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ABSTRACT 

 

 

 

This thesis presents the flight trajectory analysis for a given aircraft configuration 

starting with aircraft set at trim condition and after that following by descent for 

landing. It has been known that the aircraft behaviors during their flight governed by 

the flight equation of motions. This flight equation of motion consist of 12 first order 

differential equations which coupling to each other. Those 12 equations described 12 

state space variables involving the aircraft position plus aircraft aptitude with respect 

to the inertial coordinate system and also with respect to their axis body system 

which is had been used. In the stage of development in developing flight control on 

board, it is necessary to develop a computer code for solving the governing equation 

of flight motion for a given aerodynamic characteristics, control surfaces movement 

and aircraft’s mass with inertia properties to obtain their trajectory and also velocity 

at any instant time. The present work has presented the flight dynamics analysis for 

two aircraft models.  The first aircraft model is Boeing 747 while the second one is 

the airplane designed to become UAV airplane after appropriate flight controller 

installed to that airplane. Through this work it can be conclude, in manner how to 

solve the governing equations are simpler compared to the effort for providing the 

aerodynamics data or the mass and inertia of the airplane.  In the future the control 

law which represents the governing equation to set the control surface may be 

introduced in order to keep the airplane at constant speed or at constant altitude.  

This may the suggestion to modify the present computer code to become design tool 

for prescribing aircraft flight under a constant speed or constant altitude.  
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ABSTRAK 

 

 

 

Kajian ini berkenaan analisis trajektori pesawat untuk sesuatu pesawat bermula 

dengan pesawat yang berada dalam keadaan trim dan seterusnya pada keadaan 

mengufuk sewaktu mendarat. Seperti yang sedia maklum, keadaan pesawat ketika 

penerbangan dipengaruhi oleh persamaan gerakan. Persamaan ini terdiri daripada 12 

persamaan perbezaan tertib pertama yang bersama antara satu sama lain. Kesemua 

persamaan menerangkan 12 keadaan pembolehubah ruang yang melibatkan keadaan 

pesawat termasuk kebolehan pesawat keatas system koordinat inersia dan juga keatas 

sistam paksi badan pesawat yang telah digunakan. Dalam peringkat membangunkan 

kawalan penerbangan di atas kapal, adalah amat penting untuk menghasilkan satu 

kod computer untuk menyelesaikan persamaan gerakan pesawat untuk setiap ciri-ciri 

aerodinamik, kawalan pergerakan dipermukaan dan juga berat pesawat bersama ciri-

ciri inersia untuk mendapatkan trajektori dan juga halaju pada sesuatu ketika. 

Penyelidikan ini membentangkan analisis dinamik penerbangan untuk dua model 

pesawat. Model yang pertama ialah Boeing 747 manakala model kedua adalah 

pesawat yang direka untuk dijadikan pesawat UAV selepas kawalan penerbangan 

yang bersesuaian dipasang kedalam pesawat itu. Melalui penyelidikan ini, 

kesimpulan yang boleh dibuat ialah dalam menyelesaikan persamaan penerbangan 

pesawat adalah lebih mudah jika dibandingkan dengan usaha untuk menyediakan 

data aerodinamik atau berat dan inersia pesawat tersebut. Untuk penyelidikan masa 

akan datang, undung-undang kawalan yang mana mewakili persamaan untuk 

menetapkan kawalan permukaan boleh diperkenalkan untuk mengekalkan pesawat 

pada halaju atau pada ketinggian yang konsisten. Ini mungkin cadangan untuk 

mengubahsuai kod computer sedia ada untuk dijadikan alat untuk menetapkan 

penerbangan pesawat dibawah halaju dan ketinggian yang konsisten. 
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CHAPTRE 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction  

 

This thesis presents the flight trajectory analysis for a given aircraft configuration 

starting with aircraft set at trim condition and then following by descent for landing. 

