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Abstract 

Amino acids are the building blocks of proteins. They are essential for cell survival and 

normal cellular functions as they are the key precursors to numerous cellular pathways 

and processes. Availability of amino acids exhibit vital role in regulation of gene expression 

in all mammalian cells. Transporter proteins mediate transport of amino acids across the 

plasma membrane. In this study, complete amino acid starvation was performed on the 

hypothalamic cell line 25/2 from mouse to investigate the regulation of gene expression of 

amino acid transporters. We monitored up and down regulation in transcription of genes 

encoding solute carriers (Slcs) with a primary focus on amino acid transporters. Amino 

acid transporters from system A, L, xc, y+ and system ASC showed a response to amino acid 

starvation. Members from various solute carrier families that transport amino acids as 

their preferred substrate were found to be upregulated after 3-5 hours. Moreover, a few 

orphan genes such as Slc23a3 and Mfsd11 with unknown substrate profile were also found 

to be upregulated in response to amino acid depletion.  
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Abbreviations 
 

4E-BP1 4E-binding protein 1      

AA  Amino Acid 

AAR  Amino Acid Response 

AARE  Amino acid responsive element 

APC   Amino acid/polyamine/organocation 

AS  Asparagine synthetase 

ATF  Activating transcription factor 2 

C/EBPs CCAAT/enhancer binding proteins 

CATs  Cationic Amino acid Transporters 

CHOP  C/EBP homologous protein 

CPA/ AT Cation/ proton antiporters/ Anion Transporters 

DNA  Deoxyribonucleic acid 

eIF-2α  Eukaryotic initiation factor 2 alpha 

eIF4E  Eukaryotic initiation factor 4E 

GCN2  General control nonderepressible 2 

Glyt1  Glycine transporter 1 

GPCRs  G-protein-coupled receptors 

LATs   L-type amino acid transporters 

MAPK  Mitogen-activated protein kinase 

MCF  Mitochondrial carrier family 

MCT  Monocarboxylate transporters 

Mfsd  Major Facilitator superfamily domain  

mRNA  Messenger ribonucleic acid 

mTOR  Mammalian Target of rapamycin 

NHE  Sodium Hydrogen Exchanger 



 
 

NSR  Nutrient Sensing Response 

NSRE  Nutrient sensing responsive element 

PFAM  Protein Family 

RT  Reverse Transcriptase 

S6K1  Ribosomal protein subunit 6 kinase 1 

SLC  Solute carrier 

SNAT  Sodium-coupled Neutral Amino acid transporter 

Tm  Melting Temperature 

tRNA  Transfer ribonucleic acid 
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Introduction 

Amino acid sensing Pathways 

Amino acids play a vital role in gene regulation. Change in the concentration of amino acid 

has a significant role on protein synthesis (Fafournoux, Bruhat et al. 2000). In mammals 

there are two well-established amino acid sensing pathways that are responsible for 

inspecting and reacting to the amino acid availability. These two pathways function 

inversely to one another in order to change the rate of protein synthesis (Kilberg, Pan et al. 

2005). The primary role of these two pathways is to control the mRNA turnover/decay rate 

for specific genes, the transcription and the protein synthesis (Chaveroux, Jousse et al. 

2009). 

Amino Acid sensing by mTOR pathway 

The mammalian target of rapamycin (mTOR) pathway serves as a sensor for elevated 

concentration of amino acids and is activated by amino acid supplementation in order to 

maintain the synthesis of proteins and cell growth (Liao, Majithia et al. 2008). In contrary, 

GCN2 pathway is activated during the amino acid deficiency and plays its role during the 

starvation (Palii, Chen et al. 2004, Chaveroux, Jousse et al. 2009). The mechanism by which 

mTOR kinase senses sufficient amino acid is unknown. However, in the presence of adequate 

amino acid concentration in the cell mTOR Kinase cascade is activated. Activation of mTOR 

kinase phosphorylates the p70 ribosomal S6 kinase (S6K1) (Kilberg, Pan et al. 2005, 

Chaveroux, Jousse et al. 2009) and eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-

BP1) which is a translator repressor (Hutchinson, Shanware et al. 2011). EIF4E along with its 

associated proteins (eIF4A helicases) and (eIF4G) forms eIF4F complex that facilitates and 

promotes protein translation by aiding the interaction with 40S ribosomal subunit. The 

primary function of 4E-BP1 is to bind eIF4A to prevent the formation of the eIF4A complex and 

inhibit the protein translation. Phosphorylation of 4E-BP1 deactivates it and prevents it to bind 

to eIF4E (Liao, Majithia et al. 2008, Laplante and Sabatini 2009). S6 kinase is a translation 

initiator once phosphorylated. Stimulated S6 Kinase ensures the translation of mRNA at a 

higher level to synthesize ribosomal protein. In this way the cell growth and protein synthesis 

rates are kept up at a rate steady with supplement accessibility (Kilberg, Pan et al. 2005). 
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Amino acid sensing by AAR pathway 

The AAR pathway is the second known amino acid sensing pathway that is active in amino 

acid deficiency.  This pathway utilizes an independent stress activated kinase termed as 

general control nonderepressible (GCN2) kinase to sense amino acid deprivation 

(Bentivoglio, Del Grosso et al. 1997). Intra or extra cellular amino acid insufficiency results 

in increased uncharged tRNA that subsequently binds to GCN2 kinase and activates it. In 

response, GCN2 kinase phosphorylates translation initiation factor (eIF-2α) that 

suppresses the global protein synthesis (Zhang, McGrath et al. 2002, Kilberg, 

Balasubramanian et al. 2012), but paradoxically, increases the particular pre existing 

mRNA translation that includes activating transcription factor 4 (ATF4) (Lu, Harding et al. 

