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Abstract

In breast surgical practice, various scans and medical examinations
are performed before surgery. This includes identifying landmarks
de�ning the operating procedure. In most cases, the position of the
patient during the scan is vastly di�erent from the one encountered
during the operation. We address the challenge of mapping preopera-
tive information to the operating �eld, with the following constraints:
registration has to be done in less than 10 seconds to be compatible
with a clinical work�ow; the cost of the device must be small and we
assume data scarcity, i.e. that our database has twenty scans of pa-
tients at most. We build anatomical complexity through a skinning
model comprised of scalable bones (to account for pose and morpho-
logical variations) and deformable organs (blendshapes, to account for
anatomical variations). Similar to animation rigs used in computer
graphics, and in contrast to statistical approaches, we manually de-
sign a model with some desirable properties, using a reduced number
of well-chosen degrees of freedom. Meaningful constraints can be ap-
plied to the registration depending on the context, and the trade-o�
between precision and complexity can be optimized. The result is a
surface mesh of the patient obtained in less than 1 minute (scan and re-
construction included) and a registration method that converges within
a few seconds (3 maximum), reaching a mean absolute squared error
of 2.3 mm for mesh registration and 8.0 mm for anatomical landmarks.
The registered model is used to transfer surgical reference patterns on
any patient in any position.

1 Introduction

In 2018, breast cancer was the second most prevalent cancer with more
than 2 million cases and its incidence rate increased by 0.3% per year [8].
Surgery remains one of the most common treatments, in 2016, nearly one-
half of patients with early-stage (stage I or II) breast cancer underwent
breast-conserving surgery [8]. The least invasive and traumatic operation,
lumpectomy, consists of removing the breast tumor including surrounding
tissues. Before surgery, the surgeon draws surgical patterns on the patient
in a preoperative position (standing) and then, surgery is instantly done
in the intra-operative stance (supine). These patterns, also called surgi-
cal drawings are part of the preoperative planning procedure; they can be
important anatomical landmarks or a visual map that will guide the tools
of the surgeon [24] [25]. The success of the operation is highly dependent
on the said preoperative planning and will in�uence the �nal breast shape
[27]. However, surgical drawings require experience and accuracy that can
be challenging for young surgeons.

As the surgeon usually spends less than one minute on the drawing,
timing is critical and imaging should be rapid to be compatible with the
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clinical timing [5]. 3D surface imaging has proven to be a helpful technology
in preoperative planning, especially for estimating breast parameters such
as volume, shape, and symmetry [7]. These imaging techniques are fast and
accurate but are still not widely used mainly due to the high cost of the
devices [31].

Patient-speci�c models can be obtained in many manners. One of the
most popular methods is to create a well-known model and deform it to
�t the patient's data, namely registration. For example, [19] [18] directly
reconstruct the breasts of patients with a low-cost depth camera coupled
with non-rigid registration.

Other methods like free form deformation algorithms can deform an ob-
ject by warping the whole space in which the object is embedded instead of
warping the object directly. For example, [3] coupled rigid registration to
free form deformation algorithms to register the breast from one position to
another one.

The �nite element method also uses surface scan registration to estimate
unknown material parameters by minimizing the distance between the simu-
lations results and the patient's data [9]. To reduce �tting error, all previous
registration methods use a high number of degrees of freedom which leads
to computational costs that are incompatible with surgical practice.

Statistical models also tackle this problem by using 3D morphable mod-
els. These statistical shape models are obtained by using dimensionality-
reduction methods like Principal Component Analysis (PCA) to a set of
training shapes. [29] and [17] combined 3D morphable models with ad-
ditional landmarks to impose breast shapes constraints for improving the
�tting of the model. These robust methods are faster than non-rigid reg-
istration but rely on a large database (3.15s per scan on average with a
database of 310 scans in [29])

Therefore, in all previous models, all patients had a quasi-similar posture.
Indeed, non-linear transformations such as large articulated movements can
be hard to model. In our patient database, we noticed a non-negligible pose
variation that makes all previous methods di�cult to apply. Learned-models
overcome this issue by proposing neural networks that reproduce nonlinear
mesh deformation e�ects as a function of pose information. These methods
are widely used for their robustness, �exibility, and e�ciency [6] [4]. Hence,
the size of the training set required to account for pose and morphological
variations across the population can be large and di�cult to collect.

