
energies

Article

Integrated Risk Assessment for Robustness Evaluation and
Resilience Optimisation of Power Systems after Cascading Failures

Jesus Beyza * and Jose M. Yusta

����������
�������

Citation: Beyza, J.; Yusta, J.M.

Integrated Risk Assessment for

Robustness Evaluation and Resilience

Optimisation of Power Systems after

Cascading Failures. Energies 2021, 14,

2028. https://doi.org/10.3390/

en14072028

Academic Editor: Pietro Romano

Received: 5 March 2021

Accepted: 29 March 2021

Published: 6 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain;
jmyusta@unizar.es
* Correspondence: jbeyza@unizar.es

Abstract: Power systems face failures, attacks and natural disasters on a daily basis, making robust-
ness and resilience an important topic. In an electrical network, robustness is a network’s ability
to withstand and fully operate under the effects of failures, while resilience is the ability to rapidly
recover from such disruptive events and adapt its structure to mitigate the impact of similar events
in the future. This paper presents an integrated framework for jointly assessing these concepts
using two complementary algorithms. The robustness model, which is based on a cascading failure
algorithm, quantifies the degradation of the power network due to a cascading event, incorporating
the circuit breaker protection mechanisms of the power lines. The resilience model is posed as a
mixed-integer optimisation problem and uses the previous disintegration state to determine both
the optimal dispatch and topology at each restoration stage. To demonstrate the applicability of the
proposed framework, the IEEE 118-bus test network is used as a case study. Analyses of the impact of
variations in both generation and load are provided for 10 simulation scenarios to illustrate different
network operating conditions. The results indicate that a network’s recovery could be related to the
overload capacity of the power lines. In other words, a power system with high overload capacity
can withstand higher operational stresses, which is related to increased robustness and a faster
recovery process.

Keywords: cascading failures; power systems security; resilience; restoration; robustness

1. Introduction

Critical infrastructure systems are integral to the everyday activities of modern life.
Among these systems, power transmission networks are responsible for reliably and safely
meeting power demands at different points in a power system. In daily operation, these
networks can experience attacks, failures, natural disasters, etc., all of which can severely
degrade the entire function of the infrastructure [1]. The transmission system operator
(TSO) must adjust the network topology to increase the power transfer capacity between
different areas.

Figure 1 depicts the behaviour of the power system when it is subject to failures or
natural disasters. In this figure, the variable t represents the transitions in time between the
different phases and P(t) represents variations in the load over time. Note that the sequence
consists mainly of five states. In the normal operation state (t0→ tNO), the power grid
is operating and satisfying the electrical demand safely (PNO) before an unwanted event
occurs. Disruption is the phase experienced by the infrastructure immediately after a failure
or high-impact, low-probability (HILP) event occurs and is followed by severe degradation
of network function (tNO→tD). At this point, the load is only partially maintained (Pd).
In the preparation stage (tD→tFP), the TSO assesses the conditions of the infrastructure
and determines which actions must be implemented during the recovery stage (tFP→tFR).
The process ends once the network returns to the load levels that were present before the
disruptive event (PNO). This final stage can take hours or even days.
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Figure 1. Power system behaviour during failures or natural disasters (representation adapted
from [1,2]).

In the field of electrical engineering, robustness studies assess the performance of a
network against the loss of multiple assets, while resilience studies analyse the ability of a
system to rapidly recover from such disruptive events and adapt its operation and structure
to prevent or mitigate the impact of similar events in the future [3,4]. Both concepts are
important because they describe the performance of a power system during and after a
disturbance or contingency.

Robustness assessment is the most appropriate tool to measure the performance of
infrastructure during extreme events, quantify the structural performance of the entire
network skeleton and identify the weakest buses that require significant reinforcement [5].
Resilience assessment is the most appropriate tool to analyse the capacity of the system to
anticipate, absorb, adapt and recover from such events [6].

Resilience is a novel field of research that requires techniques to solve different prob-
lems associated with the protection and recovery of electrical infrastructure. Some re-
searchers have assessed resilience by considering system topology, link switching capabil-
ities and different human-made disaster scenarios [7]. Other researchers have proposed
optimal design frameworks to improve resilience and protect the network against extreme
weather events such as earthquakes, floods and ice storms [8,9].

