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GLOSSARY OF TERMINOLOGIES FOR CHIRALITY 

Achiral A molecule that is superimposable on its mirror image and has at 

least one plane of symmetry. 

Antipode Synonym of enantiomer. 

Asymmetric carbon 

atom 
A carbon atom that has four different atoms/groups/ligands 

attached. 

Chiral Having the property of chirality.  A chiral molecule is a molecule 

that is not superimposable on its mirror image.  It has no plane of 

symmetry. 

Chiral centre A tetrahedral atom in a molecule bearing four different ligands.  

Lone pair of electrons is treated as ligands.  If a chiral centre is a 

carbon atom, it can also be called an asymmetric carbon.  

Synonym: chiral atom, chirality centre, and centre of chirality. 

Chirality A fundamental property of three-dimensional objects. 

Constitutional isomers Compounds with the same molecular formula but different 

structural formulas.  Synonym: Structural isomers 

Diastereomers Stereoisomers that are not mirror images of each other.  Cis- and 

trans- isomers are a subset of diastereomers.  All cis- and trans- 

isomers are diastereomers but not all diastereomers are of the cis- 

and trans- orientation. 

Enantiomer One of a pair of molecule entities that are related to each other by 

a reflection.  They are mirror images of each other and non-

superimposable. 

Enantiomeric ratio The ratio of the percentage of one enantiomer in a mixture to that 

of the other, e.g. 70(+):30(-). 

Eudismic ratio The difference in pharmacologic activity between two 

enantiomers of a drug. 

Optical activity A sample of material able to rotate the plane of polarisation of a 

beam of transmitted plane-polarised light is said to possess optical 

activity (or to be optically active).  This optical rotation is the 

classical distinguishing characteristic (sufficient but not 

necessary) of systems containing unequal amounts of 

corresponding enantiomers.  An enantiomer causing rotation in a 

clockwise direction (when viewed in the direction facing the 

oncoming light beam) under specified conditions is called 

dextrorotatory and its chemical name or formula is designated by 

the prefix (+)-; one causing rotation in the opposite sense is 

laevorotatory and designated by the prefix (-)-.  Materials with 

optical activity also exhibit other chiroptic phenomena. 

Racemic/racemate An equimolar mixture of a pair of enantiomers.  It does not 

exhibit optical activity.  The chemical name or formula of a 

racemate is distinguished from those of the enantiomers by the 

prefix (-)- or (+)- or rac- (racem-) or by the symbols RS and SR. 



xxx 

Stereochemistry A subdiscipline of chemistry involving the study of the relative 

spatial arrangement of atoms that form the structure of molecules 

and their manipulation.  An important branch of stereochemistry 

is the study of chiral molecules.  Stereochemistry is also known 

as 3D chemistry because the prefix ‘stereo’ means ‘three-

dimensionality’. 

Stereoisomer Compounds with the same molecular formula and the same 

structural formula but different from each other in their three-

dimensional configuration of their atoms in space. 

Stereoselectivity The preferential formation in a chemical reaction of one 

stereoisomer over another.  When stereoisomers are enantiomers, 

the phenomenon is called enantioselectivity and is quantitatively 

expressed by the enantiomer excess.  When they are 

diastereomers, it is called diastereoselectivity and is quantitatively 

expressed by the diastereomer excess. 

Stereospecificity A reaction is termed stereospecific if starting materials differing 

only in their configuration are converted into stereoisomeric 

products.  According to this definition, a stereospecific process is 

necessarily stereoselective but not all stereoselective processes 

are stereospecific. 
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KESPESIFIKAN ENANTIOMER ANTIBODI POLIKLONAL 

YANG DIBANGUNKAN TERHADAP ENANTIOMER RASEMIK 

DAN ENANTIOMER TULEN SALBUTAMOL SERTA IMPLIKASI 

PENGGUNAANNYA DALAM IMUNOASAI ENZIM 

 

ABSTRAK  

Salbutamol (albuterol) adalah agonis β2-adrenergik yang popular digunakan dalam rawatan 

asma dan gangguan obstruktif pulmonari kronik (COPD).  Salbutamol biasanya 

disalahgunakan sebagai peningkat prestasi dalam sukan serta penggalak tumbesar yang 

berkesan pada ternakan.  Pengawasan terhadap penyalahgunaan salbutamol bergantung 

kepada kejayaan pelaksanaan kaedah penapisujian air kencing untuk mengesan bahan 

tersebut di mana immunoasai enzim memainkan peranan penting.  Oleh kerana 

kecenderungan untuk menukar kepada enantiomer tunggal sebagai ajen terapeutik yang lebih 

selamat dan berkesan, (R)-salbutamol telah diperkenalkan untuk kegunaan terapeutik pada 

manusia serta sebagai penggalak tumbesar dalam perubatan veterinar.  Pertukaran ini 

menimbulkan tanda tanya tentang penggunaan imunoasai tradisional yang menggunakan 

antibodi rasemik (RS)-salbutamol.  Kereaktifan-silang dan keterpilihan-enantio antibodi 

menggunakan immunogen yang disintesiskan melalui kaedah campuran anhidrid (MA) dan 

pengaktifan epoksi (BDDE) pada arnab, telah dikaji.  Antibodi-antibodi menunjukan 

keterpilihan-enantio samaada terhadap (R)-salbutamol atau (S)-salbutamol bergantung 

kepada individu haiwan, jadi antibodi-antibodi ini tidak sesuai digunakan dalam pemantauan 

aras (R)-salbutamol.  Sehubungan itu, tiga jenis antibodi enantio-khusus menggunakan (R)- 

dan (S)-salbutamol sebagai hapten juga telah dihasilkan.  Antibodi (R)-salbutamol 

menunjukkan kereaktifan-silang sebanyak 3.94-7.13% terhadap antipodnya.  Manakala 

antibodi (S)-salbutamol menunjukkan kereaktifan silang sebanyak 3.28-5.25% terhadap 

enatiomer-(R).  Antibodi-antibodi ini berpotensi digunakan untuk pemantauan aras setiap 

individu enantiomer dalam air kencing.  Sampel air kencing khinzir yang dianalisis 

menggunakan kaedah ELISA  menunjukkan 17.71% sampel positif palsu dan 0% sampel 
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negatif palsu, apabila dibandingkan dengan kaedah kiral LC-MS/MS yang disahkan.  Sampel 

positif air kencing khinzir didapati kandungan utmanya adalah (S)-salbutamol, sekaligus 

mencadangkan bahawa penyingkiran salbutamol adalah secara stereo-terpilih kepada (S)-

salbutamol.  Empat sampel air kencing dari ekuin (kuda) dan dua sampel dari manusia yang 

dikenalpasti positif mengandungi salbutamol juga dianalisa.  Keputusan menunjukkan proses 

metabolisme utama salbutamol pada ekuin adalah melalui proses glukuronidasi, manakala 

