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Abstract: The study experimentally investigated a novel approach for producing hydrogen from 

methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst. 

Plasma-catalytic methane (CH4) cracking was undertaken in a dielectric barrier discharge (DBD) 

catalytic plasma reactor using Ni/MgAl2O4. The Ni/MgAl2O4 was synthesised through 

co-precipitation followed customised hydrothermal method. The physicochemical properties of the 

catalyst were examined using X-ray diffraction (XRD), scanning electron microscopy - energy 

dispersive X-ray spectrometry (SEM-EDX) and thermogravimetric analysis (TGA). The Ni/MgAl2O4 

shows a porous structure spinel MgAl2O4 and thermal stability. In the catalytic-plasma methane 

cracking, the Ni/MgAl2O4 shows 80% of the maximum conversion of CH4 with H2 selectivity 75%. 

Furthermore, the stability of the catalyst was encouraging 16 hours with CH4 conversion above 

75%, and the selectivity of H2 was above 70%. This is attributed to the synergistic effect of the 

catalyst and plasma. The plasma-catalytic CH4 cracking is a promising technology for the 

simultaneous H2 and carbon nanotubes (CNTs) production for energy storage applications. 

Keywords: Hydrogen production; Methane cracking; DBD plasma reactor; MgAl2O4; CNTs; 

 

1. Introduction 

The atmosphere is heavily polluted due to the urbanisation and commercialisation throughout 

the globe. It causes serious greenhouse gases (GHGs) emissions, more specifically, the carbon 

dioxide (CO2) and methane (CH4) along with other volatile compounds. Various techniques have 

been applied to treat the GHGs to reduce harmful emissions for sustainable development. One of the 
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exciting techniques is to utilise the GHGs for producing zero-emission fuel, which is currently under 

investigation throughout from the last couple of decades. It is an essential step to reduce the GHG 

concentration in the atmosphere as well as a sustainable approach for fuel synthesis [1-3]. Previous 

studies revealed that CH4 is one of the prominent components of GHG with a total share of 16% in 

the environment usually emitted from petroleum processing, waste management and agriculture 

activities [4]. 

On the other hand, CH4 is also the principal constituent (76 wt.%) of natural gas (NG) which 

reserves are abundantly available in underground. The utilisation of CH4 has various routes as fuel 

both in domestic and industrial processes. One of the most sustainable and attractive ways to utilise 

CH4 is to produce syngas and hydrogen (H2) along with co-reactants such as O2, H2O, and CO2 [5, 6]. 

The popular routes for CH4 mitigation are thermocatalytic processes such as thermal decomposition 

of methane as shown in the below reaction 1, methane partial oxidation [7], methane dry reforming 

[8-10] and methane steam reforming [11] in thermal reactors. The higher energy input for elevated 

temperatures makes the thermal reactors economically challenging for this process [12, 13]. Various 

techniques have been employed to overcome the shortfalls to make the process viable [14, 15]. 

-1

4 2 25 C CH C+2H  H 75kJmol→   =            (R1) 

In recent days, various plasma systems are used for the processing of the methane carking as 

well as other oxidative reactions using microwave   plasma, spark plasma [8, 10, 16] and 

nonthermal plasmas (NTPs) like  dielectric barrier discharge (DBD) and silent discharges. NTP 

seeks attention for gas processing, especially the DBD cold plasma reactor is one of the promising 

techniques [8, 12]. The DBD plasma reactor has some useful characteristics from low-temperature 

operation to accessible upscaling opportunities as compared to thermal plasma [8, 17]. More 

significant aspects of the DBD plasma for gas processing has been reported in an extensive review by 

Ramses and Bogaerts [12]. In addition, the DBD plasma has been successfully utilised for CH4 

cracking with efficient conversion and significant H2 yield [18-20]. The hydrogen is the 

next-generation future fuel due to the recent developments in hydrogen-based fuel cell technologies 

[21]. The DBD plasma-based methane cracking has been reported in several studies aiming for 

cleaner production of H2. However, the conversion efficiency and cleaner H2 is always challenging in 

the DBD plasma reactor for a longer time on streams [6, 22].  

