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Abstract: This paper describes a magnetoelastic strain sensor based on the ∆E effect and discusses some
materials used in its construction. A polycrystalline Fe–Al–B alloy with good quality magnetoelastic
properties was used as the transducer and glued to the test object, either brass plates or rods of SAE
1010 steel. The strain-dependent magnetic field of the transducer changes the operating point of
the resonator, a strip of field-annealed Metglas 2826MB3, resulting in a modification of its resonant
frequency. A model was developed to simulate the strain-dependent magnetic field acting on the
resonator and thus to calculate curves of resonant frequency vs. deformation. With the help of this
model, differences in the shape of the frequency vs. strain curve can be understood. For a sensor with
resonant frequency of 60.5 kHz glued to a rod of SAE 1010 steel, a total resonant frequency variation
∆f ~7 kHz was observed for a deformation of 1100 ppm. The geometry of this sensor is especially
favorable for the remote monitoring of a steel surface, such as the wires of the tensile armor of a
marine riser.
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1. Introduction

This paper is an extension of work originally presented at the 12th International Conference on
Sensing Technology [1] in Limerick, Ireland. The goal here is to develop a model for the strain-dependent
magnetic field of wireless magnetoelastic strain sensors on different surfaces, for example, on the tensile
armor of a marine riser. Many other modern industrial applications of strain sensors also demand a
contactless version of the sensor. For example, monitoring the structural health of large structures such
as bridges frequently makes use of a wireless strain sensor. Magnetoelastic stress sensors on large steel
cables of Qiangjiang No. 4 Bridge in China [2] are examples of noncontact stress monitoring for steel
cables and prestressed tendons on suspension bridges, cable-stayed bridges, and other ferromagnetic
structures. In a different sector, the measurement of torques on the steering column of an automobile for
the purpose of servo control can be performed with strain gauges, which must, however, be controlled
in a noncontact manner by a rotary transformer, which surrounds the steering column [3].

In particular, the oil and gas industry demands noncontact solutions for solving difficult problems.
For example, noncontact electromagnetic acoustic transducers (EMATs) are used to monitor corrosion
in polymer-coated rigid risers [4], which are used for transporting petroleum products. In addition
to the rigid risers, the flexible marine risers also call for imaginative solutions in the deployment of
strain gauges. The most important difference between drilling a well in deep water and drilling on
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the surface is that, in the first case, there is a marine riser several thousand meters in length between
the drilling platform and the well head. The riser is a multilayer, flexible tube, which is necessarily
subject to maritime currents and is, therefore, constantly in motion [5,6]. The various layers of a flexible
marine riser are shown schematically in Figure 1.
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Figure 1. The several layers of a flexible marine riser. The outer sheath, antiwear layers, and internal
pressure sheath are made from polymeric material, while the tensile armors, pressure armors, and
carcass are constructed of steel [7].

Of particular note are the two layers of tensile armor, each consisting of strips of steel wound
in a spiral fashion. It would be desirable to constantly monitor these steel structural components,
which are subject to fatigue wear and whose rupture would lead to extensive environmental damage.
The construction of a riser with its polymer outer layer makes it difficult to monitor the steel strips that
sustain the structure of the long tube. Traditional strain gauges [8] require extensive wiring and would
be difficult to use in this application. Another technique that has been used to measure the deformation
of the steel strips employs a Bragg grating engraved on the nucleus of an optical fiber [9]. For constant
temperatures, the wavelength variation of the reflected light is proportional to the variation in the
grating spacing [10]. A device for measuring small strains [10] employs a Bragg grating and rare-earth
permanent magnets.

Magnetic techniques such as magnetic Barkhausen noise (MBN) or magnetic anisotropy and
permeability system (MAPS) [11] could be used to determine residual stress and thereby furnish
information about the integrity of the steel strips in the tensile armor of a riser. However, the amplitudes
of the MBN signals are sensitive to the thicknesses of the outer sheath and insulating layers. The MAPS
technique normally demands rotation of the sensor on the test specimen. Because that is not possible
in this case, a line of sensors, each rotated slightly in relation to the previous sensor, might be used to
shed light on the strain state of the steel strips that make up the tensile armor [11].