pada manusia melalui proses sulfasi.  Metabolit glukuronida dan sulfat diasingkan daripada 

air kencing ekuin dan manusia, masing-masing.  Metabolit sulfat sangat rintang terhadap 

hidrolisis enzim β-glukuronidase/arilsulfatase dan keadaan piawai hidrolisis asid.  Sejumlah 

metabolit sulfat diasingkan dari sel HepG2 yang dieramkan dengan salbutamol.  Metabolit 

glukuronida dan sulfat yang diasingkan kemudiannya digunakan untuk mencirikan 

kereaktifan-silang antibodi rasemik salbutamol.  Kereaktifan-silang antibodi terhadap 

glukuronida adalah 358.06% dan 227.26% untuk kedua-dua antibodi MA dan BDDE, 

masing-masing.  Walau bagaimanapun, kereaktifan-silang antibodi-antibodi tersebut 

terhadap metabolit sulfat adalah jauh lebih rendah iaitu sebanyak 20.72% dan 23.81% bagi 

kedua-dua antibodi MA dan BDDE.  Penemuan mengenai metabolit ini menimbulkan 

pertanyaan tentang kajian farmakologi dan analitikal sebelumnya yang mengandaikan 

bahawa metabolit sulfat salbutamol dihidrolisiskan sepenuhnya oleh enzim β-

glukuronidase/arilsulfatase dan kereaktifan-silang metabolit-metabolit adalah 100% dengan 

antibodi poliklonal.  
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ENANTIOSPECIFICITY OF POLYCLONAL ANTIBODIES 

RAISED AGAINST RACEMIC AND PURE ENANTIOMERS OF 

SALBUTAMOL AND THE IMPLICATIONS OF THEIR USE IN 

ENZYME IMMUNOASSAY 

 

ABSTRACT  

Salbutamol (albuterol) is a β2-adrenergic agonist popularly used in the treatment of asthma 

and chronic obstructive pulmonary disorder (COPD), and is also commonly abused as a 

performance enhancer in sports as well as an effective growth promoter in livestock.  The 

monitoring of salbutamol abuse relies on the successful implementation of urinary screening 

methods to detect the substance of which enzyme immunoassay plays an important role.  

With the trend to switch to single enantiomers as safer and more effective therapeutic agents, 

(R)-salbutamol has been introduced for use in human therapeutics as well as in veterinary 

medicine as a growth promoter.  This switch calls into question the usefulness of traditional 

salbutamol immunoassays which use antibodies based on a racemic (RS)-salbutamol.  The 

cross-reactivity and enantioselectivity of antibodies using immunogens synthesized via the 

mixed anhydride (MA) and epoxy activation (BDDE) methods in rabbits were investigated.  

The antibodies showed enantioselectivity either towards (R)-salbutamol or (S)-salbutamol 

depending on the individual animal and these antibodies are not ideal to monitor (R)-

salbutamol levels.  Three types of enantiospecific antibodies using (R)- and (S)-salbutamol 

as hapten were also raised.  The (R)-salbutamol antibodies displayed cross-reactivity of 3.94-

7.13% towards the antipode.  The (S)-salbutamol antibodies showed 3.28-5.25% cross-

reactivity towards the (R)- enantiomer.  These antibodies would be potentially useful to 

monitor the individual enantiomer levels in urine.  Porcine urine samples analysed using the 

ELISA method demonstrated 17.71% false positives and 0% false negative when compared 

to a validated chiral LC-MS/MS method.  The positive porcine urine samples showed 

predominance of (S)-salbutamol concentration suggesting that the free drug clearance is 

stereoselective for (S)-salbutamol.  Four known positive equine and two known human 
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positive samples were also analysed.  The results revealed that equine metabolism is 

principally via glucuronidation and that the human is mainly via sulphation.  The 

glucuronide and sulphate metabolites were isolated from equine and human urine 

respectively.  The sulphate metabolite was extremely resistant towards hydrolysis by β-

glucuronidase/arylsulphatase and standard acid hydrolysis conditions.  Quantifiable amounts 

of the sulphate metabolite were isolated from HepG2 cells incubated with salbutamol.  The 

isolated glucuronide and sulphate metabolites were then used to characterize the cross-

reactivity of the racemic salbutamol antibodies.  The cross-reactivities against the 

glucuronide were 358.06% and 227.26% for the MA and BDDE antibodies respectively.  

However, the cross-reactivity for the sulphate was much lower at 20.72% and 23.81% for the 

MA and BDDE.  These findings on the metabolites raises questions on previous 

pharmacological, and analytical studies which had assumed that the sulphate metabolite to 

be fully hydrolysed using β-glucuronidase/arylsulphatase and the cross-reactivities of the 

metabolites to be 100% with the polyclonal antibodies. 
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CHAPTER 1: 

INTRODUCTION 

 

 

1.1 A brief history of salbutamol 

Salbutamol (Albuterol) is chemically known as 4-[2-(tert-butylamino)-1-hydroxyethyl]-2-

(hydroxymethyl)phenol (Figure 1.1).  To date, it is the most popular bronchodilator drug 

used for the treatment of asthma and better known by its brand name, Ventolin. 

NH

CH3

CH3

CH3

OH

OH OH

*

 

Figure 1.1: The molecular structure of salbutamol (albuterol) or chemically known as 4-[2-(tert-
butylamino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol.  The chiral centre of the molecule 

is marked with *. 

Salbutamol was first invented by David Jack and his team of researchers in 1966 and 

patented by Allen and Hansburys (Glaxo Group Research) in 1969 (Marasco, 2005) in 

response to finding a solution for the increasing mortality rate by isoprenaline users in the 

1960s.  The introduction of isoprenaline in aerosol form then, caused an estimated 3,000 

deaths among asthmatic teenagers in the United Kingdom (Sneader, 2005).  Their objective 

of producing a stable, safer, and long-acting analogue of isoprenaline led to the development 

of saligenin and then salbutamol.  Salbutamol fulfilled their objectives as a longer-acting 

bronchodilator that acted selectively on bronchial muscle with minimal cardiovascular 

adverse effects (Cullum et al., 1969; and Kennedy and Simpson, 1969). 
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1.2 Chemistry 

Salbutamol is one of the bronchodilators grouped as β-agonists or phenethanolamine β-

adrenergic agonists.  These group of drugs conform to the general structure of a six-

membered aromatic ring with hydroxyl group(s) bound to the β-carbon, nitrogen that is 

positively charged at physiological or acidic pH found in the ethylamine side chain, and 

bulky substituent (marked as R; Figure 1.2) on the aliphatic nitrogen (Figure 1.4).  The 

specificity of the drugs for the β-adrenoceptor is marked by the bulky substituent (Weiner, 

1980).  As such this bulky substituent is not only to β-agonists but also the endogenous 

adrenergic neurotransmitters epinephrine and norepinephrine (Figure 1.3; Smith, 1998). 