Moreover, due to the increasing occurrence of outages and the growing interdepen-
dencies between networks, it is vital to understand the resilience of critical infrastructure
systems. The most notable existing studies have presented improved approaches to mea-
sure resilience and have proposed better decision-making processes for recovery planning
after a disruptive event [10–12]. These works have not only identified faster recovery but
have also proposed mechanisms to improve the responsiveness of a network.

Other works have considered how renewable resources may be essential to improving
the resilience of power systems. In this context, some academics have indicated that the
performance of PV systems and hybrid systems composed of wind, PV and batteries
can increase operational efficiency and improve reliability and resilience after a natural
disaster [13–15].

Similarly, the increase in power outages due to climate deterioration has accelerated
research in this area. Several researchers and decision-makers have indicated that more
coordinated studies are needed to improve grid resilience and reliability [16]. Other
scholars have suggested that optimal restoration strategies that incorporate resilience
indicators are also required [17].

Fundamental changes in generation structure and profiles alongside increased de-
mands for robustness and resilience have created the need for new operational and plan-
ning practices for modern networks. Cicilio et al. [18] reviewed research that explores the
changing generation profile, cutting-edge practices to address resilience and the combi-
nation of both topics. Other scholars have offered integrated decision-making analyses
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to characterise resilience, robustness, restoration agility and load criticality [19,20]. The
objective of this existing work is to evaluate different infrastructure reconfiguration options
and select the optimal solution for implementation in both cases.

Resilience also involves a process of detection, anticipation, learning and recon-
figuration. In this context, some academics have proposed to reconfigure the power
grid using economic model predictive control algorithms [21], deep learning and robust
optimisation [22], data-driven batch-constrained reinforcement learning algorithms [23]
and Markov decision process models [24].

Smart grid resilience is another relatively young field of research which has not yet
been adequately defined. Plotnek and Slay [25] proposed guidelines to orient additional
research in this area of study.

The authors of [26–31] provided a comprehensive classification of definitions, metrics,
guidelines, practical challenges and technical and practical problems in power system
resilience research.

After a contingency or cascading failure, the state of disintegration of the power system
is a function of robustness, whereas resilience depends on robustness and the speed of the
recovery of the lost load. Most works ignore the initial decay of system conditions, which
could be composed of multiple islands and isolated assets. Therefore, new procedures
should consider the extent of initial disintegration to improve the recovery process.

This paper postulates that the concepts of robustness and resilience should be inte-
grated within a sequential decision framework to study the impact of disturbances on
power systems in detail. Joint analysis of robustness and resilience studies can improve
network structural performance, system planning, reliability and even security of supply.
A contingency or event in a power network with low robustness can affect the restoration
time of isolated assets. In such situations, resilience studies must consider the initial state
of disintegration or decay of the infrastructure. The objective of this work is to demonstrate
that disintegration plays an important role in the recovery process, as a large number of
isolated assets makes it difficult to determine the optimal order in which to reconnect
network assets.

Thus, the main purpose of this article is to propose an integrated framework to study
both the robustness and resilience of an electrical power system. A system can function
under normal operating conditions until one element is lost, triggering adverse effects
such as cascading failures that impact a significant portion of the network. Actions are
subsequently taken to recover the lost electricity demand in a coordinated manner both in
the dispatch of generation and in the optimal reconfiguration of the infrastructure topology.

The robustness described in this work is conducted by running an iterative cascading
failure procedure that involves initially removing a link, running direct current power
flows, identifying and eliminating overloaded links, quantifying the number of islands and
isolated elements and measuring whether demand is satisfied within the network with
each iteration of decomposition. On the other hand, the resilience study is a mathematical
optimisation problem that considers the optimal redispatch of generation and optimal
reconfiguration of the topology. In real-world situations, the TSO makes recovery decisions
in sequential time intervals (i.e., the TSO first plans the actions to be taken and, after
their execution, analyses the outcome before proceeding to the next restoration steps).
In this paper, this sequential decision-making process is improved by formulating it as
an optimisation problem to always ensure the best set of redispatch and reconfiguration
actions are selected throughout the entire infrastructure recovery process. This formulation
should recover maximum demand in the shortest possible time.