The present paper discusses materials and functioning of a magnetoelastic strain sensor [12,13]
based on the ∆E effect [14], which is caused by the variation of the Young’s modulus of a ferromagnetic
material due to a magnetic field. The resonant frequency of amorphous strips may be interrogated
remotely via magnetic fields or other methods [15–19], making it possible to apply the strips as sensors
in situations that do not permit direct access to the measuring surface. The ∆E effect is also the principle
behind [20] electronic article surveillance (EAS) technology. EAS technology refers to the tags that
are placed on goods in stores and that trigger an alarm if they are removed from the store without
deactivating the magnet that produces a field on the tag. In the present case, the bias magnet produces a
strain-dependent magnetic field and so can provide information about the strain state of the substrate to
which it is attached. These properties may eventually be useful in the monitoring of marine risers. It is
important to note that the geometry and dimensions of the strain sensor presented here are particularly
well suited to use in marine risers. This had motivated the suggestion to use magnetoelastic strain
sensors for monitoring risers in a Brazilian patent [21]. This paper presents experimental results for
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the application of these sensors on steel surfaces as well as a model for understanding the shapes of
the curves observed.

A schematic representation of our sensor is shown in Figure 2. A transducer (b) is glued to the
test object (c). The bias field H0 determines the operating point on the ∆E curve of the resonator (a).
In an operational device, the bias field might be supplied by a permanent magnet or by a Helmholtz
coil. Application of a stress to the test object leads to a variation in the magnetic induction B, which
modifies the resonant frequency of the resonator (a).
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Figure 2. Schematic representation of a wireless strain sensor based on the ∆E effect: (a) resonator,
(b) transducer, and (c) test object. Adapted from [22].

Our group has shown how magnetic field annealing [22] of the amorphous strips used both as
transducers and resonators can increase the device response. Thus, in Figure 2, the moments depicted
indicate that the amorphous strip used as a transducer had been subjected to a field anneal in the
plane of the ribbon and perpendicular to the long ribbon axis. This is also true for the resonator.
The amorphous material used initially [22] has a magnetostriction of about 11 ppm. In order to ascertain
the importance of a material with suitable magnetoelastic properties, a polycrystalline Fe–Al–B alloy
with piezomagnetic coefficient d = 1.5 nm/A [23] was tested as the transducer [24], although this
material was not field-annealed nor stress-annealed in our work. A most interesting result was the
highly linear relation between resonant frequency and strain for a nonmagnetic brass test object [24].

In this paper, we present results for a sensor composed of a transducer made from a polycrystalline
Fe–Al–B alloy, while the resonator is a field-annealed amorphous alloy. Of the low-cost Fe-based alloys,
two (Fe–Ga and Fe–Al) show reasonable values of piezomagnetic coefficients (for Ga and Al contents
of ∼20 at %) at low values of the magnetic field. In contrast to [24], where the test object was a brass
bar and the curve of resonant frequency vs. strain was found to be linear, the test object here was a bar
of SAE 1010 steel. The variation of the resonant frequency with strain was no longer found to be linear
because the additional field from the ferromagnetic substrate led to the saturation of the resonator.
Nevertheless, that variation was very large and showed that this sensor could be used to measure
strains in steel objects after an appropriate calibration procedure.