B

A

C NH
R

OH

αααα
ββββ

m-

m-

p-

 

Aromatic Substitution 
Category Examples 

A B C 

-H -OH -H Phenol Ractopamine 
Ritodrine 

-OH -H -OH Resorcinol Fenoterol 
Terbutaline 

-OH -OH -H Catechol Isoproterenol 
Dobutamine 

-CH2OH -OH -H Saligenin Salbutamol 
Salmeterol 

Figure 1.2: The general structure of a phenethanolamine β-agonist and a list of the common 
substitution groups found on the aromatic ring and the bulky substituent (R) on the 
aliphatic nitrogen.  The R group is usually a t-butyl group, isopropyl group, alkylphenyl, or 
alkylphenol.  The para- (p-) and meta (m-) positions on the aromatic ring relative to the 
phenethanolamine β-carbon are marked (adapted from Smith, 1998). 
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i) OH

NH
CH3

OH

OH

Epinephrine
 

ii) OH

NH2

OH

OH

Norepinephrine
 

Figure 1.3: The molecular structures of the endogenous adrenergic neurotransmitters: i) epinephrine 
and ii) norepinephrine. 

 

 

Table 1.1: The analogues of phenethanolamine β-adrenergic agonists grouped according to their 
categories. 

Category Drug name Structure 

Phenol Ractopamine 

OH

OH

NH

CH3

OH

 

 Ritodrine OH

OH

NH

CH3

OH

 

Resorcinol Fenoterol 

OH

NH

CH3

OH

OH

OH

 

 Terbutaline 
OH

OH

NH

OH

CH3

CH3

CH3

 

Catechol Isoproterenol OH

NH

OH

OH CH3

CH3

 

 Dobutamine OH

NH

OH

OH

CH3
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Table 1.1: Continued. 

Category Drug name Structure 

Saligenin Salbutamol 
NH

OH

CH3

CH3

CH3

OH

OH

 

 Salmeterol 

OH

NH

OHOH

O

 

 Pirbuterol 
N NH

OH

CH3

CH3

CH3

OH

OH

 

Monophenols Bamethan 
NH

OH

OH

CH3

 

 Carbuterol 

NH

OH

CH3

CH3

CH3

OH

NH

NH2O

 

 Isoxsuprine OH

OH

NH

CH3

O

CH3

 

Miscellaneous Clenbuterol 
Cl

Cl

NH

OH

CH3

CH3

CH3

NH2

 

 Mabuterol 

Cl

NH

OH

CH3

CH3

CH3

NH2

F

F
F
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Salbutamol (Figure 1.1) with a molecular weight of 239.31, is usually prepared in the form 

of a sulphate salt named salbutamol sulphate (molecular weight 576.70).  It is approximately 

11 Å long (Smith, 1998) with almost white crystalline powder that is freely soluble in water 

but not methylene chloride or ethanol (British Pharmacopoeia, 2012).  The aliphatic amine 

present gives it pKa values of 9.3 and 10.3 (Smith, 1998; and Shen et al., 2012).  A single 

chiral centre gives rise to two enantiomers: (R)-salbutamol and (S)-salbutamol (Figure 1.4).  

Planar polarised light rotation found that (R)-salbutamol had the (-)- configuration and (S)-

salbutamol the (+)- orientation (Hartley and Middlemiss, 1971).  However, current 

therapeutic drug preparations are racemates (equal proportion of both enantiomers), with the 

exception of Xopenex® which constitutes only (R)-salbutamol as its active ingredient. 

i) 

NH

CH3

CH3

CH3

OH

OH OH

H

*

 

ii) 

NH

CH3

CH3

CH3

OH

OH OH

H

*

 

Figure 1.4: Molecular structure of i) (R)-salbutamol and ii) (S)-salbutamol.  The chiral centre is 

marked with *. 

 

 

 

1.3 Pharmacology 

The bronchodilator group of drugs called β-agonists is made up of salbutamol, clenbuterol, 

terbutaline, salmeterol, formoterol, ractopamine, cimaterol, and many others.  They act upon 

the β2-adrenoceptors in the smooth muscles of the bronchial airways to bring about 

bronchodilation.  These drugs are grouped into short- and long-acting β-agonists.  Short-

acting β-agonists exert their effects immediately within 3-5 minutes and last for 4-6 hours, 

whereas long-acting β-agonists are maintenance drugs lasting 12 hours.  The long-acting β-

agonists wield their effects 20 minutes after administration and its 12 hour protection allow 
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people with chronic obstructive pulmonary disease (COPD) to sleep better at night albeit less 

frequent usage (Table 1.2; American Thoracic Society). 

 

Bronchodilators mimic the actions of sympathetic adrenergic stimulation acting through β-

adrenoceptors.  Activation of these receptors relaxes the bronchial smooth muscles, 

stimulates glycogenolysis in the liver, release rennin from the kidneys, and increases heart-

rate.  The β-adrenoceptor embedded in the cell plasma membrane is a single polypeptide 

glycoprotein moiety.  It exists as three subtypes: β1 (cardiac tissues), β2 (respiratory tract), 

and β3 (found on adipose tissues) (Fernandes et al., 2004).   

 

Beta-agonists interact with the β2-adrenoceptors on the smooth muscle tissues and 

subsequently activate the intracellular signalling cascade through the membrane bound 

adenylyl cyclase enzyme (Johnson, 2001).  Upon activation of the receptor, adenylyl cyclase 

through the guanine nucleotide regulatory protein (Gs) converts adenosine-5’-triphosphate 

(ATP) to cyclic adenosine-3’,5’-monophosphate (cAMP).  The cAMP is an intracellular 

messenger that regulates cellular functions such as muscle relaxation or contraction by 

modifying cAMP-dependent protein kinases.  Phosphorylation of the myosin light chain 

kinase prevents interaction of the contractile protein myosin resulting in smooth muscle 

relaxation.  Moreover, cAMP also decreases muscle contraction by inhibiting the influx of 

calcium via the voltage dependent calcium channels (Fernandes et al., 2004). 

 

The β-agonists aromatic ring substituted with hydroxyl groups, halogens, amines, 

hydroxymethyl groups, and cyano groups, is the key to elicit receptor binding for executing 

their biological activity.  The substitution groups then dictate the compound half-life and 

efficacy at the receptors (Smith, 1998).  Eason and Stedman (1933) proposed that β-

adrenoceptors interact with β-agonists at three sites on the molecule: the β-hydroxyl group, 

the aliphatic nitrogen, and the aromatic ring.  The hypothesis was validated and it was found 

that β2-adrenoceptors cloned from human, mouse, and rat are 87-93% similar in amino acid 
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make-up (Hieble et al., 1995).  Hydrophilic and hydrophobic amino acids distribution in the 

β2-adrenoceptor primary sequence is similar to that of rhodopsin.  Rhodopsin, a visual seven-

transmembrane protein, has the amino and carboxyl groups extended into the extracellular 

space and cytoplasm respectively.  Amino acids spanning the cell membrane are arranged in 

α-helical orientation around a ‘pore’ where receptor ligands bind (Hieble et al., 1995). 