It has been known that the aircraft behaviors during their flight governed by the 

flight equation of motions. This flight equation of motion consist of 12 first order 

differential equations which coupling to each other. Those 12 equations described 12 

state – space variables involving the aircraft position and aircraft aptitude with 

respect to the inertial coordinate system and also with respect to their axis body 

system had been used. Through solving those 12 equations one can obtain the 

trajectory of the airplane and also possible to define their trim condition for a given 

flight speed and flight altitude. For this purposes, the analysis carry out over two 

aircraft models, they are namely Boeing 747 and UAV model. The data required for 

analysis aircraft behavior starting from descent to land which are involved the 

aerodynamics data, mass and inertia of the aircraft and also thrust provided by their 

propulsion system are available. It is therefore time history of their position, aptitude, 

linear velocity and as well as their angular velocity can be identified. However it had 

been realized the comparison with actual flight can be done, since such data are not 

available.  
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1.2 Back ground  

 

The flight equation of motion represents the governing equation of flying vehicle 

which can be used to describe what kind movement of the flying vehicle will be.  If 

one able to control the aerodynamic forces and moments acting on the flying vehicle 

at any instant time including the capability for controlling the required thrust, it will 

make such flying vehicle becomes an autonomous flying vehicles. Since through the 

governing equation of flight motion which normally solved to obtain the aircraft 

position, aptitude and velocity can be inverted to become the problem of prescribing 

flight trajectory and control mechanism as its solution. Through these experiences of 

solving the governing equation of flight motion, it can be expected to give a plat 

form in developing a particular aircraft to become an Unmanned Aerial Vehicles in 

the future work.  However it had been understood, that design flight control 

mechanism to allow the airplane able to control its movement arbitrary at various 

flight condition are  so complex and difficult task,  it is therefore for only particular 

flight maneuver the aircraft designed to be autonomous as result various type of 

UAV had been developed to fulfill different purposes.  

In parallel of the advancement of computer technology, material, propulsion 

system and better understanding on the aircraft stability had made the development 

of autonomous flying vehicle becomes an attracted matter. The applications of UAV 

are widely had been recognized whether for civilian or military purposed. The 

military purposes may the UAV can serve for [1]: 

 

1. Surveillance for peacetime and combat synthetic aperture radar (SAR).  

2. Reconnaissance surveillance and Target acquisition (RSTA). 

3. Maritime operations (Naval fire support, over the horizon targeting, anti-

ship missile deference, ship classification). 

4. Meteorology missions.  

5. Electronic warfare (EW) and SIGNT (Signals Intelligence).  

6. Deception operations. 
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While for civilian applications, the UAV can be used for:  

 

7. Communications relay. High altitude long endurance UAVs can be used 

as satellites.  

8. Law enforcement. VTOL UAVs can take the role of police helicopters in 

a more cost effective way.  

9. Disaster and emergency management. Arial platforms with camera can 

provide real time surveillance in hazardous situations such as 

earthquakes.  

10. Research. Scientific research of any nature (environmental, atmospheric, 

archaeological, pollution etc) can be carried out UAVs equipped with the 

appropriate payloads.  

11. Industrial applications. Such application can be crops spraying, nuclear 

factory surveillance, surveillance of pipelines etc. 

 

Considering that there are a lot of application can be served through the use 

of UAV, it is therefore, the ability to develop the UAV based on own design is 

necessary in order to limit the foreign dependence in this type of technology. 

 

1.3 Problem statements  

 

UAV which stand for Unmanned Aerial Vehicle represents the airplane which 

designed without pilot onboard. With no pilot on board make the size of the airplane 

can be reduced to become the size of airplane just for accommodating payload and 

the required fuel only. As a result the size and weight of aircraft becomes smaller and 

lighter than ordinary aircraft. 

As unmanned flying vehicle, it is means that the aircraft has capability to 

control their flight path over any kind of disturbance may appear during their flight. 

Such capability only can be obtained through the use of flight control system placed 

inside the aircraft. Flight control system represents computer software which 

required the aerodynamics data for that aircraft in order to allow developing flight 

mechanism for controlling the aircraft. Flight control system can be considered as 

inverse problem of solving the governing equation of flight motion. In the stage of 
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development in developing flight control on board it is necessary to develop a 

computer code for solving the governing equation of flight motion for a given 

aerodynamic characteristics, control surfaces movement and aircraft’s mass and 

inertia properties to obtain their trajectory and velocity at any instant time.  