In this context, inspired by computer graphics, we propose to mix modes.
We used a linear anatomical surface space of deformation to account for
morphological variations known as blendshapes [21]. These deformers can
be combined with a virtual skeletal connected to the surface of the model to
consider pose variations, namely skinning [14].

In terms of model �exibility, the closest work is the SMPL (Skinned
Multi-Person Linear Model) [22]. The main concept of SMPL is the use of
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corrective human body-shape and pose-dependent shape variation, learned
from thousands of 3D body scans, to improve the accuracy of the skinned
model. Originally designed for graphics purposes, the learned-model has
been extended to the medical �eld. For example, [12] �t its SMIL to RGB-D
sequences of freely moving infants for early detection of neurodevelopmen-
tal disorders. SMPL ful�lls our timing and accuracy criteria. The main
drawback of the model is the learning database, partially made of women
wearing bras, which makes impossible to capture anatomical details that are
only visible on naked-breasts. At the time of writing this paper and to our
knowledge, no open-source database of 3D scans of exposed chest is available.

In this paper, we propose a �exible model that can �t a set of patients in
di�erent surgical positions, without any previous training phase. To ensure a
quasi-instantaneous patient �tting, we developed a simple articulated model
made of virtual bones to allow pose modi�cations. This model is made more
adaptive by allowing the scalability of these bones to cater for variations
in body morphologies. Moreover, we used a simple linear model of body
shapes to account for physiological variations in breast shape. In the end,
our model �ts a scan in less than 3 seconds, is robust to noise, incomplete
data, posture, and morphological variations of patients.

2 Method

2.1 Data acquisition

To obtain a 3D surface mesh of the patient, we used a depth camera1. This
scanning device su�ers from a high noise-sensitivity and the possible creation
of spurious gaps within the mesh. However, it satis�es our criteria in terms
of rapid acquisition time, user-friendly interface, and reasonable price.

The acquisition was made on 7 women, in preoperative and intra-operative
positions. Their age varies between 30 and 70 years and their breast size from
95A to 110C with one notable case of asymmetry. All the patients were
diagnosed with breast cancer and chose lumpectomy as the most suitable
treatment, under medical recommendation. After obtained consent from the
7 patients for the study, scans were performed by the surgeon without any
previous training. The result is a surface mesh of the patient obtained in
less than 1 minute, scan and reconstruction included.

2.2 Rigging

Skeletal animation or rigging is a technique in computer graphics to animate
an articulated object. The "rig" is usually a hierarchical set of interconnected
parts called "bones". These bones are purely �ctive and connected through
joints designed to mimic as best as possible the motion of a human. Usually,

1Structure Sensor by Occipital: https://structure.io/

4



the rig is done manually as it depends on the animated surface shape. Nowa-
days, much 3D software o�ers this feature, but rigging requires experience
and skills to know the number and position of the bones. Previous work has
been done to automatically generate the skeleton based on the 3D surface
mesh [1].

Each bone will be considered as a rigid-scalable object, meaning that each
bone will have 9 absolute DOFs (3 rotations, 3 translations, and 3 for the
scale). The relative motion of the bones will be constrained by the joints. We
compute local rotations and translations of the joints by computing relative
transformations at a rigid point attached to the scalable bones, represented
by the spheres in �gure 2a. Then, constraints are applied through Lagrange
multipliers on local rotations and translations [30]. Quaternions are used to
de�ne the axis angle of every bone. From them, we compute a local rotation
matrix.

2.3 Skinning

Skinning is the next step to animate the articulated model. It consists of
deforming the surface mesh (i.e the skin of the model) depending on the
pose of the rig [14] [13] [20]. This can be achieved through blend weights
that adjust the in�uence of each skeletal bone on the skin. In �gure 2b,
we displayed the colormap of the blend weights associated with the lower
bone. The red regions are rigidly attached to the bone and follow the bone's
motion, conversely, blue areas are not a�ected by the movements of the
bone. The blend weight matrix can be manually given by the user or can be
automatically calculated by 3D modeling software such as Blender 2.