 

At physiological pH values, salbutamol gets protonated at the aliphatic amine.  This enables 

the molecule to interact with the carboxyl extensions of the β2-adrenoceptor in a ligand-

receptor interaction.  The aromatic ring and cathecholhydroxyl groups form hydrogen 

bonding with serine204 (Ser204) and Ser207 on the fifth transmembrane helix, thus increasing 

the binding affinity of ligand-receptor (Hieble et al., 1995).  Consequently, salbutamol if not 

ionized at the receptor will fail to exert its activity without the ligand-receptor interaction. 

 

 

1.3.1 Pharmacokinetics 

Pharmacokinetics describes the time course of drug concentrations in the body and it 

involves the processes of absorption (method of drug administration), distribution 

(disbursement of drug to body tissues), metabolism (biotransformation of drugs into 

metabolites), and excretion (removal of drug and metabolites from the body system) of 

primarily drug substance or abbreviated as ADME. 

 

1.3.1(a)  Absorption 

Beta-agonists are usually administered by inhalation, oral, and intravenous methods.  In 

humans, salbutamol is more commonly prescribed in the form of inhalation.  This method of 

drug administration allows limited access to the lungs but produces immediate and effective 

bronchodilation effect (Morgan, 1990).  A high proportion of inhaled drugs is swallowed and 

gets metabolized in the gut.  They are rapidly absorbed through the lungs and gastrointestinal 

tract (small intestine).  Most of the β-agonists reach maximum plasma concentration within 
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1-3 hours post oral administration in humans (Morgan, 1990) with the exception of halogen-

substituted aromatic ring β-agonists such as clenbuterol and mabuterol.  They reach peak 

plasma concentration 4 hours after oral dosing due to drug accumulation (Meyer and Rinke, 

1991).   

Table 1.2: A list of short- and long-acting β-agonists with their respective brand names, method of 
administration, and dosage form.  Dosages may vary with generic products.  [MDI 
(Metered dose inhaler) in the form of aerosol/spray].  [DPI (Dry powder inhaler) the 
number of ‘puffs’ needed depends on the success of entire dose inhalation by the person].  
Adapted from American Thoracic Society [Online].  Date accessed: 7 May 2014.  
(https://www.thoracic.org/clinical/copd-guidelines/for-patients/what-kind-of-medications-
are-there-for-copd/what-are-beta-agonists.php).  

Drug name Brand name 
Method of 

administration 
Dosage 

Short-acting β-agonists 

Salbutamol 
(Albuterol) 

Airolin® 
Airomir® 
Asmasal® 
Buventol® 
Inspiryl® 
Proventil® 
 
 
 
 
 
Salamol® 
Salbulin® 
Salbutamol® 
Ventodisk® 
Ventolin® 
 
 
 
 
 
Ventolin 
Evohaler® 

MDI 
MDI 
DPI 
DPI 
DPI 
MDI 
DPI 
Tablets 
Liquid for nebulizer 
 
 
MDI 
MDI 
MDI 
DPI 
MDI 
DPI 
Tablets 
Liquid for nebulizer 
 
 
MDI 

1-2 puffs every 4-6 hours 
1-2 puffs every 4-6 hours 
1-2 puffs every 4-6 hours 
4-8 mg every 12 hours 
1-2 puffs every 4-6 hours 
1-2 puffs every 4-6 hours 
1 puff every 4-6 hours 
2-4 mg every 6-8 hours 
0.25-0.5 mL of 0.5% 
solution in nebulizer every 
4-6 hours 
1-2 puffs every 4-6 hours 
1-2 puffs every 4-6 hours 
1-2 puffs every 4-6 hours 
1-2 puffs every 4-6 hours 
1-2 puffs every 4-6 hours 
1 puff every 4-6 hours 
2-4 mg every 6-8 hours 
0.25-0.5 mL of 0.5% 
solution in nebulizer every 
4-6 hours 
1-2 puffs every 4-6 hours 

Bambuterol Bambec® Tablets 10-20 mg every night 

Fenoterol Berotec® MDI 
DPI 
Liquid for nebulizer 

1-2 puffs 2-3 times daily 
1 puff 2-3 times daily 
0.2-0.4 mL with normal 
saline every 4-6 hours 

Isoetherine Bronkosol® 
 
Bronkometer® 

Liquid for nebulizer 
 
MDI 

0.25-0.5 mL in nebulizer 
with 2 mL normal saline 
2 puffs every 4 hours 
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Table 1.2: Continued. 

Drug name Brand name 
Method of 

administration 
Dosage 

Isoproterenol 
(Isoprenaline) 

Isuprel® MDI 
Liquid for nebulizer 

1-2 puffs every 4-6 hours 
0.25-0.5 mL with 2 mL 
normal saline 

Levalbuterol  
[(R)-salbutamol] 

Xopenex® Liquid for nebulizer 0.63-1.25 mg every 6-8 
hours 

Metaproterenol Alupent® 
 
 
 
Metaprel® 
ProMeta® 

MDI 
Tablets 
Liquid for nebulizer 
 
Liquid for nebulizer 
 
MDI 
Liquid for nebulizer 
 

1-2 puffs every 4 hours 
20 mg every 6-8 hours 
0.2-0.3 mL 5% solution in 
nebulizer 3-4 times daily 
0.2-0.3 mL 5% solution in 
nebulizer 3-4 times daily 
1-2 puffs every 4 hours 
0.2-0.3 mL of 5% solution 
3-4 times daily 

Pirbuterol Maxair® MDI/autoinhaler 1-2 puffs every 4-6 hours 

Terbutaline Breathaire® 
Brethine® 
 
 
 
Bricanyl® 

Tablets 
MDI 
DPI 
Tablets 
Liquid for nebulizer 
MDI 
DPI 
Tablets 
Liquid for nebulizer 

2.5-5 mg every 8 hours 
1-2 puffs every 4-6 hours 
1 puff every 4-6 hours 
2.5-5 mg every 8 hours 
5 mg up to 4 times daily 
1-2 puffs every 6-8 hours 
1 puff every 6 hours 
2.5-5 mg every 8 hours 
5 mg every 6-8 hours 

Tornalate Bitolerol® MDI 
Liquid for nebulizer 

1-2 puffs every 8 hours 
0.5-1 mL 3-4 times daily 

 

Long-acting β-agonists 

Formoterol Foradil® 
Oxis® 

DPI 
DPI 

1 puff every 12 hours 
1-2 puffs every 12 hours 

Salmeterol Serevent® MDI 
DPI 

2 puffs every 12 hours 
1 puff every 12 hours 
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1.3.1(b)  Distribution 

Drugs absorbed into the bloodstream are reversibly distributed to the body tissues through 

the physicochemical interaction of the drug molecules with the tissue.  Drug distribution is 

indicated by the volume of distribution (Vd).  A high Vd value shows that the drugs are 

widely distributed throughout body tissues resulting in low plasma concentrations and vice 

versa.  Drug distribution is characteristic of the individual drug molecule itself that is usually 

reflective of the physicochemical property of the molecule.  More lipid soluble drugs tend to 

have higher volume of distributions e.g. steroids have large Vd values whereas drugs like 

caffeine and ibuprofen have small Vd values (Lombardo et al., 2004; and Ghafourian et al., 

2006). 