2004, Kilberg, Balasubramanian et al. 2012). Activating transcription factor 2 (ATF2) is 

activated upon its phosphorylation during the amino acid starvation. It has been reported 

that ATF2 is phosphorylated by a number of kinase pathways termed Mitogen-activated 

protein kinase (MAPK) and JNK/stress-Activated protein kinase (Averous, Bruhat et al. 

2004). Both ATF2 and ATF4 play a primary role in inducing the gene expression during 

amino acid starvation (Averous, Bruhat et al. 2004).  

CHOP a 29KDa protein in Humans is a member of CCAAT/enhancer binding proteins 

(C/EBPs). It contains a cis-positive amino acid responsive element (AARE) in its promoter 

(Oyadomari and Mori 2004). AARE is responsible to induce gene expression during amino 

acid starvation. ATF2 and ATF4 are involved in the regulation of CHOP during amino acid 

limitation by binding to AARE (Averous, Bruhat et al. 2004). Asparagine synthetase (ASNS) 

is a protein-encoding gene and is accountable for the biosynthesis of asparagine and 

glutamine. It is expressed in many mammalian cells and also activated in response to 

amino acid deprivation (Gong, Guerrini et al. 1991, Hutson and Kilberg 1994). ASNS mRNA 

level is increased in amino acid starved conditions (Bruhat, Jousse et al. 1997). ASNS gene 

possesses two cis-elements in its promoter; nutrient sensing responsive element (NSR1 

and NSR2). During amino acid starvation these two elements are vital for transcriptional 

activation and these elements also have sequence and functional similarities with AARE. 

Activation of ASNS gene in response to amino acid deprivation involves ATF 4 binding to 

NSRE1 (Siu, Chen et al. 2001, Siu, Bain et al. 2002). 
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It is evident from the literature that in AAR pathway, GCN2 kinase induces the translation 

of ATF4 pre-existing mRNA and regulates the gene transcription (Deval, Chaveroux et al. 

2009). Genes that possess AARE or similar elements in their promoter site are enhanced 

transcriptionally in amino acid starvation (Palii, Kays et al. 2009) 

Solute Carrier Proteins 

SLCs are the largest group of transporters with diverse biochemical properties including 

coupled transporters, ion driven exchangers; cellular Na+ gradient dependent and passive 

transporters; dependent on concentration gradient of the molecule it translocates. The 

localization of these transporters also varies but the majority is localized in the plasma 

membrane while some transporters are particularly localized in synaptic vesicles, 

peroxisomes and mitochondria (Fredriksson, Nordstrom et al. 2008). Almost all SLC 

families are functionally related (with few exceptions) due to the fact that all of them 

depend on an ion gradient as a driving force to translocate molecules across the cell 

membrane. They transport substances include amino acids and oligopeptides, inorganic 

cations and anions, glucose and other sugars, carboxylate and organic anions, bile salts, 

acetyl coenzymes A, biogenic amines, essential metals, neurotransmitters, fatty acids and 

lipids, vitamins, nucleoside, choline, ammonium, urea, thyroid hormone and drugs over the 

cell membrane (He, Vasiliou et al. 2009, Jacobsson, Stephansson et al. 2010, Hoglund, 

Nordstrom et al. 2011). 

G-protein-coupled receptors (GPCRs) are the largest phylogenetically related membrane 

protein family with 800 genes coding for proteins in humans (Fredriksson, Lagerstrom et 

al. 2003, Hoglund, Nordstrom et al. 2011). Solute carriers (Slcs) are the second largest 

super family of membrane proteins with approximately 55 distinct families coding for over 

400 proteins in humans (Vasiliou, Vasiliou et al. 2009, Li and Shu 2014). To assign a 

particular protein to a specific family it must have at least 20-25% sequence identity to 

other members of that group. In mammals SLCs are classified into four major groups, α-, β-, 

γ- and δ based on phylogenetic analysis where proteins in each group share common 

evolutionary linage. β –cluster, which is the largest cluster of amino acid transporters, 

includes 3 major families, SLC32, SLC36 and SLC38 (Fredriksson, Nordström et al. 2008). 
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SLC families in the PFAM classification are divided into three major clans on the basis of 

sequence profile analysis. Major facilitator superfamily (MFS), Amino 

acid/polyamine/organocation (APC) and monovalent cation/ proton antiporters 

(CPA)/anion transporter (AT). MFS superfamily is among the largest clan of membrane 

transporters in humans. 13 SLC families (SLC2, 15, 16, 17, 18, 19, 21, 22, 29, 33, 37, 43, 45, 

46) that are part of α-group, populate MFS clan regarding SLCs. CPA/AT clan include the γ 

group of the SLC family and contains only 2 SLC families. The APC superfamily includes 9 

SLC families (SLC4, 5, 7, 12, 23, 26, 32, 36, 38). This clan mainly contains amino acid 

transporters and the APC clan contains the entire β family of SLCs. Since the proteins in the 

APC superfamily are suggested to be most likely homologous, it comprises of a single 

superfamily (Hoglund, Nordstrom et al. 2011).  

