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ABSTRACT 

 

 

 

This project presents a method to estimate and predict failure probability related to 

aging transformer units in power system. Statistically, the sample mean or the 

average age method is acceptable if it is used in a case where there is a big 

population. This method obviously is not suitable for power system components with 

very few samples of end-of-life failures. The essential weakness of the sample mean 

is that it only uses information of died components. This research proposed an 

approach to estimate and predict the lifetime of a power transformer by using NGC 

data. The data with both died and survive transformers will make contribution on 

estimating the mean life of power transformer.  Two methods that used are normal 

and Weibull distributions. Although the two methods have different estimation 

approaches and solution techniques, they are related to each other and use the same 

format of raw data. From this research, the mean life and standard deviation for 

normal and Weibull distribution estimation should be quite close and also to the 

shape of the both distribution. Thus, statistical reliability analysis can provide 

predictions, such percentage of transformer that will fail at a particular time of before 

a particular age and how many transformers will fail in the next future year by using 

failure rate model.  From that prediction, the forecasted capital expenditure ( the cost 

of replacement and consequential failure cost)  also can be specified. Thus, it will 

avoid asset harvesting and the possibility of having unforeseen costs.  
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ABSTRAK 

 

 

 

Projek ini membentangkan kaedah yang akan digunakan dalam membuat ramalan 

serta anggaran kebarangkalian kegagalan bagi unit transformer yang telah 

berusia.Secara statistik, min sampel atau kaedah purata umur boleh diguna pakai jika 

ia digunakan dalam kes kajian di mana terdapat populasi yang sangat besar. Tetapi, 

kaedah ini tidak sesuai untuk digunakan bagi komponen sistem kuasa yang mana 

jumlah sampel kegagalan akibat faktor penuaan sangat sedikit. Malah, kelemahan 

yang sangat ketara bagi kaedah min sampel ini adalah ia hanya menggunakan data 

pengubah yang tidak berfungsi/rosak sahaja. Maka, kajian ini mencadangkan satu 

pendekatan yang digunakan untuk menganggar serta meramal hayat pengubah kuasa 

dengan membuat analisa terhadap data National Grid Control System. Kedua-dua 

jenis data iaitu data transformer yang sudah rosak dan juga yang masih lagi berfungsi 

dengan baik akan digunakan dalam membuat anggaran min hayat pengubah. Dua 

kaedah yang digunakan adalah taburan normal dan juga taburan Weibull. Walaupun 

kedua-dua kaedah ini mempunyai pendekatan anggaran dan teknik penyelesaian  

yang berbeza, ia boleh dihubungkait antara satu sama lain kerana menggunakan 

sumber data dari format yang sama. Daripada kajian ini, min dan sisihan piawai bagi 

jangkahayat pengubah dengan menggunakan kaedah anggaran taburan normal dan 

Weibull cenderung menjadi seakan sama begitu juga dengan bentuk bagi kedua-dua 

jenis taburan ini. Oleh itu, analisis statistik kebolehupayaan dapat dilakukan bagi 

menghasilkan ramalan seperti peratusan bagi pengubah yang akan gagal/tidak 

berfungsi pada suatu masa tertentu sebelum umur tertentu dan berapa jumlah 

transformer yang akan gagal dalam tahun akan datang dengan menggunakan model 

kadar kegagalan.Dari hasil ramalan itu, dapat diramalkan modal perbelanjaan (kos 

penggantian dan kos kegagalan berbangkit) juga dapat dinyatakan. ini dapat 

mengelakkan pengusahasilan aset dan serta kebarangkalian kos yang tidak diduga.
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  Overview 

 

Transformers are required throughout modern interconnected power systems. The 

size of these transformers ranges from as low as a few kVA to over a few hundred 

MVA, with replacement costs ranging from a few hundred dollars to millions of 

dollars. Power transformers are usually very reliable, with a 20-35 year design life. 

In practice, the life of a transformer can be as long as 60 years with appropriate 

maintenance. As transformers age, their internal condition degrades, which increases 

the risk of failure. Failures are usually triggered by severe conditions, such as 9-

lightning strikes, switching transients, short-circuits, or other incidents. When the 

transformer is new, it has sufficient electrical and mechanical strength to withstand 

unusual system conditions. As transformers age, their insulation strength can degrade 

to the point that they cannot withstand system events such as short-circuit faults or 

transient over voltages [1]. 