 

1.4 Thesis objective  

 

The flight dynamics equations a consist of a complete system equation which can 

describe the behavior of the aircraft at different flight condition, so the aim of this 

thesis is to solving the governing equations of flight motion, to get state space 

variables for a given aircraft configuration. The purpose of this thesis is through 

developing computer code allowing one to estimate the flight behavior of the 

existing aircraft. The flight behavior here means for a given an initial state of the 

aircraft, one can obtain the time history of state – space variables of the aircraft. Here 

there are 12 state – space variables , they are namely  six state variables related to the 

aircraft position and aircraft aptitude with respect to the inertia frame of reference 

and another six state – space variable related to the linear and angular velocity with 

respect to the body axis coordinate system. 

 

1.5 Scope of study 

 

Refer to the objectives of this thesis, the scope of study will be conducted in the 

present work involves: 

 Understanding coordinate system applied to the airplane namely the earth 

coordinate system, aircraft body axis coordinate system and the aircraft 

stability coordinate system.  

 Understanding in deriving the governing equation of flight motion, included 

the required aerodynamic model for supporting the governing equation of 

flight motion becomes solvable equation  

 Manner in solving the governing equation of flight motion and so the aircraft 

behavior for a given initial state can be obtained.  

 



CHAPTER 2 

 

 

 

LITERATUR REVIEW 

 

 

 

2.1 Mission profile and overview  

 

For any aircraft designed without pilot on board called as unmanned aerial vehicle 

(UAV). Without pilot on board made the size of vehicle can be reduced significantly 

but at the same time the ability to maintain their safety flight are highly demanded. In 

line with the progress of aircraft technology development in respect to the design 

procedures, material, manufacturing and the rapid progress in electronics, 

communication system and computing power had made a further effort for UAV’s 

development becomes apparent. The UAV has gained interest for military or civilian 

users. Military users may look the UAV with a particular design can perform a 

variety of missions supporting military and intelligence purposes. The list below 

presents the military applications that UAVs have served up to now [1].  

 

1. Surveillance for peacetime and combat synthetic aperture radar (SAR).  

2. Maritime operations (Naval fire support, over the horizon targeting, anti-ship 

missile deference, ship classification).  
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3. Adjustment of indirect fire and close air support (CAS).  

4. Meteorology missions.  

5. Ratio and data relay.  

6. Battle damage assessment (BDA). 

7. Reconnaissance surveillance and target acquisition (RSTA).  

8. Deception operations.  

9. Electronic warfare (EW) and SIGNT (Signals Intelligence).  

10. Route and landing reconnaissance support. 

 

While from the point of view, civilian users, the Unmanned Aerial Vehicles 

may be used for the one of following mission [1]:  

 

1. Communications relay. High altitude long endurance UAVs can be used as 

satellites.  

2. Disaster and emergency management. Arial platforms with camera can 

provide real time surveillance in hazardous situations such as earthquakes.  

3. Industrial applications. Such application can be crops spraying, nuclear 

factory surveillance, surveillance of pipelines etc.  

4. Search and rescue. Looking for survivors from shipwrecks, aircraft accidents 

etc.  

5. Research. Scientific research of any nature (environmental, atmospheric, 

archaeological, pollution etc) can be carried out UAVs equipped with the 

appropriate payloads.  

6. Wild fire suppression. UAVs equipped with infrared sensors can detect fire in 

forests and notify the fire brigade on time.  

7. Border interdiction. Patrol of the borders by aerial platforms.  
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8. Law enforcement. VTOL UAVs can take the role of police helicopters in a 

more cost effective way.  

 

In more specific purposes, where the mission condition in civil application is 

unsafe mission, the UAV can be used to carry out to conduct such mission the 

mission for:  

 

1. Surveillance over nuclear reactors.  

2. Surveillance over Hazardous chemicals.  

3. Fire patrol.  

4. Volcano patrol.  

5. Hurricane observations.  

6. Rescue missions over adverse weather conditions.  

 

Above explanation clearly indicated that there are a numerous missions can be 

performed by the use of UAV. Each mission may require a specific aircraft 

configuration, payload and size. For a long endurance UAV may require a sufficient 

size of UAV to accommodate the required fuel.  