However, the latter is a complex mathematical problem with multiple possible de-
cisions at each restoration stage, as the number of possible actions grows exponentially
with the number of iterations and has very high computational complexity. The aim of this
work is to provide the first solution to this complex problem by developing a procedure to
determine which power lines should be closed at each recovery stage. The set of lines iden-
tified should not cause overloads on operational links and should maximise the recovered
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load on the network. This process would provide operators with complete information to
make their decisions after a widespread collapse or blackout.

In short, the proposed sequential framework uses the robustness study to determine
the initial state of disintegration of the network and uses this state information as input
data for the resilience study. The resilience study is posed as a mixed-integer optimisation
problem constructed from the direct current power flow equations, where the integer
variables represent the operational state of the power lines (i.e., open or closed). In general
terms, the proposed framework calculates optimal generation dispatches and determines
the links to be closed for optimal recovery of the network topology. The latter process
is limited by the maximum number of lines that can be operated in each iterative step.
During the recovery process, active power flows on power lines are considered to avoid
overloading other assets.

Notably, this proposal does not address the reactive power limits of the generators or
the voltage magnitudes in each of the buses of the electrical network. Instead, the developed
procedure could complement other work already published in the scientific literature.

The simulation framework runs on the well-known IEEE 118-bus test system, from
which different simulation scenarios are built to demonstrate the scope of the proposed
methodology [32]. This network was chosen because it is a sufficiently meshed system and
can be applied to many studies with a reasonable solution time but is sufficiently detailed
to reflect the real complexities of robustness and resilience studies. This system includes
the main generation and transmission facilities, representing a simple and representative
model of a real grid. The basic notion is to best illustrate some configurations that can
be found in a disintegrated power system. Of course, the simulation framework can be
applied and expanded to any other electrical power system.

The rest of the article is organised as follows. Section 2 describes the cascading failure
model for determining the initial disintegration state of a power grid. Section 3 details the
mathematical model of power system restoration based on a mixed-integer optimisation
problem. Section 4 describes the case study and presents the simulation results obtained
after applying the two procedures described in the previous sections. Finally, Section 5
draws the main conclusions of this paper and presents some future research directions.

2. Degradation of the Power System

This section presents the procedure developed to assess the robustness of a power
system. A cascading failure model, which incorporates models of the protection mech-
anisms for power lines, is combined with a graph traversal algorithm. The proposed
framework accurately captures the state of infrastructure degradation resulting from a
failure or HILP event.

Robustness is an internal characteristic of power grids that measures the a system’s
ability to withstand the effects of faults [33] and is often quantified in terms of the largest
connected component, both before and after cascading events [34]. A cascading failure is a
sequence of events that begins with one or more disturbances, causing a series of outages
in other network components [35]. Cascading can be initiated by multiple factors, such
as voltage and frequency instabilities, malfunctioning control devices, human errors, line
overloads or deliberate attacks.

To determine the impact of cascading failures, the performance of the network is mea-
sured as a function of the connected load after several outages. Here, the satisfied demand
(SD) index is used [36,37], and a cascading failure simulation algorithm is proposed.

2.1. Basis of the Cascading Interruption Modelling

The power system can be represented as a graph composed of nodes and links, where
the former represent buses, generators and loads, while the latter represent transformers
and electric transmission lines (see Figure 2a).
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Figure 2. Initial interruption. Operation of power line circuit breakers: (a) initial state; and (b) first
interruption state.

Power flows are a function of Kirchhoff’s laws, where the physical parameters of the
lines and the voltages and angles of the buses determine the flows within the infrastructure.
In this manuscript, the direct current power flow (DCPF) equations are used for simulation
purposes [38].

The maximum power transfer capacity (Pmax
k ) of the lines is generally determined

using stability constraints, voltage drops and thermal effects. This document assumes that
the maximum flow is related to the initial power flow (Pk), as shown in (1), where αk>1.

Pmax
k = αk · Pk ∀k ∈ K (1)

Equation (1) models the protection mechanisms of the power lines by introducing a
tolerance parameter, αk. A circuit breaker generally trips when the power flow on the line
exceeds an overload threshold. Circuit breakers are assumed to operate when Pk>Pmax

k .
Note that the overload tolerance parameter in (1) is defined so that the MVA rating for a
power line is not violated.

Cascading failure propagation can lead to the formation of multiple islands, as shown
in Figure 2b. In these situations, the load flow problem may not converge, so it is necessary
to incorporate a graph traversal algorithm to identify subsets formed in the decomposition
stage. The depth-first search (DFS) algorithm is used to solve this problem [39]. This algo-
rithm identifies and sorts the islands each time one or more power lines are disconnected.