To improve the conversion of CH4, the various catalysts have been employed in the catalytic 

DBD plasma. The most valuable catalysts for plasma catalytic DBD methane cracking are Ni/ℽ-Al2O3, 

ℽ-Al2O3, Pd/SiO2, Pd/TiO2, Pd/Al2O3[23], Pt/ℽ-Al2O3 [24], ZnO, ZnCr2O4, Cr2O3 [25]. The improvement 

in the conversion of CH4 as well as enhanced product selectivity been a witness in various 

referenced studies [25]. Plasma-catalysis drives scope on improving the selectivity of targeted 

products which is very important for CH4 cracking process. The magnesium aluminate (MgAl2O4) as 
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a catalyst has been investigated for various reforming process [9, 26, 27] as well as plasma catalytic 

methane dry reforming in previous studies. It demonstrated a substantial improvement in 

conversion of reactants and product distribution, especially on the H2 selectivity [28, 29]. The nickel 

(Ni) impregnated MgAl2O4 can improve the CH4 conversion and H2 selectivity suppressing the 

recombination of methyl radicals [30]. The MgAl2O4 based catalyst has not been previously reported 

as its distinct properties such as high resistance to temperature, and mild plasma conditions are 

much suitable to use in plasma-based methane cracking processes. Therefore, it is seems meaning to 

incorporate the Ni impregnated MgAl2O4 in the DBD plasma reactor for methane cracking for 

hydrogen production and simultaneously it produces carbon nanotubes (CNTs) which are essential 

material for energy storage applications [31]. Plasma produces a very clean and well-structured 

CNTs for further application reported in various studies.  

In this work, an experimental study has been conducted to the synthesis of a nanocatalyst 

(Ni/MgAl2O4) for CH4 cracking in fixed bed DBD plasma reactor for H2 and CNTs production. The 

catalyst was synthesised using the co-precipitation method followed by hydrothermal process. The 

catalyst is further characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), 

energy dispersive X-ray spectrometry (EDX) and thermogravimetric analysis (TGA). Furthermore, 

the stability of the catalyst was examined for 16 hours reaction time or time on stream (TOS). Finally, 

spent catalyst is further characterised using SEM, TGA  and differential thermogravimetric  (DTG) 

to investigate the formed CNTs over catalyst surface.  

2. Materials and Methods  

2.1 Synthesis of Ni/MgAl2O4  

The support MgAl2O4 was prepared through co-precipitation process supported by the 

hydrothermal method presented in Fig. 1. Briefly, magnesium nitrate hexahydrate (Mg(NO3)2·6H2O) 

(99.5 %, Sigma) and aluminium nitrate nonahydrate (Al(NO3)3·9H2O) (99.5 %, Merck) was dissolved 

in ACS reagent, ammonia solution (28.0%) with the 2:1 molar ratio of Mg: Al. The nitrate solution 

was then combined to 0.01 molar citric acid (CA) solution using pipette at 60 °C on continuous 

stirring at a speed of 350 rpm. The ammonia is acting as a precipitating agent while citric acid is 

assisting control crystal growth and morphology. The nitrate solution is transferred to a 

polytetrafluoroethylene (PFTE) Teflon autoclave and kept in the furnace for 24 hours at a 

temperature of 160 °C. Further, the sample has been washed using ethanol numerous times and 

deionised (DI) water for the removal of impurities. The prepared samples dried in the oven at a 

temperature of 120 °C for 24 hours to remove the moisture. The received derived sample was 

crushed and kept for calcination at 700 °C for 4 hours. 
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For Ni impregnation, wetness incipient impregnation technique has been employed. The precursor 

(10 wt%). nickel nitrate hexahydrate (Ni(NO3)2 .6H2O) (99%, Merck) was added to DI water to get 

0.01 molar nitrate solution. The nitrate solution stirred for 10 minutes at 60 °C. The required amount 

of support MgAl2O4 was then combined to the nickel nitrate solution and stirring for three (3) hours 

at 110 °C. The sample was kept in a furnace (Carbolite UK) for overnight about 10 to 12 hours for 

drying. The dried sample was crushed and preserved in the furnace for 5 hours at 700 °C to achieve 

the final catalyst for methane cracking application.  

