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ABSTRACT

Here is a question that is easy to state, but often hard to answer:

Is this function nonnegative on this set?

When faced with such a question, one often makes appeals to known inequalities.
One crafts arguments that are sufficient to establish the nonnegativity of the function,
rather than determining the function’s precise range of values. This thesis studies
sufficient conditions for nonnegativity of signomials and polynomials. Conceptually,
signomials may be viewed as generalized polynomials that feature arbitrary real
exponents, but with variables restricted to the positive orthant.

Our methods leverage efficient algorithms for a type of convex optimization known
as relative entropy programming (REP). By virtue of this integration with REP, our
methods can help answer questions like the following:

Is there some function, in this particular space of functions, that is
nonnegative on this set?

The ability to answer such questions is extremely useful in applied mathematics.
Alternative approaches in this same vein (e.g., methods for polynomials based
on semidefinite programming) have been used successfully as convex relaxation
frameworks for nonconvex optimization, as mechanisms for analyzing dynamical
systems, and even as tools for solving nonlinear partial differential equations.

This thesis builds from the sums of arithmetic-geometric exponentials or SAGE
approach to signomial nonnegativity. The term “exponential” appears in the SAGE
acronym because SAGE parameterizes signomials in terms of exponential functions.

Our first round of contributions concern the original SAGE approach. We employ
basic techniques in convex analysis and convex geometry to derive structural re-
sults for spaces of SAGE signomials and exactness results for SAGE-based REP
relaxations of nonconvex signomial optimization problems. We frame our analysis
primarily in terms of the coefficients of a signomial’s basis expansion rather than
in terms of signomials themselves. The effect of this framing is that our results
for signomials readily transfer to polynomials. In particular, we are led to define a
new concept of SAGE polynomials. For sparse polynomials, this method offers an
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exponential efficiency improvement relative to certificates of nonnegativity obtained
through semidefinite programming.

We go on to create the conditional SAGE methodology for exploiting convex sub-
structure in constrained signomial nonnegativity problems. The basic insight here
is that since the standard relative entropy representation of SAGE signomials is
obtained by a suitable application of convex duality, we are free to add additional
convex constraints into the duality argument. In the course of explaining this idea
we provide some illustrative examples in signomial optimization and analysis of
chemical dynamics.

Themajority of this thesis is dedicated to exploring fundamental questions surround-
ing conditional SAGE signomials. We approach these questions through analysis
frameworks of sublinear circuits and signomial rings. These sublinear circuits
generalize simplicial circuits of affine-linear matroids, and lead to rich modes of
analysis for sets that are simultaneously convex in the usual sense and convex under
a logarithmic transformation. The concept of signomial rings lets us develop a
powerful signomial Positivstellensatz and an elementary signomial moment theory.
The Positivstellensatz provides for an effective hierarchy of REP relaxations for
approaching the value of a nonconvex signomial minimization problem from below,
as well as a first-of-its-kind hierarchy for approaching the same value from above.

In parallel with our mathematical work, we have developed the sageopt python
package. Sageopt drives all the examples and experiments used throughout this
thesis, and has been used by engineers to solve high-degree polynomial optimization
problems at scales unattainable by alternative methods. We conclude this thesis with
an explanation of how our theoretical results affected sageopt’s design.
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C h a p t e r 1

INTRODUCTION

This thesis considers intractable convex optimization problems. The construction of
these problems begins by considering a linear space of real-valued functions, such
as multivariate polynomials in some number of variables. We then consider the set
of all functions in that space that are nonnegative on a domain of interest. These sets
are called nonnegativity cones. They are evidently convex, because if we start with
functions that are nonnegative on a domain K, then any positively weighted sum of
those functions is also nonnegative on K.

One can get a sense for modeling power with nonnegativity cones by considering a
simple example. For any function 5 defined on K, we have

inf{ 5 (x) : x in K} = sup{W : 5 (x) − W ≥ 0 for all x in K}.

The problem on the left is nonconvex in general, and yet the problem on the right
can be stated as a convex program with nonnegativity cones. Of course – this
reformulation is only a formalism. We cannot hope to solve optimization problems
involving nonnegativity cones anymore thanwe can hope to solve general nonconvex
optimization problems. The utility of this perspective is that it leads us to ask the
following question.

What can we do by approximating a nonnegativity cone with another
convex set that is amenable to off-the-shelf convex optimization solvers?

It turns out that we can do a great deal. An especially rich literature has grown
around the use of standard convex optimization frameworks to produce certificates
of nonnegativity for various classes of functions. In the field of optimization itself,
this approach has been used to devise convex relaxation frameworks for nonconvex
optimization problems [1–3]. In control theory, nonnegativity certificates have
been used to automate the search for Lyapunov functions [2, 4]. In statistics, these
methods can be used to perform regression with shape constraints such as concavity
or monotonicity [5, 6]. Nonnegativity certificates even have broader applications in
analyzing and solving nonlinear partial differential equations [7–9].
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The above applications were first developedwith sums of squares or SOS certificates,
which use the simple fact that a square of a real polynomial is evidently nonnegative.
The SOS approach possess an intrinsic connection to algebra that is the source of
much of its practical effectiveness. For example, powerful representation results
in real algebraic geometry and functional analysis show that under appropriate
regularity conditions, the existence of a suitable SOS certificate is actually necessary
for a polynomial to be positive on a given domain [10, 11].

Still, SOS has its limitations. It has been shown that if 3 > 2, then as we increase the
number of variables =, only a vanishing fraction of nonnegative =-variate degree-3
polynomials actually admit SOS decompositions [12]. In fact, the larger the degree,
the faster the gap between SOS polynomials and nonnegative polynomials grows.
This is compounded by the fact that the sizes of the convex programs required
by SOS methods grow exponentially with polynomial degree. In practice, we can
expect the best performance out of SOS methods precisely when working with
problems of modest size – either the problem should have relatively few variables
or the polynomials should be of very low degree.

This thesis studies nonnegativity certificates that are well suited to problems that fall
outside of SOS’ favorable regime. We begin by turning our attention to generalized
polynomials with arbitrary real exponents. These are functions of the form

t ↦→
∑
"∈A

2"C
U1
1 · · · C

U=
= for some finite A ⊂ R=

and real (2")"∈A . When considering these functions, the only reasonable measure
of “complexity” is the number of variables = and the number of terms |A|. If we
were to compare this situation to polynomials, then we would say that we measure
complexity by sparsity in the monomial basis.1 Note however that because we are
interested in nonnegativity problems, and because the exponents can be arbitrary real
numbers, we must restrict the variable t positive orthant to ensure these functions
are real-valued. Subject to this restriction, we can apply the substitution C8 = exp G8
to obtain

x ↦→
∑
"∈A

2" exp(U1G1 + · · · + U=G=).

We call such functions signomials.

At a technical level, signomial nonnegativity is the primary subject of this thesis.
We make no assumptions whatsoever on the exponentsA, and so our methods have

1Strictly speaking this comparison doesn’t hold water, since the monomial basis for these gener-
alized polynomials cannot be graded by degree. But we have to start somewhere.
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applications to “proper” signomial models with fractional and negative exponents.
The more readily appreciable impact of our work, however, can be found in its
consequences for polynomial nonnegativity problems upon specializing toA ⊂ N=.
It is easy to imagine how signomial techniques can be applied to polynomial models
when working over the positive orthant. Our methods are distinguished by the fact
that they apply to global polynomial nonnegativity problems. In particular,

The computational complexity of our methods for polynomials scales
only with the number of terms |A| and is independent of both the number
of variables in the polynomial and the polynomial’s degree.

This complexity scaling profile is possible because we do not take algebraic tech-
niques as our starting point. Rather, we start with the sums of arithmetic-geometric
exponentials or SAGE methodology for signomial nonnegativity, as introduced by
Chandrasekaran and Shah [13]. There are twoways to certify the nonnegativity of an
elementary summand in a SAGE decomposition. The namesake approach involves
appeal to the arithmetic-geometric mean inequality, which has been studied as a tool
for polynomial nonnegativity since 1989 [14]. A second approach – which is the
ultimate source of this method’s efficacy – involves an appeal to convex duality.

This thesis makes contributions on three fronts. First, we present structural prop-
erties of SAGE signomials in their original formulation and extend SAGE to the
global polynomial nonnegativity problem. Second, we develop a generalization
of SAGE for constrained signomial nonnegativity problems, and we undertake a
multi-faceted analysis of this methodology with contributions in convex geometry,
algebraic geometry, and functional analysis. Third, we provide a comprehensive
implementation of our methods in an open-source software package.

The remainder of this chapter provides additionalmotivation for studying signomials
and describes our contributions in detail.

1.1 Signomials in a broader context
The literature on signomials is quite fragmented, owing to a wide range of con-
ventions used for this class of functions across fields and over time. In analysis of
biochemical reaction networks, signomials are often called generalized polynomials
[15, 16], or simply “polynomials over the positive orthant” [17]. In amoeba theory
and tropical geometry one usually calls signomials exponential sums [18–20], and
certain authors adjacent to these communities have used this term when writing
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about SAGE [21–23]. Much of the earlier optimization literature referred to sig-
nomial programming as “generalized geometric programming,” but this term now
means something quite different [24].

A recurring theme across many of these works is to consider signomials in the
generalized polynomial formulation. Our use of the term “signomial” to mean lin-
ear combinations of functions x ↦→ exp〈", x〉 is in the minority. We believe our
terminology is still appropriate because numerical methods for analyzing signomial
models routinely use the exponential parameterization (this is especially true in
optimization). At a deeper mathematical level, we feel that the exponential formu-
lation is somehow more “coherent” than the generalized polynomial formulation.
The exponential formulation allows for affine changes to the coordinate system,
it makes clear that signomials are not closed under composition, and it makes us
take seriously the restriction that exp x = t is actually positive rather than merely
nonnegative.

In what follows we review examples and history of signomials in mathematical
modeling.

1.1.1 Dynamical systems
The nonnegativity certificates developed in this thesis have direct applications to
many kinds of dynamical systems analyses. We did not have a chance to deeply
explore these applications ourselves, but there are several promising opportunities
moving forward.

The biggest opportunities concern systems obeying mass action dynamics [25, 26]
and chemical reaction network theory [27, 28]. These systems are governed by
polynomial vector fields ¤x(C) = � (x(C)) that are only defined on the positive orthant
x(C) ∈ R=++. Important properties of these systems can be stated in terms of the
polynomial ?(z) = det Jac � (z) never taking the value zero on z > 0. Therefore
one can try to certify either ?(z) > 0 or ?(z) < 0 over the positive orthant.
These polynomials are extremely high degree and completely unapproachable by
SOS methods. We expect that SAGE should perform well on these problems,
partly because an earlier SAGE-like method was invented for the express purpose of
analyzing chemical reaction networks and biological systems [17, 29]. An inefficient
approach to SAGE known as sums of nonnegative circuits has also successfully been
applied to biological systems analysis [30]. In Section 4.3 we show how to efficiently
use SAGE for this kind of analysis.
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We refer the reader to [15, 16] and [31] for other papers on these systems.

1.1.2 Signomial optimization
To the best of our limited knowledge, the study of signomials as a modeling tool
actually beganwith optimization. The story beginswith a 1961 paper by the physicist
Clarence Zener, wherein he explained that minimizing very simple posynomials
(signomials with nonnegative coefficients) reduces to solving a system of linear
equations [32]. Zener suggested the tool was useful in solving certain engineering
design problems and wrote a follow-up article the next year [33].

The next big leap came in 1967, when Duffin, Peterson, and Zener introduced a
framework of geometric programming [34]. Here, one minimizes a posynomial
subject to upper bound constraints on posynomials. Geometric programs are “nice”
because local minima are global minima. Whether or not geometric programs are
convex depends on whether you use the generalized polynomial formulation (which
is not convex) or the exponential formulation (which is convex).

The term signomial was coined in a 1970 technical report by Duffin and Peterson,
which explored the theory of geometric programming without the “posynomial”
assumptions.2 Signomial optimization is computationally intractable in the formal
sense of NP-hardness. The early signomial programming literature does not em-
phasize this fact, probably because the concept of NP-hardness barely existed at the
time (and NP-hardness of continuous optimization problems was not established
until 1987 [36]).

The first polynomial-time algorithm for geometric programming came in 1994. It
required geometric programs to be stated with exponential functions and used the
machinery of self-concordant barrier functions [37]. The interior-point revolu-
tion that swept the optimization community brought renewed interest to geometric
programming. Some influential works from the early 2000s include Chiang’s mono-
graph on applications of geometric programming in communications networks [38]
and the extensive survey by Boyd, Kim, Vandenberghe, and Hassibi [24].

Nonconvex signomial optimization is a popular framework in engineering design.
The historical record shows early applications in chemical engineering [39–42]
followed by civil and structural engineering [43–46]. Applications in electrical
engineering picked up in the mid 2000s. See, for example, [47–49]. Most recently
there has been a tremendous amount of interest in signomial programming for

2The technical report was published three years later in [35].
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aircraft design. For the period of 2018-2019 alone, we have [50–55]. Just this
year, Virgin Hyperloop released a paper describing how solving highly-structured
signomial programs in thousands of variables is a key component of their design
process [56]. The conceptual source of these signomial models in engineering is
the simple practice of modeling systems with non-polynomial power laws [57, 58].