To prevent these failures and to maintain transformers in good operating 

condition is a very important issue for utilities. Traditionally, routine preventative 

maintenance programs combined with regular testing were used. Without the 

regulatory, it has become increasingly necessary to reduce maintenance costs and 

equipment inventories. This has led to reductions in routine maintenance. Although 

transformer fault are rare, according to more than one thousand years operation 

experience, the failure of a power transformer may still be catastrophic and can result 

 



2 

 

 

 

in power interruptions to thousands customers. Thus, it is important for utilities to be 

able to predict life time of transformer before the failure occurs [1, 2].

Ageing equipment is a serious contributing factor to poor system reliability 

and high operating costs in many utilities [1]. The effects of ageing power 

transformers can be described as [2] :  

 

 The end-of-life failure tends to increase with age 

 Maintenance and breakdown-repair costs tends to increase with age 

 Replacement part can become difficult and expensive to obtain. 

 

Therefore, it is important for utilities to know when to replace ageing 

transformer so that the replacement could be scheduled in a manner to minimize the 

cost and also the impact on customers. 

 The current practice for the asset failure projection is to use the probabilistic 

failure curve of asset group (hazard function) which is convolved with asset 

demographic information [3]. The projected number of failures in one future year is 

obtained by the summation of the product of the number of units in each age bracket 

multiplying the value of the hazard function for the age bracket as shown in figure 

1.1. Moreover, forecasted capital expenditures for future replacement can be 

estimated by multiplying the projected number of failures with consequential failure 

and replacement costs for every future [4]. 
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Figure 1.1 : Projection of investment needs for a population assets. 

 

The transformer hazard function is vital important for accurately projecting 

transformer replacement volume. Thus, the general relationship between the failure 

rate or hazard function and time (age) can be graphically expressed using curve 

called the bath tub curve. 

 The bathtub curve can be divided into three stages. The first stage is called 

infant mortality period or also known as early failure period. Infant mortality failures 

are caused by defects in the product such as manufacturing errors or improper design 

which cause it to fail early in its lifetime. In this period, the failure rate decreases 

sharply with time or age. 

 The second stage is constant failure rate or also known as normal operating 

stage. During this period, the failure rate is almost constant which means that failures 

occur more in a random pattern. It can be said that the failure rate is almost the same 

as at early age in the age of normal operating stage. 

 The final stage of the bathtub curve represents the time when and after the 

product begins to reach the end of its useful life. It is called the wear out period. It 

can be argued that the failure rate at this period increases dramatically with the time. 

This period reflects the effect of ageing process. These are usually only a few wear 
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out failure mechanisms, which result from the stresses accumulated over the life of 

the product [5]. 

 

 

Figure 1.2: Bathtub curve for failure of equipment 

 

1.2 Statement of the Problem 

 

Power transformer is the most expensive equipment in electrical network. Since most 

of power transformers today were installed during the 1950s [6], it can be argued that 

most utilities are operating a significant number of ageing transformer even some of 

these transformers may still be operating satisfactorily but they are approaching or 

past the designed lifetime.  Besides, the policy such as the equipment is continuously 

used until it dies. Unfortunately, it will take more than one year to complete the 

whole replacement process including the purchase, transportation, installation and 

commissioning of new equipment. The power system may be exposed to severe risks 

of being unable to meet security criteria during the replacement period.  

Predicting the lifespan of a power transformer has been considered an 

important issue for energy companies for some time. Power transformers that reach 

the end of its life usually do so unexpectedly, causing power reliability problems, 

higher system risk due to higher failure probability and possible system damage 

following the end of life failure which consequences cost a lot of money.  Knowing 

the mean and also the standard deviation of power transformer could help power 

companies to determine how long a power transformer have before breaking down 
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and allow them to perform any necessary action before the power transformer starts 

giving problems. 

Besides, almost all methods presented so far only considered the repairable 

failure mode of system components. A recent development has been performed to 

model and incorporate end-of-life failures in power system reliability assessment [7, 

8]. An important step in modeling end-of-life failures is to estimate the mean life of 

components and standard deviation. The most popular and simple method in current 

applications is to calculate the average age of died components in historical records. 

This is called as the first moment estimator. The statistics theory also provides a 

general maximum likelihood estimation method. However, it may not be workable 

for power system components.  