2. Materials and Methods

Field-annealed Metglas 2826MB3 (with composition approximately Fe45Ni45Mo7B3 in wt %) was
shown [22] to function well as a resonator in this strain sensor. The annealing (315 ◦C, 1 h, and 500 Oe)
of the amorphous ribbon was performed in the plane of the ribbon, perpendicular to the long axis
of the ribbon. For the transducer, a strip of Fe–Al–B was used. The Fe–Al–B has a magnetostriction
much larger than the amorphous alloy (~11 ppm). Fe–Al–B alloys and especially the one applied in the
present study were extensively studied in previously works [23,25,26]. The Fe–Al–B plate used as a
transducer in our sensor has a composition of 20% aluminum in the matrix and a total of 1.6% of B (in at
%). The material is polycrystalline and has two phases. A homogenization heat treatment was applied
during 48 h at a temperature of 1200 ◦C after the melting process. The Al matrix consists of a mixture
of α (A2 structure) and Fe3Al (D03 structure) phases. In addition, small amounts of the tetragonal
phase Fe2B are found in the grain boundaries. More details on the alloy fabrication can be found
in [23]. The saturation magnetic polarization Js = µ0Ms, in which Ms is the saturation magnetization,
was measured to be ~1.6 T and the total saturation magnetostriction 45 ppm. This material achieved
an improvement of the total saturation magnetostriction (λtotal = 3/2 λs) from 45 to 70 ppm after stress
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annealing. The respective improvement in the piezomagnetic coefficient was from 1.5 to 3.0 nm/A.
However, the material used in the sensor fabrication was not stress annealed, because at that time we
did not have access to this improved material. Other studies of stress annealed Fe–Al–B alloys with
different Al compositions were also made in [26]. Strips of size 36 × 8 × 0.7 mm3 were cut from a small
Fe–Al–B plate.

The structure of the sensor mounted on the brass substrate [24] is shown in Figure 3. The length L
of the ribbon was arbitrarily chosen to be 36 mm, giving it a resonance frequency of about 61 kHz,
and the width was chosen to be ≈ L/5, a relation that results in a single mode being excited [15].
The resonance frequency is f = (E/ρ(1 − υ))1/2/2L, where E is the Young modulus, ρ the density, and υ
the Poisson ratio [27]. For the lowest frequency vibration, given previously, the resonator vibration is
longitudinal with a node at the center of the strip. The frequencies and vibration amplitudes of the
amorphous strips have been discussed extensively in [28]. The thickness of the Fe–Al–B strip was
0.7 mm, while the thickness of the amorphous ribbon used for the resonator was 30 µm. The same
dimensions were used for the sensors employed with the steel strips. No attempt was made to optimize
the sensor performance by varying sensor dimensions.
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Figure 3. Sensor on the brass substrate [1,22]. The transducer was glued to the substrate while the
resonator is held by tape located at the center of the strip where the amplitude of the longitudinal
vibration is zero.

The mounting of the sensor is shown in Figures 3 and 4. In Figure 3, the sensor is mounted on a
brass substrate with the resonator positioned above the transducer and held in place by a narrow piece
of acrylic tape located at the center of the transducer. For the lowest frequency vibration, the resonator
vibration is longitudinal with a node at the center of the strip. The frequencies and vibration amplitudes
of the amorphous strips have been discussed extensively [28]. Thus, the tape is affixed to the strip at the
point where the vibration amplitude is null. In Figure 4, the transducer and strain gauge are seen to be
mounted on opposite sides of the steel substrate. The magnetoelastic sensor was set up as in Figure 3
with the acrylic tape securing the resonator to the transducer. In initial measurements, the deformation
was calculated from the advance of the EMIC (Instron) universal tester. These deformations were
verified with the strain gauge.
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Figure 4. Sensor mounting on steel substrate [1]. In (a) the transducer is seen glued to the steel substrate,
while in (b) the reverse side of the substrate is shown with a conventional strain gauge attached.

Stress was applied to the strips of SAE 1010 steel with an EMIC universal tester, and deformations
were calculated from the advance of this tester. Hysteresis curves were determined with a Globalmag
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hysteresis loop tracer. Sensor resonant frequencies were determined using an Agilent E5061B
impedance analyzer. The impedance analyzer provided both the bias field and the excitation field for
the experiment.