Amino Acid Transporters 

About 25% of SLC genes transport amino acids as their primary substrate. Until now there 

are eleven known families that code for amino acid transporters. SLC1, SLC6, SLC7, SLC15, 

SLC16, SLC25, SLC36, SLC38, and SLC43. Seven of them are expressed in the plasma 

membrane and account for transport from the extracellular medium into the cytosol, while 

four of them are intracellular and found in for example lysosomes, mitochondria and 

synaptic vesicles (Broer 2008, Karunakaran, Umapathy et al. 2008, Stevens 2010). SLC1 

transports neutral amino acid and contain the physiologically important high-affinity 

glutamate transporters. SLC3 is known to encode the heavy subunit of the heteromeric 

amino acid transporter. SLC7 encodes the glycoprotein transporters/cationic amino acid 

transporters. SLC15 encodes the proton-oligopeptides symporters. SLC17 is involved in 

several processes; it is responsible for vesicular storage of glutamate as well as in 

metabolism and degradation of glycoproteins. SLC32 encodes the vesicular inhibitory 

amino acid transporters. SLC36 family members are proton/amino acid transporters while 

SLC38 is involved in Na+ coupled transport of neutral amino acids. SLC43 represents the 

Na+ independent system L like family and mediates transport of heavy neutral amino acids 

across the cell membrane (Karunakaran, Umapathy et al. 2008, He, Vasiliou et al. 2009, 

Schioth, Roshanbin et al. 2013). There are almost 60 members out these families that are 
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known amino acid transporters and about 40 are still orphans that are expected to have 

amino acids as their primary substrate (Fredriksson, Nordström et al. 2008).  

The role of the SLC family of transporters in response to amino acid levels has not been 

investigated in detail previously. Many of known amino acid transporters are reported to 

be upregulated during amino acid starvation due to the presence of AAREs due to the fact 

that expression of these transporter genes are influenced and controlled by AARE 

(Fernandez, Yaman et al. 2001, Padbury, Diah et al. 2004, Sato, Nomura et al. 2004, Hyde, 

Cwiklinski et al. 2007).  

Amino acid starvation plays a significant role in the regulation of mRNA expression of 

members from Slc7 family.  Slc7a1 (CAT-1), member of the Slc7 family, has high affinity for 

cationic amino acids (Verrey, Closs et al. 2004) and belongs to system y+(Hatzoglou, 

Fernandez et al. 2004). SL7a1 utilizes L-arginine, L-lysine and L-ornithine as substrate 

(White and Christensen 1982). It has been shown that first exon of CAT-1 gene has AARE 

which is a responsible for gene regulation of CAT-1 transporter during amino acid 

deprivation (Fernandez, Lopez et al. 2003). Upon total amino acid starvation, a very 

significant increase in the protein levels of Slc7a1 has been reported (Fernandez, Yaman et 

al. 2001). 

Similarly, another SLC7 family member; Slc7a11 (xCT) belongs to heterodimeric amino 

acid transport system xc- which is an anionic Na+ independent amino acid transport 

system. It facilitates the exchange of glutamate and cysteine (Liu, Blower et al. 2007). The 

5´ flanking region of Slc7a11 (xCT) gene has two AARE like elements in the promoter 

region (Sato, Nomura et al. 2004). During deprivation of cysteine, arginine and leucine, 

ATf2 and ATf4 bind to AARE element and induce the transcription of Slc7a11 (xCT) gene 

(Sato, Nomura et al. 2004). 

The amino acid transport system A facilitates Na+ dependent transport of short chain 

neutral amino acids, which include glutamine, serine and alanine (Burkhalter, Fiumelli et 

al. 2007). Na+ coupled amino acid transporter2 (SNAT2, SLC38a2) is a member of system A 

(Mackenzie and Erickson 2004, Burkhalter, Fiumelli et al. 2007). Presence of AARE in the 
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first intron of human and mouse Slc38a2 results in increased expression during amino acid 

starvation (Palii, Thiaville et al. 2006, Hyde, Cwiklinski et al. 2007). GCN2 kinase lead to 

phosphorylation of eif2α mediates the induced expression of Slc38a2 (Gaccioli, Huang et al. 

2006). 

Regulation of gene expression in complete or partial amino acid starvation has been 

previously studied on a number of different cell lines. Members from Slc7 family have 

shown to be transcriptionally induced in response to amino acid starvation using various 

cell lines; Induction in Slc7a1 has been reported when C6 glioma cells from rat were 

starved with amino acids (Lopez, Wang et al. 2007). In mouse NIH3T3 cell lines, induction 

in expression level of Slc7a11 that belongs to system xc- has been shown (Sato, Nomura et 

al. 2004).  Slc7a5 expression is induced during amino acid starvation in rat hepatic cell line 

(Padbury, Diah et al. 2004).  In Slc38a2 (SNAT2), transcription is upregulated due to AARE 

in human HepG2 hepatoma cells (Palii, Chen et al. 2004). Similarly in HeLa cells, Slc38a2 

mRNA level induction (Gaccioli, Huang et al. 2006) and in human BeWo cells, the 

expression of Slc38a2 is enhanced (Novak, Quiggle et al. 2006). 