A normal or Weibull distribution is often used in the aging failure model of 

power system components. Unfortunately, for a normal distribution, the maximum 

likelihood estimation creates a sample mean as the estimated result which is still the 

average of ages of died components [9]. For a Weibull distribution, the maximum 

likelihood estimation leads to an extremely complex equation with multiple solutions 

for the shape and scale parameters and cannot directly obtain the mean life [10]. The 

value of estimating the mean life of power transformer is not just its use for the end-

of-life failure modeling in power system reliability assessment. The estimate of mean 

life itself for various transformers is also useful information for engineering 

judgment on the equipment status, system aging and maintenance policy. 

 

1.3 Objective of the Research 

 

The main objectives of this project are listed as follows: 

i. To predict the lifetime of transformers base on National Grid Control (NGC) 

Data. 

ii. To study and implement two different estimation approach techniques which 

is normal distribution method and Weibull distribution method to estimate the 

remaining life of the transformer.  

iii. To estimate number of failure in one future year and forecast capital 

expenditures for future replacement . 
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1.4 Scope of the Research 

 

Power transformer loss of life can be determined by using two methods in estimating 

the mean life and its standard deviation with NGC data. One is for normal 

distribution method and another for the Weibull distribution method. Unlike the 

conventional sample mean technique which only uses ages of died transformers, the 

methods that will be presented are based on died and surviving transformer and will 

provide a more accurate estimation. In the method of the normal distribution, the 

estimation can be obtained from a set of simple calculation formulas while for the 

Weibull distribution, linear regression technique will be used to obtain the estimates 

of the mean and its standard deviation as well as the shape and scale parameter.  
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Overview 

 

Equipment aging is a fact of life in power system although there may be different 

cause of aging for different types of equipment. As a piece of equipment ages, it fails 

more frequently, needs longer times to repair, and eventually reaches its end of life. 

The direct consequence of equipment aging is higher system risk due to higher 

failure probability and possible system damage following the end-of-life failure. 

Power transformers perform both technical and economic function in power 

system. There are several concepts of lifetime for power system equipment [11]: 

i. Physical lifetime : A piece of equipment starts to operate from its brand-

new condition to a status in which it can no longer be used in the normal 

operating state and must be retired. Preventive maintenance can prolong 

its physical lifetime. 

ii. Technical lifetime: A piece of equipment may have to be replaced due to 

technical reasons although it may still be physically used. 

iii. Economic lifetime: A piece of equipment is no longer valuable 

economically, although it still may be usable physically. 

 

In general, a manufacturer provides an estimated mean life of transformer, 

which is based on theoretical calculations and many assumptions. The 

manufacturer’s estimate is usually inadequate since it does not and cannot include 

actual operating and environmental conditions of the equipment. Statistically, the  
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sample mean or the average age method is often used to estimate a mean life. The 

essential weakness of the sample mean is that it only uses information of components 

that have died. The approaches that are base on the Weibull or normal distribution 

will be developed to estimate the mean life and its standard deviation. The merit of 

the probability-distribution-based approaches is due to the contribution of both dead 

and surviving components to the mean life which will be taking into consideration.   

This research generally involves comprehensive knowledge on lifetime of 

power transformer. To develop the probability-distribution-based model about 

lifetime of power transformer, the information and data will be collected based on 

the review of journals, thesis and internet sources to make the research develop 

successfully.  

 

2.2 Past Project Background Review 

 

2.2.1 Transformer Life Prediction Using Data from Units Removed from 

Service and Thermal Modeling  

 

The paper of Paul Jarman, Ruth Hooton, Leon Walker, Qi Zhong, Taufiq Ishak, 

Zhongdong Wang entitles Transformer Life Prediction Using Data from Units 

Removed from Service and Thermal Modeling is purposely to design the end-of-life 

model based on years of previous experience over several lifecycles of equipment of 

a type representative of that still in service at that time. It is not easy to establish 

large power transformers model because they still in the first asset lifecycle and 

many of the transformers installed when the National Grid system was first 

developed are still in service well beyond their original design life.   