 

 

Fig. 1 Schematic of Ni/MgAl2O4 synthesis 

2.2 Materials characterisation  

The physicochemical properties of the synthesised catalyst are examined by several methods 

i.e. XRD, SEM-EDX and TGA. XRD was accomplished employing Bruker's X-ray Diffractometer (D8 

-Advance, Germany), using Cu-kα radiation (40 kV, 200 mA). The crystallite size was analysed by 

Scherrer’s equation [32]. After that, SEM was carried out using TESCAN VEGA 3 (Czech Republic), 

conducted at 20 kV HV and integrated with the beam of X-MaxN by Zeiss optics [13]. TGA 5500 (TA 

Instruments, USA) was used to analyses the weight loss (%) and differential thermogravimetric 

analysis (DTA) of the fresh catalyst. The sample (10 mg) was loaded in a platinum pan and placed in 

the furnace at a heating rate of 10 °C-min-1 under the N2 flow of 40 ml min-1 [30, 33]. Spent catalyst 
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was characterised by SEM and TGA-DTG after 16 h TOS to investigate the morphological changes 

and CNT formation.  

2.3 Plasma-catalytic methane cracking system  

The experimental setup for the catalytic-DBD reactor for CH4 cracking is as shown in Fig. 2. The 

reactant CH4 (99.9 %) flow rate was regulated by a mass flow meters/controller (MFC) (Alicat, USA). 

The plasma power supply model CTP-2000K (China) incorporated with the high voltage regulator 

was used to produce plasma in the DBD reactor. The input voltage and input current were also 

monitored by Tektronix TDS 2012B oscilloscope coupled with voltage probe Tek P6015A [28]. The 

plasma reactor consists of an alumina tube having an inner diameter (ID) of 10 mm and the outer 

diameter (OD) of 12 mm. The stainless steel rod with an inner diameter of 4 mm and 20 cm in length 

was utilised as a HV electrode while a mesh of aluminium is wrapped serving as a ground electrode. 

The prepared catalyst is loaded in the centre of the alumina tube hold by quartz wool. The gases 

were analysed by GC-TCD/FID (Agilent 6890N). The GC column details are given in details here 

[34]. The HP PlotQ capillary column with configuration of 40 m × 0.53 mm ID, 40 µm was used to 

detect CO2 while Molsieve column with the configuration of 30 m × 0.530 mm ID, 25 µm used for 

detecting H2 and CH4, both the columns were connected to TCD. Another column HayeSep 

Q-Supelco with the configuration of 6 ft × 1/8 in. ID × 2.1 mm OD, 80/100 mesh was employed as 

TCD C2-C6 back flashing. To separate the hydrocarbons ranging from C1-C6 were analysed by 

GS-Gaspro column having the configuration of 60 m × 0.32 mm ID) detected to FID. Agilent supplied 

all the columns. The process parameters such as feed flow rates, power input and loading of 

prepared catalyst were maintained constant.  
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Fig. 2 Schematic of fixed bed DBD catalytic-plasma reactor setup for methane cracking 

The plasma-catalytic performance was monitored for methane conversion, H2 selectivity, 

specific input energy (SIE) and DBD energy efficiency (EE) using the following equations (Eqs. (1-4)). 
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Where n = molar fraction of the gases. Feed flow rate was quantified in mL min-1 was transformed 

into mmol min-1 applying the conditions; temperature T = 25 °C, p = 1 atm along with a conversion 

factor, 1 mmol = 24.04 mL [34]. The calculation of the Pin calculation is reported elsewhere [34]. The 

experiments were replicated to minimise experimental errors. 

3. Results and Discussion 

3.1. Physicochemical properties of the catalyst 

Fig. 3 illustrates the XRD pattern for synthesising MgAl2O4 and 10wt.% Ni/MgAl2O4. The 

MgAl2O4 spinel is identified for the JCPDS# 72-6947, showing a single spinel cubic phase and 

prominent peaks are found at 19° (111), 37° (220), 38.7° (311), 44.9° (400), 55.9°, 59.6° and 65.5° (440), 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 November 2020                   doi:10.20944/preprints202011.0316.v1

https://doi.org/10.20944/preprints202011.0316.v1


 

and are in good agreement with the literature [35]. It also shows the space group (227:Fd-3m), the 

crystallite sized (average) is recorded at 10.3 nm. In addition, hexagonal structure NiO is detected for 

the JCPDS # 44-1159 having major peaks at 37.5°, 43.9° and 63° with miller indices of (101), (012) and 

(110) correspondingly [36]. The space group for hexagonal NiO is R-3m(166) and active phase is 

NiO2+[37]. The crystallite size is 9.7 nm for NiO, and the finer crystallite size depicts the formation of 

a uniform structure catalyst and dispersion over support MgAl2O4.  