Aim 

In this research project, we have used the immortalized embryonic mouse hypothalamic 

cell line N25/2. These cells were starved for amino acids for different periods of time. 1, 2, 

3, 5 and 16 hours of starvation were performed in order to study the response of these 

neuronal cell lines to amino acid deprivation. The primary objective of this project was to 

study the regulation of gene expression of those genes that encode for solute carriers (Slcs) 

with a primary focus on genes encoding amino acid transporters. Both known and orphan 

amino acid transporters and their response to complete amino acid starvation were the 

focus of our study.  
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Material and Methods 

Complementary DNA (cDNA) synthesis 

RNA from the hypothalamic cell lines of the mouse brain was provided by Robert 

Fredriksson (supervisor) to generate cDNA using Invitrogen SuperScript® III Reverse 

Transcriptase Kit. Quantification for each RNA sample was performed and the volume in 

(µl) for each RNA sample was calculated with final concentration of 1000 ng for the 

reaction. In brief, 20 µl of reaction volume contained 10 µl of Master mix, 2 µl of RT enzyme 

(200 unit equals to 1 µl), 1000 ng of RNA (final concentration) and H2O was calculated 

separately for each sample. Final reaction volume was 20 µl except first two samples (1 h, 

1h-aa1) where the final volume was 40 µl. 

Table 1. Concentration for each RNA sample and final volume for RT reaction (final conc. of 1000 ng/sample) 
is given in this table. Volume of H2O, RT enzyme and Master mix are also mentioned in the final columns of 
the table.  
 

RNA Samples RNA conc 
ng/µl 

RNA in µl for 
1000 ng 

cDNA Final 
conc ng/µl 

H2O in µl RT 
Enzyme 
(µl) 

Mastermix 
(µl) 

 

1h (2x vol) 

 

105.21 

 

9.50 

 

25 

 

18.5 

 

20 

 

2 

1hr-aa1 (2x vol) 52.25 19.14 20.9 8.86 20 2 

2h1xaa1 306.11 3.27 50 4.73 10 2 

2h-aa1 264.42 3.78 50 4.22 10 2 

3h1xaa1 209.63 4.77 50 3.23 10 2 

3h-aa1 276.29 3.62 50 4.38 10 2 

5h1xaa11 222.38 4.50 50 3.5 10 2 

5h-aa11 278.83 3.59 50 4.41 10 2 

5h1xaa12 293.2 3.41 50 4.59 10 2 

5h-aa12 190.1 5.26 50 2.74 10 2 

5h1xaa13 247.61 4.04 50 3.96 10 2 

5h-aa13 288.74 3.46 50 4.54 10 2 

5h1xaa14 510.62 1.96 50 6.04 10 2 

5h-aa14 525.43 1.90 50 6.1 10 2 

16h1xaa1 548.23 1.82 50 6.18 10 2 

16h-aa1 251.29 3.98 50 4.02 10 2 
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RNA samples for reverse transcription were subjected to thermal cycler for cDNA synthesis 

with the following conditions shown in Table 2. 

Table 2. Reverse Transcription PCR protocol. 

Heated lid 112°C  
Temperature 25°C 10    min 
Temperature 50°C 30    min 
Temperature 85°C 5.00 min 

Store   4°C Infinite 

 

In order to avoid RNA contamination in the newly generated cDNA samples, RNAses were 

added to each cDNA sample tube that degrade any RNA present in the sample. 0.9ul of 

RNAase H from Invitrogen SuperScript®III Reverse Transcriptase Kit was added and 

samples were subjected to thermocycler with following conditions in Table 3. 

Table 3. PCR Protocol for RNase H addition to cDNA samples. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heated Lid 

 

112°C 

 

 
Temperature 

 
37°C 

 
20 min 
 

 
Store  

 
4°C  

 
Infinite 
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Primer Optimization 

 

In order to achieve best melting temperature (Tm) and efficiency to amplify the target 

cDNA primers optimization was carried out using qPCR. For each primer pair to be 

optimized, a gradient from 62C-52°C was used. Reactions were run with Taq DNA 

Polymerase from (BIOTOOLS B&M Labs, S.A). 

The PCR mixture was composed of the following components represented in Table 4. cDNA 

used in primer optimization was generated from RNA isolated from mouse brain. 

Table 4. Components of real time qPCR for primer optimization. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

No Component   Volume (µl) Final Concentration 

1 H20 13.5  

2 10 X buffer 2.00                         1X 

3 dNTPs   0.20                          2µM 

4 50 mM MgCl2 1.60 4 mM 

5 Primer Fwd 0.05 0.25 µM 

6 Primer Rev 0.05 0.25 µM 

7 DMSO 1.00                     5% 

8 10,000X SYBR (Invitrogen) 0.50                          0.1X 

9 Taq DNA Polymerase 1U/ µl 0.80                           0.80 Units 

10 cDNA 1.00                     5 ng/ µl 

 Total 20.00  
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List of primers shown in Table 5 were successfully optimized and used further in this 
project. 
 
Table 5. List of optimized primers using qPCR with appropriate temperatures. 