This paper gives the historical failure rate of the transformers used on the 

National Grid system in the UK and shows that failures to date are random in nature 

and not statistically age related. This means that traditional approaches to build a 

statistical end-of-life model cannot be used. Based on the analysis of the insulation of 

transformers removed from service for any reason indicates a very wide range of 

condition, some samples show severe thermal ageing and it is clear that age-related 

failures can be expected if replacement is not carried out, other samples show little 

ageing and for these transformers it appears that very long lifetimes might be 

expected if other ageing mechanisms do not become apparent.  
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They did their analysis at National Grid England and there have transformers 

about 780 units. Good data on transformer failures is only available since 1962 and 

so transformer years experience in service is only counted since that date in order to 

be consistent with the failure data. There is substantial operating experience of 

transformers up to about 40 years in service but the experience is limited beyond that, 

making statistical analysis of the reliability of older transformers problematic. 

Since almost all the transformers that have been scrapped, either due to 

failure or replacement, since 1993 have had insulating paper samples taken from 

representative parts of the windings and analyzed for degree of polymerization (DP). 

DP is widely accepted as an indicator of thermal ageing of paper with a value of 200 

taken as end of life [12].  

A plot of 1/DP against age for each of the sampled transformers can be seen 

form figure 2.1. It shows three points (red, blue and green) for each sampled 

transformer, the red square indicates the lowest DP sample (highest value of 1/DP) 

the blue triangle represents the average DP of the samples taken from a single 

transformer and the green diamond the highest. It may be seen that the lowest DP 

values from each transformer (shown in red, one point for each scrapped transformer) 

are widely scattered above and below the black line representing the expected value 

of 1/DP against age for a transformer lifetime of 55 years. 

 

 

Figure 2.1: DP results for scrapped National Grid Reactors and Transformers 
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Two particular cases are highlighted, one where the paper insulation in the 

transformer was at end of life at 37 years and one where the paper was almost as new 

at 47 years. An alternative view of some of the same data is given in Figure 2.2 

where the lifetime of individual scrapped transformers is predicted from the lowest 

DP obtained assuming that ageing would have continued at the same rate if the 

transformer had remained in service [5]. 

 

 

Figure 2.2: Distribution of Lifetime prediction by DP 

 

This data is not representative of the whole transformer population as some 

transformers were scrapped because of their aged condition, however the longer 

predicted lifetimes are from transformers that were removed from service for other 

than age-related reasons (for example tap-changer failure) and these show a wide 

spread of predicted thermal lifetimes. It can be argued that condition based 

replacement means that statistical analysis of failure rates is not helpful in modeling 

lifetimes, but data from scrapped and failed transformers has been used to 

demonstrate that age-related failures (or replacements because of very poor condition 

before failure) in the population of large network transformers are starting to occur at 

around 40 years in service. 
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2.2.2 Evaluating Mean Life of Power System Equipment with Limited End of 

Life Failure Data 

 

The paper present by Wenyuan Li entitles Evaluating Mean Life of Power System 

Equipment With Limited End of Life Failure Data propose two methods to estimate 

the mean life and its standard deviation of a power system equipment group with 

limited end-of-life or aging failure data. One is for the normal distribution model and 

another for the Weibull distribution model. The presented methods are based on all 

the information in an equipment group including both died and surviving 

components and provide a more accurate estimation. An equipment group containing 

100 reactors with only four retired units was used as an application example to 

illustrate the procedure. 

The presented methods have been applied to several equipment groups 

including reactors, transformers and underground cables. A 500-kV reactor group at 

BC Hydro is used as an example to demonstrate an application of the methods. This 

group contains 100 single-phase reactors with only four end-of-life failures in the 

past 31 years. The reference year used in the study is Year 2000. The four retired 

reactors were based on the field assessment which justified their end-of-life. From 

following observations, it can be said that: 

 

Table 2.1: Mean life and its standard deviation ( real case four retired reactors) 

 

 

 

 The estimates of the mean life and standard deviation for the normal and 

Weibull distribution models are quite close in this case. The estimates of the 
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shape and scale parameter are 7.3 and 41 respectively. This suggests that the 

shape of the Weibull distribution is close to that of the normal distribution. 

 The estimated mean life of 37 or 38 years obtained using the presented 

methods is much more reasonable than 25 years (using the sample mean 

method).  

 The presented methods can be also used for the case where there is a big 

population of retired components. In this case, the difference between the 

mean life estimates obtained using the presented and sample mean methods 

will be dramatically decreased. 