2.2. Cascading Failure Algorithm

Algorithm 1, also depicted in the flowchart in Figure 3, defines the proposed procedure
for evaluating the disruption stage using the simulation assumptions presented above.

The iterative procedure starts by calculating the power flows and determining the
maximum power transfer capacity of the lines with (1). The most loaded power line is then
disconnected due to an HILP event, the changes in Pk are determined and the constraint
|Pk|<Pmax

k ∀k ∈ K is verified. If this constraint is not met, the circuit breakers are tripped
according to the scheme in Figure 2, and the DFS algorithm immediately monitors the
formation of the islands. This technique is used because it is a method for scanning a finite,
undirected graph and is widely recognised as a powerful technique for solving various
graph problems. The algorithm starts at a root node and scans along each branch before
backtracking [39].
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Algorithm 1: Disruption stage. Cascading failures.

Input: Technical data of the electrical network and α
Output: Degradation of the power grid. Set of islands I, state of branches µk, set of
isolated elements E, and satisfied demand SDs
Step 1. Initialisation: E = ∅ and SDbase = ∑d∈Dd;
Step 2. Power flows: calculate Ps

k∈K for all power lines of the infrastructure in stage s;
determine Pmax

k with (1);
Step 3. Starting point: eliminate the most loaded power line, k’; set µk’ = 0;
Step 4. Calculate power flows: determine the increases or decreases in each Ps

k ∀K, using
DC power flows; set s = 1 for the first step;
Step 5. Trigger mechanisms for circuit breakers: evaluate the condition |Ps

k |<Pmax
k ∀K. If

the condition is not met, set µs
k = 0 for the triggered power lines k and go to Step 6;

otherwise, go to Step 10;
Step 6. Graph traversal algorithm: use DFS to determine islands I = {I1, I2, . . . , IN} and
isolated elements E;
Step 7. Energy balance:

(a) for each island Ii with generators, g∈Ii, evaluate
- if ∑g∈Ii

Pg<∑d∈Ii
Pd, set Ds

Ii
= ∑g∈Ii

Pg in stage s;
- if ∑g∈Ii

Pg>∑d∈Ii
Pd, set Ds

Ii
= ∑d∈Ii

Pd in stage s;
(b) for each island Ii without generators, g∈Ii; set Ds

i = 0 and Ei = Mi;

Step 8. Satisfied demand: Calculate SDs =
∑i∈I Ds

Ii
SDbase

for iteration s;
Step 9. Iterations: set s = s + 1 and go to Step 4;
Step 10. Termination: if |Ps

k |<Pmax
k ∀k or E = M, the algorithm ends.

Figure 3. Flowchart of Algorithm 1.

Figure 4 presents the tree structure of the cascading failure process used in Algorithm 1.
Here, islands without generation are considered dead and are marked in red, while islands



Energies 2021, 14, 2028 7 of 18

with generation are marked in green. All intermediate islands where cascading failures
continue are marked in blue. The tree structure demonstrates how an island can undergo
changes during the cascading failure process (s) and disintegrate into several islands, some
of which remain operational, and others of which are deeply affected by the disintegration.
The cascading failure continues and is repeated on all the intermediate islands marked in
blue. The redistribution of the power flows may cause additional overloads on other power
lines in the network. Consequently, each intermediate island may result in the formation of
different islands, so the procedure continues simultaneously on these new islands.

The SD index used in Algorithm 1 measures the robustness of the power grid by
quantifying the SD at each stage of network disintegration. This measure varies between 0
and 1; therefore, as the SD indicator decreases, so does the robustness of the infrastructure.

Figure 4. A tree structure of the cascading failure process.

3. Recovery of the Power System

Power system restoration is a highly complex tasks, as the TSO must be prepared with
a restoration plan that enables fast and safe recovery of the system. Moreover, the TSO
must carefully attend to the energy balance, active and reactive power control, voltage
condition and power system stability [40].

Section 3 presents the proposed methodology for recovering a disintegrated electrical
network composed of multiple islands and isolated assets. The developed algorithm is
based on mixed-integer linear programming and uses the DCPF equations. Here, voltage
magnitudes and standing phase angles may not be a major concern, so DCPF studies
provide sufficient accuracy in the results, as indicated in [41].