1.2 This thesis
Our contributions span four papers [59–62]. We have split [60] into three chapters:
one that explains a simple yet significant generalization of SAGE signomials, one
that explains the analogous advance for polynomials, and one that reviews our
software and describes some of our early computational experiments. The first and
third of these split chapters include new content that did not appear in [60].

1.2.1 Chapter 2: Preliminaries
Here we introduce essential concepts in convex analysis, nonnegativity certificates,
and notation for the rest of the thesis.

We start by introducing convex cones as convex sets that are closed under positive
scaling. We define the arithmetic-geometric exponentials or AGE functions as the
elementary nonnegative summands in SAGE decompositions, and we explain how
the recognition problem for AGE functions can be accomplished through either of
two ways: an arithmetic-geometric mean argument or a convex duality argument
involving the relative entropy function.

Once we have a concrete example of nonnegativity certificates in mind, we for-
malize the idea of using nonnegativity cones to losslessly convexify nonconvex
optimization problems. We provide a dual point of view where the convexifica-
tion is accomplished with moment cones and we explain how global nonnegativity
certificates are typically extended to constrained problems.

This chapter includes tutorial remarks on convex optimization. We comment on
how the relative entropy programs used in SAGE computations compare to the
semidefinite programs used in SOS computations.

1.2.2 Chapter 3: Newton polytopes and relative entropy optimization [59]
This chapter presents structural results for cones of SAGE signomials induced by a
given finite set of exponents A ⊂ R=. We characterize the extreme rays (conceptu-
ally, “edges”) of these cones in terms of the geometry of A and we prove a simple
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sparsity preservation property of SAGE decompositions with important theoretical
and practical consequences. We leverage these structural properties to determine
conditions under which signomial nonnegativity is equivalent to the existence of
a SAGE decomposition. Or, what is the same, we determine conditions for when
SAGE-based relative entropy programs can be used to solve a nonconvex signomial
program exactly. After proving our main signomial results, we direct our machinery
towards the topic of globally nonnegative polynomials. Our proposed SAGE poly-
nomials provide efficient methods for certifying global polynomial nonnegativity,
with complexity independent of polynomial degree.

1.2.3 Chapter 4: A new approach to constrained signomial nonnegativity [60]
Here we show that the convex duality argument behind globally nonnegative SAGE
signomials can be extended to address nonnegativity over any convex set X ⊂
R=. We call this broader concept conditional SAGE by consideration to a dual
perspective and moment problems in functional analysis. The conditional SAGE
approach is remarkable because the associated certificates of nonnegativity inherit
tractability from the convex set X. In addition, this class of functions is completely
independent from any representation of X, which is a radical departure from the
situation with SOS approaches to constrained polynomial nonnegativity. We present
examples of the conditional SAGE approach in signomial optimization and chemical
reaction network theory. The examples illustrate how conditional SAGE can certify
nonnegativity over nonconvex sets, in a process known as partial dualization.

1.2.4 Chapter 5: Sublinear circuits and signomial nonnegativity [61]
This chapter undertakes a structural analysis of conditional SAGE signomials. To-
wards this end, we introduce X-circuits of a finite subset A ⊂ R=. These objects
generalize the simplicial circuits of the affine-linear matroid induced byA to a con-
strained setting, by requiring a local, orthant-wise, strict sublinearity condition for
the support function of−AX. These sublinear circuits have rich combinatorial prop-
erties when X is polyhedral, in which case X-circuits generate the one-dimensional
cones of certain polyhedral fans. The X-circuit framework leads not only to gener-
alizations of our extreme ray results for ordinary SAGE from Chapter 3, but also to
substantially stronger results for ordinary SAGE itself! While working towards this
chapter’s main theorem we develop a duality theory for X-circuits with connections
to the geometry of sets that are convex according to the geometric mean.
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1.2.5 Chapter 6: An algebraic approach to signomial optimization [62]
The study of polynomial nonnegativity has benefited greatly from the tools of real
algebraic geometry and functional analysis. In this chapter we show those tools can
be extended to signomials in full generality.

Every finiteA ⊂ R= that contains the origin gives us a real signomial ring generated
by the basis functions {x ↦→ exp〈", x〉}"∈A . Using this concept, we show if a
signomial is positive on a compact set defined by convex constraints and possibly-
nonconvex signomial inequalities, then there exists a conditional SAGE certificate
that proves its nonnegativity. Such a result is called a Positivstellensatz in real
algebraic geometry and it can be understood as providing arbitrarily strong inner-
approximations of signomial nonnegativity cones. We use this Positivstellensatz
to develop a practical hierarchy of relative entropy programming relaxations for
approaching the value of a signomial minimization problem from below.

We also develop an elementary signomial moment theory. Our basic ingredi-
ents are a signomial Riesz-Haviland theorem and a moment-determinacy result
for representing measures of signomial moment sequences. These results are com-
bined to develop arbitrarily strong outer-approximations of signomial nonnegativity
cones. Using these outer-approximations, we present a hierarchy of relative entropy
programming relaxations for approaching the value of a signomial minimization
problem from above.

1.2.6 Chapter 7: Constrained polynomial nonnegativity [60]
Chapters 4 through 6 develop the idea and theory of conditional SAGE certificates
from signomial nonnegativty. Here we take that idea full circle by combining it
with the “SAGE polynomials” from Chapter 3. Specifically, we show that if X is
contained in R=+ or invariant under reflection about the hyperplanes {x : G8 = 0},
then a representation of conditional SAGE polynomials that are nonnegative on X
can be obtained by reduction to conditional SAGE signomials. For the cases that
we consider, a given cone of conditional SAGE polynomials is tractable whenever
the logarithm log X ≔ {y : exp y ∈ X} is a tractable convex set. Such sets X are
“convex according to the geometric mean” in the sense of Chapter 5. Two worked
examples demonstrate the efficiency of conditional SAGE polynomials relative to
SOS methods for polynomial optimization.
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1.2.7 Chapter 8: The sageopt python package [60]
This chapter describes sageopt: a comprehensive python package for all things
SAGE. We developed this package in parallel with our mathematical work from
earlier chapters.

Sageopt includes a subsystem for symbolic representations of signomials and poly-
nomials, a customized convex optimization modeling system called coniclifts,
and predefined hierarchies of convex relaxations for signomial and polynomial op-
timization using SAGE-based methods. Coniclifts is sageopt’s backbone. Its
original purpose was to parse signomial and polynomial constraints and construct
the sets “X” for use in conditional SAGE computations. It has since grown to man-
age all transformations between high-level SAGE constraints and low-level relative
entropy programming solvers. These transformations are implemented with various
presolve features based on our theoretical results. Coniclifts employs novel data
structures so symbolic optimization modeling can be carried out using the NumPy
ndarray datatype, which is at the core of python’s scientific computing stack.

This chapter also presents some computational experiments conductedwithsageopt
from [60]. With the aim of maximizing reproducibility, we conduct these experi-
ments using sageopt’s feature of independently supporting primal and dual SAGE
relaxations (which is distinguished relative to available software for SOS methods).
Beyond the experiments here, researchers at AaltoUniversity, ETHZürich, andABB
have used sageopt to design optimal power conversion protocols, which required
solving polynomial optimization problems at scales that were impossible with SOS
methods [63, 64].
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C h a p t e r 2

PRELIMINARIES

Convex optimization and certificates of function nonnegativity are the two biggest
players in this thesis. We work with both of these ideas through the framework of
convex cones, which might be regarded as a third player in their own right. This
chapter is mostly dedicated to providing background on these three ideas along with
notation for the rest of the thesis. At the end of this chapter we state and prove two
technical results in convex analysis.

2.1 Vector spaces, signomials, and exponent sets
Sets generally appear as capital letters in sans-serif font. For a finite set S, we use
RS to denote the set of real |S|-tuples indexed by B ∈ S. Vectors and matrices are
written in boldface while their components appear in plain type. A component EB
of a vector v ∈ RS can be dropped by writing v\B. We use {%B}B∈S to denote the
standard basis in RS and ΔS = {v ∈ RS

+ : 〈1, v〉 = 1} to denote the probability
simplex in RS (where 1 is the vector of all ones).

Let A ⊂ R= be finite. A signomial 5 is supported on A if it can be written as

5 (x) = ∑
"∈A 2" exp〈", x〉

for a vector c ∈ RA . To keep notation compact, we sometimes write 5 = Sig(A, c)
in reference to the signomial above. We also use e" : R= → R for basis functions
e" (x) = exp〈", x〉, so that signomials can be specified by 5 =

∑
"∈A 2"e". This

latter notation for strikes a nice balance between allowing us to examine individual
terms “2"e"” and writing signomials out in full.

Signomial (and polynomial) exponent vectors A are regarded both as sets and as
linear operators. The forward operator is

A : R= → RA x ↦→ (〈", x〉)"∈A

and the adjoint is
A† : RA → R= y ↦→

∑
"∈A

"H" .

If this abstraction creates any confusion, then one should simply think of A as a
matrix with rows " ∈ R=.
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2.2 Convex cones
We call a set C convex if it contains all of its line segments. That is, C is convex if
for every x, y ∈ C and _ ∈ [0, 1], we have _x + (1 − _)y ∈ C. The convex hull of a
set K is the smallest convex set that contains K; this set is denoted by “conv K.”

Convex cones are among the nicest of convex sets. They are the convex sets C that
additionally satisfy

x ∈ C ⇒ _x ∈ C for all _ > 0.

Familiar convex cones include the nonnegative orthant and the set of symmetric
positive semidefinite matrices of a given order. Another familiar (albeit generate)
class of convex cones is given by linear spaces. With the aim of excluding such
degenerate cases, we shall call a cone pointed if it contains no lines; the nonnegative
orthant is the quintessential example of a pointed convex cone.

2.2.1 Conic hulls and extreme rays
The conic hull of K ⊂ RS is the set formed by adjoining the origin to the smallest
convex cone containing K. We denote this by co K and observe that it can be
expressed as co K = (∪_>0_K) ∪ {0}. Next, we define an extreme ray of a convex
cone C as a ray R that is contained in C and that satisfies the following condition: if
an open line segment in C intersects R, then the line segment is contained entirely
within R.

Extreme rays are important because if C is a closed and pointed convex cone, then
it is the conic hull of any point set that generates all of its extreme rays. Moreover,
the union of all extreme rays of C is the smallest set K for which C = conv K. As one
example of this phenomenon, the extreme rays of nonnegative orthant RS

+ are the
rays induced by standard basis vectors {%s}s∈S. As another example, the extreme
rays of the cone {(x, C) : ‖x‖2 ≤ C} are the rays generated by vectors (x, ‖x‖2) for
nonzero x. For technical discussion we refer the reader to [65, Chapter 18].

2.2.2 Dual cones
The main advantage in thinking in terms of convex cones is the idea of conic duality.
Formally, to any convex cone C ⊂ RS, we associate the dual cone

C† := {y ∈ RS : 〈x, y〉 ≥ 0 for all x in C}.

The original set C is analogously called the primal cone. There are some situations
where the dual cone is obvious from the primal (for example, when C = RS

+), but
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usually some calculations are involved in determining the dual cone.

There are several facts one can use to reason about a dual cone without going through
the full conic duality calculations. One such fact is that if C ⊂ C′, then (C′)† ⊂ C†;
this is known as order-reversal. The most important fact is that taking dual cones is
an involution, up to closure: (C†)† = cl C. In this thesis, we often cite the fact that if
C =

∑
ℓ∈[<] Cℓ is a Minkowski sum1 of convex cones Cℓ, then C† is the intersection

of the associated dual cones: C† = ∩ℓ∈[<]C†ℓ .

2.2.3 Nonnegativity cones and moment cones
Suppose we have a family of real-valued basis functions q = (q8)8∈[<] defined on an
abstract set S. These data induce a finite-dimensional closed convex cone

C =

 c ∈ R< :
∑
8∈[<]

28q8 (x) ≥ 0 for all x in S
 .

Such sets C are usually intractable. However, they are a powerful formalism that
show how many problems in applied mathematics can nominally be approached
through convex optimization. We can unlock methods to solve such problems
approximately by developing tractable approximations C′ that stand in for C. This
thesis is particularly concerned with inner approximations C′ ⊂ C.

The nonnegativity cone formalism is amenable to the machinery of conic duality.
Recalling that (C†)† = C, one can deduce

C† = cl co{ (q1(x), . . . , q< (x)) : x ∈ S},

where “co” is the conic hull operator that we defined in Subsection 2.2.1. One can
gain intuition for C† by considering the moment body

M = conv{ (q1(x), . . . , q< (x)) : x ∈ S}.

The term “moment” here references moments in probability theory, since the oper-
ation of taking a convex hull can be framed as taking all vector-valued expectations
Ex∼�q(x) where � is a probability measure supported on S. The particular con-
nection between the moment body and C† is that C† = cl (∪_>0_M). It is therefore
standard to call C† a moment cone.