 

An experimental test has been performed and it is artificially assumed to have 

16 more retired reactors for same example. The additional retired reactor is not a real 

data. Assumed retire at ages from 27 to 31. The estimates using the presented and 

sample mean methods for the assumed case are given in Table 2.2. The sample mean 

of the 20 retired reactors is 29 years. It can be seen that the mean life estimate from 

the sample mean method is very close to the results obtained using the presented 

method. The 20 retired reactors accounts for 20% of the total reactor number, which 

represents a large population size of end-of-life failures. It can be also seen that the 

standard deviation in this case is much smaller.  

 

Table 2.2: Mean life and its standard deviation (assume case for 20 reactors) 

 

 

The contributions of surviving components are dynamic since the current 

year as a reference is varied in calculating their ages. If time advances one more year 

and no more end-of-life failure happens, all components in an equipment group will 

have survived for one more year, which means that the mean life of this equipment 
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group should be increased. The estimates of the mean life and standard deviation 

using the normal and Weibull distribution models are close in this case. By 

comparison between the estimates using the presented methods and the sample mean 

technique against the information in the raw data, it is clear that the presented 

methods provide more reasonable results. 

 

2.2.3 Prediction of Remaining Life of Power Transformers Based on Left 

Truncated and Right Censored Lifetime Data 

 

The paper of Yili Hong, William Q. Meeker and James D. McCalley entitles 

Prediction of Remaining Life of Power Transformers Based on Left Truncated and 

Right Censored Lifetime Data is purposely to develop statistically based predictions 

for the lifetimes of an energy company’s fleet of high-voltage transmission and 

distribution transformers. Since the data records begin in 1980, there is no 

information about units that were installed and failed before. Thus, the data are left 

truncated and right censored. They used a parametric lifetime model to describe the 

lifetime distribution of individual transformers and also developed a statistical 

procedure, based on age-adjusted life distributions, for computing a prediction 

interval for remaining life for individual transformers now in service.  

They presented prediction intervals for the remaining life for individual 

transformers based on using the Weibull distribution and a stratification cutting at 

year 1987. Figure 2.3 shows 90% prediction intervals for remaining life for a subset 

of individual transformers that are at risk. In particular, for a group of relatively 

young transformers in the same group and with the same values of the explanatory 

variables, the prediction intervals are similar. For a unit in such a group, the lower 

endpoints of the interval are very close to the current age of the unit. That was 

predicted to be at especially high risk for failure in the near term are sometimes 

outfitted with special equipment to continuously monitor and archive transformer 

condition measurements that are useful for detecting faults that may lead to figure 

2.3 failure.  

These measurements were taken from the transformer insulating oil and 

indicated the presence of dissolved gases but also may indicate other attributes, 

including moisture content and loss of dielectric strength. Dissolved gas analysis 

(DGA) was automatically-performed by these monitors and is important in the 
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transformer maintenance process, because it can be used to predict anomalous and 

dangerous conditions such as winding overheating, partial discharge, or arcing in the 

transformer. If an imminent failure can be detected early enough, the transformer can 

be operated under reduced loading until replaced, to avoid costly catastrophic 

failures that sometimes cause explosions. 

 

 

Figure 2.3 : Weibull distribution 90% prediction intervals for remaining life for a 

subset of individual at-risk transformers 

  

Then, they presented the results for predicting the cumulative number of 

failures for the population of transformers that are at risk, based on the Weibull 

distribution regression model with the stratification cutting at year 1987. Figure 2.4 

gives Weibull distribution predictions and prediction intervals for the cumulative 

number of future failures with the Old and New groups combined. There are 648 

units in risk set. Similar predictions for the Old and New groups combined. 
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Figure 2.4 : Weibull distribution predictions and prediction intervals.  

 

2.2.4 Failure Probability Prediction in Generating Units with Aging  

 

The paper of Sung-Hoon Lee, Jong-Man Cho, Seung-Hyuk Lee and Jik-O Kim 

entitles Failure Probability Prediction in Generating Units with Aging is purposely to 

present a method to predict failure related to the aging of generating units in power 

system. In order to calculate failure probability, the Weibull distribution is used due 

to age-related reliability. The parameters of Weibull distribution can be estimated by 

using gradient descent method. This method has the relative accuracy of results, but 

the extremely complexity of calculating process. Therefore each estimated parameter 

is obtained from Data Analytic Method (Type II Censoring) which is relatively 

simpler and faster than the traditional calculation methods for estimating parameters. 