 

 

Number Primer name Oligo-nucleotide sequence 5’-3’ 

 

Optimized Temperature 

1  mmSLC7A11 F TGGAACTGCTCGTAATAC 54°C 

  mmSLC7A11 R GTTCAGGAATTTCACATTGA  

2  mmSLC6A9 F TTTCCCATACCTCTGCTA 52.8°C 

  mmSLC6A9 R AAAGCTCCATGAAGAAGA  

3  mmSLC7A1 F AATTATCATCTTAACAGGACTG 55.9°C 

  mmSLC7A1 R GACCAGGACATTGATACA  

4  mmSLC40A1 F CTTTGCTGTTGTTGTTTG 52.8°C 

  mmSLC40A1 R GAGAGGAACCGAAGATAG  

5  mmSLC23A3 F TCTTCAACTTCAACTCACAT 54°C 

  mmSLC23A3 R ACAAAGGCAGAGATGAAC  

6  mmSLC25A33 F AGTTCCTCTGGCTTCTTTG 58.4°C 

  mmSLC25A33 R TCCTGATGACCTCGTGTG  

7  mmSLC38A7 F TAGCCATTGCGGTCTATAC 61.3°C 

  mmSLC38A7 R GCTCCTTCGACATCACAG  

8  mmSLC9A9 F TGATATTGATAGTGGAACTGTCT 54.1°C 

  mmSLC9A9 R CTTGGTCGGTGATGTTGA  

9  mmMfsd11 F CTATGTTTGTCAGTGGTTTG 55.9°C 

  mmMfsd11 R AGATGCTGTGTAGAAGGA  

10  mmSLC25A36 F ACCTGTGCCACAACCATA 62°C 

  mmSLC25A36 R ATCCATAGCCTTCTTCTTGAAC  

11  mmSLC16A9 F CCCAATATCTACTTTCTGTTT 54.1°C 

  mmSLC16A9 R CGTCGCTGTGTATAATAAG  

12  mmMfsd2a F CTATGTCAAGCTCATTGC 54.1°C 

  mmMfsd2a R GAAGTCCAAGGTATAGGT  

13  mmSLC43A2 F GTTTATGCACAGTGTGTT 54.1°C 

  mmSLC43A2 R AAGATGGAGGTATAGAGG  

14  mmSLC25A10 F GATTTGGTCAATGTCAGGAT 58.4°C 

  mmSLC25A10 R CAGGGCATGAGAGTAGTT  

15  mmSLC16A2 F TTTCCCTTCCTCATCAAA 52.8°C 

  mmSLC16A2 R GTAAGTGAGTGAGAGCAG  

16  mmSLC25A1 F AAGTTCATCCATGACCAG 54.1°C 

  mmSLC25A1 R GTTCCCGAATAATCTCTC  

17  mmActn1 F CCGAGTTGATTGACTATGGA 55.9°C 

  mmActn1 R GAACCTCTCTGCCACATC  
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Quantitative Real time PCR 

Each qRT-PCR was carried out in a total volume of 12.5 µl using BR SYBR® Green SuperMix 

for IQ™ Systems, (Quanta Biosciences Germany).  

Components and volume of the qPCR are shown in Table 6. 

Table 6. Components of quantitative real time PCR using qPCR kit from Quanta Biosciences 

Components Volume (µl) 
Mastermix  6.25  
Primer Fwd 0.05  (0.25 µM Final conc.) 
Primer Rev 0.05  (0.25 µM Final conc.) 
H2O 
cDNA 

5.15 
1.00  (5 ng/ µl) 

  
 

Amplification and detection were carried out by Bio-Rad iQ5 Real-Time PCR Detection 

Systems (Bio-Rad Laboratories Sweden) using the following protocols (Table 7 and 8). 

Standard cycling Mode (Primer Tm > 60 °C)   

Table 7. Real time QPCR protocol suitable for primer temperature more than and equal to 60°C                    

 Step Temperature Duration Cycles 
Initial 50 °C 2 min Hold 
Activation 95 °C 2 min Hold 
Denature 95 °C 15 sec      

40 Anneal/Extend 60 °C 1 min 
    
 

Standard cycling Mode (Primer Tm < 60 °C) 

Table 8. Real time QPCR protocol suitable for primer temperature less than and equal to 60°C.                      

 Step Temperature Duration Cycles 
Initial 50 °C 2 min Hold 
Activation 95 °C 2 min Hold 
Denature 95 °C 15 sec      

40 
 

Anneal/Extend 55- 60 °C 15 sec 
Extend 72 °C 1 min 
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Real time melt curve and threshold cycle (Ct-values) were analyzed using MY IQ5 software 

(Bio-Rad laboratories Sweden). Melting curve was analyzed for each sample by comparing 

it to the positive control (cDNA of mouse brain) and negative control (water) to confirm the 

amplification of only target gene and to avoid the primer dimers formation. 

Each sample of cDNA was run in triplicates. Efficiency for each primer pair was determined 

using LinRegPCR software. Significant outliers were removed using the web-based 

software Graphpad from http://graphpad.com/quickcalcs/Grubbs1.cfm.  

SD and mean for the triplicates were calculated. In order to ensure the reliability of the 

results a cutoff of maximum 0.99 Ct was used among the triplicates and values exceeding 

this limit were removed as outliers. Three internal housekeeping genes were also run to 

normalize the level of gene expression to that of mActn, Beta Tubulin and GAPDH. 

Geometric means of all three housekeeping genes were calculated using GeNorm software 

to obtain the normalization factor and finally the relative mRNA expression level was 

calculated by subsequently normalizing each gene of interest to the geometric mean of the 

house keeping genes. 
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Figure 1a. Upregulated genes. 