1The Minkowski sum of sets A,B in a shared vector space is A + B = {a + b : a ∈ A, b ∈ B}.
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2.3 Sums of arithmetic-geometric exponentials (SAGE)
This thesis studies nonnegative signomials, nonnegative polynomials, and associated
nonconvex optimization problems. However, our contributions in the polynomial
realm are fairly direct consequences of our contributions in the signomial realm.
Since sums of arithmetic-geometric exponentials [13] are our starting point for
understanding nonnegative signomials, we describe that approach here.

The simplest class of nonnegative signomials are the posynomials: the signomials
with all nonnegative coefficients. An arithmetic-geometric exponential (or AGE
function) is almost a posynomial. These functions are, by definition, the globally
nonnegative signomials 5 (x) = ∑

"∈A 2"e" (x) with at most one negative term. A
signomial is SAGE if it is a sum of AGE functions.

There are two ways to prove nonnegativity of an AGE function. The namesake ap-
proach involves an appeal to the arithmetic-geometric mean inequality (or AM/GM
inequality). A second approach, which is the ultimate source of this method’s ef-
ficacy and deeper theory, involves relative entropy certificates obtained by convex
duality.

2.3.1 A sketch of the arithmetic-geometric approach
In its usual form, the AM/GM inequality says that for every t ∈ R<++ and , in the
interior of the probability simplexΔ<, we have t, ≤ 〈,, t〉. To see how this relates to
signomials, we can consider how the AM/GM inequality is equivalent to convexity
of the exponential function. That is, exp〈,, y〉 ≤ 〈,, exp y〉 for every y ∈ R< and
, ∈ Δ<. With this convexity observation in the back of our mind, we fix a set of
exponent vectors A ⊂ R=, pick a weighting vector , ∈ intΔA , and set # = A†,.
Choosing # in this way simply means that # is in the convex hull of A and that the
claim of membership “# ∈ convA” is certified by ,. From here we can deduce a
chain of identities

e# (x) = exp〈A†,, x〉 = exp〈,,Ax〉 ≤ 〈,, expAx〉 = ∑
"∈A _"e" (x)

which tell us that
∑

"∈A _"e" + 2#e# is nonnegative on R= whenever 2# ≥ −1. This
particular construction is specialized, but it provides most of the idea for using the
AM/GM inequality as a way to recognize AGE functions.
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2.3.2 Relative entropy certificates from convex duality
The relative entropy function is the continuous extension of

� (u, v) =
∑
B∈S

DB log
(
DB

EB

)
to the product of nonnegative orthants (u, v) ∈ RS

+ ×RS
+. Relative entropy is convex

when viewed as a function of a single concatenated argument w = (u, v); this
property is called joint convexity and is stronger than being convex in one argument
while the other is fixed.

Let 5 =
∑

"∈A 2"e" be a signomial with 2\# ≥ 0. The problem of deciding
nonnegativity of 5 takes two steps. First, since e# (x) > 0 for all x, we can
divide out this basis function to obtain 6 = 2# +

∑
"∈A\# 2"e["−#] without affecting

nonnegativity. Second, because 6 is a posynomial plus a constant, bounds on
its minimum can be certified through the principle of strong duality in convex
optimization. The outcome of this duality argument is that 5 is nonnegative if
and only if there exists a . ∈ RA where (i) 〈1, .〉 = 0, (ii) A†. = 0, and (iii)
� (.\#, 4c\#) ≤ 2#. The joint convexity of relative entropy means it is possible to
efficiently optimize over the cone of AGE functions for any given # ∈ A.

2.4 Optimization with nonnegativity and moment cones
Here we show how any nonconvex minimization problems can be reformulated
exactly into a convex optimization problem involving a nonnegativity cone. We
also construct an equivalent convex problem stated in terms of a moment cone.
We discuss how bounds on these problems are obtained by working with inner-
approximations of nonnegativity cones and outer-approximations of moment cones.

Throughout, we consider the space of functions spanned by linear combinations of
components in a vector-valuedmap q = (q1, . . . , q<). We assume that q1(x) = 1 for
all x inR=. We use C to denote the cone of vectors c̃where x ↦→ 〈c̃, q(x)〉 is globally
nonnegative, and we would like to compute the infimum of 5 (x) = 〈c, q(x)〉.

2.4.1 Using nonnegativity cones and inner-approximations
The idea of using nonnegativity certificates begins with the simple observation that

5★R= ≔ inf
x∈R=

5 (x) = sup{W : 5 − W is nonnegative on R=}.

Stating this with nonnegativity cones, we have

5★R= = sup{ W : c − W%1 in C}. (2.1)
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The constraint in Problem (2.1) simply says that the coefficient vector of 5 − W with
respect to q belongs to the nonnegativity cone induced by q.

The problem (2.1) is convex, but since it encodes an essentially arbitrary optimization
problem, it stands to reason that it is intractable. We really introduced this problem
sowe can consider what happens whenwe replace C by a smaller cone K. Regardless
of the precise relationship between K and C, it is clear that K ⊂ C implies

5
(K)
R= = sup{W : c − W%1 in K} ≤ 5★R= . (2.2)

For example, C might represent the cone of globally nonnegative signomials sup-
ported on exponents A ⊂ R=, and K might denote the cone of SAGE signomials
supported on A.

2.4.2 Using moment cones and outer-approximations
There is another convex cone program that can be used to represent 5★R= – the
moment relaxation. To obtain this problem we begin by convincing ourselves that
5★R= = inf{〈c, v〉 : v ∈ M}, where M = conv q(R=) is the moment body associated
with the basis functions (q1, . . . , q<). To reformulate this using the moment cone
rather than the moment body, recall the relationship C† = cl (∪_>0_M). From this it
is clear that M′ = {v : v ∈ C†, 〈%1, v〉 = 1} is at least as large as M. In fact, the set
M′ can only differ from M up to closure, and we have

5★R= = inf{〈c, v〉 : 〈%1, v〉 = 1, v in C†}. (2.3)

This process of arriving at the moment relaxation is elementary, but somewhat
cumbersome. Later in this chapter we explain the framework of duality for convex
cone programs that makes the transition from (2.1) to (2.3) effortless.

If we suppose once more that we we replace C by a smaller cone K, then the order-
reversal property of dual cones tells us that C† ⊂ K†. Thus following identity holds
under generic conditions

5
(K)
R= = inf{〈c, v〉 : 〈%1, v〉 = 1, v in K†}. (2.4)

This is very useful, since optimal solutions problems to like (2.4) often contain
information about locations of 5 ’s minimizers.

2.4.3 Constrained nonnegativity problems
So far we have had C be a cone of functions nonnegative on R=. We made this
restriction to provide a clear connection to the SAGE certificates of global signomial
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nonnegativity from Section 2.3. But as Subsection 2.2.3 meant to suggest, it is fine
to have C be a cone of functions that are nonnegative on any abstract set.

The bigger picture here is that any means of certifying nonnegativity over a set
S gives us two convex problems – one with a nonnegativity cone and one with a
moment cone – that we can use to bound or even solve nonconvex optimization
problems. A key question then becomes how to extend certificates defined for one
set S (particularly S = R=) to another smaller set S′ ⊂ S. We touch upon this
question twice in Chapter 3, and then we investigate it seriously in Chapter 4.

2.5 Background on cone programming
Convex optimization is the minimization of a convex function 5 over a convex set
X. In this thesis, we usually assume 5 is linear and X is described as the intersection
of a convex cone with an affine subspace; this class of problems is known as linear
cone programs (or simply cone programs). Any convex program can be written as
a cone program a modest increase in dimension. In fact, the express purpose of
software such as CVXPY and Yalmip is simply to manage transformations between
user-specified models and solver-mandated standard forms.

2.5.1 Semidefinite and relative entropy programming
Suppose our feasible set is X = {x : Gx + b ∈ K} for a convex cone K and a linear
operator G. If K is the cone of positive semidefinite matrices, then we could call the
cone program a semidefinite program or an SDP. This class of problems has proven
extremely powerful from a modeling perspective and (per a result by Shor [1]) is
the computational basis for working with sums of squares certificates of polynomial
nonnegativity. SDPs have been studied intensely since the 1990s, but remain difficult
to solve at large scales. The underlying cause for the difficulty of SDP is simply
a matter of linear algebra: unless your problem has special structure, the search
directions computed by optimization algorithms require solving large-scale dense
systems of linear equations [66].

This thesis focuses on relative entropy programming or REP, because of its impor-
tance for SAGE nonnegativity certificates. The epigraph of relative entropy

CS = {(u, v, F) ∈ RS
+ × RS

+ × R : � (u, v) ≤ F}

is a cone, because (u, v) ↦→ ∑
B∈S DB log(DB/EB) is convex and homogeneous of

degree one. REPs have theoretically been tractable since the introduction of self-
concordant barrier functions in 1994 [37], however methods for large scale REP
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have only recently been developed. The search directions computed by optimization
algorithms involve large scale sparse systems of linear equations. Provided one uses
a reliable solver (e.g., MOSEK 9), it is entirely possible to solve REPs involving CS

with |S| ≈ 106, even on a personal laptop.

2.5.2 Conic duality
Suppose that we want to minimize a linear function x ↦→ 〈c, x〉 over the set {x :
Gx = b, x ∈ K}, where K is a convex cone, G is a linear operator from RR to RS,
and b is a vector in RS. We take this data to define a primal problem

Valinf = inf{ 〈c, x〉 : Gx = b, x ∈ K}. (2.5)

From the primal, one may derive a dual problem

Valsup = sup{ 〈b, y〉 : c − G†y ∈ K†}. (2.6)

By analogywith linear programming, if (i) x is primal-feasible, (ii) y is dual-feasible,
and (iii) 〈x, c − G†y〉 = 0, then (x, y) are primal-dual optimal.

The usual process of deriving the dual via a Lagrangian argument shows that
Valsup ≤ Valinf always holds; this is the phenomenon of weak duality. The situation
where Valinf = Valsup is known as strong duality. It is easy to show that the
aforementioned optimality conditions (i) – (iii) imply strong duality. Strong duality
can also holdwhen one of these twoproblems is infeasible. For example, if the primal
is infeasible and the dual is unbounded, then we still have Valinf = Valsup = +∞.

Strong duality holds generically for cone programs, however, it can fail. If we are
working with well-behaved cones like K = R=+, then the only failure case is when
both the primal and dual problems are infeasible (Valinf = +∞ and Valsup = −∞).
For more general cones like those involving positive semidefinite matrices, it is
possible that Valsup < Valinf even when both values are finite.

2.5.3 Algorithms for cone programming
Our best algorithms for cone programming are primal-dual algorithms. These are
algorithms that, given a primal-dual pair (2.5)-(2.6), generate a sequence of points
(xC , yC) that converge to a limit satisfying optimality conditions similar to (i)–(iii).
The precise optimality conditions are only slightly modified so that certificates of
primal infeasibility or dual infeasibility can also be recovered.

Within primal-dualmethods, there are prominent categories of first-order algorithms
and second-order algorithms. Which type of algorithm is preferable depends on
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one’s situation. First-order algorithms have become very popular in recent years, due
to claims of superior scalability for problems arising in data science. Our experience
is that these claims do not hold up if a user needs high-quality solutions and reliable
algorithm behavior. Rather, our experience (in this thesis and elsewhere) is that one
should use a second-order solver whenever possible.

The optimization community has largely settled on a particular type of second-order
algorithms for cone programming. These algorithms are path-following interior
point methods featuring some kind of Mehrotra corrector. The Mehrotra corrector
was first famously introduced for linear programming by Sanjay Mehrotra back in
1992 [67], and was generalized to semidefinite programming through the framework
of Euclidean Jordan algebras (see [68]) in the late 1990s. Various attempts were
made to generalize the Mehrotra corrector for problems beyond semidefinite pro-
gramming, but was only really accomplished in 2019 [69, 70]. At present, MOSEK
is the only easily available solver with a Mehrotra corrector for relative entropy
programming.

2.6 Two technical notes in convex analysis
Through Section 2.5 it has become clear that for a given nonconvex optimization
problem, the nonnegativity-cone reformulation and the moment-cone reformulation
are dual to one another. This leads to a very important question: when can we
be certain that strong duality holds when we pass to our inner-approximation of a
nonnegativity cone? Here we present and prove an abstract result that ensures strong
duality holds in all reasonable settings.

The reader may skip this section if pressed for time.

Theorem2.6.1. LetC be a closed and pointed convex cone inRS, and fix a ∈ C\{0}.
For every c ∈ RS, the primal-dual pair

?★ = sup{W : c − Wa in C} and 3★ = inf{〈c, v〉 : 〈a, v〉 = 1, v in C†}

exhibits strong duality. I.e., ?★ = 3★.

We have stated Theorem 2.6.1 in a general form because it offers a pleasant connec-
tion to eigenvalue problems.