 

Salbutamol has total plasma clearance of 480 + 123 mL/min and Vd of 156 + 38 L (Morgan 

et al., 1986).  Salbutamol with a pKa of 9.3 gets protonated at physiological pH of 7.4.  Thus, 

this ensures that this molecule remains in circulation (tissue extracellular compartment) and 

does not partition into the adipose tissues.  Moreover, the length of the aliphatic side chain is 

insufficient to incorporate lipid-soluble characteristics (Johnson, 1995; and Smith, 1998).  

This feature allows for less residue accumulation in adipose tissues.  Thus, it maybe safer for 

use in livestock growth enhancement compared with the more lipophilic β-agonist, 

clenbuterol.  The halogen substitution on the aromatic ring improves the lipophilicity of 

clenbuterol (Smith, 1998). 

 

1.3.1(c)  Metabolism 

Metabolism of a drug is a biotransformation process to enable drug clearance from the 

system in the presence of an enzyme, thus producing a more hydrophilic product 

(metabolite).  This process involves modifications via oxidation, reduction, hydrolysis, 

hydration, conjugation, and condensation reactions which ultimately determine the 

pharmacological and/or toxicological output (Gibson and Skett, 2001).  Drug metabolism is 

divided into two phases: i) phase I (functionalisation reactions) and ii) phase II (conjugative 
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reactions).  Phase I metabolism is usually assumed to ‘functionalise’ the parent drug in 

preparation for phase II conjugation metabolism by activation, addition or removal of 

functional group suitable for phase II conjugation (Table 1.3).   

Table 1.3: The categorization of reactions involved in phase I and phase II metabolism.  Adapted from 
Gibson and Skett (2001). 

Phase I metabolism reactions Phase II metabolism reactions 

Oxidation 

Reduction 

Hydrolysis 

Hydration 

Dethioacetylation 

Isomerisation 

Glucuronidation/glucosidation 

Sulphation 

Methylation 

Acetylation 

Amino acid conjugation 

Glutathione conjugation 

Fatty acid conjugation 

Condensation 

Phase I metabolism 

The phase I metabolism takes place mainly in the endoplasmic reticulum where reduction, 

hydration, and two types of oxidation can occur: 

i. Hydroxylation (incorporation of oxygen into the drug molecule) 

ii. Oxidative, deamination, and dealkylation (loss of functional groups) 

 

The sole purpose of oxidation is to insert an oxygen atom into the complex substrate 

molecule for the next phase metabolism or excretion.  Reductive mechanism catalyses azo-

compounds, nitro-compounds, epoxides, heterocyclic ring compounds, and halogenated 

hydrocarbons in the presence of hepatic microsomal enzymes.  Hydrazide and carbamate 

hydrolysis are some examples of reduction metabolism.  Hydration is a reaction that adds 

water to a compound without causing dissociation of the compound.  This is achieved with 

the assistance of epoxide hydrolase enzyme where epoxides are hydrated to form 

dihydrodiol. 
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The most important oxidation reaction occurs with the microsomal cytochrome P450 system 

(mixed-function oxidases).  It facilitates reactions such as aromatic hydroxylation, aliphatic 

hydroxylation, epoxidation, N-dealkylation, O-dealkylation, S-dealkylation, oxidative 

deamination, N-oxidation, S-oxidation, phosphotionate oxidation, dehalogenation, and 

alcohol oxidation.  Other non-mixed-function oxidase enzymes also involved with phase I 

metabolism are alcohol dehydrogenase, aldehyde dehydrogenase, xanthine oxidase, amine 

oxidases, aromatases, and alkylhydrazine oxidase (Gibson and Skett, 2001).   

 

Phase II metabolism 

Phase II metabolism utilizes a wide array of enzymes for conjugation reactions that produces 

more water-soluble products which can be excreted in bile or urine (Table 1.4).  

Glucuronidation is the main route of conjugation due to the abundant availability of the 

reaction co-factor, uridine-5’-diphospho (UDP)-glucuronic acid and the enzyme, UDP-

glucuronosyltransferase.  This conjugation is suitable for compounds containing functional 

groups like alcohols, phenols, hydroxylamines, carboxylic acids, amines, sulphonamides, 

and thiols.  There are two types of glucuronides produced: O-glucuronide and N-

glucuronide.  Compounds with groups like phenols, alcohols, and carboxylic acids form the 

‘ester’ or ‘ether’ O-glucuronides.  There is a common observation that inversion takes place 

in compound reaction with the α-glucuronic acid resulting in the formation of a β-

glucuronide metabolite.  They are excreted into hepatic bile and can be hydrolysed by 

endogenous β-glucuronidase enzyme to its parent compound which will then be reabsorbed 

through the intestinal mucosa.  This recycling of drugs is termed ‘enterohepatic circulation’.  

N-glucuronides on the other hand reacts mainly with aromatic amines, amides, and 

sulphonamides.  Other less common forms of glucuronides are S-glucuronides (from thiol 

groups) and C-glucuronides (direct attachment of glucuronic acid to the carbon skeleton) 

(Gibson and Skett, 2001). 
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Table 1.4: Conjugation reactions and the relevant enzymes involved in the cytoplasm phase II 
metabolism (adapted from Gibson and Skett, 2001). 

Reaction Enzyme Functional group 

Glucuronidation 

Glycosidation 

Sulphation 

Methylation 

Acetylation 

Amino acid conjugation 

Glutathione conjugation 

Fatty acid conjugation 

Condensation 

UDP-Glucuronosyltransferase 

UDP-Glycosyltransferase 

Sulphotransferase 

Methyltransferase 

Acetyltransferase 

 

Glutathione S-transferase 

-OH; -COOH; -NH2; -SH 

-OH; -COOH; -SH 

-NH2; -SO2NH2; -OH 

-OH; -NH2 

-NH2; -SO2NH2; -OH 

-COOH 

Epoxide; organic halide 

-OH 

Various 
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Figure 1.5: The structure of 3’-phosphoadenosine-5’-phosphosulphate (PAPS). 