Quantitative real time PCR data representing relative expression of genes encoding various transporters. X-axis 

represents the treatment time and treatment medium (1h, 2h, 3h, 5h represent number of incubation hours, AA in the X-

axis represent medium with amino acid and –AA represent medium lacking amino acids) while y-axis represents 

relative expression. Error bars on each column represent standard deviation. White bars in the graphical data show 

normalized gene expression for the genes from medium containing amino acid. Upregulated genes are shown in black 

bars. 



20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1b.  Upregulated genes. 

Quantitative real time PCR data representing relative expression of genes encoding various transporters. X-axis 

represents the treatment time and treatment medium (1h, 2h, 3h, 5h represent number of incubation hours, AA in the X-

axis represent medium with amino acid and –AA represent medium lacking amino acids) while y-axis represents 

relative expression. Error bars on each column represent standard deviation. White bars in the graphical data show 

normalized gene expression for the genes from medium containing amino acid. Upregulated genes are shown in black 

bars. 
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Figure 1c.  Downregulated genes. 

Quantitative real time PCR data representing relative expression of genes encoding various transporters. X-axis 

represents the treatment time and treatment medium (1h, 2h, 3h, 5h represent number of incubation hours, AA in the X-

axis represent medium with amino acid and –AA represent medium lacking amino acids) while y-axis represents 

relative expression. Error bars on each column represent standard deviation. White bars in the graphical data show 

normalized gene expression for the genes from medium containing amino acid. Downregulated genes are shown in gray 

bars. 
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Results  
Hypothalamic cell lines N25/2 from mouse were used in this study. Starvation experiments 

on these cell lines were performed by Robert Fredriksson (Supervisor) and provided for 

this project. A complete amino acid starvation was performed on one set of cell lines and 

incubated in amino acid free medium for 1, 2, 3, 5 and 16 hours. Another set of same cell 

lines was incubated in medium containing amino acids to be used as control for the same 

duration (Hellsten et al. 2014, unpublished data). 

Figure 1a, 1b and 1c show the graphical representation of relative expression from 

quantitative real time PCR. Black bars in figure 1a and 1b indicate the genes that were 

upregulated while the gray bars in figure 1c the indicate genes that were downregulated in 

this study. White bars show the gene expression from the medium with amino acid 

availability. 

Two members of Solute carrier family 7, Slc 7A1 and Slc7A11 were upregulated in 

response to amino acid starvation. The genes were highly upregulated at 5 hours and 16 

hours for both members of solute carrier family 7. 

Two members of solute carrier family 25 were also upregulated. Slc 25a33 was highly 

upregulated after 5 hours of starvation and Slc25a36 was highly upregulated after 16 hours 

of starvation. 

Slc38a7 was also upregulated in response to amino acid starvation. Significant 

upregulation of this gene was observed after 5 and 16 hours of amino acid starvation. 

Slc 6a9, Slc9a9, 23a3, Mfsd11 and Slc40a1 were shown to be upregulated in response to 

amino acid starvation. 

Slc 16a9 and Slc16a2 were downregulated with the increasing time of amino acid 

starvation however Slc 16a2 showed a dramatic upregulation after 16 hours of starvation. 

Mfsd2 was also downregulated until 5 hours of starvation but was upregulated when the 

starvation time was extended to 16 hours. Expression of Slc43a2 was downregulated in 

response to amino acid starvation. 
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Discussion 

 

Slc7a1 and Slc7a11 

Slc family 7 of transporters is divided into two subfamilies, cationic amino acid 

transporters (CATs, slc7a1-slc7a4) and L type amino acid transporters (LATs, Slc7a5-

Slc7a11)(Verrey, Closs et al. 2004). In this project two members of Slc 7 family were 

upregulated. Slc7a1 (CAT1) belongs to system y+ (Hatzoglou, Fernandez et al. 2004) and its 

expression was significantly induced according our results. It has been reported in the 

literature that Slc7a1 contains AARE in its promoter site. During amino acid starvation 

ATF2 and ATF4 bind AARE and induce its expression. This gene has been shown to be 

upregulated previously in response to amino acid deprivation (Fernandez, Yaman et al. 

2001, Lopez, Wang et al. 2007). 

Slc7a11 (xCT) encodes the heterodimeric amino acid transport system xc- together with 

SLC3a2. It serves as cysteine/glutamine exchanger (Sato, Tamba et al. 2000). Slc7a11 being 

the light chain of system xc- and is responsible for the transport activity while the Slc3a2 

serves, as a heavy chain of the system is responsible for the expression of system xc- 

(Verrey, Closs et al. 2004, Liu, Blower et al. 2007).  

Slc7a11 has shown to be upregulated in HepG2/C3A cells that were deprived of cysteine. 