Example 2.6.2. Let S = {(8, 9) : 1 ≤ 8 ≤ 9 ≤ =}, identify RS with the space of real
symmetric matrices of order =, and choose C as the cone of positive semidefinite
matrices of order =. Given a matrix ^, we can represent the minimum eigenvalue
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_min(^) = ?★ by setting a := (X8 9 : (8, 9) ∈ S) (representing the identity matrix)
and c = (-8 9 : (8, 9) ∈ S) (representing ^).

Because C is pointed and the identity matrix is positive definite, we also have
_min(^) = 3★. This is really a disguised version of the variational characterization
of the smallest eigenvalue! To see why, start by noting that C† = C (i.e., the cone
of positive semidefinite matrices is self-dual) so the dual-feasible set {v ∈ C† :
〈a, v〉 = 1} is compact. Then we convince ourselves that the optimal solution v★

represents a rank-1 matrix, which we can write with an outer-product v★ ≡ u ⊗ u

for a unit vector u. This unit vector is none other than the bottom eigenvector of ^.

Of course, Theorem 2.6.1 is also applicable to our convexifications of nonconvex
problems.

Example 2.6.3. Let S = [<] and consider a vector-valued mapping q : X → R<

where q1(x) = 1 for all x in X. From q and X we construct the nonnegativity cone
C = {c̃ ∈ R< : 〈c̃, q(x)〉 ≥ 0 for all x in X}. Given a function 5 (x) = 〈c, q(x)〉,
we can represent ?★ = inf{ 5 (x) : x ∈ X} by taking a = %1.

If the coordinate functions of q are linearly independent on X, then C is pointed
and we have ?★ = 3★. This says we can completely characterize X-nonnegative
functions in the span of {q8}8∈[<] by requiring that 3★ ≥ 0. Moreover: strong
duality will hold for any primal-dual pair where C is replaced by some C′ ⊂ C, so
long as C′ contains the first standard basis vector.

We also provide a far more elementary proposition. This will be useful to us in
crafting fully rigorous arguments around dual SAGE cones.

Proposition 2.6.4. If C is a closed and pointed convex cone that contains the
nonnegative orthant RS

+, then C† can be expressed as C† = cl(C† ∩ RS
++).

2.6.1 Proof of Theorem 2.6.1
We must establish a lemma before proving the main theorem.

Lemma 2.6.5. Fix a closed convex cone K in RS. If a in K† is such that

X := {x : 〈a, x〉 = 1, x in K}

is nonempty, then cl co X = K.
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Proof. Certainly the conic hull of X is contained within K, and the same is true of
its closure. The task is to show that every x in K also belongs to cl co X; we do this
by case analysis on 1 := 〈a, x〉.

By the assumptions a ∈ K† and x ∈  , we must have 1 ≥ 0. If 1 is positive then
the scaling x̃ := x/1 belongs to K and satisfies 〈a, x̃〉 = 1. That is, 1 > 0 gives
us x̃ in X. Simply undo this scaling to recover x and conclude x ∈ co X. Now
suppose 1 = 0. Here we consider the sequence of points y= := x> + =x, where x> is
a fixed but otherwise arbitrary element of X. Each point y= belongs to K, and has
〈a, y=〉 = 1, hence the y= are contained in X. It follows that the scaled points y=/=
are contained in cl co X, and the same must be true of their limit lim=→∞ y=/= = x.

Since x in K was arbitrary, we have cl co X = K.

We are now ready to prove Theorem 2.6.1.

Because C is pointed, C† is full-dimensional, so there exists no nonzero vector
ã ∈ RS where 〈ã, v〉 = 0 for all v ∈ C†. Consider this fact with a ∈ C \ {0} to see
that there exists a v ∈ C† with 〈a, v〉 = 1. This tells us that the dual feasible set
{v : 〈a, v〉 = 1, v in C†} is nonempty.

Since the dual problem is feasible, a proof that 3★ = ?★ can be divided into the
cases 3★ = −∞, and 3★ in R. The proof in the former case is trivial; weak duality
combined with ?★ ≥ −∞ gives 3★ = ?★. In the latter case we prove ?★ ≥ 3★ by
showing that c★ := c − 3★a belongs to C.

To prove c★ ∈ C we will appeal to Lemma 2.6.5 with K := C†. Clearly the set
X = {v : 〈a, v〉 = 1, v in K} is precisely the [nonempty] feasible set for computing
3★, and so from the definition of 3★wehave 〈c★, v〉 ≥ 0 for all v in X. The inequality
also applies to any v in cl co X, which by Lemma 2.6.5 is equal to K†. Therefore the
definition of 3★ ensures c★ is in K†. Using K† ≡ C, we have the desired result.

2.6.2 Proof of Proposition 2.6.4
We begin with some definitions from Rockafellar’s Convex Analysis [65]. The
relative interior of a convex set C (denoted ri C) is the interior of C under the
topology induced by its affine hull

aff C := {x + C (y − x) : x, y ∈ C, C ∈ R}.



CHAPTER 2. PRELIMINARIES 21

A face of C is any closed convex F ⊂ C with the following property: if the line
segment L := {_s1 + (1 − _)s2 : 0 ≤ _ ≤ 1} is contained in C and the relative
interior of L hits F, then the entirety of L is contained in F.

And now we prove the proposition. Rockafellar’s [65, Theorem 18.2] says for
any convex set T, every relatively open set contained in T is contained in the
relative interior of some face of T. We consider that statement with T = RS

+
(so ri T = int T = RS

++). By our assumption C† ∩ ri T ≠ ∅, the only face of T
which contains C† is T itself. Certainly ri C† = int C† is relatively open, we have
ri C† ⊂ ri T, so the claim follows by the identity C† = cl ri C†.
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C h a p t e r 3

NEWTON POLYTOPES AND RELATIVE ENTROPY
OPTIMIZATION

3.1 Introduction
This chapter presents the first study of SAGE certificates for signomial nonnegativity
following their introduction by Chandrasekaran and Shah. We present structural
results for these certificates such as a characterization of the extreme rays of SAGE
cones and an appealing form of sparsity preservation. These lead to a number of
important consequences such as conditions under which signomial nonnegativity
is equivalent to the existence of a SAGE decomposition; our results represent the
broadest-known class of nonconvex signomial optimization problems that can be
solved efficiently via convex relaxation. Much of our analysis concerns a signomial’s
Newton polytope: the convex hull of its exponent vectors. We find particularly rich
interactions between the convex duality underlying SAGE certificates and the face
structure of Newton polytopes.

After proving our main signomial results, we direct our machinery towards the topic
of globally nonnegative polynomials. This begins by making a small modification to
SAGE that provides a new notion of globally nonnegative “SAGE polynomials.” The
complexity of working with these SAGE polynomials is, remarkably, independent
of the number of variables in the polynomial or the polynomial’s degree. We obtain
several results on these polynomials as corollaries from our signomial results.

Analysis by Newton polytopes has a long history in the study of sparse polynomi-
als. Prominent examples in this area include Khovanskii’s fewnomials [71, 72],
Reznick’s agiforms [14, 73], and Bajbar and Stein’s work on polynomial coercivity
[74]. Many such works “signomialize” polynomials via a substitution C 9 ← exp G 9
in certain intermediate proofs. We adopt a different perspective, where signomials
are the first-class object.

3.1.1 Chapter outline and summary of results
In Section 3.3 we prove a number of new structural properties of SAGE certificates.
Theorem 3.3.1 is an important sparsity-preserving property: if a signomial 5 is
SAGE, then there exists a decomposition 5 =

∑
: 5: where each 5: is an AGE
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function that consists only of those terms that appear in 5 . Furthermore, the process
of summing the 5: to obtain 5 results in no cancellation of coefficients on basis
functions x ↦→ exp〈", x〉. Theorem 3.3.3 goes on to provide a characterization of
the extreme rays of the cone of SAGE functions; in particular, all nonatomic extreme
rays are given by AGE functions that are supported on simplicial Newton polytopes.

Section 3.4 leverages the understanding from Section 3.3 to derive a collection of
structural results which describe when nonnegative signomials are SAGE, with the
Newton polytope being the primary subject of these theorems’ hypotheses. Theo-
rem 3.4.1 is concerned with cases where the Newton polytope is simplicial, while
Theorems 3.4.2 and 3.4.3 concern when it “decomposes” in an appropriate sense.
Each of these theorems exhibits invariance under nonsingular affine transformations
of the exponent vectors. Corollaries 3.4.5 and 3.4.6 show how Theorem 3.4.1 ap-
plies to signomial optimization problems. We conclude the section with a result
on conditions under which SAGE can recognize signomials that are bounded below
(Theorem 3.4.7).

In Section 3.5 we specialize our results on signomials to polynomials, by defining a
suitable “signomial representative” of a polynomial, and requiring that the signomial
admit a SAGE decomposition. The resulting class of SAGE polynomials inherits
a tractable representation from the cone of SAGE signomials (Theorem 3.5.1) as
well as structural properties on sparsity preservation and extreme rays (Corollaries
3.5.5 and 3.5.6). Moving from a polynomial to a signomial representative is simple
but somewhat delicate, yielding both stronger results (Corollary 3.5.2) and weaker
results (Corollary 3.5.3) than in the signomial case. We then situate our results
on SAGE polynomials in the broader literature, with specific emphasis on sums of
nonnegative circuits (SONC) and sums of squares (SOS). The section is concluded
with a discussion on how our results provide the basis for a sparsity-preserving
hierarchy of convex relaxations for polynomial optimization problems.

Section 3.6 demonstrates that there are meaningful senses in which our results from
Section 3.4 cannot be improved upon. Through Theorem 3.6.9, we provide a novel
dual characterization of conditions under which the SAGE cone and the cone of
nonnegative signomials coincide.

3.1.2 Related work: algorithms for signomial programming
In the taxonomy of optimization problems, geometric programming is to signomial
optimization what convex quadratic programming is to polynomial optimization.
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Current approaches to global signomial optimization use successive linear or ge-
ometric programming approximations together with branch-and-bound [75–84].
Equality constrained signomial programs are often treated by penalty or augmented
Lagrangian methods [85] and are notoriously difficult to solve [86, 87]. The SAGE
approach to signomial optimization does not involve branch-and-bound, and does
not entail added complexity when considering signomial equations instead of in-
equalities.

3.1.3 Related work: sums of squares and polynomial optimization
There is a large body of work on SOS certificates for polynomial nonnegativity, and
the resulting convex relaxations for polynomial optimization problems [1–3]. Over
the course of this chapter we make two contributions which have direct parallels in
the SOS literature.

Our results in Section 3.3 are along the lines of David Hilbert’s 1888 classification
of the number of variables “=” and the degrees “23” for which SOS-representability
coincides with polynomial nonnegativity [88]. The granularity with which we
seek such a classification is distinct from that in the SOS literature, as there is no
canonical method to take finite-dimensional subspaces of the infinite-dimensional
space of signomials.

A principal drawback of the SOS method is that its canonical formulation requires a
semidefinite matrix variable of order

(=+3
3

)
– and the size of this matrix is exponential

in the degree 3. In Section 3.5 we use SAGE signomials to certify polynomial non-
negativity in a waywhich is unaffected by the polynomial’s degree. Subsection 3.5.5
compares our proposed method to SOS, as well as refinements and variations of
SOS which have appeared in the literature: [89–92].

3.1.4 Related work: certifying nonnegativity via the am/gm inequality
As we explained in Section 2.3, the “AGE functions” in a SAGE decomposition
may be proven nonnegative in either of two ways. The first approach is to certify a
particular relative entropy inequality over a signomial’s coefficients. This approach
(which we describe again in Section 3.2) is known to be computationally tractable,
and it provides a convenient tool for proving structural results for the set of SAGE
certificates. The second method is to find weights for an appropriate am/gm in-
equality over a signomial’s coefficients; this latter method directly connects SAGE
to a larger literature on certifying function nonnegativity via the am/gm inequality,
which we summarize next.
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The earliest systematic theoretical studies in this area were undertaken by Reznick
[14, 73] in the late 1970s and 1980s. The first developments of any computational
flavor came from Pébay, Rojas, and Thompson in 2009 [93], via their study of poly-
nomial maximization. Pébay et al. used tropical geometry and A-discriminants to
determine a complete and explicit characterization for the supremumof a polynomial
over R=+ (or signomial over R=) supported on a circuit ([93, Theorem 2.10]). In this
context, a function is supported on a circuit if the monomial exponents {" : 2" ≠ 0}
are a minimal affinely-dependent set. In 2011, Ghasemi et al. pioneered the use of
geometric programming to recognize functions which were certifiably nonnegative
by the am/gm inequality and a sums-of-binomial-squares representation [94, 95].
In 2012, Pantea, Koeppl, and Craciun derived an am/gm condition to certify R=+-
nonnegativity of polynomials supported on circuits [17, Theorem 3.6]. Follow-up
work by August, Craciun, and Koeppl used [17, Theorem 3.6] to determine invariant
sets of dynamical systems arising in biology [29]. A short while later, Iliman and de
Wolff suggested taking sums of globally nonnegative circuit polynomials [96]. The
resulting SONC polynomials have since become an established topic in the literature
[97–101].

We continue to make connections to the am/gm-certificate literature throughout this
chapter; [17, 96, 98, 99] are revisited in Subsection 3.5.3, and [96, 100, 101] are
addressed in Subsection 3.5.4.