In a simple case on the �gure 1a, we designed 2 bones linked by a spherical
joint and applied a simple 45 degrees rotation around the z-axis on the upper
bone. Each bone is connected to the cuboid through a blend weight matrix.
We observe a bending of the structure caused by the rotation of the bone,
only the upper part of the object is deformed because the surface is mainly
a�ected by the upper bone via the blend weight matrix.

In this study, the model is more complex with K = 9 bones and N =
2200 vertices as shown in �gure 2a. We use the following notations: Rj(q)
the rotation matrix of the jth bone obtained from the quaternion rotation,
Tj the associated vector bone o�set and Sj the scale matrix with a scale
coe�cient for each direction. As a result, with a given set of K bones,
bones rotation R(q) = [R1(q), ..., RK(q)], bone o�set T = [T1, ..., TK ], bone
scale S = [S1, ..., SK ]. By calling the elements of the blend weight matrix
wj,i (w ∈ IRK×N ) and the rest template mesh vertices vi (v ∈ IRN×1). The
computed verticesMi are given by the equation of the Linear Blend Skinning
(LBS):

2https://www.blender.org/
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Mi(R(q), S, T ) =
K∑
j

wj,i(Rj(q)Sjv
T
i + Tj), (1)

2.4 Blendshapes

Originally from computer graphics, [26] used blendshapes for the �rst time in
facial animation. Years later, blendshapes are implemented in all animation
software for providing realistic and quick facial expressions to animated char-
acters [15] [21]. Now widely used for e�cient geometrical deformation [23],
blendshapes are deformed versions of a template mesh. For our model, an
artist created A = 55 blendshapes a�ecting global features such as shoulders
or belly size as well as more local ones such as nipples and aureole shapes.
Let v denotes the vertex positions of the template mesh, B the blendshape
function computing the deformed vertex positions and bk the kth shape dis-
placement matrix, with v,B, bk ∈ IRN×3. Blendshape displacements provide
a set of basis vectors that de�ne a linear space which is used to generate a
vector space, onto which the patient's shape is projected.

B(αk) = v +
A∑
k

αkbk, (2)

where A is the number of blendshapes and αk ∈ RA the linear blendshape
weights a�ected to each kth blendshape. To ensure convexity and invariance
for rotation and translation, these weights should ful�l the following condi-
tions:

∑n
i=1 αk = 1 and αk > 0,∀k ∈ [[1, n]]. These 55 blending weights (αk)

can be used as degrees of freedom (DOFs) for our deformable model, we call
α the vector storing the αk values.

By combining di�erent body shapes, the model can cover a large defor-
mation space to �t several morphologies (�gure �gure 3) and can be easily
enriched by adding more blendshapes. Blendshapes and Principal Compo-
nent Analysis (PCA) are two possible linear models to create an anatomical
space of deformation. Blendshapes are generally hand-crafted by an artist,
whereas PCA modes are extracted from example data. As a result, blend-
shapes, contrary to PCA modes, do not make up an orthogonal basis (real
inner product space), but are, in general, still independent. Besides, the
modes generated by PCA, produced by linear operations are often di�cult
to interpret physically. The major drawback of blendshapes is the degenera-
tion of the solution when the deformation involves large rotations [23]; which
can be avoided with skinning methods.
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2.5 Final model

In the �nal model, we combine the e�ect of blendshapes mixed with the scal-
able bones of the skinning. While blendshapes and scalable bones permit
morphological variations between patients, rigging take care of adjustments
in the patient's pose. The skin deformation due to pose variations is approx-
imated by skinning, more precisely the blend weights imposed by the artist.
By injecting equation 2 into 1, we obtain:

Mi(R(q), S, α, T ) =
K∑
j

wj,i(Rj(q)SjB
T
i (α) + Tj), (3)