Previously it showed response to cysteine deprivation (Lee, Dominy et al. 2008). In our 

study the medium was deprived of all the amino acids including cysteine. Slc7a11 has been 

reported to have an AAR element in its promoter (Lee, Dominy et al. 2008) and is probably 

induced in the same manner as Slc7a1. The regulation of expression of both Slc7a1 and 

Slc7a11 is under the control of the CHOP gene. 
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Slc38a7 

The Slc38 family contains sodium coupled neutral amino acid transporters and members of 

this family belong to system A and N (Hagglund, Sreedharan et al. 2011, Broer 2014). Most 

of the members of this family have not been shown to be responsive towards changing 

concentrations of amino acids. However Slc38a2 that belongs to system A has been induced 

in different cell types upon amino acid starvation in the past (Gaccioli, Huang et al. 2006, 

Novak, Quiggle et al. 2006, Hyde, Cwiklinski et al. 2007). In our study Slc38a7 (SNAT7) has 

been upregulated in response to amino acid starvation. Slc8a7 has been assigned to system 

N recently and has not been shown to respond to amino acid changing concentrations in 

previous studies, however its substrate profile is wide and it resembles both Slc38a1 and 

Slc38a2 (Mackenzie and Erickson 2004) (Hagglund, Sreedharan et al. 2011)) and is 

probably regulated in a similar manner as Slc38a2. However, Slc38a2 contains AARE in its 

promoter (Palii, Chen et al. 2004) while Slc38a1 and Slc38a7 have not been confirmed to be 

under the control of an AARE element until now. 

Slc23a3 

Slc23a3 is one of the four members of Solute carrier family 23 that comprises of Na+ 

dependent ascorbic acid transporters. Only two members are yet characterized as L-

ascorbic transporters (Takanaga, Mackenzie et al. 2004). Slc23a3 is a member of amino 

acid-Polymine-organoCation (APC)-superfamily clan of Pfam. Members of APC-superfamily 

clan encode amino acid transporters (Hoglund, Nordstrom et al. 2011). Most of the 

transporters from APC superfamily clan are reported to be upregulated in response to 

amino acid starvation. Slc7a5 (Padbury, Diah et al. 2004), Slc7a1 (Fernandez, Yaman et al. 

2001), Slc7a11 (Sato, Nomura et al. 2004) and Slc38a2 (Hyde, Cwiklinski et al. 2007) . 

SLC6a9 

Slc6a9 (Glyt1) is the Glycine transporter (Zafra, Aragon et al. 1995). Glycine is a non-

essential amino acid. It is an important inhibitory and excitatory neurotransmitter and 

mediates both inhibitory and excitatory synapses in central nervous system of vertebrates 

(Zafra, Aragon et al. 1995, Fultang, Howard et al. 2014). Expression of Glyt1 is localized 

mainly in glial cells. Glyt1 is responsible for the clearance of glycine from the sites of 
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synapses. Alteration in Glyt1 activity in response to various factors disturbs the hemostasis 

of the glycinergic system, which is involved in both inhibitory and excitatory 

neurotransmission (Morioka, Abdin et al. 2008). Expression of Slc6a9 (Glyt1) was induced 

in response to amino acid starvation according to our results.  Glyt1 is reported to have 

AARE in within the 5’UTR that include exon 1 and exon 2. Interaction of ATF4 to these 

response element sites is responsible for the induction in expression of Glyt1 during amino 

acid starvation (Fultang, Howard et al. 2014). 

Slc9a9 

Slc9a9 is an isoform (NHE9), belonging to the Na+/H+ exchanger solute carrier family 9 

(NHE) and is ubiquitously expressed. The primary role of NHEs is to modulate pH of 

intracellular organelles and endosome and prevent the cell from internal acidification 

(Counillon and Pouysségur 2000). pH homeostasis is an important phenomenon in 

mammalian cells since many basic systems function at specific optimal PH. It also regulates 

the normal and pathological gene expression; moreover, proteins, functioning requires 

specific optimal pH(Malo and Fliegel 2006).  

Slc9a9 (NHE9) is an endosomal cation/proton antiporter (Kondapalli, Hack et al. 2013). It 

is exclusively expressed in brain, including cortex and the hippocampal regions where it 

has been localized to perinuclear space related to recycling endosome (Llongueras, 

Kondapalli et al. 2014). The transporter is suggested to control cargo trafficking and 

degradation in addition to mediate the luminal pH of endosome (Llongueras, Kondapalli et 

al. 2014) (Kondapalli, Prasad et al. 2014). It has been reported that gain of function or 

increase in NHE9 levels is linked with alkalization of endosomal luminal pH. 

Overexpression of NHE9 might lead to oncogenic signalling (Kondapalli, Llongueras et al. 

2015). Upregulation in expression level of Slc9a9 in our results might suggest that over 

expression of Slc9a9 is triggered due to alkalinized pH level in response to amino acid 

starvation.  
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Slc25a33 and Slc25a36 

Solute carrier family 25 in humans encodes 53 transport proteins. It is also known as 

mitochondrial carrier family (MCF). Slc25a33 and Slc25a36 are the two-mitochondrial 

pyrimidine nucleotide transporters. Due to high level of sequence identity between 

Slc25a33 and Slc25a36 genes it has been suggested that both genes share similar functions 

(Di Noia, Todisco et al. 2014). Mitochondria are known to be the powerhouse of the cell due 

to their primary role as ATP generator that provides energy for the cell. It also serves as a 

biosynthetic hub for the cell by providing substrates and precursors for the anabolic 

pathways. According to Johnson et al 2014; amino acid starvation upregulates the amino 

acid consuming process of respiration, amino acid catabolism and protein synthesis in 

mitochondria. Amino acid starvation also resulted in increased mitochondrial transcripts 

that would ultimately increase the protein synthesis (Johnson, Vidoni et al. 2014). Slc25a33 

and Slc25a36 are the pyrimidine (deoxy)nucleotide transporters and are crucial for the 

synthesis of mitochondrial RNA and DNA by providing precursors as well as their 

breakdown and removal of products of these processes (Di Noia, Todisco et al. 2014) . Both 

of these genes were upregulated in response to amino acid deprivation in our study. During 

amino acid starvation the need for elevated protein synthesis in mitochondria might 

trigger the upregulation of Slc25a33 and Slc25a36 genes. 