The first step in characterizing the sensors was to obtain the ∆E curve by measuring the resonant
frequency (f) as a function of bias field. The presence of the transducer, a material that is magnetized
by the external bias field, influences the measurement, so that the ∆E curve was obtained with both
transducer and resonator in place and was referred to as a compound ∆E curve. These would be the
only magnetic materials present in the case of the brass substrate. For the steel substrate, we must
also consider the effect of the magnetization of the steel. The presence of the ferromagnetic substrate
also influences the ∆E curve, as can be seen in Figure 5 where a residual magnetization has shifted the
curve along the field axis. For both curves, the magnetic field was swept from −570 A/m to 570 A/m.
For the curve associated with the brass substrate, the center of the ∆E curve was located at 11 A/m,
indicating a small residual magnetization probably associated with the Fe–Al–B. In the case of the steel
substrate, the center of the ∆E curve was located at −154 A/m. The shift in the curve is associated with
a field produced by the residual magnetization of the substrate.
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It is important to note also that the vibration amplitude is largest at the minimum of the ∆E
curve and decreases to either side. The magnetic field for which it is no longer possible to observe the
resonance determines the range over which the sensor might be used.

The bias field was chosen to be a magnetic field above the minimum in Figure 5, since the
curve presents a greater slope in this region and therefore confers a greater sensitivity to the sensor.
Experiments were performed in two ways. Initially, the Fe–Al–B transducer was glued to the steel
rod with a cyanoacrylate adhesive, and the sample deformation was determined from the advance
of the testing machine. To check those results, we also used an arrangement wherein the sample
deformation was monitored simultaneously by both the magnetoelastic sensor and a strain gauge,
both glued directly to the steel test piece with Henkel Locktite 496. The strain gauge had a resistance of
120 Ω and was connected to an HBM Quantum X data acquisition board. Data analysis was performed
with the HBM Catman software.

3. Model

We present here a model that can be used to describe the curves of resonant frequency as a function
of deformation in these sensors. The ∆E curve describes the magnetic contribution to the resonant
frequency and can be obtained from the piezomagnetic equations. The piezomagnetic equations, which
consider the effect of the stress σ and the magnetic field H on the strain ε and the flux density B, can be
simplified for a one-dimensional system, giving

ε =
σ

EH
+ d33H (1)
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B = d∗33σ+ µσH (2)

In these equations, EH is the Young modulus at constant magnetic field H and µσ is the permeability
at constant stress. The piezomagnetic coefficient d33 gives the variation in strain with magnetic field
at constant stress, while d∗33 represents the change in magnetic induction with stress at constant field.
The two coefficients are equal for reversible exchanges of energy between the magnetic and mechanical
systems. Eliminating the magnetic field from the strain equation, one obtains

∂ε
∂σ

∣∣∣∣∣
B
=

1
EB

=
1

EH

(
1−

d∗33d33EH

µσ

)
(3)

Because the resonant frequency f of the resonator is proportional to the square root of the Young
modulus, one can show that

f (EH)

f (EM)
=

√
EH

EB
=

 1

1 +
d∗33 d33EB

µσ


1/2

=

(
1 +

d∗33 d33EB

µσ

)−1/2

(4)

The Young modulus EM corresponds to the case of a fixed domain configuration, the nonmagnetic
case, and EB ≈ EM. The reduced magnetization is m =M/Ms. We use B = µoH + J.

Using the relation between deformation and magnetic field for an isotropic material:
ε = λs

(
3cos2 θ− 1

)
/2, where θ is the angle between M and the applied field and M = Ms.cos θ,

one obtains (
dε
dH

)
σ

2 = d∗33 d33 = 9 λ2
s

M2

M4
s

(
dM
dH

)2

= 9 λ2
s m2

(
dm
dH

)2

(5)

It is worth noting that for a reversible magnetoelastic behavior d33
* = d33 [29]. Finally one obtains

for high permeability materials

f (EH)

f (EB)
=

1 +
9 λ2

s m2 dm
dH EB

Js

−1/2

(6)