Besides, this paper shows the calculation procedures of a probabilistic failure 

prediction through a stochastic data analysis. Consequently, the proposed methods 

would be likely to permit utilities to reduce overall costs in the new deregulated 

environment while maintaining appropriate reliability level. 
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 There are some papers, which have considered the aging failure of power 

system components. Wenyuan Li utilized two methods mentioned previously that 

have been developed for the normal and Weibull distribution, respectively. Although 

these two methods have different estimation approaches and solution technique, they 

are related to each other and use the same format of original data. The parameters of 

Weibull distribution were estimated by using gradient descent method. However, 

these method have both the relative inaccuracy of results and the extremely 

complexity of calculating process. 

This paper proposes the estimation of the shape and scale parameters and 

presents the method to predict the failure probability considering the conditional 

probability in real data of Korea Electric Power Corporation (KEPCO) system. To 

estimate the parameters, two methods are used. The former is conducted by the 

gradient descent method, and the latter is executed by the data analytic method (Type 

II censoring). The presented methods are based on all the information in an 

equipment group including both died and surviving components and therefore, can 

produce a more accurate estimation. The more detailed stages of gradient descent 

method for Weibull distribution would like to refer to reference. By comparison 

between both results, it is clear that the proposed method provide not only the 

accurate estimation but also more simple calculation process. Therefore Type II 

censoring can be proposed instead of gradient descent method.  
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2.3 Comparison between Four Papers Above 

 

Table 2.3 : Comparison between four related journals. 

Journal Objective Method Outcome 

 

Transformer Life 

Prediction Using Data 

from Units Removed 

from Service and 

Thermal Modeling  

 

 

i. Predict the 

transformer life by 

using insulating 

paper from 

scrapped 

transformers 

ii. Analyze for degree 

of polymerization 

(DP) 

 

Condition 

assessment: 

i. Dissolve Gas 

Analysis 

ii. Degree of 

polymerization 

 

Condition based 

replacement means that 

statistical analysis of 

failure rates is not helpful 

in modeling lifetimes, but 

data from scrapped and 

failed transformers has 

been used to demonstrate 

that age-related failures  

 

Evaluating Mean Life 

of Power System 

Equipment With 

Limited End of Life 

Failure Data 

 

i. Introduce two 

methods to 

estimate the mean 

life of a power 

system equipment  

ii. Use information 

data including both 

died and surviving 

components 

 

 

i. Normal 

Distribution 

method 

ii. Weibull 

distribution 

method 

 

The estimates of the mean 

life using the normal and 

Weibull distribution 

models are close in this 

case. Comparison 

between the estimates 

using the presented 

methods and the sample 

mean technique, the 

presented methods 

provide more reasonable 

results 

 

Prediction of 

Remaining Life of 

Power Transformers 

Based on Left 

Truncated and Right 

Censored Lifetime 

Data 

 

 

i. Prediction of the 

remaining life of 

power transformer.  

ii. Use left truncated 

and right censored 

data 

 

 

i. Log-location-

scale distribution 

for lifetime 

model for left 

truncated and 

right censored 

data. 

ii. Weibull 

distribution 

method 

 

Better predictive model 

that would more 

accurately predict 

individual lifetimes by 

using environmental 

information for the 

individual transformers  

 

 

 

Failure Probability 

Prediction in 

Generating Units with 

Aging 

 

i. Predict failure 

probability related 

to aging of 

generating units. 

ii. Estimate the 

parameters of 

Weibull 

distribution  

 

i. Data analytic 

method (type II 

censoring) 

 

By comparison between 

gradient descent method 

and data analytic method, 

it is clear that the 

proposed method provide 

not only the accurate 

estimation but also more 

simple calculation 

process.  

 



 

 

CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1 Overview 

 

Methodology is one the important part of doing a research. It is important to ensure 

the project would not face any problem during the implementation. It is also to make 

sure the project satisfy the scope and achieve the objectives. The research will go 

through several stages:  

 

 

Figure 3.1: General block diagram of the project 

 

i. Find the research journal.  

To start this project, find any research journal that related to the topic.  

Read and study about the journal and use the important data and 

knowledge related to the main research. 