The UAV which designed for law enforcement by authority body may require 

the UAV in the form of Helicopter rather than fixed wing aircraft in order to provide 

the ability to take off and landing vertically in crowded area and hovering over 

particular region may need to be investigated carefully. A good review on UAV 

mission for military application may be found in [2]. 
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2.2 Some Examples of UAV Model Already Developed 

 

Unmanned Aerial Vehicles, or UAVs, as they have sometimes been referred to, have 

only been in service for the last 60 years [3]. UAVs are now an important addition to 

many countries air defences. Modern UAVs have come a long way since the 

unmanned drones used by the USAF in the 1940s [4]. These drones were built for 

spying and reconnaissance, but were not very efficient due to major flaws in their 

operating systems. Over the years UAVs have been developed into the highly 

sophisticated machines in use today. Modern UAVs are used for many important 

applications including coast watch, news broadcasting, and the most common 

application, defence. 

With a growing number of UAVs being developed and flown in recent years 

there is the problem of classifying these new UAVs. As UAVs are used in a variety of 

applications it is difficult to develop one classification system that encompasses all 

UAVs. It has been decided that the UAVs will be classified into the two main aspects 

of a UAV, their performance specifications and their mission aspects [5].  

The specifications of a UAV include weight, payload, endurance and range, 

speed, wing loading, cost, engine type and power. The most common mission aspects 

are ISTAR, Combat, Multi-purpose, Vertical Take-off and landing, Radar and 

communication relay, and Aerial Delivery and Resupply. It is important to have a 

classification system for UAVs as when a specific UAV is needed for a mission it can 

be easily chosen from the wide variety of UAVs available for use. 

 

2.2.1 Predator [6, 7, 8]  

 

2.2.1.1 Predator Description 

 

Predator is a Medium-Altitude Endurance (MAE) UAV designed to provide 

battlefield surveillance with a beyond line of sight communications capability. This 

aircraft is an evolution from the General Atomics Gnat UAV. The Predator program 
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began in 1994 as an Advanced Concept Technology Demonstrator (ACTD). The 

program transitioned to operational use very early in development [6]. 

 

2.2.1.2 Geometry Characteristics 

 

The Predator key geometry characteristics are shown graphically in Figure 2.1, and 

numerically in Table 2.1. 

 

 

Figure 2.1: Predator UAV [9] 

 

Table 2.1: Predator Geometry [6] 

Description Value Source 

Wing span 48.7 ft Jane’s [1999] 

Aspect ratio 19.25 Jane’s [1999] 

Sweep (quarter chord) 0
o
 Jane’s [1999] 

Fuselage Length 26.7 ft Jane’s [1999] 

Length 27 ft Jane’s [1999] 
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Table 2.1 (continued) 

Description Value Source 

Height 6.9 ft Jane’s [1999] 

Weight 1,130 lbs (empty) Jane’s [1999] 

Runway (ISA) Improved,3000 ft * 100 ft Jane’s [1999] 

Max Gross Take-off Weight 2250 lbs Jane’s [1999] 

Fuel Type: 110 LL avgas ; capacity: 110 lits Jane’s [1999] 

 

2.2.1.3 Propulsion 

 

Predator uses the Rotax 914 reciprocating engine to drive a pusher propeller. Major 

engine characteristics are presented in Table 2.2. 

 

Table 2.2: Predator Propulsion Characteristics [6] 

Item Value Source 

Maximum Power (S/L) 105 HP Jane’s [1999] 

BSFC 0.5 lbm/HP-hr Assumed 

Weight 150.4 lbs Jane’s [1999] 

 

2.2.1.4 Avionics 

 

Predator has a relatively simple avionics suite compared to Global Hawk. Predator is 

largely a single-sting system with little redundancy. A summary of the Predator 

avionics weights is presented in Figure 2.2. 
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Figure 2.2: Predator Avionics Weights Summary [6] 

 

2.2.1.5 Subsystems 

 

A summary of the Predator subsystems weights is presented in Figure 2.3. 

 

 

Figure 2.3: Predator Subsystems Weights Summary [6] 

 

2.2.1.6 Structures 

 

The structure is largely made of carbon/epoxy composites [Jane’s 1999]. The smaller 

Gnat UAV in the Predator family is stressed for 6 G manoeuvres at an unspecified 
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weight. Absent of further information, the 6 G loading was applied to the Predator. A 

summary of the Predator structural weights is presented in Figure 2.4. 