In order to simulate the behavior of f (EH)

f (EB)
as a function of H, it is necessary to have an expression

for M(H). Our resonators were annealed in a magnetic field perpendicular to the long axis of the ribbon,
so that the moments are ideally located in the plane of the ribbon, perpendicular to the long axis. M(H)
for this ideal case is well known: M increases linearly up to saturation at the anisotropy field HA.
However, the experimental ∆E curves are reproduced better if we assume rounding of M(H) near HA.
Therefore, we represented M using a Langevin function, which is linear for low fields and rounded
near HA:

m =
M
Ms

=
{
coth

H
Hm
−

Hm

H

}
(7)

where Hm is a parameter that depends on temperature with dimensions of magnetic field. Additionally,

d
(

M
Ms

)
dH

=
dm
dH

=
1

Hm

{
−

1
(senh(H/Hm))2 +

H2
m

H2

}
(8)

Using these equations, one can calculate f (EH)

f (EB)
for different values of Hm and verify that the total

frequency variation in the ∆E curve depends upon Hm, becoming smaller as Hm increases. This behavior
was used to obtain a value for Hm. These calculations were done using the physical constants of the
Metglas® ribbon: λs = 11 ppm, Js = 0.88 T, and EB = 100 GPa. The value of Hm is a characteristic of the
Metglas ribbon Hm = 12.6 A/m.
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The magnetic field value associated with the minimum in the ∆E curve can also be used to
estimate the demagnetizing factor N for the resonator. The demagnetization factor fit was made
such that the H value of the f (EH)/f(EB) curve minimum was coincident with the experimental result.
The demagnetization factor obtained is N = 1.75 × 10−4. The maximum value of the susceptibility,
the initial susceptibility for Hm = 12.6 A/m, is χi = 1.86× 104. Using the resonator dimensions (l = 36 mm,
w = 7.2 mm, t = 30 µm) and the susceptibility value, one can use the equations of Chen et al. [30] to
estimate a value for N. This estimated value agrees with the value obtained from the ∆E curve.

Now we would like to consider the effect of stress on the f(EH)/f (EB) curves. The first issue to be
treated is the effect of gluing the transducer (Fe–Al–B) on the substrate. The substrate and Fe–Al–B
deformations are given by Equations (9) and (10):

εsub =
σ

Esub
(9)

εFeAlB =
σFeAlB
EFeAlB

(10)

where EFeAlB and Esub are the transducer and substrate Young modulus, σ is the applied stress, and

σFeAlB is the stress felt by the Fe–Al–B transducer. It is given by FeAlB =

EFeAlB
Esub

1+2
EFeAlB

Esub

tFeAlB
tsub

σ [24].

When stress is applied to the transducer (and perhaps the steel plate), the magnetic field
experienced by the resonator will change because the transducer (and steel plate) are ferromagnetic
materials. Therefore, due to the magnetoelastic coupling, their magnetization changes with the stress σ,
and this magnetization field will combine with the bias field, and the sensor response will be different.

The magnetoelastic energy density for an amorphous material, where θ is the angle between the
magnetization and the stress axis, can be written as

Eme = −σ·ε = −λs·σ
(
3·cos2θ− 1

)
/2 (11)

When the stress axis is parallel or antiparallel to the magnetization, cos2 θ = 1 and,

Eme = −σλs (12)

The magnetoelastic energy given by (12) gives rise to a variation in the magnetization (Ms) and
the minimum magnetic energy corresponding to Eme in terms of magnetization variation is:

Emag = −µ0Ms·H = −Js·H (13)

Equating Equations (12) and (13), we have an expression Equation (14) for the magnetic field
produced by the magnetostrictive material, Fe–Al–B and SAE 1010, due to the application of stress,
that is:

H =
σλs

Js
(14)

Then, the magnetic field applied to the resonator will have 2 contributions given by Equations
(15) and (16):

H′FeAlB = MFeAlB
bias +

σFeAlB·λ
FeAlB
s

JFeAlB
s

(15)

H′substrate = Msub
bias +

σ· λsub
s

Jsub
s

(16)

The first terms of Equations (15) and (16) are the constant magnetizations of the Fe–Al–B and
substrate generated by the bias field. The second terms of both equations are the magnetic field
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contributions triggered by the application of stress (Equation (14)), a consequence of the magnetoelastic
coupling of the magnetic materials.