3.1.5 Notation
Our notation follows Chapter 2. The most important aspects of notation to keep in
mind is our use of exponent vector sets A ⊂ R= as linear operators A : R= → RA .
Note that for . ∈ RA and # ∈ A, the operation . ↦→ [A\#]†.\# is well defined. If .
belongs toRA and # ∈ R=, thenwe evaluate [A−#]†. by identifyingRA � R[A−#] .

With the exception of the symbol C, capital letters in calligraphic font are treated as
such hybrid point-sets and linear operators. General sets are given by capital letters
in sans-serif font. This chapter refers to signomials by either writing them out in
full or with the abbreviation 5 = Sig(A, c).

Given two sets S, T in a common vector space, we have the Minkowski sum S + T =
{x + y : x ∈ S, y ∈ T}. We extend the exponential function exp : R → R

first to vectors in an elementwise fashion and then to sets in a pointwise fashion.
So for a vector x ∈ RS we have exp x = (4GB )B∈S, and for a set T ⊂ RS we have
exp T = {exp x : x ∈ T}.
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We often call a point set simplicial if it is affinely independent. The convex hull of a
set T is denoted conv T, and the extreme points of a convex set T are given by ext T. A
compact convex set is called simplicial if its extreme points are affinely independent.
The relative entropy function � : RS × RS → R ∪ {+∞} continuously extends
� (u, v) = ∑

B∈S DB log(DB/EB) to the product of nonnegative orthants RS
+ × RS

+.

3.2 Preliminaries on nonnegative signomials and signomial optimization
The cone of coefficients for nonnegative signomials over exponents A is

CNNS(A) = { c ∈ RA : Sig(A, c) (x) ≥ 0 for all x in R=}.

We sometimes overload terminology and refer to CNNS(A) as a cone of signomials,
rather than a cone of coefficients. Because A is a set (and hence contains no
duplicates), the functions {x ↦→ exp〈", x〉}"∈A are linearly independent on R= –
this tells us that CNNS(A) is pointed.

3.2.1 Primal and dual AGE cones
For an exponent # ∈ A, we define the #th AGE cone

CAGE(A, #) = {c ∈ RA : c\# ≥ 0 and c belongs to CNNS(A)}. (3.1)

It is evident that CAGE(A, #) is a full-dimensional pointed convex cone which
contains the nonnegative orthant. By using a convex duality argument, [13] shows
that a vector c with c\# ≥ 0 belongs to CAGE(A, #) if and only if some . ∈ RA

satisfies
〈1, .〉 = 0, A†. = 0, and � (.\#, 4c\#) ≤ 2#. (3.2)

It is crucial that the representation in (3.2) is jointly convex in c and the auxiliary
variable ., and moreover that no assumption is made on the sign of 2#.

Using the representation (3.2), one may derive the following expression for the dual
of the #th AGE cone

CAGE(A, #)† = cl{v ∈ RA : v > 0, and for some - in R= we have

E# log(E"/E#) ≥ 〈" − #, -〉 for " in A}. (3.3)

The “size” of a primal or dual AGE cone refers to the number of variables plus the
number of constraints in the above representations, which is$ (<) assuming = ≤ <.
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3.2.2 Primal and dual SAGE cones
Cones of coefficients for SAGE signomials can be obtained by Minkowski sums

CSAGE(A) ≔
∑
#∈A
CAGE(A, #). (3.4)

Standard calculations in conic duality yield the following expression for a dual
SAGE cone

CSAGE(A)† =
⋂
#∈A
CAGE(A, #)†. (3.5)

Equations 3.4 and 3.5 provide natural definitions, but they also contain redundancies.

Proposition 3.2.1. [13, Section 2.4] Let P = conv(A). If " is an extreme point of
P and 5 = Sig(A, c) is nonnegative, then 2" ≥ 0. Consequently, if # is an extreme
point of P then CAGE(A, #) = RA+ .

Proposition 3.2.1 is the most basic way Newton polytopes appear in the analysis of
nonnegative signomials. In our context it means that so long as ext conv(A) ( A,
we can take CSAGE(A) as the Minkowski sum of AGE cones CAGE(A, #) for the #

that are nonextremal in conv(A).

3.2.3 SAGE relaxations
We explained in Section 2.4 how nonnegativity cones and moment cones can be
used to turn nonconvex optimization problems into convex cone programs. We now
formalize this procedure for signomials and SAGE certificates. Throughout, we
assume 0 ∈ A and take 5 = Sig(A, c).

For unconstrained minimization, we simply write 5 − W = Sig(A, c − W%0) to find

5★R= = sup{W : c − W%0 in CNNS(A)}.

We produce lower bounds on 5★R= by replacing CNNS(A) with the smaller cone
CSAGE(A). Specifically, we have a primal-dual pair

5 SAGE
R= ≔ sup{ W : c − W%0 in CSAGE(A)} (3.6)

= inf{ 〈c, v〉 : 〈%0, v〉 = 1, v in CSAGE(A)†} ≤ 5★R= . (3.7)

Equality of the primal and dual values is justified by Theorem 2.6.1, since CSAGE(A)
is closed and pointed and x ↦→ 1 is trivially a nonzero SAGE function.

We make use of Lagrangians to handle constrained problems; this process is ex-
plained briefly in Subsection 3.4.4.
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3.3 Structural results for SAGE certificates
This section presents two new geometric results and analytical characterizations on
the SAGE cone. These results have applications to polynomial nonnegativity, as
discussed later in Section 3.5. Statements of the theorems are provided below along
with remarks on the theorems’ significance. Proofs are deferred to later subsections.

3.3.1 Summary of structural results
Our first theorem shows that when checking if c belongs toCSAGE(A), we can restrict
the search space of SAGE decompositions to those exhibiting a very particular
structure. It highlights the sparsity-preserving property of SAGE, and in so doing
has significant implications for both the practicality of solving SAGE relaxations,
and Section 3.5’s development of SAGE polynomials.

Theorem 3.3.1. If c is a vector in CSAGE(A) with nonempty N ≔ {" : 2" < 0},
then there exist vectors {c(#) ∈ CAGE(A, #)}#∈N satisfying c =

∑
#∈N c(#) and

2
(#)
" = 0 for all distinct #," ∈ N .

We can use Theorem 3.3.1 to define some parameterized AGE cones that will be of
use to us in Section 3.4. Specifically, for N ⊂ A and # ∈ A, define

CAGE(A, #,N) = { c ∈ CAGE(A, #) : 2" = 0 for all " in N \ #}.

In terms of such sets we have the following corollary of Theorem 3.3.1.

Corollary 3.3.2. Suppose 0 ∈ A. A signomial 5 = Sig(A, c) has

5 SAGE
R= = sup{W : c − W%0 in

∑
#∈N∪{0} CAGE(A, #,N)}

for both N = {" : 2" < 0} and N = {" : 2" ≤ 0}.

This corollary has two implications concerning practical algorithms for signomial
optimization. First, it shows that for : = |{" ∈ A : 2" < 0}|, computing 5 SAGE

R=

can easily be accomplished with a relative entropy program of size $ (: |A|); this
is a dramatic improvement over the naive implementation for computing 5 SAGE

R= ,
which involves a relative entropy program of size $ ( |A|2). Second, the improved
conditioning resulting from restricting the search space in this way often makes the
difference in whether existing solvers can handle SAGE relaxations of moderate
size. This point is highlighted in recent experimental demonstrations of relative
entropy relaxations; the authors of [102] discuss various preprocessing strategies to
more quickly solve such optimization problems.
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Our next theorem characterizes the extreme rays of the SAGE cone. To describe
these extreme rays, we use a notion from matroid theory [103, 104]: a set of points
X = {x8}ℓ8=1 is called a circuit if it is affinely dependent, but any proper subset {x8}8≠:
is affinely independent. If the convex hull of a circuit with ℓ elements contains ℓ − 1
extreme points, then we say the circuit is simplicial.

Theorem 3.3.3. If c ∈ RA generates an extreme ray of CSAGE(A), then supp c is
either a singleton or a simplicial circuit.

Theorem 3.3.3 can be viewed as a signomial generalization of a result by Reznick
concerning agiforms [14, Theorem 7.1]. The theorem admits a partial converse:
if A′ ∪ {#} ⊂ A is a simplicial circuit with nonextremal term #, then there is an
extreme ray of CAGE(A′, #) supported onA′∪{#}. When specialized to the context
of polynomials, this result gives us an equivalence between SAGE polynomials
(suitably defined in Section 3.5) and the previously defined SONC polynomials
[96], thus providing an efficient description of the latter set which was not known to
be tractable.

3.3.2 Proof of the restriction theorem for SAGE decompositions (Theorem
3.3.1)

Our proof requires two lemmas. The first such lemma indicates the claim of the
theorem applies far more broadly than for SAGE functions alone.

Lemma 3.3.4. Let K ⊂ R< be a convex cone containing the nonnegative orthant.
For an index 8 ∈ [<], define C8 = {c ∈ K : c\8 ≥ 0}, and sum these to C =

∑<
8=1 C8.

We claim that a vector c with at least one negative entry belongs to C if and only if

c ∈ ∑
8:28<0 C8 .

Proof. Suppose c ∈ C has a decomposition c =
∑
8∈N c(8) where each c(8) belongs

to C8. If N = {8 : 28 < 0}, then there is nothing to prove, so suppose there is some :
in N with 2: ≥ 0. We construct an alternative decomposition of c using only cones
C8 with 8 in N \ {:}.

The construction depends on the sign of 2(:)
:

. If 2(:)
:

is nonnegative then the problem
of removing dependence on C: simple: for 8 in N \ {:}, the vectors

c̃(8) = c(8) + c(:)/(|# | − 1)
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belong to C8 (since C8 ⊃ R<+ ), and sum to c. If instead 2(:)
:

< 0, then there exists
some index 8 ≠ : in N with 2(8)

:
positive. This allows us to define the distribution ,

with _8 = 2(8): /
∑
9∈N\{:} 2

( 9)
:

for 8 ≠ : in N. With , we construct the |N| − 1 vectors

c̃(8) = c(8) + _8c(:) .

The vectors c̃(8) belong to  because they are a conic combination of vectors in K
(c(8) and c(:)). We claim that for every 8 ≠ : in N, the coordinate 2̃(8)

:
is nonnegative.

This is certainly true when _8 = 0, but more importantly, _8 > 0 implies

1
_8
2̃
(8)
:
=

1
_8

(
2
(8)
:
+ _82(:):

)
= [∑ 9∈N\{:} 2

( 9)
:
] + 2(:)

:
= 2: ≥ 0.

Hence c can be expressed as the sum of vectors {c̃(8)}8∈N\{:} where each vector c̃(8)

belongs to C8.

From here, update N ← N \ {:}. If N contains another index :′ with 2: ′ ≥ 0,
then repeat the above procedure to remove the unnecessary cone C: ′. Naturally, this
process continues until N = {8 : 28 < 0}.

Lemma 3.3.5. Let w, v be vectors in R< with distinguished indices 8 ≠ 9 so that

w\8, v\ 9 ≥ 0 and F: + E: < 0 for : in {8, 9}.

Then there exist vectors ŵ, v̂ in the conic hull of {w, v} which satisfy

ŵ + v̂ = w + v and F̂ 9 = Ê8 = 0.

Proof. By reindexing, take 8 = 1 and 9 = 2. We will decide , ∈ R4
+ so that

ŵ = _2w +_4v and v̂ = _1w +_3v satisfy the desired relations. One may verify that
it is sufficient for , in R4

+ to solve
F1 0 E1 0
0 F2 0 E2

1 1 0 0
0 0 1 1



_1

_2

_3

_4


=


0
0
1
1


. (3.8)

The determinant of the matrix above is 3 = F1E2 − E1F2. If F2 or E1 = 0, then
3 > 0. If F2, E1 ≠ 0, then 3 > 0⇔ |E2/F2 | · |F1/E1 | > 1. In this case we use the
assumptions on w, v to establish the slightly stronger condition that |E2/F2 | > 1 and
|F1/E1 | > 1. In both cases we have a nonzero determinant, so there exists a unique
, in R4 satisfying system (3.8). Now we need only prove that this , is nonnegative.
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One may verify that the symbolic solution to (3.8) is

_1 = −(F2 + E2)E1/3, _2 = (F1 + E1)E2/3,
_3 = F1(F2 + E2)/3, _4 = −(F1 + E1)F2/3,

and furthermore that all numerators and denominators are nonnegative.

Theorem 3.3.1. In this proof we consider A ∈ R<×= as built from rows "8, we
identify RA = R<, and we use CAGE(A, 8) = CAGE(A,"8). Let c★ be a vector
in CSAGE(A) with : negative entries 2★1 , . . . , 2

★
:
. It is clear that the AGE cones

CAGE(A, 8) satisfy the hypothesis of Lemma 3.3.4, with K = CNNS(A). Therefore
there exists a :-by-< matrix I with 8th row c8 ∈ CAGE(A, 8), and c★ =

∑:
8=1 c8. We

prove the result by transforming I into a matrix with rows c8 satisfying the required
properties, using only row-sum preserving conic combinations from Lemma 3.3.5.