DC Power Flows with Line Drive Incorporation

DCPF is an estimate of power flows in AC power systems. DCPF only considers
active power flows and neglects reactive power flows. This method is convergent and
non-iterative and is used whenever fast estimates of power flows are required [38]. This
formulation is used and power line switching is also incorporated.

The proposed mixed-integer optimisation problem maximises the recovered satisfied
demand (SDs − SDs−1) at each step s, as shown in Equation (2), by dispatching generation
units and reconnecting power lines.

For each step s:
max (SDs − SDs−1) (2)
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subject to:
Pmin

g ≤ Ps
g ≤ Pmax

g ∀g ∈ G (3)

Pmin
k · µs

k ≤ Ps
k ≤ Pmax

k · µs
k ∀k ∈ K (4)

∆min
n ≤ ∆s

n ≤ ∆max
n ∀n (5)

− ∑
k∈K

Ps
k − ∑

g∈G
Ps

g − ∑
d∈D

Ps
d = 0 ∀n (6)

Bk · (∆s
n − ∆s

m)− Ps
k ≥ 0 ∀k (7)

− Bk · (∆s
n − ∆s

m)− Ps
k ≤ 0 ∀k (8)

∑
k∈K

µs
k ≤ Nc (9)

SDs = ∑ Ps
n ∀n (10)

In this formulation, power lines have binary variables µk, which represent the switch-
ing states of the links (open, µk = 0, and closed, µk = 1). Moreover, Constraint (9) is included
to limit the maximum number of lines to be closed in each recovery iteration.

Constraint (3) limits the power produced by the generators between their maximum
and minimum limits; Constraint (4) controls the power passing through the links; Con-
straint (5) determines the angles of each bus; Constraint (6) incorporates the nodal balance
equations; and Constraints (7) and (8) include the Kirchhoff’s laws. Finally, Constraint (9)
determines the lines operated in each iterative step, as identified by the binary variable
µs

k = {0, 1}∀k ∈ K. There is no industry consensus on the maximum number of lines
that can be switched during each stage of power grid restoration, as the latter depends
on the physical characteristics of the infrastructure and the procedures applied by each
control centre.

The output of the optimisation problem consists of the recovered satisfied demand
(SDs − SDs−1), the energy produced by the generators (Pg) and the switching states of the
power lines (µk) for each restoration stage s.

Algorithm 2 describes the iterative procedure for determining power system recovery.
This algorithm uses the output of Algorithm 1 as its input. Figure 5 presents the flowchart
of Algorithm 2.

Algorithm 2: Recovery process. Mixed-integer optimisation problem.

Input: the output of Algorithm 1 (set of islands I, state of branches µk, set of isolated
elements E and remaining satisfied demand SDremaining) and the number of lines to
be reconnected Nc in each step s.
Output: SDs and µs

k ∀k in each recovery step s
Step 1. Inicialisation: set SDs = SDremaining;
Step 2. Build the problem: set the minimum and maximum parameters of the con-
straints (3)–(5). The thresholds of (4) are initially determined in Algorithm 1;
Step 3. Solve the mixed-integer optimisation problem: maximise (2), subject to the con-
straints in (3)–(10);
Step 4. Solution: save the results of SDs and µs

k; set the restored variables µs
k as

constants µs
k=1 for all subsequent stages;

Step 5. Evaluation: if ∀k ∈ (K−k’): µs
k = 1 and go to Step 7; otherwise, go to Step 6;

Step 6. Iterations: set s = s + 1 and go to Step 3;
Step 7. Termination: if ∀k ∈ (K−k’) and µs

k = 1; the algorithm ends.
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Figure 5. Flowchart of Algorithm 2.

4. Simulation and Results

The simulation results obtained after applying the two developed algorithms to the
well-known IEEE 118-bus test network are presented below. Here, costs of generators
were not considered, line resistances were ignored and power losses were neglected. Both
algorithms were programmed and executed on the MATLAB platform, using a personal
computer with an Intel® CoreTM i7 3.40 GHz CPU and 32 GB of RAM.

4.1. Normal Operation State: IEEE 118-Bus Test System

This IEEE 118-bus test case represents a simple approximation of the American Electric
Power system (in the U.S. Midwest) and contains 54 generators, 186 lines, 14 capacitors
and 99 loads. The technical data of the system can be found in [32].