 

Mfsd2 and Mfsd11 

A number of genes in this project belong to major facilitator family (MFS) and we show that 

they display changes in expression level in response to amino acid starvation. On the basis 

of Pfam database, MFS family is the largest clan of membrane proteins with 13 known SLCs 

families that are phylogenetically related (Hoglund, Nordstrom et al. 2011).  In our results 

orphan members of MFS family; Mfsd2 and Mfsd11 were regulated in response to amino 

acid starvation. Mfsd11 that belongs to MFS cluster was upregulated however; Mfsd2 was 

shown to be downregulated. 
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Slc16a9 and Slc16a2 

Slc16a9 (MCT9) and Slc16a2 (MCT8) that belong to solute carrier Monocarboxylate 

transporters family (Kristensen, Andersen et al. 2011) were found to be downregulated in 

our study in response to amino acid starvation. Slc16a9 (MCT9) is an orphan with 

unknown substrate profile. However SLc16a2 is a known transporter and has high affinity 

to thyroid hormone. Slc16a2 mediates transport of iodothyronines T2, rT3, T3 and T4 

(Kristensen, Andersen et al. 2011). Down-regulation of Slc16a2 in response to amino acid 

starvation suggests that its expression is effected by cellular amino acid level. However the 

mechanism and relevance of its response to amino acid starvation is yet to be elucidated. 

Slc40a1 

Slc40a1 also known, as Ferroportin-1 is an iron-regulated transporter and is responsible 

for iron homeostasis within the cell by exporting iron from inner cellular environment 

(Donovan, Brownlie et al. 2000). Ferritin is a cytosolic protein that stores bulk of iron in the 

form of Fe(OH)3 (about 4500 atoms of iron) and releases it in a controlled manner(Ollinger 

and Roberg 1997). Ferritin is suggested to serve as a buffer system that detects iron 

deficiency and iron overload. It has been reported that oxidative stress triggers release of 

ferrous iron from ferritin and has to be exported from the cytosol (Ollinger and Roberg 

1997).  Slc40a1 is an iron transporter and exports released iron out of the cell. Cells 

encounter various number of stress conditions during amino acid starvation. One of the 

critical stress conditions is oxidative stress that triggers excessive release of iron from 

Ferritin (Ollinger and Roberg 1997). Induction in Slc40a1 gene expression in our results is 

suggested to be in response to excessive iron release from Ferritin under amino acid 

deprivation stress. It could be speculated that Slc40a1 is upregulated to export excessive 

iron from the cellular space. 

Slc43a2 

SLC43 represents the Na+ independent system L like family and mediates the transport of 

heavy neutral amino acids across the cell membrane (Karunakaran, Umapathy et al. 2008, 

He, Vasiliou et al. 2009, Schioth, Roshanbin et al. 2013). Slc43a2 (LAT4) is a uniporter and 

functions as a facilitated diffuser of branched chain amino acids, methionine and 
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phenylalanine (Guetg, Mariotta et al. 2015). Slc43a2 was down regulated in response to 

amino acid starvation though it is an amino acid transporter. According to literature a 

number of other amino acid transporters utilize large neutral amino acids (LNAAs) 

including methionine and phenylalanine as their preferred substrate. Those include B0AT-1 

(SLC family 6a19), LAT-1 (SLC family 7a5), and members from Slc38 family; SNAT-1 (SLC 

family 38a1), and SNAT-2 (SLC family 38a2) (Zeng, Li et al. 2011). Since most of them have 

shown to be upregulated in response to amino acid levels according to literature, SLc43a2 

expression level could have been down regulated to maintain the balance of these amino 

acids in the cellular environment during amino acid starvation conditions. 

 

Conclusion 

In this research project we observed upregulation in the expression of genes encoding 

amino acid transporters. Slc 7a1, Slc7a11, Slc6a9 are known amino acid transporters and 

were found to be upregulated in our study. These transporters have previously shown to 

be upregulated in response to amino acid starvation in other cell lines. Slc38a7 is the 

member of solute carrier family 38 and was upregulated in our study that previously did 

not show response to amino acid starvation. Only one member, Slc38a2, from this family 

has previously been reported to be upregulated in other cell lines in response to amino acid 

starvation. Various members from APC family have also been upregulated including an 

orphan member, Slc23a3 that belongs to APC superfamily. Mfsd11, which is an orphan 

member from MFS superfamily, was also upregulated. However one known amino acid 

transporter, Slc43a2, was downregulated in our study. Highest upregulation can be seen 

between 3 to 16 hours of study in expression of genes that encode these transporters. 

However, it is important to mention that the observed up and down regulation in the 

expression of genes encoding amino acid transporters in this research project is only based 

on samples from one biological replicate. A number of parallel experiments using multiple 

biological replicates have to be performed to verify our results and to achieve reliable data. 
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