It is clear that for any pair of distinct 8, 9 , the vectors c8, c 9 satisfy the hypothesis of
Lemma 3.3.5, thus there exist ĉ8, ĉ 9 in the conic hull of c8, c 9 where 2̂8 9 = 2̂ 98 = 0
and ĉ8 + ĉ 9 = c8 + c 9 . Furthermore, this remains true if we modify I by replacing
(c8, c 9 ) ← ( ĉ8, ĉ 9 ).

We proceed algorithmically: apply Lemma 3.3.5 to rows (1, 2), then (1, 3), and
continuing to rows (1, :). At each step of this process we eliminate 2 91 = 0 for
9 > 1 and maintain 2 98 ≥ 0 for off-diagonal 2 98. We then apply the procedure to the
second column of I, beginning with rows 2 and 3. Since 2 91 = 0 for 9 > 1, none of
the row operations introduce an additional nonzero in the first column of I, and so
the first column remains zero below 211, and the second column becomes zero below
222. Following this pattern we reduceI to have zeros on the strictly lower-triangular
block in the first : columns, in particular terminating with 2:: = 2★: < 0.

The next phase is akin to back-substitution. Apply Lemma 3.3.5 to rows (:, : − 1),
then (:, : − 2), and continue until rows (:, 1). This process zeros out the : th

column of I above 2:: . The same procedure applies with rows (: − 1, : − 2), then
(: − 1, : − 3), through (: − 1, 1), to zero the (: − 1)st column of I except for the
single entry 2 [:−1] [:−1] = 2

★
:−1 < 0. The end result of this process is that the first :

columns of I comprise a diagonal matrix with entries (2★1 , . . . , 2
★
:
) < 0.

The resulting matrix I satisfies the claimed sparsity conditions. Since all row-
operations involved conic combinations, each row of the resulting matrix I defines
a nonnegative signomial. The theorem follows since row 8 of the resulting matrix
has a single negative component 288 = 2★8 < 0.
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3.3.3 Proof of extreme ray characterization of the SAGE cone (Theorem 3.3.3)
Because every ray in the SAGE cone (extreme or otherwise) can be written as a sum
of rays in AGE cones, it suffices to characterize the extreme rays of AGE cones.
For the duration of this section we discuss the AGE cone CAGE(A, #), where # is
nonextremal in conv(A).

It can easily be shown that for any index # inA, the ray {A%# : A ≥ 0} is extremal in
CAGE(A, #). We call these rays (those supported on a single coordinate) the atomic
extreme rays of the AGE cone. The work in showing Theorem 3.3.3 is to prove that
all nonatomic extreme rays of the AGE cone are supported on simplicial circuits.
Our proof will appeal to the following basic fact concerning polyhedral geometry,
which we establish in the appendix.

Lemma 3.3.6. Fix H ∈ R=×3 , h ∈ R=, and Λ = {, ∈ Δ3 : H, = h}. For any
, ∈ Λ, there exist {,(8)}ℓ

8=1 ⊂ Λ and ) ∈ Δℓ for which {b 9 : _(8)
9
> 0} are affinely

independent, and , =
∑
8∈[ℓ] \8,

(8) .

Theorem 3.3.3. Let N# = {. ∈ RA : .\# ≥ 0, 〈1, .〉 = 0}. We seek an ℓ ∈ N
where we can decompose c ∈ CAGE(A, #) as a sum of ℓ+1 AGE vectors {c(8)}ℓ+1

8=1 ⊂
CAGE(A, #), where supp c(8) are simplicial circuits for 8 ∈ [ℓ] and c(ℓ+1) ≥ 0.
Since c is an AGE vector, there is an associated . ∈ N# for which A†. = 0 and
� (.\#, 4c\#) ≤ 2#. If . is zero, then � (.\#, 4c\#) = 0 ≤ 2#, so ℓ = 0 and c(ℓ+1) = c

provides the required decomposition. The interesting case, of course, is when . is
nonzero. We proceed by providing a mechanism to decompose . into a convex
combination of certain vectors {.(8)}ℓ

8=1, and from there we obtain suitable AGE
vectors c(8) from each .(8) .

Given . ≠ 0, the vector , ≔ .\#/|a# | belongs to the probability simplex ΔA\#.
We introduce this , because A†. = 0 is equivalent to [A \ #]†, = #, and the
latter form is amenable to Lemma 3.3.6. Apply Lemma 3.3.6 to decompose ,

into a convex combination of vectors {,(8)}ℓ
8=1 ⊂ ΔA\# for which supp ,(8) are

simplicial and ,(8) satisfy [A \ #]†,(8) = #; let ) ∈ Δℓ denote the vector of convex
combination coefficients for this decomposition of ,. For each ,(8) , define .(8) by
.(8)\# = ,(8) |a# | and a(8)# = a#. These values for .(8) evidently satisfy A†.(8) = 0 and∑
8∈[ℓ] \8.

(8) = .. From these .(8) we construct c(8) ∈ RA by

2
(8)
" =


(2"/a")a(8)" if a" > 0

0 otherwise
for all " ≠ #,
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and for " = # we take 2(8)" = � (.(8)\#, 4c
(8)
\#).

By construction these c(8) belong toCAGE(A, #), and supp c(8) are simplicial circuits.
We now take a componentwise approach to showing

∑
8∈[ℓ] \8c

(8) ≤ c. For indices
" ≠ # with a" > 0, the inequality actually holds with equality∑

8∈[ℓ]
\82
(8)
" = (2"/a") (

∑
8∈[ℓ] \8a

(8)
" ) = 2" .

Now we turn to showing
∑
8∈[ℓ] \82

(8)
#
≤ 2#; we specifically claim that∑

8∈[ℓ]
\82
(8)
#
=

∑
8∈[ℓ]

\8� (.(8)\#, 4c
(8)
\#) = � (.\#, 4c\#) ≤ 2#. (3.9)

For the three relations in display (3.9), the first holds from the definitions of 2(8)
#
,

and the last holds from our assumptions on (c, .), so only the second equality needs
explaining. For this we use the fact that definitions of 2(8)" relative to a(8)" preserve
ratios with 2" relative to a", i.e.

� (.(8)\#, 4c
(8)
\#) =

∑
"≠#

a
(8)
" log

(
a
(8)
"

42
(8)
"

)
=

∑
"≠#

a
(8)
" log

(
a"

42"

)
. (3.10)

One may then prove the middle equality in display (3.9) by summing \8� (.(8)\#, c\#)
over 8, applying the identity in equation (3.10), and then interchanging the sums over
8 and ". Formally,

∑
8∈[ℓ]

\8� (.(8)\#, 4c
(8)
\#) =

∑
"≠#

log
(
a"

42"

) =a"︷        ︸︸        ︷©­«
∑
8∈[ℓ]

\8a
(8)
"

ª®¬ = � (.\#, 4c\#).
We have effectively established the claim of the theorem. To find a decomposition
of the form desired at the beginning of this proof, one rescales c(8) ← \8c

(8) and sets
c(ℓ+1) = c −∑

8∈[ℓ] c
(8) .

3.4 The role of Newton polytopes in SAGE signomials
This section begins by introducing two theorems (Theorems 3.4.1 and 3.4.2) con-
cerning SAGE representability versus signomial nonnegativity. These theorems are
then combined to obtain a third theorem (Theorem 3.4.3), which provides the most
general yet-known conditions for when the SAGE and nonnegativity cones coin-
cide. The proofs of Theorems 3.4.1 and 3.4.2 are contained in Subsections 3.4.2
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and 3.4.3. Applications of Theorem 3.4.1 are given in Subsection 3.4.4. Subsec-
tion 3.4.5 uses a distinct proof strategy (nevertheless Newton-polytope based) to
determine a condition on when SAGE can recognize signomials which are bounded
below.

3.4.1 When SAGE recovers the nonnegativity cone
The following theorem is the first instance beyond AGE functions when SAGE-
representability is known to be equivalent to nonnegativity.

Theorem 3.4.1. Suppose ext conv(A) is simplicial, and that c has 2" ≤ 0 whenever
" is nonextremal. Then c belongs to CSAGE(A) if and only if c belongs to CNNS(A).

Our proof of the theorem (Subsection 3.4.2) uses convex duality in a central way,
and provides intuition for why the theorem’s assumptions are needed. Section 3.6
provides counter-examples to relaxations of Theorem 3.4.1 obtained through weaker
hypothesis.

This section’s next theorem (proven in Subsection 3.4.3) concerns conditions on
A for when the SAGE and nonnegativity cones can be expressed as a Cartesian
product of simpler sets. To aid in exposition we introduce a definition: a set A can
be partitioned into : faces if it can be written as a disjoint union A = ∪8∈[:]A (8)

where conv(A (8)) are mutually disjoint faces of conv(A).

Theorem 3.4.2. If {A (8)}:
8=1 partition A into faces, then

CNNS(A) = CNNS(A (1)) × · · · × CNNS(A (:))

and
CSAGE(A) = CSAGE(A (1)) × · · · × CSAGE(A (:)).

The following figure illustrates partitioning a set A where ext conv(A) are the
vertices of the truncated icosahedron, and nonextremal terms (marked in red) lay in
the relative interiors of certain pentagonal faces.
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Note that every setA admits the trivial partition with : = 1. In fact, a natural regu-
larity condition (one that we consider in Section 3.6) would be that A only admits
the trivial partition. Regularity conditions aside, Theorems 3.4.1 and 3.4.2 can be
combined with known properties of AGE functions to establish new conditions for
when the SAGE and nonnegativity cones coincide.

Theorem 3.4.3. SupposeA can be partitioned into faces where (1) simplicial faces
contain at most two nonextremal exponents, and (2) all other faces contain at most
one nonextremal exponent. Then CSAGE(A) = CNNS(A).

Proof. LetA satisfy the assumptions of Theorem 3.4.3 with associated faces {F8}:8=1
and subsets A (8) , and fix c in CNNS(A). For 8 in [:], define the vector c(8) so that
c = ⊕:

8=1c
(8) is the vector concatenation of the c(8) . By Theorem 3.4.2, the condition

CSAGE(A) = CNNS(A) holds if and only if CSAGE(A (8)) = CNNS(A (8)) for all 8 in
[:]. Because we assumed that c belongs to CNNS(A) it suffices to show that each
c(8) belongs to CSAGE(A (8)).

Per Proposition 3.2.1, any vector c(8) ∈ CNNS(A (8)) cannot have a negative entry 2(8)"
when" is extremal in conv(A (8)). By assumption,A (8) has at most two nonextremal
terms, and so c(8) ∈ CNNS(A (8)) can have at most two negative entries. If c(8) has at
most one negative entry, then c(8) is an AGE vector. If on the other hand c(8) has two
negative entries 2(8)" , 2

(8)
#
, then both of these entries must correspond to nonextremal

", #, and F8 must be simplicial. This allows us to invoke Theorem 3.4.1 on c(8) to
conclude c(8) ∈ CSAGE(A (8)). The result follows.

3.4.2 Simplicial sign patterns for SAGE versus nonnegativity (Theorem 3.4.1)
The proof of Theorem 3.4.1 begins by exploiting two key facts about signomials and
SAGE relaxations: (1) that CSAGE(A) and CNNS(A) are invariant under translation
of the exponent set A, and (2) that strong duality always holds when computing
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5 SAGE
R= . These properties allow us to reduce the problem of checking SAGE de-
composability to the problem of exactness of a convex relaxation for a signomial
optimization problem.

Theorem 3.4.1. In this proof we takeA = {"8}<8=1 ⊂ R
=. Begin by translatingA to

A ← A−"8 where "8 is an arbitrary extremal element of conv(A). Next, re-index
the "8 so that "1 = 0. Fix c in CNNS(A) and define 5 = Sig(A, c) so that 5★R= ≥ 0.
We show that 5 SAGE

R= = 5★R= , thereby establishing c ∈ CSAGE(A).

Let N = {8 : 28 ≤ 0} and E = [<] \ N. Apply Corollary 3.3.2 to obtain a
primal SAGE relaxation with dimension reduction, and then dualize that relaxation.
By Theorem 2.6.1 (concerning strong duality) and Proposition 2.6.4 (concerning
representations of dual cones contained in the nonnegative orthant), the SAGEbound
can be expressed as

5 SAGE
R= = inf 〈c, v〉 (3.11)

s.t. v in R<++ has E1 = 1, and there exist {-8}8∈N∪{1} ⊂ R= with
E8 log(E8/E 9 ) ≤ 〈"8 − " 9 , -8〉 for 9 in E and 8 in N ∪ {1}.

In order to show 5 SAGE
R= = 5★R= , we reformulate (3.11) as the problem of computing

5★R= by appropriate changes of variables and constraints.