In the normal operation state, the system safely satisfies a load of 4242 MW, and the
coupled generators can produce up to 9721 MW. A parameter α = 1.5 is applied such that
the maximum capacity of the lines is 1.5 times the base flow; therefore, the lines operate
at about 70% of their capacity. Moreover, the ∆min

n and ∆max
n for the angles are limited to

between −0.6 and −0.6 radians. The Pmin
g and Pmax

g for the generators can be found in [38].
Figure 6 depicts this system condition (State A).
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Figure 6. Degradation of the IEEE 118-bus test network. Results obtained using Algorithm 1.

4.2. Disruption State: Degradation of the Power System

Figure 6 plots the degradation of the studied network (State B) due to the non-trivial
loss of line 141 (89–92) at stage s = 4 (k′ = 141 and µ141

′ = 0). As this line was the most
loaded line, it was assumed that an HILP event occurred there. The plotted results were
obtained after applying Algorithm 1, as described in Section 2.2. The computational time
for Algorithm 1 was 0.12 min.

The curve represents the satisfied demand as a function of the cascading stages s.
When all assets were initially connected, the SD index had a value of 1. Subsequently, the
SD index gradually decreased to a value of 0 as the power system disintegrated due to
circuit breakers operations. At this point, the infrastructure may have been composed of
islands with and without generation and isolated assets.

The results indicate that the IEEE 118-bus test network reached its maximum degrada-
tion point at stage s = 13, at which point approximately 40% of the load remained connected.
Likewise, the damage caused by the loss of link 141 caused the system to disintegrate into
15 islands. Here, four islands had a load of 1092 MW. In parallel, these four islands had a
load shedding of 196 MW to satisfy the conditions of balance between generation and load
(666 MW). Similarly, seven islands with a load of 1000 MW were inoperative, and 71 lines
were open due to overloading. There were 44 isolated buses with a total load of 1288 MW.
Figure 7 presents the topology of the IEEE 118-bus test network and the various islands in
the system.
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Figure 7. Schematic representation of the power system under study after the cascading failures
took place.

The above results were obtained by applying a tolerance parameter α = 1.5. Depending
on this value, different degradation states of the electrical network can be obtained due to
line overloads. For example, Figure 8 presents the final SD for different values of alpha
between α = 1 and α = 2. Note that, as the overload parameter α increases, the satisfied
demand also increases. Thus, the recovery process is related to the overload capacity
of the power lines, as infrastructure with high overload capability can withstand higher
operational efforts, which is related to less degradation and, consequently, to a faster
recovery process.

Figure 8. Overload tolerance parameter.
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On the contrary, an electrical infrastructure with low overload capability achieves
lower SD percentages at the end of the degradation process, which is related to a slower
recovery process. A tolerance parameter α = 1.5 was chosen in this paper because it is an
acceptable intermediate value for the case studies, as indicated in Figure 8.

4.3. Preparation State

In this phase, the TSO analyses the state of the network after the cascading failure and
prepares the necessary actions or manoeuvres to quickly and safely recover the load and
reconnect the isolated assets.

In the engineering field, the TSO could prioritise the reconnection of some loads or
some generators or utilise all infrastructure facilities [42–45]. Certain assets may not be
available if they have suffered irreversible damage. The TSO carefully evaluates and uses
all available resources to quickly restore the network.

In this case study, the disintegrated power grid consisted of 15 islands, 71 open lines,
44 isolated buses and a disconnected load of more than 2000 MW. Three stages were
considered to plan recovery actions (s = 14 to s = 16).

4.4. Recovery Process

The aim of the recovery process is to develop a methodology to restore the operating
conditions of the electrical infrastructure after a major disruption. This recovery must
comply with several security parameters to avoid further line outages. Algorithm 2 can be
applied to determine the optimal recovery of the network under study.

To obtain different recovery plans, the maximum number of lines Nc to be closed at
each restoration stage is limited. In this case, values of Nc = 1, 3, 5 and 7 were considered.
One or seven lines were closed for simulation purposes only; closing three or five lines
corresponds to the usual number of safe manoeuvres performed by the TSO. Moreover, line
89–92 could not be reconnected during the recovery process because it was badly damaged.