 

 

 

 

Find the 
related 

research 
journal 

Study the related-
probability distribution 

method 

Implement the 
NGC data 

Data 
Analysis 
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ii. Study the related probability-distribution method. 

From the journal, study the related method that researcher used and 

also the differences between every method. Gather all the information 

related to the research and try to read and understand. 

 

iii. Implement the NGC data 

Model the NGC data in the normal distribution method and Weibull 

distribution method. 

 

iv. Data Analysis. 

Analyze the result from both methods. Compare the both results with 

sample mean and come out with a hypothesis. 

 

3.2 Project Sequence Overview 

 

This research is completed in two semesters. So it is very important to have a 

systematic planning and implementation in order to complete the research and get the 

result on time. Figure 3.2 shows the flow chart for research progression PS I and 

Figure 3.3 shows the flow chart for research progression PS II. 
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Figure 3.2 : Flowchart for research progression PS1. 

 

 

 

 

 

 

START 

Determine research title and find 

the related journal 

Determine objectives and scope of 

research 

Literature research and study on 

the prediction and estimation of 

power transformer lifetime No 

Study the related probability-

distribution method and compare 

with each other 

SV approval? 

 

Yes 

Organize gathered information 

Implement into research report 

A 
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Figure 3.3: Flowchart for research progression PS II 

 

A 

Gather 

information 

 

Weibull distribution 

method 

Normal distribution 

method 

Result analysis 

No 
Yes 

Objectives 

achieve? 

 
No 

Yes 

Implement into research 

report 

Complete final report 

FINISH 

Model the 

NGC Data with 

both methods 

Success? 
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3.3 Assessing End-of-Life Failure Probability 

 

With the estimated mean life and age of transformer, its aging status can be 

qualitatively judge since can be known how far away it is from the mean life. The 

reason about concerning the aging status is because of the risk that will be caused by 

end-of-life failure of aged transformer. In order to quantify the risk of aging failures, 

it is necessary to assess the end-of-life failure probability of aged transformers. As is 

well known, the relationship between the failure rate or failure probability and the 

age can be graphically expressed using a so-called bath tub curve. 

It can be seen from the figure 3.4 that the failure rate at the wear out stage 

increases dramatically with the age. In fact, the bath tub curve can be mathematically 

modeled using a Weibull or normal distribution [11].  

 

 

Figure 3.4: Bath tub curve for failure rate of equipment 

 

Figure 3.5 shows the relationship between the failure rate and age for a 

normal distribution failure density function. 
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Figure 3.5 : Relationship between failure rate and age for a normal probability 

distribution 

 

Figure 3.6 shows the same relationship for a Weibull distribution failure 

density function. The μ and σ in Figure 3.5 are the mean and standard deviation of 

the normal distribution, whereas β and α in Figure 3.6 are the shape and scale 

parameters of the Weibull distribution. It can be seen that the relationship shown in 

the two figures is consistent with that expressed in the wear-out stage of the life bath 

tub curve. Indeed, the Weibull distribution can be used to model all the three portions 

of the bathtub curve: β<1 for the infancy stage, β = 1 for the normal operating stage, 

and β>1 for the wear-out stage.  
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Figure 3.6 : Relationship between failure rate and age for a Weibull probability 

distribution 

 

3.4 Estimating Parameter in Aging Failure Models 

 

It is necessary to estimate the mean life of transformers and its standard deviation for 

the normal distribution model or shape and sale parameter of the Weibull distribution 

model. Intuitively, its looks as if the mean life is nothing else than the average age of 

dead or retired transformers and that the sample mean concept could be used. 

Statistics theory also provides the maximum likelihood estimation approach. For the 

normal distribution, the maximum likelihood estimation still creates the sample mean 

as the estimated result, that is, the average of dead components. For the Weibull 

distribution, it leads to an extremely complex set of equations with multiple solutions 

for the shape and scale parameters. 

 Unfortunately, the sample mean method is generally not workable for the 

mean life estimation of power system components. The power system components 

such as transformers, generator and etc have a long life, up to or even beyond 50 

years, and therefore, there are very limited aging failure data in a utility. When 

applied to the mean life estimation, the essential weakness of the sample mean is that 

only the information of dead components is used. For an equipment group with very 

few dead members, not only dead components but also survivors should make 

contributions to the mean life estimation.   
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