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a b s t r a c t 

All studies focused on the evaluation of paleoecological variability over geological time must be linked 

to a specific age or time interval, which can be defined using different time scales (biostratigraphic, 

chronostratigraphic, geochronological or orbital). Therefore, integrated time scales are essential to allow 

comparisons of data from different locations and/or to assess evolutionary and other events through time. 

Here we use a new method to update a Paleogene magnetobiochronological time scale, with the following 

contributions: 

• The update of the Paleogene magnetobiochronological scale was made by graphical correlation with new age 

models and adding calcareous nannoplankton and planktonic foraminiferal biozones from different authors. 
• An excel file structure was proposed to plot any kind of data in MATLAB software, as long as they are associated 

with some of the scales shown in our updated version of Paleogene magnetobiochronology. 
• The excel file structure facilitates the analysis of long-term trends of taxonomic groups throughout the 

Paleogene, and of their evolution in a period characterized by intense climate variability. 
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Specifications table 

Subject Area: Earth and Planetary Sciences 

More specific subject area: Paleoecology. 

Method name: Graphical update of a magnetobiochronologic/orbital time scale. 

Name and reference of original 

method: 

Integrated magnetobiochronologic/orbital time scale 

[ 1 ] Berggren, W., and Pearson, P. A revised tropical to subtropical Paleogene planktonic 

foraminiferal zonation. Journal of Foraminiferal Research, 35 (2005), pp. 279–298. 

Resource availability: Software: MATLAB, Adobe Illustrator, Microsoft Excel. 

Supplementary material is available within this article. 

Method details 

Step 1. We digitized the Paleocene, Eocene and Oligocene chronostratigraphical and 

biostratigraphical (including calcareous nannoplankton [ 2 –5 ] and planktonic foraminifera biozones [ 1 ,

6 ]) time scales as integrated by Berggren and Pearson [1] . In Berggren and Pearson [1] , these scales

are shown by epoch, and only some chrons and biozones of the contiguous epochs are indicated in

each case. We thus joined them in a single plot by overlapping the contiguous biozones. 

Step 2. Other calcareous nannoplankton [7] and planktonic foraminifera [ 8 –10 ] biozones were

added to the constructed plot. Such additions consisted of the digitization of the new biozones

together with a reference biozonation that allowed us to place them correctly into the plot. 

Step 3. Since the epoch plots were separated in Berggren and Pearson [1] , different vertical scales

were used in each plot. In order to standardize the vertical scale, we looked for the numerical age

of key chrons, i.e., the first and last complete chrons of each epoch, as well as the chrons within

the boundary intervals between epochs (Paleocene-Eocene and Eocene-Oligocene; Table 1 ). The age of

these chrons was obtained from the ODSN website [11] , which provides numerical ages according to

different timescale models for magnetic events. Here, we followed the age model of Gradstein et al.

[12] . 

The length of intervals and the age of chrons in Table 1 were used to construct the numerical age

scales for each interval in MATLAB [13] . These scales were employed to obtain the equivalence of a

million years in millimetres to achieve a greater precision, measuring graphically in Adobe Illustrator 

[14] ( Table 2 ). Millimetres were not used in MATLAB since these are not a valid measuring unit.

Equivalence data were required to develop a standard vertical scale. 
Table 1 

Numerical age [12] of chrons used for the standardization of vertical scale. 

Interval Chron Ma (chron top) Length of intervals (inches) 

Oligocene C6Cn3n 23.233 1.97 

C13r 33.705 

Eocene - Oligocene boundary C13r 33.705 0.23 

C15n 34.999 

Eocene C15n 34.999 3.8 

C24r 53.983 

Paleocene - Eocene boundary C24r 53.983 0.52 

C25n 57.101 

Paleocene - upper Cretaceous C25n 57.101 2.4 

C30r 68.196 
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Table 2 

Length of 1 myr per interval. 

Interval Length of 1 myr (mm) 

Oligocene 4.790 

Eocene - Oligocene boundary 4.440 

Eocene 5.080 

Paleocene - Eocene boundary 4.250 

Paleocene - upper Cretaceous 5.495 

Table 3 

Re-scaling factors for the standardization of the vertical scale. 

Interval Pre-adjustment re-scaling factor Final re-scaling factor 

Eocene - Oligocene boundary 1.0788 1.0799 

Eocene 0.9429 0.9429 

Paleocene - Eocene boundary 1.1270 1.1278 

Paleocene - Upper Cretaceous 0.8717 0.8713 
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For the standardization of the vertical scales, re-scaling factors were calculated ( Table 3 ) using the

ligocene interval as reference. This was achieved by dividing the length of 1 myr from the Oligocene

4.790 mm), among the length of each of the other intervals ( Table 2 ). Minor graphical adjustments

ere required for a proper fit of the re-scaled numerical age axis ( < 0.001). 

Step 4. Following the results in Table 3 , the re-scaling process of numerical age,

hronostratigraphical and biostratigraphical scales was done in Adobe Illustrator, and a single

lot for the entire Paleogene was obtained. 