To avoid distortion of the model and to regularize the energy minimiza-
tion we de�ne 3 additional energy terms. A scale energy ES to penalize
the scale matrix of each bone towards its original scale (with I3 the order
3 identity matrix). A blendshape energy EBS to regularize the blendshape
weights towards 0 and a joint energy EJ to regularize the translations and
the relative rotations of each joint to their initial con�gurations, respectively
T ∗
j and Rj(q

∗) for the jth bone. With ‖ • ‖ the Euclidean norm, we obtain
the following equations:

ES(S) =
K∑
j

‖ Sj − I3 ‖2, (4)

EBS(α) =‖ α ‖, (5)

EJ(R(q), T ) =

K∑
j

‖ log(Rj(q
∗)R−1

j (q)) ‖2 + ‖ Tj − T ∗
j ‖2 . (6)

2.6 Registration

To �t the skin of the model to the scan of the patient, we have chosen to
minimize closest-point distances such as in the ICP algorithm [2]. More ex-
actly, we used an octree structure to �nd the closest vertex on the scan from
source vertices. Then, we projected the source point onto the closest prim-
itive (triangle, edge, or point) around each closest vertex. It allows a more
accurate registration than using point-to-point distances and di�erentiating
7 with respect to Mi can be easily done by computing the normals on the
scan. The scanning process depends on the surgeon, some scans can be in-
complete containing only the front view and artifacts, as shown in �gure 9a.
To improve the robustness of the algorithm against noise and local solutions,
�lters to reject outliers have been added (distance and normal threshold).

Based on correspondences established at each iteration, we identify the
best set of parameters that minimizes the distance from the scan to the
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deformed model. We de�ne a data energy term that penalizes the squared
Euclidean distance between the model vertices Mi and the target mesh V
according to the closest point algorithm:

ED(R(q), S, α, T ) =

NCP∑
(i,j)

‖Mi(R(q), S, α, T )− Vj ‖2, (7)

where NCP represents the index pairs found by the closest point algorithm
and Vj is the closest point from Mi on the set of target mesh triangles. The
total energy to minimize is :

Etot(R(q), S, α, T ) =
1

λD
ED +

1

λS
ES +

1

λBS
EBS +

1

λJ
EJ (8)

with λD = 10e−3, λS = 10e−2, λBS = 10e−3, λJ = 10e−2 set empirically. We
used a regularized Newton algorithm and stop the minimization when we
reached our convergence threshold based on the distance compared to the
last iteration.

As described in [30], we iteratively minimize equation 7 using an implicit
integration of Newton's equation, using a compliant formulation to handle
both sti� constraints (joint translations and rotations) and elastic terms in
a stable manner. The solver �nds a compromise between minimizing the
distance to the data and the distortion of the reference model.

According to [10], we manually added 12 anatomical landmarks on the
model (�gure 9b) and on all scans in preoperative and intra-operative stance
(respectively �gure 9a and 9e). These landmarks were chosen for their easy
reproducibility, as validation criterion for the registration and to possibly
strengthen our registration. Indeed, without taking into account the land-
marks in the registration, we achieve a mean absolute squared error (MASE)
of 2.01 cm between the landmarks of the model and the scans, which is
too large. Our registration approach o�ers the possibility to combine auto-
matic vertex matching (closest-point algorithm) with manual vertex match-
ing (landmarks). By enabling the surgeon to interactively select these land-
marks, we can add a landmark energy term to penalize the squared distance
between the landmarks of the model and the landmarks of the scans. The
landmark energy EL expression is similar to equation 7, but we replaced the
closest-points index pairs by the corresponding landmarks index pairs.

Efin(R(q), S, α, T ) = Etot +
1

λL
EL, (9)

with λL = 10e−4 also set empirically.
As shown in �gure 4, by taking the landmarks into account in the regis-

tration, we reached a MASE of 8.03mm on the landmarks without increasing
our MASE on the mesh registration. This improvement is expected but high-
lights in some cases a bad matching of the closest point algorithm. Indeed
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some landmarks such as nipples are geometrically signi�cant on the mesh
and can be detected by the automatic algorithm; others like the sternum are
only textured information and are hard to be detected by the closest point.
Manually adding the landmarks (takes less than 30 seconds) produces a more
accurate registration for less computational time.