Therefore, the field applied to the resonator can be written as:

H′ = αH′FeAlB + βH′sub (17)

The parameters α and β determine the contribution of the fields H′FeAlB and H′sub to the transducer
and substrate demagnetization fields, respectively. The values of α and β are ≤1 and positive.
The material properties used in the simulation were λFeAlB = 2/3 λtotal = 30 ppm and Js

FeAlB = 1.6 T, and
tsub and tFeAlB are the thickness of the substrate and Fe–Al–B.

4. Results

Previous measurements [24] on nonmagnetic brass substrates resulted in linear curves of resonant
frequency vs. substrate deformation. This result is reproduced from Figure 3a of [24] in Figure 6.
The value of R2 = 0.9972 shows that the curve is linear to a very good approximation.
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Returning now to the experimental data, the compound ∆E curve for the steel substrate, shown
in Figure 5, has large linear regions and might lead one to expect a linear relation between resonant
frequency and sample deformation. However, there are several behaviors that can be observed,
depending upon the bias field. The curve of resonant frequency vs. deformation is shown in Figure 7
for one of the steel substrates. The center of the compound ∆E curve in this case was located at 31 A/m.
The remarkably large variation in the resonant frequency is about 7 kHz for a total sample strain of
about 1100 ppm. In this case, the relation between resonant frequency and sample deformation is not
linear as a whole, although there is a region presenting some linearity. The initial resonant frequency is
practically constant from ~0 to 150 ppm. Still, the change observed in the linear region (200 to 400 ppm)
is very pronounced. Moreover, the frequency variation is monotonic, always decreasing as the strain
increases, but the frequency has essentially stopped changing by the time the strain reaches ~800 ppm.

The resonant frequency vs. advance time of the testing machine was also compared with the
substrate deformation as measured by a strain gauge. The center of the compound ∆E curve was
located at 292 A/m in this case. The response of the strain gauge was nearly linear, confirming that the
steel substrate was deformed at a nearly constant rate in the tester. The resonant frequency presented
a behavior similar to that seen previously. However, the total frequency change in this case was
somewhat less than 2 kHz, confirming that the frequency shift may be sensitive to the choice of bias
field or, at least, to the relation between the bias field and the field associated with the center of the
compound ∆E curve. The bias field in this case was 507 A/m.
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5. Discussion

We now wish to consider the two cases of a brass substrate and a steel substrate in terms of
the model.

Case 1–Substrate: nonmagnetic brass
For this case, the field acting on the transducer is H′ given by Equation (18).

H′ = α

MFeAlB
bias +

EFeAlB
Esub

1 + 2 EFeAlB
Esub

tFeAlB
tsub

λFeAlB
s

JFeAlB
s

σ

 (18)

The strain of the testing machine is obtained dividing the applied stress by the Young’s modulus
of the substrate. The Fe–Al–B and substrate thicknesses are equal. The additional materials properties
are EFeAlB = 100 GPa and Esub = Ebrass = 97 GPa. The free parameters of the simulation are MFeAlB

bias , α, and
mbias. The experimental result was shown in Figure 6 above, and the value of the experimental applied
bias field is close to 11 A/m. The simulation was carried out using f(EB) = 63 kHz and Equation (18).
Using parameters with the values of MFeAlB

bias = 260 A/m, α = 0.008, and mbias = 0.18 (Jsensor = 0.158 T),
the experimental result can be reproduced. This result is shown in Figure 8 for the same range of
deformations as the results of Figure 6.
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Figure 8. f (EH) as a function of strain. The transducer is the Fe–Al–B strip, the substrate is brass, and
the resonator is a Metglas ribbon.

The small α value is expected since the Fe–Al–B strip is short and wide and due to demagnetization
factors reduces both fields associated to the Fe–Al–B transductor: the magnetization field due to the
applied field and the other caused by the magnetoelastic coupling. The relationship of α with the
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demagnetization factor Nx is that α decreases if Nx increases (high demagnetization effect). For the
fixed values of m = 0.18, if MFeAlB

bias and α are varied around these values the f (EH) curve dislocates to
lower values keeping the magnitude of ∆f constant.