Figure 9 displays the recovery curves for the different plans obtained using Algorithm 2.
Unlike Figure 6, in this case, higher SD values indicate a greater recovered load.

Figure 9. Recovery curves for the IEEE 118-bus test system.

The developed methodology found the optimal solution at each stage to recover the
disconnected loads and reconnect the islands and isolated buses. The plans restored the
operational network conditions fairly quickly. In the proposed system, manoeuvres are
managed in minutes, so the actions that could be taken during this simulation were limited.
For example, only one line was reconnected, and the corresponding generation redispatch
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was performed with Nc = 1. The next action was then executed, and the procedure was
repeated. However, recovery would be faster if more manoeuvres could be performed at
each interval.

Table 1 reports the different recovery plans according to the number of lines recon-
nected in each iteration. For illustration purposes, only the lines corresponding to the first
recovery iteration are shown (i.e., s = 17). The values of recovered load, satisfied demand
and computation times are included for each plan.

Table 1. Optimal recovery plans obtained using Algorithm 2 in stage s = 17.

Number of Lines Closed Recovered Satisfied Computation
Plan to Be Closed Lines Load Demand Times

(Nc) (L) (MW) (SDs) (min)

State C 0.414
1 1 18 1214 0.701 7.357
2 3 18, 63, 80 1243 0.707 37.085
3 5 16, 18, 63, 64, 1320 0.726 67.619

80
4 7 16, 18, 63, 64, 1373 0.738 71.649

80, 91, 114

The first manoeuvre resulted in values of satisfied demand that were similar across
the different recovery plans. However, the topological configuration was not the same
in each case; therefore, generation redispatch influenced the recovery of isolated loads.
Additionally, the calculation time increased with the number of lines to be reconnected
because more combinations had to be considered to find the optimal solution.

Recovery was slow when a power line was reconnected (Plan 1), but the system
quickly recovered the load and the meshed structure of the network when three power
lines were reconnected (Plan 2).

The outcomes of Plans 3 and 4 were almost similar, as were the outcomes of Plans 1
and 2. However, Plans 3 and 4, which involved the reconnection of five and seven lines,
respectively, offered better results than Plans 1 and 2. Some topological configurations
are evidently better for network meshing since line constraints influence the recovered
load. For example, as shown in Figure 9, if the TSO were to follow Plan 3 in the order
indicated, 29 stages would be sufficient to recover almost 100% of the load and bring all
lines into operation. However, if Plan 1 or 2 was followed, approximately 50 stages would
be required.

Table 2 presents the Energy Not Supplied (ENS) results for each recovery plan. The
ENS metric is quantified by measuring the area above the recovery curves and considering
time intervals of 15 min for each stage s and 20 h of repair time for line 89–92. As the
ENS decreases, the recovery plan becomes more efficient. Considering these times and
the number of stages, an average time to restore the infrastructure can be obtained. For
example, Plan 4 required 23 stages, that is, 5.75 h plus an additional 20 h to repair power
line 89–92. In contrast, the proposed study framework obtained the complete solution in
approximately 1.2 h (Table 1), so each set of lines computed per iteration required about
three minutes. The results can therefore be obtained in parallel to the execution of the
corresponding manoeuvres, with an additional 12-min reserve. Of course, other factors
that could influence the speed of the recovery of the power system must be considered;
however, the times between switching, redispatching and repairing the damaged line
correspond to values close to reality. In short, the proposed procedure determined the
required manoeuvres before their execution. The TSO could consequently analyse the
results and determine the most appropriate and accurate actions, which would guarantee
the highest load recovery and the best-operating conditions of the system.
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Table 2. Energy Not Supplied for each recovery plan.

Plan Number of Stages s Energy not Supplied (MWh)

Base network 0
1 52 135.65
2 49 114.56
3 29 77.06
4 23 63.71

4.5. Variations in Generation and Load

To test the usefulness of the developed algorithms under various generation and load
conditions, 10 simulation scenarios were additionally applied, using α = 1.5 and Nc = 5 as
parameters during each recovery stage. Five lines were chosen for this analysis (Plan 3)
because five lines is a safer switching number than seven lines (Plan 4) for the considered
time interval of 15 min.