3 Result

We chose the Simulation Open Framework Architecture (SOFA [11]) to per-
form our registration onto 7 patients in preoperative and intra-operative
stance.

In table 1, we computed for each scan the time needed to reach our stop-
ping criterion as well as registration statistics of the surface and landmarks
between the model and scan points. These results show that the registration
is e�cient and independent of the pose or the morphology. Assuming a good
registration of the model on the scan, we can transfer a surgical pattern to
the patient. To do so, we drew a given surgical pattern for breast lumpec-
tomy (image 9b). As shown in image 9a and 9d, the surgeon draws 5 shapes,
2 delineating the upper and lower sternum, 2 for the right and left breast,
and the last circle represents a projection of the tumor. As the tumor draw-
ing is designed according to the patient-speci�c MRI, we are only focused on
drawing the sternum shapes and delineating breasts. We had also superim-
posed the drawing of the surgeon (in black) and the drawing of the model
(in white), respectively image 9c in preoperative and 9f in intra-operative
stance.

Besides, we studied the e�ect of blendshape numbers on the performances
of the model. As shown on �gures 5 and 6, increasing the number of blend-
shapes reduces the MASE. Indeed, by expending the number of blendshape,
the deformation space of the model is expended; as a result, the model can
�t more complex body shapes. For the preoperative stance (�gure 5), we
observe that after 25 blendshapes we obtain a slight improvement of the
solution. In the intra-operative stance (�gure 6), we see that even with 55
blendshapes, the MASE is still decreasing, showing that the result can proba-
bly be improved by taking more blendshapes. Determining the right amount
of blendshape can be delicate because one blendshape can be meaningful
for one particular morphology but worthless for another one. For example,
in �gure 6, blendshape 44 has a signi�cant impact on the majority of the
patients but not for Patiente 0 and Patiente 6. A compromise has to be
found between accuracy and registration time. Indeed, by increasing the
number of blendshapes, the number of DOFs is also increasing leading to
higher registration time. For the proposed application, 55 blendshapes are
a reasonable give-and-take with a mean accuracy lower than 3mm for the
surface registration and an execution time inferior to 3s.
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Finally, we conducted a sensitivity analysis of the model's parameters in
both con�gurations. As we empirically chose the values of λD, λS , λBS , λJ
and λL, we investigated the impact of these parameters on the surface and
landmarks MASE. To do so, we modi�ed one particular parameter while
�xing all other parameters to their original value and calculated the mean
MASE for all patients. As mentioned in section 2.6, these parameters repre-
sent the impact of speci�c energies on the entire system (equation 9). The
results are displayed in preoperative con�guration, in �gures 7 and 8, but
the curves are similar in intra-operative stance. This study highlights the
following points:

� Decreasing the value of λD is increasing the impact of ED (equation
7) in the total energy and improve the surface MASE.

� Decreasing the value of λL is improving signi�cantly the landmark
MASE. Hence, decreasing λD for improving the surface MASE does
not improve the landmark MASE, this highlights the bad matching of
the closest-point algorithm.

� Other parameters do not have a strong impact on the MASEs but
by increasing their values, both MASEs slightly decrease. Indeed, as
λS , λBS , λJ prevent model distortion, reducing their values force the
model to its initial con�guration. Conversely, selecting a value upper
than 10 leads to singularities on the model.