 

SO4
2- + ATP

ATP sulfurylase
Adenosine-5'-phosphosulphate (APS) + PPi

 

APS + ATP 
APS kinase

3'-phosphoadenosine-5'-phosphosulphate (PAPS) + ADP
 

Figure 1.6: A two stage adenosine triphosphate (ATP) reaction with sulphate to form energy rich 3’-
phosphoadenosine-5’-phosphosulphate (PAPS) for phase II sulphation metabolism (adapted 
from Gibson and Skett, 2001). 
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Sulphation is another major metabolic reaction for phenols taking place in the cytosol.  It can 

also occur for alcohols, amines, although less for thiols.  In this reaction, 3’-

phosphoadenosine-5’-phosphosulphate (PAPS) (Figure 1.5) which acts as an energy rich 

donor is obtained through a two-stage reaction from adenosine-triphosphate (ATP) and 

sulphate (Figure 1.6) (Gibson and Skett, 2001).  Interaction of PAPS and cytosolic 

sulphotransferase (SULT) enzyme produces sulphate conjugated metabolites. 

 

Although salbutamol is well-absorbed orally in humans, it has low bioavailability as a result 

of extensive first-pass-metabolism.  Salbutamol undergoes phase II metabolism to form two 

main metabolites namely salbutamol-3-O-glucuronide and salbutamol-4-O-sulphate (Walle 

et al., 1996; and Mareck et al., 2011) with the metabolites formed varying across species. 

 

Glucuronidation of the salbutamol aromatic hydroxyl group inhibits pharmacological 

exertion, thus rendering the resultant metabolite inactive (Morgan, 1990; and Smith, 1998).  

In the presence of microsomal enzyme, UDP-glucuronosyltransferase, salbutamol is 

conjugated to UDP-glucuronic acid to form salbutamol-3-O-glucuronide (Figure 1.7).  

Angus et al., (1989) proved through perfused rat liver that extreme hypoxia is needed to 

produce significant impairment of the glucuronidation-dependent elimination of salbutamol. 

NH

OH

CH3

CH3

CH3

OH

OH

NH

OH

CH3

CH3

CH3

OH

O

O

OH

OH

OH

O OH

OH

O

OH

OH

OH

O OH
+

Salbutamol

Glucuronic acid

Salbutamol-3-O-glucuronide

UDP glucuronic acid (UDPGA)

UDP glucuronosyltransferase

 

Figure 1.7: Phase II glucuronidation metabolism of salbutamol catalyzed by UDP-
glucuronosyltransferase with UDP-glucuronic acid (UDPGA) as a high energy donor to 
form salbutamol-3-O-glucuronide. 



15 

Sulphotransferases (SULT) in the liver, small intestine, stomach, kidneys, and colon 

catalyzes sulphate conjugation of endogenous compounds and drugs to render them 

biologically inactive (Lin et al., 2011).  The principal salbutamol metabolite in human is 

salbutamol-4-O-sulphate formed by sulphate conjugation to the phenolic moiety, is carried 

out by the active M form of human cytosolic phenolsulphotransferase (PST) enzyme (Walle 

et al., 1993a; and Dong et al., 2011) or more specifically the SULT1A3 (Ko et al., 2012) 

using the nucleophilic substitution reaction (Figure 1.8).  Its sulphotransferase-mediated 

metabolism is most effective at pH 9.0. 
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Figure 1.8: In a nucleophilic substitution reaction, the phenolic moiety of salbutamol is catalyzed to 
form the biologically inactive metabolite salbutamol-4-O-sulphate.  The reaction is aided 
by the cytosolic phenolsulphotransferase (PST) enzyme found in the liver, small intestine, 
kidneys, stomach, and colon (adapted from Walle et al., 1996; and Dong et al., 2011). 

Salbutamol clearance from the human body depends primarily on its sulphate conjugation 

(Eaton et al., 1996).  The insignificant protein binding of salbutamol helps to facilitate its 

excretion from the kidneys.  For intravenous salbutamol administration, 64.2% is excreted in 

the unconjugated form whilst 12% is excreted as the sulphate conjugate.  Oral administration 

differs from the intravenous administration where 31.8% is excreted in the unchanged form 

whereas 48.2% is excreted as sulphated metabolites (Morgan et al., 1986).   
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1.3.1(d)  Excretion 

Excretion is the final pharmacokinetic phase that deals with the removal of drug and its 

metabolite(s) from the body system.  Unconjugated drug and its metabolites are excreted 

from the body system mainly via the liver and kidneys where hydrophilic substances are 

eliminated faster than the lipophilic ones (Dong et al., 2011).  Total renal excretion involves 

glomerular filtration, active tubular excretion, and passive tubular re-absorption.  The 

glomerular filtration allows unconjugated drug and its metabolites to filter through its pores 

to be eliminated depending on the efficiency of renal blood flow.  Active transporters (P-

glycoprotein, multidrug resistance-associated proteins, and organic anion and cation 

transporters) aid ionised compounds such as salbutamol-4-O-sulphate and salbutamol-3-O-

glucuronide to be excreted through the renal tubules (Morgan et al., 1986; Moaddel et al., 

2005; and Dong et al., 2011).  This process is influenced by the plasma pH values that affect 

the ionization of the compounds to be transported.  The passive tubular re-absorption 

involves the re-uptake of non-ionized compounds by way of concentration gradient that is 

also pH dependent (Dong et al., 2011). 

 

 

 

1.4 Therapeutic uses of salbutamol 

Asthma is an age old respiratory disease characterized by inflamed and swelling of the 

airways leading to bronchoconstriction that is sensitive to irritants and susceptible to allergic 

reactions.  The victims perpetually experience bouts of coughing spells at night or in the 

early mornings.  They show symptoms such as wheezing, chest tightness, difficulty in 

breathing, and coughing.  An estimated 315 million people worldwide are asthmatics (To et 

al., 2012) and there is no known cure (Marasco, 2005) although it can be managed with the 

use of β-agonists.  Beta-agonists are bronchodilators developed to combat asthma attacks 

and bring quick relief to the victim.  It is usually administered through inhalation for 

immediate relief or in the form of oral tablets and even via intravenous injections.   
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1.5 Adverse effects of salbutamol 

The toxicity of salbutamol/β-agonists is marked by clinical symptoms like headache, nausea, 

dizziness, palpitation, tachycardia, peripheral vasodilatation, nervousness, tremors, fever, 

chills, and breathing irregularities in acute cases (Sheu et al., 2009).  Non-β2-

bronchoconstriction that counter the therapeutic effects have been attributed to be due to the 

(S)-salbutamol (Lipworth et al., 1997; and Pesola and D’Costa, 2003). 

