3[0];

305 }

306

307 else if (sectorE[k] == 0 && sectorDE[k] == -1) {

308 centerout[k] = co3[1];

309 }

310

311 else if (sectorE[k] == 0 && sectorDE[k] == 0) {

312 centerout[k] = co3[2];

313 }

314

315 else if (sectorE[k] == 0 && sectorDE[k] == 1) {

316 centerout[k] = co3[3];

317 }

318

319 else if (sectorE[k] == 0 && sectorDE[k] == 2) {

320 centerout[k] = co3[4];

321 }

322

323 //***Row-4

324

325 else if (sectorE[k] == 1 && sectorDE[k] == -2) {

326 centerout[k] = co4[0];

327 }

328

329 else if (sectorE[k] == 1 && sectorDE[k] == -1) {

330 centerout[k] = co4[1];

331 }

332

333 else if (sectorE[k] == 1 && sectorDE[k] == 0) {

334 centerout[k] = co4[2];

335 }

336

337 else if (sectorE[k] == 1 && sectorDE[k] == 1) {

338 centerout[k] = co4[3];

339 }

340

341 else if (sectorE[k] == 1 && sectorDE[k] == 2) {

342 centerout[k] = co4[4];

343 }

344

345 ////***************************************Row-5

346

347 else if (sectorE[k] == 2 && sectorDE[k] == -2) {

348 centerout[k] = co5[0];

349 }

350

351 else if (sectorE[k] == 2 && sectorDE[k] == -1) {

352 centerout[k] = co5[1];

353 }

354

355 else if (sectorE[k] == 2 && sectorDE[k] == 0) {

356 centerout[k] = co5[2];

357 }

358

359 else if (sectorE[k] == 2 && sectorDE[k] == 1) {

360 centerout[k] = co5[3];

361 }

362

363 else if (sectorE[k] == 2 && sectorDE[k] == 2) {

364 //else {

365 centerout[k] = co5[4];

366 }

367

368 }

369

370 ////***//

371 ////Defuzzification Using Centroid of Gravity Method

372 ////***//

373

374 float COG = ((Mfout1*centerout[0])+(Mfout2*centerout[1]))/(Mfout1+Mfout2);

51

375

376

377 if (COG > 0) {

378 digitalWrite(RiseMotorEn, HIGH); // motor 1

379 analogWrite(RiseMotorSpeed, 255);

380 for (int r=0; r<=30; r++) {

381 delay(COG*500); //40s = 1cm

382 sensorValue = analogRead(A0);

383 sensor = ((334-sensorValue)/(334-300))*2; // LLV. 0 = 15cm // LLV. 0 = 15cm

384 Serial.println(sensor);

385 }

386 analogWrite(RiseMotorSpeed, 0);

387 }

388

389 else if (COG < 0) {

390 digitalWrite(SinkMotorEn, HIGH); // motor 2

391 analogWrite(SinkMotorSpeed, 255);

392 for (int s=0; s<=30; s++) { //s<=34

393 delay(-(COG*500)); //16.67s = 1cm

394 sensorValue = analogRead(A0);

395 sensor = ((334-sensorValue)/(334-300))*2; // LLV. 0 = 15cm // LLV. 0 = 15cm

396 Serial.println(sensor);

397 }

398 analogWrite(SinkMotorSpeed, 0);

399 }

400 else if (COG == 0) {

401 analogWrite(SinkMotorSpeed, 0);

402 analogWrite(RiseMotorSpeed, 0);

403 }

404}

52

MATLAB GUI coding

function varargout = gui2(varargin)

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @gui2_OpeningFcn, ...
 'gui_OutputFcn', @gui2_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before gui2 is made visible.
function gui2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to gui2 (see VARARGIN)

axis off
backgroundImage = importdata('uthm.jpg');
%select the axes
axes(handles.logo);
%place image onto the axes
image(backgroundImage);
%remove the axis tick marks
axis off
% Choose default command line output for GUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes gui2 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

clc;
clear all;
clear s;
global s;
s = serial('COM3');

% --- Outputs from this function are returned to the command line.
function varargout = gui2_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

 % --- Executes on button press in start.
function start_Callback(hObject, eventdata, handles)
% hObject handle to start (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%axes(handles.axes2)

APPENDIX B

53

global s;
TimeInterval=0.01;
loop=500;
time = now;
ori = now;
sensor = 90;
handles.plot = plot(handles.graph,time,sensor,'LineWidth',2,'Color',[1 1 1]);
sensor(1)=90;
time(1)=0;
count = 1;
fopen(s);

while ~isequal(count,loop)

 sensor(count) = fscanf(s,'%f');
 set(handles.present, 'String', sensor(count));
 time(count) = (now-ori)*100000;

 %axes(handles.axes2)
 set(handles.plot,'YData',sensor,'XData',time);
 set(handles.graph, 'YGrid','on',...
 'YColor',[0.043 0.518 0.78],...
 'XGrid','on',...
 'XColor',[0.043 0.518 0.78],...
 'Color',[0 0 0]);
 pause(TimeInterval);
 count = count +1;
end

fclose(s);
delete(s);
clear s;

function desired_Callback(hObject, eventdata, handles)
% hObject handle to desired (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global s;
time = now;

a=get(hObject,'String');
a=char(a);
fprintf(s,'%s',a);
% --- Executes during object creation, after setting all properties.
function desired_CreateFcn(hObject, eventdata, handles)
% hObject handle to desired (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