 

 

Figure 2.4: Predator Structural Weight Summary [6] 

 

2.2.1.7 Performance 

 

The mission profile for Predator is 24 hours time on station at a 500 nautical mile 

radius, according to Jane’s [1999]. The 2003 General Atomics Predator brochure 

indicates that the performance is 24 hours time on station at a 400 nautical mile 

radius. The Jane’s [1999] mission profile was used here. The EO/IR-SAR payload 

combined weight of 181 pounds was used, not the maximum payload capacity. An 

additional one-hour loiter at sea level is added to account for recovery operations. A 

ceiling of 25,000 feet was imposed on the mission performance calculation. A climb 

from sea level to 20,000 feet was included in the ingress segment. The descent from 

the final loiter point to sea level was included in the egress segment. The Predator 

altitude and velocity performance is shown in Figure 2.5 and Figure 2.6. 
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Figure 2.5: Predator Altitude Profile [6] 

 

 

Figure 2.6: Predator Velocity Profile [6] 
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2.2.1.8 Predator’s Design Technology 

 

The weights and performance calibration process resulted design technology levels 

shown in Table 2.3. 

 

Table 2.3: Predator Design Technology Level [6] 

Design Item Tech Level (0-1) 

Volume Efficiency 0.5 

Induced Drag 0.4 

Interference Drag 1.0 

Wave Drag 1.0 (No compressibility impacts) 

Laminar Flow 0.4 

Factor Of Safety 1.0 

Weight Growth 0.75 

Installation Weight 1.0 

 

2.2.2 Global Hawk [6, 10, 11, 12] 

 

2.2.2.1 Global Hawk Description 

 

The Global Hawk is the first and only operational strategic high altitude UAV. This 

system began development in 1994 [6]. Global Hawk started as an Advanced Concept 

Technology Demonstrator (ACTD) with many goals, but the only firm requirements 

was a fixed Unit Fly-away Price (UFP). Many modifications have occurred to 

improve the system, and it has experienced operational use in wartime. Therefore, the 

available performance numbers represent the estimated performance of the vehicle as 

built, not necessarily as designed. As with nearly any aircraft program, the 

performance changes over time due to weight growth, system modifications, and 

other considerations. An attempt is made to calibrate the code against a representative 

Global Hawk [6]. 
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2.2.2.2 Geometry Characteristics 

 

A rendering of Global Hawk is shown in Figure 2.7 and some important geometrical, 

weight and other Global Hawk characteristics are shown in Tables 2.4. 

 

 

Figure 2.7: Global Hawk UAV [13] 

 

Table 2.4: Global Hawk Geometry
 
[6, 14] 

Item Value Source 

Wing span 35.42 m Jane’s [1999] 

Length 13.52 m Jane’s [1999] 

Height 4.60 m Jane’s [1999] 

Wing area 50.2 m² Jane’s [1999] 

Weight MTOW 12111 kg Jane’s [1999] 

Aspect ratio 25.09 Jane’s [1999] 

Equipped empty weight 4177 kg Jane’s [1999] 

Take-off weight 11622 kg Jane’s [1999] 

Fuel weight 6583 kg Jane’s [1999] 

Mission equipment weight 900 - 1000 kg Jane’s [1999] 
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Detailed geometry characteristics were found through scaling of 3-view 

drawings. The results were integrated into the detailed geometry input files [6]. 

 

2.2.2.3 Propulsion 

 

The Global Hawk engine is the Rolls-Royce 3007H. Major engine characteristics are 

shown in Table 2.5. 

 

Table 2.5: Global Hawk Propulsion [6] 

Item Value Source 

Thrust (T-O S/L) 8,290 lbs Jane’s [1999] 

TSFC 0.33 lbm/lb-h Jane’s [1999] 

Weight (Dry) 1,581 lbs Jane’s [1999] 

Length 8.88 ft Jane’s [1999] 

Diameter 3.63 ft Jane’s [1999] 

 

In addition to the engine, an additional 50 pounds of propulsion weight was 

added to account for the engine control electronics and actuators, as an assumption 

[6]. 