 

 

1.6 Stereochemistry and stereoselective pharmacology 

1.6.1 Chirality 

Recent advances in analytical and synthetic chemistry have led to a better understanding of 

the differences in biological activities of enantiomers.  Chiral molecules are usually 

asymmetrical with reference to the tetrahedral carbon atom that has four different 

atoms/groups bound to it (Figure 1.9 i).  This carbon atom is called centre of asymmetry or 

chiral centre.  Atoms such as nitrogen, sulphur, and phosphorus are also able to form 

pharmacologically important chiral molecules with four different groups bound to them in 

tetrahedral configuration (Figure 1.9 ii) (Allenmark, 1988). 

i) R1

R3

R2 R4

R1

R3

R2R4

 

ii) 

S

R3

R1O

sulphoxide
 

N

R1

R3

R2O

tertiary amine N-oxide
 

P

R1

R3

R2O

phosphine-oxide
 

Figure 1.9: Structures in i) are a pair of enantiomers showing an asymmetric tetrahedral carbon and ii) 
examples of other atoms (sulphur, nitrogen, and phosphorus) that constitute a chiral centre. 
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Chirality derived from the Greek word ‘kheir’ (χειρ) meaning ‘hand’, refers to a subject in 

chemistry relating to structures that is non-superimposable with its own mirror image (Eliel 

and Wilen, 1994).  Molecule without this unique feature is termed ‘achiral’.  This led to the 

three dimensional study on atoms and/or groups absolute configuration/orientation in space 

within a molecule termed stereochemistry (Lin et al., 2011).  Interest in stereochemistry 

began with the discovery of plane polarised light rotation in quartz and later tartaric acid by 

Malus in 1809 (Nagendrappa, 2007; and Lin et al., 2011). 

 

The study of chirality progressed with Louis Pasteur’s observation of chirality (tartaric acid 

found in the sediments of fermenting wine) in both crystalline and solution form.  It was an 

era where optical activity was characteristic of crystal (i.e. sodium chlorate and sodium 

bromate) but not solutions.  Under the microscope, Pasteur observed that the tartaric acid 

crystals formed were almost identical and non-superimposable mirror images of each other.  

Pasteur separated the crystals manually and dissolved them in separate solutions.  He found 

that one of the tartaric acid solutions polarised light to the left [(-)-tartrate] and another to the 

right [(+)-tartrate].  Thus, he concluded that optical activity was characteristic of the 

individual (-)- and (+)- molecules and not superimposable with their mirror images (Tan, 

1996).  They were termed enantiomorphs or enantiomers (Eliel and Wilen, 1994).  

Subsequently, Irish physicist William Thomson (Lord Kelvin) coined the name ‘chirality’ 

following Louis Pasteur’s discoveries.  Although chirality is found also across an axis or a 

plane, but few such chiral compounds are of pharmacological importance. 

 

 

1.6.2 Stereoselectivity in pharmacology 

Natural biological building blocks (i.e. proteins, enzymes, and receptors) are invariably 

chiral molecules derived from L-amino and D-carbohydrates.  As such, interactions between 

a chiral biological macromolecule and an enantiomeric pair are essentially different and they 

are viewed as two different chemical entities.  The resultant observation is usually an 
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enhanced biological/pharmacological activity residing in one of the enantiomers due to their 

affinity and contact with endogenous proteins, enzymes, and receptors.  Thus, chirality is 

important to gauge drug efficacy.  According to the Easson and Steadman model (Patil et al., 

2008) the more potent compound possesses the stronger interaction or better fitting with 

receptors.  Consequently, the enantiomer that illicit better affinity or pharmacological 

activity is termed the eutomer whereas its lower affinity counterpart the distomer.  Both 

enantiomers show differences in pharmacodynamics and pharmacokinetics.  However, it is 

known that drug molecules and their complementary receptor are able to undergo 

conformation changes when in contact (Albert, 1985).  Their eudismic ratios measure their 

stereoselective receptor-mediated activation (Patil et al., 2008).   

 

The importance of chiral drugs has gained more recognition with better understanding of the 

individual enantiomer biological activities.  Studies conducted prove that the 

pharmacological and toxicological properties of a racemic drug are not equivalent to the 

simple sum of contribution from both enantiomers.  Their activities are complex and their 

pharmacological inputs vary according to their chemical entity.  Utilising both enantiomers 

in the dosage form without understanding the pharmacological and toxicological 

implications of each enantiomer is risky.  A variety of differential enantiomer contributions 

to pharmacological effects are known and are outlined below. 

 

1.6.2(a)  Pharmacological activity residing in a single enantiomer 

The ideal situation is to have the drug pharmacological activity residing in a single 

enantiomer while its antipode is invariably inactive.  This is a rare condition seen with the 

anti-hypertensive drug, α-methyldopa where only the (S)- enantiomer is the pharmacological 

active entity (Gillespie et al., 1962). 
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1.6.2(b)  Pharmacological activity residing in both enantiomers 

Drugs like promethazine (Powell et al., 1988) and flecainide (Kroemer et al., 1989) display 

similar pharmacological and toxicological properties in both enantiomers.  Thus treatment 

with either the racemate or single enantiomer does not offer any advantages. 

 

1.6.2(c)  Pharmacological activities of the enantiomers are qualitatively different 

Dextromethorphan and its enantiomer levomethorphan are chiral drugs that exhibit different 

pharmacological activities.  Dextromethorphan does not wield analgesic, sedative, and 

opiod-like effects but levomethorphan exerts potent opiod-like activity (Drayer, 1986). 

 

1.6.2(d)  Different potency for pharmacologically similar enantiomers 

Most chiral drugs fall within this category like warfarin and verapamil.  The more potent 

enantiomer is (S)-warfarin.  It is 2-5 times more potent in its anti-coagulant effect than (R)-

warfarin (O’Reilly et al., 1974).  (S)-Verapamil is comparatively eight times more active in 

lowering cardiac activity (Echizen et al., 1985). 

 

1.6.2(e)  Equally active enantiomers with toxicity in one enantiomer 

Ketamine, an anaesthetic with analgesic properties, does not cause circulatory or respiratory 

depression but elicit addiction, hallucination, and agitation.  (S)-ketamine is a 3.4 times more 

effective anaesthetic but its (R)- antipode brings on adverse effects like psychic emergence 

reactions and post-operative agitated behaviour (White et al., 1980). 

 

1.6.2(f)  Opposite or contrary pharmacological activities with each enantiomer 

Indacrinone is a loop diuretic that exhibits diuretic activity with the (-)-indacrinone but 

causes uricosuric activity with the (+)- antipode.  The risk factor for hypertensive patients is 

increased and therefore, it is a more useful diuretic if the (+)- enantiomer proportion is 

increased (Tobert et al., 1981). 
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1.6.2(g)  Antagonism of antipode at the same receptor site 

This is evident with picenadol (a phenylpiperidine derivative) that exerts analgesic properties 

with the (+)- enantiomer but is antagonised by the (-)- enantiomer (Powell et al., 1988). 

 

 

1.6.3 Stereoselectivity in pharmacokinetics 

Chiral drugs not only display stereoselectivity in their pharmacology and 

pharmacodynamics, but also in pharmacokinetics.  In view of the possible enhancing and 

contradictory features of drug enantiomers, it is important to study stereoselectivity in 

pharmacokinetics with regards to the ADME process, as well as stereoselective drug-drug 

interactions (Dong et al., 2011). 