Step 5. In order to validate the obtained Paleogene magnetobiochronological scale, carbon and

xygen isotope data from Zachos et al. [15] was plotted using the Gradstein et al. [12] age model.

ell-known global stable isotope shifts that characterize the boundaries of some epochs allowed us

o validate the Paleogene scale. At the Paleocene-Eocene boundary, a large amount of isotopically

ight carbon was added into the ocean-atmosphere system causing a unique negative excursion of
13 C values [16] ; at the Eocene-Oligocene boundary, a notable increase in δ18 O values is recorded

eflecting the beginning of Oligocene glaciation [17] . We observed a perfect fit between isotope curves

nd chronostratigraphic and biostratigraphic schemes. However, the negative excursion of δ13 C values

id not coincide with the Paleocene-Eocene boundary. 

Step 6. To solve this, we replaced δ13 C and δ18 O data from Zachos et al. [15] by a stable

sotope record based on an updated age model [18] , which extends from the late Maastrichtian

p to the early Eocene. In spite of this, curves still did not fit properly at the Paleocene-Eocene

oundary, thus a second re-scaling was applied. For this re-scaling, we considered that the Cretaceous-

aleogene boundary and the Paleocene-Eocene boundary are anchored at 66.0225 [19] and 55.93 Ma

20] respectively, following the specifications in [18] . This implies that the length of the Eocene had

o be reduced by a factor of 0.9698, whereas the Paleocene had to be expanded by a factor of 1.1075.

fter this adjustment, the re-scaling of the Paleogene magnetobiochronological scale was validated

 Fig. 1 ). 

Step 7. The validated magnetobiochronological plot was used to obtain pixel data corresponding to

he limits of the biozones of interest. This was achieved using the imtool function of MATLAB, which

isplays a grey scale image of the selected file in the image viewer app. Importantly, the file used in

his step must be an RGB TIF file with a resolution of 1500 dpi, and must not include any headers in

he figure (Supplementary Fig. 1). The Y axis coordinate (pixel value) was extracted for the top and

ottom limits of each of the selected biozones, using the information displayed in the image viewer

pp. From such data, the average pixel value of each biozone was calculated (Supplementary Table 1).

Step 8. In order to plot any data against the magnetobiochronological scale, an excel file structure

as designed to link the paleoecological data (e.g., abundance of specific taxa, diversity index, etc.) to

he average Y pixel values of the corresponding biozone ( Fig. 2 ). 
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Fig. 1. Validated Paleogene magnetobiochronological scale. Benthic foraminifera δ13 C and δ18 O data from Zachos et al. [15] and 

Barnet et al. [18] (see references therein [18] ) are plotted against timescale using age model from Gradstein et al. [12] and 

Barnet et al. [18] . Calcareous nannoplankton biozones: I [2] , II [3–5] , and III [7] ; planktonic foraminiferal biozones: IV [6] , V [1] , 

VI [8] , VII [ 9 , 10 ]. 
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Fig. 2. Example of key elements and required set-up of the excel file (Supplementary Table 2) used to plot paleoecological data 

against the updated Paleogene magnetobiochronological scale. 

Fig. 3. Comparison between the Y axis coordinate plot developed in MATLAB and the updated Paleogene 

magnetobiochronological scale. 
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Fig. 4. Implementation of the method for plotting paleoecological data such as the relative abundance of a group of benthic 

foraminifera (buliminids sensu lato, s.l. ) against the updated Paleogene magnetobiochronological scale. Benthic foraminifera δ13 C 

and δ18 O data from Zachos et al. [15] and Barnet et al. [18] (see references therein [18] ) are plotted against timescale using the 

age model from Gradstein et al. [12] and Barnet et al. [18] . Calcareous nannoplankton biozones: I [2] , II [ 3 –5 ], and III [7] ; 

planktonic foraminiferal biozones: IV [6] , V [1] , VI [8] , VII [ 9 , 10 ]. 

 

 

 

 

 

 

 

Step 9. Once the paleoecological data was included in the excel file, the data was plotted in

MATLAB using the average Y pixel value (Supplementary Source Code). The resulting graph has the

same vertical size as the file used in the image viewer app ( Fig. 3 ). The horizontal axis displays the

paleoecological data (e.g., relative abundance of taxa, diversity index, etc.), and the vertical axis shows

the pixel scale, with values in descending order. The vertical axis must be displayed on this scale

and in this format (descending values) because the MATLAB image viewer app uses a descending

coordinate system, with the origin coordinates in the upper-left corner. Fig. 4 shows an example of the

plotted data as compared with the magnetobiochronological scale. The paleoecological data displayed 



G.J. Arreguín-Rodríguez, C.A. Trasviña-Moreno and E. Thomas et al. / MethodsX 8 (2021) 101291 7 

i  

a

D

 

r

A

 

f  

E  

(  

t

S

 

1

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[
 

 

 

 

 

 

 

 

n Fig. 4 were extracted from the compilation of benthic foraminiferal quantitative data, in order to

nalyze the spatial/temporal variability of these organisms through the Paleogene [21] . 
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