 

2.2.2.4 Avionics 

 

Global Hawk is known to have an extensive electronics suite. Weights for all of the 

components are not available. Details of some avionics components, such as INS and 

data recorders, are found in Global Hawk literature and vendor data sheets. The 

assumed avionics weights use a fragmentary Master Equipment List (MEL), 

developed from information generated from Altmann [2002] and Janes [1999], as 

guidance. Figure 2.8 shows the avionics weights determined for the calibration case. 
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Figure 2.8: Global Hawk Avionics Weights Summary [6] 

 

2.2.2.5 Subsystems 

 

Global Hawk has a complex set of subsystems. A list of known subsystems identified 

by Altmann and Janes is captured in the simple MEL. Unfortunately, no weights data 

is available for the subsystems. Therefore, no actual weights were used, only assumed 

subsystem weights and parametric methods. The resulting subsystems weights are 

shown in Figure 2.9. 

 

 

Figure 2.9: Global Hawk Subsystems Weights Summary [6] 
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2.2.2.6 Structures 

 

The Global Hawk structure consists of the main wing, tails, fuselage, nacelle, landing 

gear and installation weight. No direct weights data is available for the structure. 

However, Altmann [2002] provides useful information to describe the structural 

design drivers and philosophy. The factor of safety for the structure is 1.25. Altmann 

provides a V-N diagram that indicates that the light weight vertical load is 

approximately 3.6 G, and the heavy weight vertical load is approximately 2 G. 

Because the wing weight is calculated at gross weight, the vertical load is assumed to 

be 2 G. The Global Hawk structural weight is presented in Figure 2.10. 

 

 

Figure 2.10: Global Hawk Structural Weight Summary [6]  

 

2.2.2.7 Payloads 

 

Global Hawk payloads consist of a Synthetic Aperture Radar (SAR), an Electro-

Optical/ Infrared (EO/IR) payload, and the supporting electronics. The supporting 

electronics include an integrated sensor processor, a receiver/exciter/controller unit, 

transmitter (for SAR, presumably), and a sensor electronics unit. It is unclear if the 

elements of the communications architecture, INS, or structure are included in the 
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advertised payload weight of 1,900 pounds [Jane’s 1999]. The summation of the 

listed components comes to 797 pounds [Jane’s 1999]. There is no available source 

that clarified this discrepancy. To satisfy the sizing mission profile, 1,900 pounds was 

assumed for the total payload weight, with an even weight division between SAR and 

EO/IR. 

 

2.2.2.8 Performance 

 

Altmann [2002] provides useful information on the Global Hawk performance and 

flight envelope limitations. The maximum equivalent airspeed is 175 Keas, and the 

maximum Mach is approximately Mach 0.7 and the characteristics are shown in 

Table 2.6. 

Northrop Grumman advertises the Global Hawk Performance as 24 hours time 

on station at 1,200 nautical miles radius [Northrop 2003]. This performance estimate 

was adopted for sizing. Range credit was assumed to be 100 nautical miles for the 

initial climb to 50,000 feet, and 200 nautical miles from the end of cruise to the final 

loiter altitude. A half-hour loiter at 5,000 feet was assumed for airfield operations. 

Altitude and Mach characteristics are shown in Figure 2.11 and Figure 2.12. 

 

 

Figure 2.11: Global Hawk Altitude Profile [6] 
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Figure 2.12: Global Hawk Mach Profile [6] 

 

Table 2.6: Global Hawk– selected performances
 
[6, 14] 

Item Value Source 

Stall speed 170 km/h Jane’s [1999] 

Loiter speed 650 km/h Jane’s [1999] 

Max speed 670 km/h Jane’s [1999] 

Ceiling 19.80 km Jane’s [1999] 

Rate of climb 17.3 m/s Jane’s [1999] 

endurance 38 - 42 h Jane’s [1999] 

range 17 000 km Jane’s [1999] 

Runway length 1500 m Jane’s [1999] 

Take-off thrust 3.13 kN Jane’s [1999] 

Wing loading 231.52 kg/m² Jane’s [1999] 

Thrust loading 37.1 kg/N Jane’s [1999] 

Max Altitude 65 000 ft Jane’s [1999] 
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2.2.2.9 Design Technology 

 

The weights and performance calibration process resulted design technology levels 

are shown in Table 2.7. 