We begin with a change of constraints. By the assumption that 28 ≤ 0 for all
nonextremal "8, the set E satisfies {"8}8∈� ⊂ ext conv(A). Combine this with
extremality of 0 = "1 and the assumption that ext conv(A) is simplicial to conclude
that {"8 : 8 in E \ {1}} are linearly independent. The linear independence of these
vectors ensures that for fixed v we can always choose -1 to satisfy the following
constraints with equality

E1 log(E1/E 9 ) ≤ 〈"1 − " 9 , -1〉 for all 9 in E.

Therefore we can equivalently reformulate 5 SAGE
R= as

5 SAGE
R= = inf 〈c, v〉

s.t. v in R<++ has E1 = 1, and there exist {-8}8∈N∪{1} ⊂ R=

with log(E 9 ) = 〈" 9 , -1〉 for all 9 in E, and

E8 log(E8/E 9 ) ≤ 〈"8 − " 9 , -8〉 for 9 in E, 8 in N.

Next we rewrite the constraint E8 log(E8/E 9 ) ≤ 〈"8 − " 9 , -8〉 as log(E8) − log(E 9 ) ≤
〈"8−" 9 , -8〉 by absorbing E8 into -8. If we also substitute the expression for log(E 9 )
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given by the equality constraints, then the inequality constraints become

log(E8) ≤ 〈"8, -8〉 + 〈" 9 , -1 − -8〉 for all 9 in E, 8 in N. (3.12)

We now show that for every 8 in N, the choice -8 = -1 makes these inequality
constraints as loose as possible.

Towards this end, definek8 (x) = 〈"8, x〉+min 9∈� {〈" 9 , (-1−x)〉}; note that for fixed
8 and -8, the numberk8 (-8) is theminimumover all |� | right hand sides in (3.12). It is
easy to verify that k8 is concave, and because of this we know that k8 is maximized at
x★ if and only if 0 ∈ (mk8) (x★). Standard subgradient calculus tells us that (mk8) (x)
is precisely the convex hull of vectors "8 − ": where : is an index at which the
minimum (over 9 ∈ �) is obtained. Therefore (mk8) (-1) = conv{"8 − " 9 : 9 in E},
and this set must contain the zero vector (unless perhaps 28 = 0, in which case the
constraints on E8 are inconsequential). Hence maxx∈R={k8 (x)} = 〈"8, -1〉, and so
inequality constraints (3.12) reduce to

log(E8) ≤ 〈"8, -1〉 for all 8 in N. (3.13)

Since the objective 〈c, v〉 is decreasing in E8 for 8 in N, we can actually take the
constraints in (3.13) to be binding. We establishedmuch earlier that E8 = exp〈"8, -1〉
for 8 in E. Taking these together we see E8 = exp〈"8, -1〉 for all 8, and so

5 SAGE
R= = inf{ ∑<

8=1 28 exp〈"8, -1〉 : -1 in R=} = 5★R= (3.14)

as required.

Let us now recap how the assumptions of Theorem 3.4.1 were used at various
stages in the proof. For one thing, all discussion up to and including the statement
of Problem (3.11) was fully general; the expression for 5 SAGE

R= used none of the
assumptions of the theorem. The next step was to use linear independence of
nonzero extreme points to allow us to satisfy E1 log(E1/E 9 ) ≤ 〈"1 − " 9 , -1〉 with
equality. The reader can verify that if we did not have linear independence, but we
were told that those constraints were binding at the optimal v★, then we would still
have 5 SAGE

R= = 5★R= under the stated sign pattern assumption on c. Note how the sign
pattern assumption on c was only really used to replace log(E8) ≤ 〈"8, -1〉 from
(3.13) by log(E8) = 〈"8, -8〉.
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3.4.3 Proof of the partitioning theorem (Theorem 3.4.2)
The following lemma adapts claim (iv) from Theorem 3.6 of Reznick [14] to signo-
mials. Because the lemma is important for our subsequent theorems, the appendix
contains a more complete proof than can be found in Reznick’s [14]. As a matter
of notation: for any face F of convA, write SigF(A, c) to mean the signomial with
exponents " ∈ F ∩ A and corresponding coefficients 2".

Lemma 3.4.4. If F is a face of the polytope conv(A) then SigF(A, c)★R= < 0 implies
Sig(A, c)★R= < 0.

Theorem 3.4.2. LetA have partitionA = ∪8∈[:]A (8) . It is clear from the definition
of the SAGE cone that CSAGE(A) = CSAGE(A (1)) × · · · CSAGE(A (:)). The bulk of
this proof is to show that CNNS(A) admits the same decomposition.

Let 5 = Sig(A, c) for some c in RA . The vector c is naturally decomposed into a
concatenation c = c(1) ⊕ · · · ⊕ c(:) of smaller vectors c(8) ∈ RA (8) . For each 8 in
[:] define 5 (8) = Sig(A (8) , c(8)) so that 5 =

∑:
8=1 5

(8) . If any ( 5 (8))★R= is negative,
then Lemma 3.4.4 tells us that 5★R= must also be negative. Meanwhile if all ( 5 (8))★R=
are nonnegative, then the same must be true of 5★R= ≥

∑:
8=1( 5 (8))★R= . The result

follows.

3.4.4 Corollaries for signomial programming
Signomial minimization is naturally related via duality to checking signomial non-
negativity. Thus we build on groundwork laid in Sections 3.3 and 3.4 to obtain
consequences for signomial minimization.

Corollary 3.4.5. Assume conv(A) is simplicial, that 0 ∈ A, and that nonzero
nonextremal " have 2" ≤ 0. Then either 5 SAGE

R= = 5★R= , or 5
★
R= ∈ ( 5

SAGE
R= , 20).

Proof. It suffices to show that 5 SAGE
R= < 5★R= implies 5★R= < 20. This follows as the

contrapositive of the following statement: “If 5★R= ≥ 20, then by Theorem 3.4.1 the
nonnegative signomial 5 − 5★R= is SAGE, which in turn ensures 5

SAGE
R= = 5★R= .”

Nowwe consider constrained signomial programs. As above, we assumeA contains
the zero vector. Starting with problem data ( 5 , 6) where 5 = Sig(A, c) and
6 9 = Sig(A, g 9 ) for 9 in [:], consider the problem of computing

( 5 , 6)★ ≔ inf{ 5 (x) : x in R= satisfies 6(x) ≥ 0}. (3.15)
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It is evident1 that we can relax the problem to that of

( 5 , 6)SAGE ≔ inf{ 〈c, v〉 : v in CSAGE(A)†

satisfies E0 = 1 and M†v ≥ 0} ≤ ( 5 , 6)★

where M is the < × : matrix whose columns are the g 9 .

Corollary 3.4.6. Suppose conv(A) is simplicial and includes the origin among its
vertices. If for each nonextremal " we have that (i) 〈c, v〉 is decreasing in E" and
that (ii) each 〈g 9 , v〉 is increasing in E", then ( 5 , 6)SAGE = ( 5 , 6)★.

Proof sketch. The claim that ( 5 , 6)SAGE = ( 5 , 6)★ can be established by a change-
of-variables and change-of-constraints argument of the same kind used in the proof
of Theorem 3.4.1.

Suffice it to say that rather than using Corollary 3.3.2 to justify removing constraints
from the dual without loss of generality, one can simply throw out those constraints
to obtain some ( 5 , 6)′ with ( 5 , 6)′ ≤ ( 5 , 6)SAGE. One then shows ( 5 , 6)′ = ( 5 , 6)★

to sandwich ( 5 , 6)★ ≤ ( 5 , 6)′ ≤ ( 5 , 6)SAGE ≤ ( 5 , 6)★.

3.4.5 Finite error in SAGE relaxations
This section’s final theorem directly considers SAGE as a relaxation scheme for
signomial minimization. It leverages the primal formulation for 5 SAGE

R= to establish
sufficient conditions under which SAGE relaxations can only exhibit finite error.

Theorem 3.4.7. Suppose conv(A) contains the origin and there exists an n > 0 so
that (1 + n)" belongs to conv(A) for all nonextremal ". Then 5 = Sig(A, c) is
bounded below if and only if 5 SAGE

R= is finite.

The requirements Theorem 3.4.7 imposes on the Newton polytope are significantly
weaker than those found elsewhere in this work. Theorem 3.4.7 is especially notable
as we do not know of analogous theorems in the literature on SOS relaxations for
polynomial optimization.

Theorem 3.4.7. Let 5 = Sig(A, c) have 5★R= > −∞. We may assume without loss
of generality that 0 ∈ A and that 20 = 0. Use E = {" ∈ A : " nonzero, extremal}
to denote indices of extremal exponents of 5 , excluding the possibly-extremal zero

1See Section 3.4 of [13].
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vector. The desired claim holds if there exists a positive constant W so that the
translate 5̂ = 5 + W is SAGE.

Define ĉ = c + W%0 as the coefficient vector of 5̂ in RA . Because 5★R= > −∞ we have
2" = 2̂" ≥ 0 for every " in E (Proposition 3.2.1). Let N ⊂ A denote the set of
exponents # for which 2̂# < 0. For each # ∈ N we define the vector ĉ(#) in RA by

2̂
(#)
" =


2̂# if " = #

2̂"/|N | if " ∈ A \ N

0 if " ∈ N \ {#}

.

It is easy to verify that these vectors sum to ĉ, that each sub-vector ĉ(#)\# is nonnegative,
and furthermore that each 2̂(#)0 = W/|N |.

We turn to building the corresponding vectors .(#) ∈ RA . Because N is contained
in A \ E, we have that each # ∈ N satisfies (1 + n)# ∈ conv(A) for some positive
n . Therefore each vector # inN is expressible as a convex combination of extremal
exponents and the zero vector. Let ,(#) ∈ ΔE∪{0} be such a vector of convex
combination coefficients (i.e., let ,(#) satisfy # = [E ∪ {0}]†,(#) and _(#)0 > 0).
Given this vector, we set

a
(#)
" =


−1 if " = #

_
(#)
" if " ∈ E ∪ {0}

0 otherwise

.

Each .(#) satisfies the inequalities .(#)\# ≥ 0, the equationsA†.(#) = 0 and 〈1, .〉 = 0,
and has 0 < a(#)0 . The properties 0 < a(#)0 and 2̂(#)0 = W/|N | ensure that

a
(#)
0 log

(
a
(#)
0 /2̂

(#)
0

)
→ −∞ as W →∞

It follows that there exists a sufficiently large " so that W ≥ " implies

� (.(#)\# , 4ĉ
(#)
\# ) ≤ 2̂# for all # in N .

Hence for sufficiently large W, we have ĉ(#) in CAGE(A, #) for all # in N – and the
result follows.

3.5 Certifying polynomial nonnegativity
Throughout this section we write ? = Pol(A, c) to mean that ? takes values ?(x) =∑

"∈A 2"x
". We refer to polynomials in this way to reflect our interest in sparse
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polynomials. Vectors " are sometimes called terms, where a term is even if "
belongs to (2N)=. To a set A ⊂ R=, we associate the sparse nonnegativity cone

CNNP(A) ≔ {c ∈ RA : Pol(A, c) (x) ≥ 0 for all x in R=}.

Beginning with Subsection 3.5.1 we introduce polynomial SAGE certificates. We
shall see that polynomial SAGE certificates offer a tractable avenue for optimizing
over a subset of CNNP(A), where the complexity depends onA exclusively through
the dimensions = and the cardinality |A|.

Subsection 3.5.2 demonstrates how our study of SAGE signomials yields several
corollaries in this new polynomial setting. Perhaps most prominently, Subsec-
tion 3.5.2 implies that a polynomial admits a SAGE certificate if and only if it
admits a SONC certificate. The qualitative relationship between SAGE and SONC
as proof systems is explained in Subsection 3.5.3, and Subsection 3.5.4 addresses
how some of our corollaries compare to earlier results in the SONC literature.

In Subsection 3.5.5 we compare polynomial SAGE certificates to the widely-studied
SOS certificates. We conclude with Subsection 3.5.6, which outlines how to use
SAGE polynomials to obtain a hierarchy for constrained polynomial optimization.

3.5.1 Signomial representatives and polynomial SAGE certificates
To a polynomial ? = Pol(A, c) we associate the signomial representative @ =

Sig(A, ĉ) with

2̂" =


2" if " is even

−|2" | otherwise
. (3.16)

By a termwise argument, we have that if the signomial @ is nonnegative on R=,
then the polynomial ? must also be nonnegative on R=. Moving from a polynomial
to its signomial representative often entails some loss of generality. For example,
the univariate polynomial ?(G) = 1 + G − G3 + G4 never has both “+G < 0” and
“−G3 < 0,” and yet the inner terms appearing in the signomial representative @(H) =
1 − exp(H) − exp(3H) + exp(4H) are both negative.

There is a natural condition A and the sign pattern of c where passing to the
signomial representative is at no loss of generality. Specifically, if there exists
a point x> ∈ (R \ {0})= where 2"x"> ≤ 0 for all " ∉ (2N)=, then Pol(A, c) is
nonnegative if and only if its signomial representative is nonnegative. We call such
polynomials orthant-dominated. Checking if a polynomial is orthant-dominated is
a simple task. GivenA and c, define b ∈ {0, 1}A by 1" = 0 if 2" ≤ 0 or " is even,
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and 1" = 1 if otherwise. Then assuming every 2" ≠ 0, the polynomial Pol(A, c)
is orthant-dominated if and only if the system As = b (mod 2) has a solution over
s ∈ F=2.