Table 3 summarises each of the scenarios studied in this analysis. In the case of gen-
eration variation, Scenario G89 evaluated the system’s degradation and recovery without
Generator 89. Scenario G89+80 corresponds to the same system, but without Generators
89 and 80. The rest of the scenarios followed the same scheme as above, eliminating the
generators with the highest capabilities in descending order. Meanwhile, in the case of
load variation, Scenario L+5% evaluated the system’s degradation and recovery with a 5%
load increase, while Scenario L+10% evaluated the system’s performance with a 10% load
increase. This process was repeated successively for subsequent scenarios until the load
increased reached 25%.

Table 3. Study scenarios.

Variation Scenarios

Generation G89 → G89+80 → G89+80+69 → G89+80+69+10 → G89+80+69+10+66
Load L+5% → L+10% → L+15% → L+20% → L+25%

Figure 10 indicates that the base case maintained a satisfied demand of more than 40%
after the cascading event. In the rest of the cases analysed with variations in generation
and load, the networks collapsed more significantly. The 10 scenarios studied had worse
performance than the base case, as the curves always went below in both degradation and
recovery. These scenarios show that the IEEE 118-bus test system in its base case is more
robust than when it has less generation or more load.

Similar robustness values were obtained in the generation and load scenarios. For ex-
ample, the satisfied demand after the system degradation process was close to 20% for both
the lowest generation scenario (G89+80+69+10+66) and the highest load scenario (L+25%).

The curves in Figures 9 and 10 demonstrate that the developed study framework
provides optimal recovery strategies for collapsed networks composed of multiple islands
and isolated elements. The results also indicate that generation availability conditions
could severely affect cascading failures propagation and electrical network recovery.

The conducted simulations demonstrate that the developed procedures can be applied
to different operating conditions and disintegration states of power systems. Although
the procedures are applied to scenarios of variation in generation and demand, the robust-
ness and resilience models could be combined with other proposals to extend the results
presented here.
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Figure 10. Process of disintegration and recovery of the IEEE-118 bus test system with variations in: (a) generation; and (b) load.

5. Conclusions

This paper proposes a joint framework for assessing both the robustness and resilience
of electric power systems. A cascading failure procedure id used to determine the state
of disintegration of a power grid and a mixed-integer optimisation problem id applied
to identify the optimal dispatch and topology during the network recovery process. The
cascading failure procedure considers the dynamic disintegration of the infrastructure
due to the tripping of the circuit breakers of the power lines. The restoration procedure
determines the level of generation and the power lines to be closed or opened at each stage
of system recovery. In both cases, the satisfied demand index is measured to quantify the
power supply within the infrastructure.

The effectiveness and applicability of the proposed framework, which aims to quantify
robustness and resilience, was verified using the IEEE 118-bus test system. This paper
provides a detailed discussion of the numerical results, demonstrating the efficacy of the
proposed procedures and their benefit to end-users and utilities. The TSO could apply
different strategies or plans to recover a disconnected load after a high impact event,
depending on the switching actions taken.

Renewable energies are becoming increasingly important in the current energy transi-
tion scenario of power systems. This considerable increase in renewable generation could
affect the performance of a network in the case of a high-impact, low-probability event.
Thus, future research and development efforts should explore computationally efficient
mathematical methodologies to assess the robustness and resilience of power systems with
a high share of renewable energy. The random nature of renewable energies necessitates
stochastic models to analyse different operating conditions of a power grid. The resulting
models should integrate both indicators and provide solutions for transmission system
planners and operators.
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Abbreviations
The following abbreviations are used in this manuscript:

Indices
n,m Nodes or buses
k Lines
g Generators
d Loads
j Number of closed power lines
i Islands
s Steps

Variables
∆n Voltage angle at node n (radians)
Pk, Pg, Pn Power flow through line k, generator g, and power demand at node n
µk Binary variable indicating the open or closed state of the power line

(open, µk = 0, closed, µk = 1)
Di Demand on each island i
SDs Satisfied demand in step s (MW)

Parameters
Pmax

k , Pmin
k Maximum and minimum capacity of the power line k (MW)

Pmax
g , Pmin

g Maximum and minimum capacity of the generator g (MW)
∆max

n , ∆min
n Maximum and minimum voltage angle at node n (radians)

Bk Susceptance of the power line k
Nc Maximum number of power lines to be closed at each step s
αk Overload tolerance parameter of the power line k

Sets
D System loads
E Isolated assets
G Generators
I Islands
K Power lines
L Closed power lines
M Nodes or buses
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