 

Fig. 3 XRD  pattern of synthesized MgAl2O4 and Ni/MgAl2O4 

The surface morphology of MgAl2O4 and Ni/MgAl2O4 is examined using the SEM with 

magnifications of 5 μm and 500 nm and presented in Fig. 4. The MgAl2O4 shows the fine particles 

with spherical structure, and some particles exhibited the worm-like shapes Fig. 4(a-b) [38]. The two 

different morphologies of the MgAl2O4 offers a comprehensive and uniform distribution of Ni over 

the surface depicted in Fig. 4(c-d). The porous structure of MgAl2O4 offers to diffuse the Ni inside the 

pores and create actives sites. It may also assist the reactant gas and plasma species interaction later 

in the plasma-catalytic process. 

The elemental analysis of MgAl2O4 and 10 wt.%Ni/MgAl2O4 are demonstrated in Fig. 5(a-b). 

The significant elements O, Mg and Al, were found, and the composition is exhibited inset table and 

spectrum of Fig. 5(a). While 10 wt.%Ni/MgAl2O4 shows Ni along with O, Al and Mg, which is 

evident in the presence of Ni in the reported catalyst. The extra peaks without identification are due 

to the carbon tape and gold coating before the SEM/EDX analysis.  
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The TGA for 10 wt.%Ni/MgAl2O4 is undertaken to analyse the thermal stability of the prepared 

samples, as shown in Fig. 6. The 6% weight loss under 300 °C is observed, and it is ascribed to the 

moisture and volatile matters depicted in Fig. 6, column A. In column B, which temperature is more 

significant than 300 °C demonstrated no weight loss further to 900 °C. This analysis revealed that the 

synthesised catalyst is stable for the plasma-catalytic operation for methane cracking in mild 

conditions [39]. The unstable catalyst may lead to phase modification and sintering later in the 

methane cracking reactions [40].  

 

 

 

Fig. 4 SEM micrograph of synthesised fresh samples; (a-b) MgAl2O4 (c-d) 10 wt.%Ni/MgAl2O4 having 

5 µm and 500 nm of magnification 
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Fig. 5 (a) EDX elemental analysis of (a) MgAl2O4 (b) 10 wt.%Ni/MgAl2O4 of using point ID technique  

 

Fig. 6 TGA analysis of fresh 10 wt.%Ni/MgAl2O4 
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3.2. Plasma-catalytic methane cracking 

3.2.1 Plasma and plasma-catalytic test and reaction mechanism  

The CH4 cracking is undertaken for performance analysis of plasma and plasma-catalysis 

presented in Fig. 7. The CH4 conversion for plasma, MgAl2O4 and Ni/Mgal2O4 is recorded as 65%, 

73% and 80% respectively at the same experimental conditions (Fig. 7(a)). The plasma only CH4 

conversion is lower as compared to the plasma-catalytic reaction. Plasma only reaction occurs due to 

the electron-induced dissociation of CH4, which is independent of reaction temperature [41]. The 

CH4 molecules collide with an energetic electron in the plasma discharge zone at discharge volume 

(VD) of 13.5 cm3 and start to dissociate while overcoming the required dissociation energy of 4.5 eV 

[22, 42]. In plasma only electron-CH4 interaction is induced, which led to the dissociation reactions 

and product formation reactions are as follows:  

Dissociation reactions (R2-R4) 

3

- -* *

4  CHe H+CH e→ + +                (R2) 

* * *

3 2

- -CH CHe eH→ ++ +               (R3) 

- -* * *

2CH CHe eH→ ++ +               (R4) 

Gaseous product formation reactions(R5-R8) 

* *

2H +H H→                   (R5) 

* *

3 3 2 6CH CH C H+ →                (R6) 

* *

2 2 2 4CH CH C H+ →                (R7) 

* *

2 2CH CH C H+ →                 (R8) 