 

1.6.3(a)  Stereoselective absorption 

Absorption of drugs occurs either by passive diffusion or aided by active transport across 

cellular membranes.  Passive diffusion is influenced by lipophilicity, molecular size, and the 

pKa values.  The movement of drug molecules is dictated by the concentration across the cell 

membrane, whereby drug molecules move from higher concentration regions to lower 

concentration regions.  This method of absorption is spontaneous and not stereoselective.  

Active transportation requires energy to transport drug molecules against concentration 

gradient across a biological membrane and thus introduces stereoselectivity in absorption.  

Good synergy between the drug enantiomer and the active transporter improves absorption 

(Dong et al., 2011).  For example L-dopa reacts better with the naturally occurring intestinal 

L-amino acid transporter and thus increases the rate of absorption (Wade et al., 1973). 

 

1.6.3(b)  Stereoselective distribution 

Chiral drugs are usually distributed differently from each other because of stereoselectivity 

binding of these drugs to the naturally occurring receptors that are chiral.  Distribution of 

chiral drugs from the plasma to cellular compartment is dependent upon the stereoselective 
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binding to receptors and protein transporters (Dong et al., 2011).  In addition, the binding 

capacity of the drug to plasma and tissue proteins dictates the pharmacodynamics and 

pharmacokinetics.  It is widely accepted that the free or unbound drug is responsible for the 

pharmacological activity and subject to clearance.  Highly protein bound drugs may exhibit 

significant pharmacological effects although there is minor drug-receptor interaction.  

Conversely, low protein binding drugs have increased availability for receptor binding 

resulting in strong pharmacodynamics and pharmacokinetics properties.  Competition for 

plasma protein binding sites gives rise to enantioselective drug interactions.  α1-Acid 

glycoprotein has only one binding site that preferentially recognises basic drugs.  For 

instance, propranolol binding towards α1-acid glycoprotein is predominantly with the (S)- 

enantiomer but its (R)- enantiomer shows remarkable binding capacity with human serum 

albumin (Hutt et al., 1989).  Therefore, the extensive (R)-propranolol binding to human 

serum albumin makes binding of (S)-propranolol of greater significance. 

 

1.6.3(c)  Stereoselective metabolism 

Stereoselectivity happens in both phase I and II metabolism to yield different products, at 

varying rates to form unique enantiomeric metabolites.  Enantioselective metabolism 

involving various stereochemical transformations are summarized in Table 1.5.  

Table 1.5: Summary of various stereochemical transformations involved in stereoselective 

metabolism and examples of each transformation.  * marks the chiral centre of the 
molecules. 

 
Stereochemical 

transformation 
Examples 

i) Achiral to chiral 
transformation 

An achiral molecule that undergoes metabolic transformation to 
produce a chiral molecule.  E.g. diphenylhydantoin (phenytoin) to 
(S)-4-hydroxydiphenylhydantoin (Poupaert et al., 1975). 

NH

N
H O

O

NH

N
H O

O

OH

*

Diphenylhydantoin
(S)-4-hydroxydiphenylhydantoin
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Table 1.5: Continued. 

 
Stereochemical 

transformation 
Examples 

ii) Chiral to achiral 
transformation 

A rare metabolism transformation at the chiral centre rendering the 
molecule achiral.  E.g. amphetamine to phenylacetone (Wright et 

al., 1977). 

CH3

NH2

CH3

O
*

Amphetamine Phenylacetone
 

iii) Chiral to chiral 
transformation 

Metabolism transformation that retains the chirality of the 
molecule.  E.g. (S)-nirvanol to (S)-4-hydroxynirvanol (Küpfer et 

al., 1984). 

NH
NH

O

O
CH3

NH
NH

O

O
CH3

OH
* *

(S)-nirvanol (S)-4-hydroxynirvanol
 

iv) Chiral to 
diastereomer 
transformation 

Introduction of a new chiral centre to produce varying degrees of 
diastereomerism.  E.g. (R)-pentobarbitone to (1’R,3’S)- and 
(1’R,3’R)- diastereomers and (S)- enantiomer gives rise to 
(1’S,3’R)- and (1’S,3’S)-diastereomers (Palmer et al., 1970). 

N
H

N
H CH3

CH3

CH3

O

O

O

*
1' 3'

Pentobarbitone

N
H

N
H CH3

CH3

CH3

O

O

O

OH

1' *
*

3'

5-ethyl-5-(pentan-2-yl)pyrimidine
-2,4,6(1H,3H,5H)-trione

5-ethyl-5-(4-hydroxypentan-2-yl)pyrimidine-
2,4,6(1H,3H,5H)-trione  

v) Chiral inversion Metabolism transformation of a chiral molecule to be converted to 
its antipode.  E.g. (R)-ibuprofen to (2’S,2R)- and ((2’R,2R)-
carboxyibuprofen, and (S)-ibuprofen gives rise to (2’R,2S)- 
(2’S,2S)-carboxyibuprofen (Hutt and Caldwell, 1983). 

CH3

OH

O
CH3

CH3

*

Ibuprofen

CH3

OH

O
CH3

OH

O

*

Carboxyibuprofen
*
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1.6.3(d)  Stereoselective excretion 

Glomerular filtration and passive re-uptake in renal excretion are non-stereoselective.  

However, stereoselective binding of drugs to plasma protein influences the process of 

glomerular filtration and passive re-absorption.  Stereoselective renal tubular re-absorption is 

believed to be responsible for the stereoselective excretion of (S)-terbutaline (Borgstorm et 

al., 1989).  Differences in stereoselective renal excretion are relatively small in comparison 

with the non-renal clearance processes. 

 

Stereoselectivity in renal excretion is directly linked to the active tubular excretion where 

drug-receptor interaction and protein binding is prevalent.  Enantiomer administration 

profiles are usually different from the racemate administration.  It is noteworthy that drugs 

and their metabolites have multiple elimination sites and sometimes may not reflect the 

stereoselective secretion process itself.  Thus, an estimation of pharmacokinetic parameters 

and concentration-effect relationships of total drug concentrations may be of limited value 

and potentially misleading (Ariens, 1984). 

 

 

1.6.4 Stereoselective pharmacokinetics of salbutamol 

Salbutamol exerts its desirable bronchodilating property in (R)-salbutamol (eutomer) 

(Brittain et al., 1973) whereas (S)-salbutamol (distomer) causes bronchial contraction and 

hyperresponsiveness towards allergens (Templeton et al., 1998).  Both enantiomers have 

high selectivity for β-adrenoceptors in the bronchial smooth muscle cells compared with 

cardiac muscle cells.   

 

Commercial preparations of salbutamol are introduced via inhalation, oral, and intravenous 

routes (Ward et al., 2000).  In the course of inhalation, salbutamol is usually deposited in 

small portions in the lungs for immediate activity onset and the balance swallowed (Newman 