4 Discussion

In the present study, we registered a simpli�ed breast-model on multiple
patients in the preoperative and intra-operative con�guration. We used a
skinning model comprised of scalable bones and blendshapes to provide a
trade-o� between precision and time-e�ciency. We showed that Linear Blend
Skinning was a good approximation of the bone joints motion and allow the
model to �t di�erent poses. LBS can be subject to volume loss or "candy-
wrap" e�ect when joints rotations are too important, this can be alleviated
with Dual Quaternion Skinning [16] or Implicit Skinning [32]. So far, we
did not observe such behaviors in our application. Moreover, morphological
di�erences, as well as soft-tissue deformation induced by di�erent poses, are
challenging to model and were approximated by blendshapes. The robust-
ness of the model was demonstrated through a sensitivity analysis showing
that a balance has to be found between λD and λL enhancing respectively
the accuracy of the mesh registration and the accuracy of the landmark reg-
istration. Finally, the model is �exible and can be easily modi�ed by tuning
the regularization parameters or by adding new blendshapes, landmarks, and
bones.
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We showed a concrete clinical application of breast patient-speci�c mod-
eling for preoperative surgery drawing based on real data with the following
results: on average, 2.35mm for the surface MASE, 8.03mm for the land-
marks MASE, and 2.03s for the execution time. The results obtained in
this study are congruent with those present in the literature. [29] used 3D
Morphable Models of the breast to �t two possible inputs: 2D photos and
3D scans. For 310 3D scans, an average distance error of 2.36mm in 3.15s is
obtained with a standard deviation of 0.18mm. While these results are sim-
ilar in magnitude to those of the present study, [29] obtain a lower standard
deviation error probably due to the high number of scans.

Our application is mainly focused on lumpectomy but the methodology
is general and can be compatible with other surgical patterns such as mastec-
tomy or mammary reduction. The method can even be generalized to other
body parts but will require to create a new rig, mesh, and blendshapes. Our
approach could be improved by automatically detecting the landmarks (us-
ing the scan's textures for instance). Those are for now identi�ed manually
by the surgeon which is an advantage for �exibility but a drawback for au-
tomation. To reduce the computational time, we also used a coarse mesh
but re�nement of the mesh can lead to better registration. Validation on a
larger population for creating a statistical database would be a useful step
forward. This could be done by adding a Bayesian regularisation term [28] to
the energy minimization term. The registration provides a patient-speci�c
mesh, ready for biomechanical simulations, and can be the base for pre to
intra-operative mapping of tumors using the �nite element method.²
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Table 1: Registration statistics errors for preoperative and intra-operative
stance

Preoperative con�guration

Patient Time (s)
Surface distance error Landmarks distance error

Mean (mm) Std (mm) Max (mm) Mean (mm) Std (mm) Max (mm) Min (mm)
0 1.98 2.31 3.24 23.7 8.24 3.42 13.8 3.74
1 2.17 2.22 4.06 45.6 8.70 4.99 16.2 4.68
2 2.11 2.58 2.94 35.9 11.03 5.88 25.0 2.34
3 1.32 2.23 2.15 14.5 8.98 3.97 16.2 1.61
4 1.38 2.43 2.88 25.0 8.17 6.54 20.7 0.94
5 2.23 2.23 3.39 23.3 7.22 3.46 11.9 1.21
6 1.79 2.87 3.71 51.5 6.89 5.72 22.9 3.53

Mean 1.85 2.41 3.19 31.4 8.46 4.85 18.1 1.98

Intra-operative con�guration

Patient Time (s)
Surface distance error Landmarks distance error

Mean (mm) Std (mm) Max (mm) Mean (mm) Std (mm) Max (mm) Min (mm)
0 2.01 2.39 3.48 31.9 9.36 3.68 14.9 3.40
1 1.90 2.11 3.00 17.7 7.96 4.13 15.2 1.54
2 1.99 2.14 3.13 20.1 7.23 3.74 14.0 1.02
3 2.54 2.33 2.78 19.6 3.95 3.40 12.3 0.37
4 2.14 1.85 2.78 24.3 7.32 3.44 11.2 0.21
5 3.01 2.44 2.86 20.4 7.03 4.91 15.8 2.84
6 1.80 2.70 3.43 30.6 10.39 4.36 19.6 2.85

Mean 2.20 2.28 3.06 23.5 7.61 3.95 14.7 1.75

(a) (b)

Figure 1
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(a) (b)

Figure 2

(a) (b)

(c) (d)

Figure 3
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(a) Scan of patients 1 and 6
in preoperative stance

(b) Model registered on the
preoperative patient scan

(c) Superimposition of the
scan pattern (black) and
model pattern (white)

(d) Scan of patients 1 and 6
in intra-operative stance

(e) Model registered on the
intra-operative patient scan

(f) Superimposition of the
scan pattern (black) and
model pattern (white)

Figure 9
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