While loading the catalyst, CH4 conversion is improving for MgAl2O4 (73%) and Ni/MgAl2O4 

(80%). The catalyst loading improves the CH4 conversion in both cases. In Ni loaded MgAl2O4 shows 

the highest conversion of CH4. The plasma produces hot spots on the catalyst, assist the Ni 

reduction, also changes catalyst functions, and reduce activation barrier due to gas heating effect 

[43]. While catalyst enriches the electric field, boost micro discharges and alters the discharge 

behaviour of DBD plasma. The catalyst-plasma interaction gives surplus effects called synergistic 

effect, which improves the conversion of CH4 and EE of DBD catalytic reactor. The MgAl2O4 as a 

support material is mechanically stable and has porous structure confirmed by SEM, assist in 

activating CH4, and improve the DBD plasma discharge behaviour. Ni further assists the CH4 

activation due to active sites, activated by plasma give more surplus effect and enhanced the 

conversion by 15%. The plasma only and catalyst loaded DBD system shows the difference in the 

conversion of CH4 and activity at certain level justifying by the synergistic effect. Unlike thermal 
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catalysis, plasma-catalysis is not purely temperature dependent reaction. The energetic electron 

effect on the activation of reactant contributes more than catalytic effect [44]. However, the product 

selectivity in many cases is improved more as compare to conventional catalysis [45]. 

The H2 and CxHx formation after the recombination of H* and CHX* in governing steps [22]. The 

H2 selectivity is noted 62% (Fig. 7(b)), and some traces of C2H6 (1.5%) and C2H4 (1%) are also 

analysed in GC-FID for plasma only reaction. The H2 selectivity of MgAl2O4 and Ni/MgAl2O4 is 68% 

and 75% respectively (Fig. 7(b)). The enhanced H2 selectivity is explained in the plasma-catalyst 

interaction mechanism. The undetected CxHx might be the balance for the H2 and carbon balance in 

the product analysis due to the limitation of the analysis technique. The EE is lowest for plasma only 

(0.105 mmol-kJ-1) while MgAl2O4 (0.115 mmol-kJ-1) and Ni/MgAl2O4 (0.13 mmol-kJ-1) shows 

improvement in the EE due to the higher conversion of CH4 at constant input power (Fig. 7(c)). The 

combined effect of plasma and catalyst enhances the EE of the reaction, and hence it is suitable for 

CH4 cracking in plasma-catalytic systems to improve EE over MgAl2O4 stable catalyst in mild 

conditions.  

 

Fig. 7 Plasma/plasma-catalyst activity: (a) XCH4  conversion (b) SH2 selectivity (c) EE; GHSV = 364 h-1, 

specific input energy (SIE) =300 J mL-1, loading of catalyst = 0.5 g, T= 350 °C, discharge gap (Dgap) =03 

mm, discharge length (DL) = 20 cm, discharge volume (VD) without catalyst: 13.5 cm3 , VD with 

catalyst loading = 9.75 cm3. 
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The proposed reaction mechanism for plasma-catalytic CH4 cracking is demonstrated in Fig. 8. 

It can be observed from the H2 selectivity about the reaction mechanism. The activation of CH4 to 

methyl radical CH3* and further breakdown in the presence of plasma while attachment to the metal 

(M, Ni). Similarly, further breakdown leads to the complete dissociation of the C-H bond to form C* 

and H*. While the recombination of H* formed H2 and released metal (M) [46]. At the same time, the 

traces of C2H6 has produced from the recombination of CH3* radicals. There are other possible routes 

for the formation of HCs, but the analysis of the product is more suitable for proposed pathways.  

 

Fig. 8 Proposed reaction mechanism for plasma-catalytic methane cracking over Ni/MgAl2O4 

3.2.2 Time on-stream analysis of Ni/MgAl2O4 

The stability of the plasma-catalytic CH4 cracking on Ni/MgAl2O4 catalyst is presented in Fig. 9. 