Case 2–Substrate: magnetic SAE 1010 steel
For case 2, the experimental curve of f(EH) vs. ε was shown in Figure 7 above. The center of

f (EH) vs. H curve is at 31A/m. The field H′ was calculated using Equation (17) and we considered
f (EB) = 60.5 kHz. This steel has about 1 at % of nonmagnetic impurities, almost pure iron, so that
Js

SAE
≈ 2.0 T is a reasonable approximation. The value employed of λSAE = 1.7 ppm is reasonable, as

the magnetostriction of pure iron is −7 ppm [31] and tends to increase to positive values as nonmagnetic
elements are added. For example, Fe–3Si (3 at %) has λs ~7 ppm [31], and therefore the SAE 1010
should have a magnetostriction in between that of pure iron and Fe–Si.

The curve f (EH) vs. ε resulting from the simulation of the experimental curve in Figure 7 is shown
in Figure 9 up to strains of 1200 ppm. The simulation reproduces the experimental curve well up to a
strain of about 800 ppm. This curve is not linear as were those obtained on the brass substrates because
the additional field created by the steel substrate saturates the resonator.
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The fitting provided the values of MFeAlB
bias =400 A/m, α = 0.009, Msub

bias =20 A/m, β = 0.13 and
mbias =−0.17 (Jsensor = −0.15 T). The value of mbias is negative. This may mean that the sensor could
have a negative remanence overlapping the magnetization generated by the bias field. The value of
α is almost the same as the one obtained for the brass substrate and is coherent since the size of the
Fe–Al–B strip did not change. The Fe–Al–B magnetization value is higher than the value obtained in
the case of the brass substrate. That is consistent since the Fe–Al–B strip senses the bias and substrate
fields and the first is higher than in the brass case. Msub

bias � MFeAlB
bias , which could indicate that the

initial susceptibility of SAE steel is lower than that of Fe–Al–B. In addition, β > α is expected since the
steel substrate is longer than the Fe–Al–B strip and they have the same width. The variations in f (EB)
from one experiment to another are attributed to small differences in the Metglas ribbon length, which
affects the demagnetization factor.

6. Conclusions

This work has shown that the wireless magnetoelastic sensor functions with a steel substrate,
although the relation between the resonant frequency of the resonator and the strain is not linear,
but rather sigmoidal in shape, or even more complex. The good signal-to-noise ratio observed was
somewhat surprising since the sensor mass is so much smaller than the substrate mass and the substrate
is ferromagnetic. Nevertheless, the high permeability of the sensor material easily compensates the
elevated mass of the substrate. A model calculation has reproduced the general form of the frequency
vs. deformation curves. Resonant frequency variations of up to 7 kHz have been observed, indicating
that the sensitivity of the sensor is excellent even when used on a ferromagnetic substrate. However, the
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exact shape of the compound ∆E curve, the value of the bias fields, and the possibility of magnetic
saturation have a lot to do with the resonant frequency curve, which is eventually obtained. The sensor
sensitivity could be increased by using a stress annealed Fe–Al–B alloy, because this process would
cause an improvement of the respective material piezomagnetic coefficients. The decrease of the
transducer and sensor demagnetizing factors could also have a positive effect on the sensor sensitivity.

It is also important to point out that the sensor described here has a geometry that is very favorable
for measuring the stress on the steel wires of the tensile armor of a marine riser. This fact was pointed
out in a Brazilian patent [21]. If one were to place a sensor on each wire of the tensile armors, then
it would be possible to follow in detail the stress on the riser. This would only be possible for the
thin sensors as we have described them. It has been estimated [32] that the maximum thickness of a
sensor placed between layers of tensile armor would be about 0.7 mm. The transducer used here has a
thickness of 0.7 mm, but this value could be reduced by hot rolling, so that the whole sensor package
could be accommodated in the space of 0.7 mm.
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