 

Table 2.7: Global Hawk Design Technology Levels [6] 

Design Item Tech Level (0-1) 

Volume Efficiency 0.5 

Induced Drag 0.31 

Interference Drag 1.0 

Wave Drag 0.31 

Laminar Flow 0.31 

Factor Of Safety 1.0 

Weight Growth 0.35 

Installation Weight 0.5 

 

2.2.3 Shadow 200 [6, 15, 16, 17] 

 

2.2.3.1 Shadow 200 Description 

 

Shadow 200 is a small tactical UAV designed to support line-of-sight battlefield 

surveillance missions. Initial development began in 1990. However, the technology 

year was assumed to be 2000 due to the extended development time, significant 

design evolution, requirements changes, and incorporation of more advanced 

technologies. Palumbo [2000] is assumed to be the most authoritative source of 

Shadow 200 data.  

Palumbo describes an evolutionary design history beginning in 1990 that has 

not ended. For example, the wing configuration is driven by a constraint to re-use 

Pioneer program wing tooling [6].  
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2.2.3.2 Geometry Characteristics 

 

The Shadow 200 geometry characteristics are shown graphically in Figure 2.13, and 

numerically in Table 2.8. 

 

 

Figure 2.13: Shadow 200 UAV [18] 

 

Table 2.8: Shadow 200 Geometry Characteristics [6, 15] 

Item Value Source 

Wing span 12.75 ft 

Office of the Secretary 

of Defence, Unmanned 

Aircraft Systems 

Roadmap 2005-2030. 

Weight 165 lbs. empty; 328 lbs. loaded 

Length 11.2 ft 

Height 3.0 ft 

Aspect ratio 7.07 

Fuel Capacity 51 lb 

Sweep (quarter chord) 0 º 

Payload Capacity 60 lb 

Ceiling 14,000 ft 
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2.2.3.3 Propulsion 

 

The Shadow 200 uses a UEL AR 741 rotary engine. The engine drives a two-blade 

propeller. The engine weight listed includes the alternator. Major characteristics of 

the Shadow 200 engine are shown in Table 2.9. 

 

Table 2.9: Shadow 200 Propulsion Characteristics [6] 

Item Value Source 

Maximum Power (S/L) 38 HP Jane’s [1999] 

BSFC (Max power, S/L) 0.57 lbm/HP-hr Jane’s [1999] 

Propeller Diameter 2.33 ft Jane’s [1999] 

Weight 28 lbs Palumbo [2000] 

 

The thrust and efficiency loss factor was found to be 0.59 through the 

calibration process. The aerodynamics technologies are already very conservative, so 

the only remaining performance factor for modification is the propulsion losses [6]. 

 

2.2.3.4 Avionics 

 

The Shadow 200 uses a relatively simple avionics suite. There is no indication that 

any of the avionics components are redundant. 

Palumbo does not provide a detailed breakout of avionics weights. The total 

weight allocated to avionics is 57 pounds, which includes avionics, communications 

equipment, and elements of the electrical system [Palumbo 2000]. The avionics, at 

minimum, includes the autopilot and a Mode IV IFF transponder. No further 

information about the avionics suite is provided by Palumbo. For the purposes of this 

analysis, 30 pounds was allocated to avionics and 27 pounds was allocated to 

communications equipment. The electrical system weight was set to 0 pounds, and 

the alternator weight was included in the propulsion weight. The avionics suite 
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apparently has evolved since 2000 to include more modern equipment. The Shadow 

200 is known to use the Tactical Automatic Landing System (TALS), which has an 

airborne component weighing 3 pounds. The Shadow 200 currently uses the Athena 

GS-211 Guide Star TM autopilot, which weighs 2 pounds. This autopilot includes 

INS and air data measurement equipment. The allocated weight of 30 pounds is 

applied, due to the year 2000 design year assumption [6]. 

 

2.2.3.5 Subsystems 

 

An overview of the Shadow 200 subsystems weight results is in Figure 2.14. 

 

 

Figure 2.14: Shadow 200 Subsystems Weights Summary [6] 

 

2.2.3.6 Structures 

 

The Shadow 200 structure is 90% composites, which is primarily composed of 

graphite and Kevlar epoxy [Jane’s 1999]. Jane’s [1999] lists the limit load at 3.6 G, 

and Palumbo [2000] lists the limit load at 3.8 G. The limit load of 3.8 G was applied 

here. This limit was applied directly at the design gross weight condition, since the 
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