The CH4 conversion and H2 selectivity being partially declining along with the TOS. The CH4 

conversion above 75% while sustaining the EE above 0.125 mmol kJ-1. Along with the TOS the total 

reduction in the conversion of CH4, and H2 selectivity is only -5% and -4%, respectively. The 

negative sign indicates the reduction in the conversion and selectivity. Similar trends can be 

observed for EE in the 16 hours TOS. The stability is mostly attributed to the activation of NiO 

particles due to plasma species and instant heating. The impurities in the catalyst are also removed 

by plasma in catalyst expose to plasma [47]. The catalyst activation assists in the CH4 activation as 

proposed in the possible reaction mechanism routes. Further, the breakdown of the methyl radical is 

also assisted by the plasma-catalyst interface while inhibiting the recombination of methyl radical, 

which is also observed the product analysis of in basic screening [43]. The plasma-catalyst interface 

improves many aspects since MgAl2O4 is mechanically stable support material and NiO also assist 

the Ni dispersion. The selectivity of H2 is also ascribed to the highly basic nature of the MgAl2O4, 

which improves the CHx* adsorption and assist in the activation and further breakdown [48-50]. The 

CH4 cracking on plasma-catalytic to CHx heavily depends on the Ni/MgAl2O4 interaction providing 

the higher coordinate sites in the plasma-catalytic interface, which is expected to achieve in the case 
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for longer TOS. The plasma-catalytic interface gave reasonable stability and improved EE for CH4 

cracking in catalytic-DBD reactor condition.  

 

Fig. 9 Analysis of time on stream (TOS) (16 h) on XCH4 (%), SH2 (%) and EE mmol kJ-1. Experimental 

conditions:  GHSV = 364 h-1, specific input energy (SIE) =300 J mL-1, loading of catalyst = 0.5 g, T= 350 

ºC, discharge gap (Dgap) =03 mm, discharge length (DL) = 20 cm, discharge volume (VD) without 

catalyst: 13.5 cm3 , VD with catalyst loading = 9.75 cm3. 

3.3 Characterisation of spent catalyst and reaction mechanism 

The morphology and TGA-DTG analysis of the spent Ni/MgAl2O4 after 16 h TOS is given in Fig. 

10. The CNTs were observed in SEM analysis (Fig. 10(a)) of spent catalyst along carbon fibres [51]. 

Mostly the CNTs formed are useful for further utilisation in energy storage application [31]. The 

TGA analysis (Fig. 10(b)) shows the weight less than 200 °C is ascribed to the volatile matters, while 

weight lost from 200-400 °C is ascribed to the amorphous carbon. The weight loss beyond 500 is 

ascribed to the multiwall CNTs [52]. The CNTs can also be seen in SEM micrographs. The nature of 

the carbon formed is analysed using DTG profile (Fig. 10(b)). The DTG curve at 355 C°, the peak is 

ascribed to the amorphous and fibrous carbon formed and ioxidized at less than 400 °C [51]. The 

DTG curve at 690 °C is ascribed to multiwall CNTs with low defects and low curvature with pure sp2 

structure [53, 54]. The formed carbon is ascribed to a stable material for energy storage applications 

and discharge while increasing the temperature without surface modification [55]. This technology 

for methane cracking for simultaneous hydrogen and CNT formation is a beneficial process [56]. 
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Fig. 10 Spent Ni/MgAl2O4 after 16 h TOS analysis (a) SEM micrograph (b) TGA-DTG analysis  

4. Conclusions 

The CH4 cracking in catalytic DBD plasma fixed bed reactor has been studied and found that 

the plasma-catalytic process enhances the CH4 conversion (80%), improved the EE of the catalytic 

DBD reactor. The possible interaction between plasma-catalyst enhances the discharge behaviour, 

active species and improve the contact time between electrons and gas molecules to dissociate and 

formed the products. The selectivity for H2 is improved to 75% in plasma-catalytic-DBD systems as 

compared to plasma only CH4 cracking (62%). While EE also improved in such manner 0.13 mmol 

kJ-1. The 16 h TOS stability shows a slight declined in the CH4 conversion due to the fibrous carbon 

and CNT formation confirmed from TGA-DTG analysis. The spent catalyst shows the formation of 

CNTs which are beneficial for further utilisation for energy storage systems.  

The CH4 utilisation in non-thermal DBD plasma for H2 and CNTs formation is a highly 

desirable route for the simultaneous H2 production and storage for fuel cell applications. Further 

study is recommended on the cleaning of H2 in cold plasma catalytic systems via membrane or 

monolith reactor systems.  
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