We call ? = Pol(A, c) a SAGE polynomial if its signomial representative @ =

Sig(A, ĉ) is a SAGE signomial. Subsequently, we define a polynomial SAGE
certificate for ? = Pol(A, c) as a set of signomial AGE certificates {( ĉ(#) , .(#))}#∈A
where ĉ ≔

∑
#∈A ĉ(#) defines the signomial representative for ?. Because the

signomial SAGE cone contains the nonnegative orthant, the cone of coefficients for
SAGE polynomials admits the representation

CPOLY
SAGE (A) = {c ∈ R

A : there exists ĉ in CSAGE(A) where ĉ ≤ c

and 2̂" ≤ −2" for all " not in (2N)=}. (3.17)

We use this representation to obtain the following theorem.

Theorem 3.5.1. Let ! : Rℓ → RA be an injective affine map, identify A ⊂ N= as
an < × = matrix (= ≤ <), and let h be a vector in Rℓ. An n-approximate solution to

inf
z∈Rℓ
{〈h, z〉 : ! (z) ∈ CPOLY

SAGE (A)} (3.18)

can be computed in time $ (?(<) log(1/n)) for a polynomial ?.

Proof. Throughout the proof we identify RA = R<. We appeal to standard re-
sults on interior point methods (IPMs) for conic programming. The task is to
show that CPOLY

SAGE (A) can be expressed as a projection of a convex cone “K,”
which possesses a tractable self-concordant barrier with a complexity parameter
o bounded by a polynomial in <. From there, the meaning of “n-approximate”
and its relationship to the polynomial “?” depends highly on the details of a
given IPM; relevant sources for general conic IPMs include [37, §4] and [105,
§5]. In particular we rely on algorithms for optimizing over the exponential cone
Kexp = cl{(D, E, F) : E exp(D/E) ≤ F, E > 0}, and defer to [106–108] for formal
meanings of “n-approximate” in our context.

For each 8 ∈ [<], let Ã8 denote the (<−1) ×=matrix with rows given by {" 9 −"8 :
9 ∈ [<] \ 8}. Next, let S8 denote any matrix whose columns form a basis for the
kernel of Ã>

8
. We shall index the rows of S8 by 9 ∈ [<] \ 8 and say that S8 has “<8”

columns. Finally, define the cone K8 = {(u, v, C) : u, v ∈ R[<]\8+ , � (u, 4v) ≤ C}. In
terms of S8 and K8 we can reformulate the "8 th signomial AGE cone as{

c(8) ∈ R< : some w (8) ∈ R<8 satisfies
(
S8w

(8) , ĉ(8)\8 , 2̂
(8)
8

)
∈ K8

}
.
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Since K8 can be represented with < − 1 copies of Kexp and one linear inequality
over < − 1 additional scalar variables, the preceding display tells us that CSAGE(A)
can be represented with <(< − 1) copies of Kexp, < linear inequalities, and $ (<2)
scalar auxiliary variables. Combine this with the representation (3.17) to find that
the feasible set for (3.18) can be described with $ (<2) exponential cone con-
straints, $ (<) linear inequalities, and $ (ℓ + <2) ∈ $ (<2) scalar variables. As
the exponential cone has a tractable self-concordant barrier with complexity param-
eter oexp = 3, CPOLY

SAGE (A) has a tractable self-concordant barrier with complexity
parameter $ (<2).

3.5.2 Simple consequences of our signomial results
Subsection 3.5.1 suggested that the signomial SAGE cone is more fundamental
than the polynomial SAGE cone. This section serves to emphasize that idea, by
showing how our study of the signomial SAGE cone quickly produces results in the
polynomial setting. The following corollaries are obtained by viewing Theorems
3.4.1 and 3.4.3 through the lens of orthant-dominance.

Corollary 3.5.2. If A induces a simplicial polytope conv(A), and nonextremal
exponents are linearly independent mod 2, then CPOLY

SAGE (A) = CNNP(A).

Corollary 3.5.3. Suppose A belonging to ? = Pol(A, c) can be partitioned into
faces where (1) each simplicial face induces an orthant-dominated polynomial with
at most two nonextremal terms, and (2) all other faces have at most one nonextremal
term. Then ? is nonnegative if and only if it is SAGE.

Unfortunately it is not possible to reduce the dependence of Corollary 3.5.3 on the
coefficient vector c of the polynomial ?. The obstruction is that taking a signomial
representative is not without loss of generality, as the case A = [0, 1, 3, 4] shows.

To more deeply understand the polynomial SAGE cone it is necessary to study its
extreme rays, as wells as its sparsity preservation properties. We now show how this
can be done by leveraging Theorems 3.3.1 and 3.3.3 from Section 3.3.

Theorem 3.5.4. Defining the cone of “AGE polynomials” for exponents A and
index : as

CPOLY
AGE (A, #) ≔ {c : Pol(A, c) is globally nonnegative, and

c\# ≥ 0, 2" = 0 for all " ≠ # where " ∉ (2N)=}, (3.19)

we have
∑

#∈A CPOLY
AGE (A, #) = C

POLY
SAGE (A).
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Proof. The inclusion CPOLY
AGE (A, #) ⊂ C

POLY
SAGE (A) is obvious, since polynomials

satisfying (3.19) have AGE signomial representatives. We must show the reverse
inclusion CPOLY

SAGE (A) ⊂
∑

#∈A CPOLY
AGE (A, #).

Given a polynomial ? = Pol(A, c), testing if c belongs to CPOLY
SAGE (A) will reduce

to testing if ĉ (given by Equation (3.16)) belongs to CSAGE(A). Henceforth let
ĉ ∈ CSAGE(A) be fixed and set N = {" : 2̂" < 0}. By Theorem 3.3.1, there exist
vectors {ĉ(#) ∈ CAGE(A, #)}#∈N where 2̂(#)

#
= 2̂# < 0 for each # and 2̂(#)" = 0

for all " ∈ N \ {#}. The sign patterns here are important: ĉ(#) is supported on
{#} ∪ (A \ N), and 2̂(#)" ≥ 0 for all " in A \ N . By construction of ĉ, any " in
A\N satisfies " ∈ (2N)=. Therefore the carefully chosen vectors {ĉ(#)}#∈N define
not only AGE signomials, but also AGE polynomials ?̂# = Pol(A, ĉ(#)). Lastly,
for each index # ∈ N set c(#) by c(#)\# = ĉ(#)\# , and 2(#)

#
= −1 · sign(2#) · 2̂(#)#

. The
resulting polynomials ?# = Pol(A, c(#)) inherit the AGE property from ?̂8, and
sum to ?. As we have decomposed our SAGE polynomial into an appropriate sum
of “AGE polynomials,” the proof is complete.

Corollary 3.5.5. Any SAGE polynomial can be decomposed into a sum of AGE
polynomials in a manner that is cancellation-free.

Proof. The cancelation-free decomposition is given constructively in the proof of
Theorem 3.5.4.

Corollary 3.5.6. If c ∈ RA generates an extreme ray of CPOLY
SAGE (A), then supp c is

either a singleton or a simplicial circuit.

Proof. In view of Theorem 3.5.4, it suffices to show that for fixed # the extreme rays
of CPOLY

AGE (A, #) are supported on single coordinates, or simplicial circuits. This
follows from Theorem 3.3.3, since vectors in CPOLY

AGE (A, #) are – up to a sign change
on their #th component – in 1-to-1 correspondence with vectors in CAGE(Â, #),
where Â is obtained by dropping suitable rows from A.

3.5.3 AM/GM proofs of nonnegativity, circuits, and SAGE
In 1989, Reznick defined an agiform as any positive multiple of a homogeneous
polynomial 5 (x) = ∑

"∈A _"x
" − x# where # = A†, for a weighting vector

, ∈ ΔA . Agiforms have AGE signomial representatives, which follows by plugging
. = , into (3.2). Reznick’s investigation concerned extremality in the cone of
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nonnegative polynomials, and identified a specific subset of simplicial agiforms
which met the extremality criterion [14, Theorem 7.1].

Agiform-like functions were later studied by Pantea, Koeppl, and Craciun for anal-
ysis of biochemical reaction networks [17, Proposition 3]. Pantea et al. spoke in
terms of posynomials 5 (x) = ∑

"∈A 2"x
" where all 2" ≥ 0; a posynomial 5 was

said to dominate the monomial x# if x ↦→ 5 (x) − x# was nonnegative on R=+. If we
adopt the notation where Θ(c, ,) = ∏

"∈A (2"/_")_" , then [17, Theorem 3.6] says
that when A ∪ {#} is a simplicial circuit, monomial domination is equivalent to
1 ≤ Θ(c, ,) where , gives the barycentric coordinates for # ∈ conv(A).

A few years following Pantea et al., Iliman and de Wolff suggested taking sums
of nonnegative circuit polynomials, which are globally nonnegative polynomials
5 (x) = ∑

"∈A 2"x
" + 1x# whereA∪{#} form a simplicial circuit [96]. Iliman and

de Wolff’s Theorem 1.1 states that if all " ∈ A are even, 5 is a circuit polynomial,
and # ∈ conv(A) has barycentric coordinates , ∈ ΔA , then 5 nonnegative if and
only if

either |1 | ≤ Θ(c, ,) and # ∉ (2N)= or − 1 ≤ Θ(c, ,) and # ∈ (2N)=.
(3.20)

It is clear that [96, Theorem 1.1] extends [17, Theorem 3.6], to account for sign
changes of 1 ·x# and to impose no scaling on |1 |. Iliman and deWolff calledΘ(c, ,)
the circuit number of c, ,.

The approach of taking sums of nonnegative circuit polynomials is now broadly
known as “SONC.” Prior formulations for the SONC cone work by enumerating
every simplicial circuit which could possibly be of use in a SONC decomposition
(see [98, §5.2], and subsequently [100, 101]). The circuit enumeration approach is
extremely inefficient, as Example 3.5.7 shows an <-term polynomial can contain as
many as 2(<−1)/2 simplicial circuits.

2

2 2

10

10 10

2

22

14

1414

Example 3.5.7. Let 3 be divisible by 2
and =. Construct a 2= × = matrix A
by setting its rows "28−1 and "28 to dis-
tinct points in N= ∩ 3Δ= adjacent to 3%8.
Then for large enough 3, # = 31/=
will be contained in exactly 2= simplices.
Left: (3, =) = (12, 3), and a projection of
(3, =) = (16, 4).
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Circuit enumeration is not merely a theoretical issue. When using the heuristic
circuit-selection technique from [99], Seidler and de Wolff’s POEM software pack-
age fails to certify nonnegativity of the AGE polynomial 5 (G, H) = (G − H)2 + G2H2

and moreover only returns a bound 5★R= ≥ −1 [109].

Of course – Corollary 3.5.6 tells us that a polynomial admits a SAGE certificate if
and only if it admits a SONC certificate. This is good news, since Theorem 3.5.1 says
we can optimize over this set in time depending polynomially on |A|. In particular,
we may avoid SONC’s severe problems of circuit enumeration and circuit selection.
The qualitative distinction here is that while Pantea et al. and Iliman and de Wolff
consider the weights , as fixed (given by barycentric coordinates), the analogous
quantity . in the SAGE approach is an optimization variable. At a technical level,
the relative entropy formulation (3.2) affords a joint convexity whereby SAGE can
search simultaneously over coefficients c(#) and weighting vectors .(#) . As our
proof of Theorem 3.5.1 points out, we can be certain thatA†.(#) = 0 holds in exact
arithmetic simply by defining .(#)\# ← S8w

(8) (for the indicated matrix S8) and
a
(#)
#
= −∑

"≠# a
(#)
" .

3.5.4 Comparison to existing results in the SONC literature
Due to the equivalence of the class of nonnegative polynomials induced by the
SAGE and the SONC approaches, some of our results have parallels in the SONC
literature.

Corollary 3.5.2 is not stated in the literature, though it may be deduced from [96,
Corollary 7.5]. Iliman and de Wolff prove [96, Corollary 7.5] by signomializing
6(x) = 5 (exp x) and introducing an additional regularity condition so that ∇6(x) =
0 at exactly one x ∈ R=. Our proof of Corollary 3.5.2 stems from Theorem
3.4.1, which employs a convex duality argument applicable to constrained signomial
optimization problems in the manner of Corollary 3.4.6.

Wang showed that nonnegative polynomials in which at most one term 2"x
" takes

on a negative value at some x ∈ R= (either 2" < 0 or " ∉ (2N)=) are SONC
polynomials [100, Theorem 3.9]. This result can be combined with the definition
of AGE polynomial given in Theorem 3.5.4 in order to prove a weaker form of
Corollary 3.5.6, where all "8 belong to ext conv(A) or int conv(A). We emphasize
that Corollary 3.5.6 is not responsible for the major efficiency gains of SAGE from
Theorem 3.5.1; the SONC formulation in [100, §5] uses 2(<−1)/2 circuits for the
<-term polynomials from Example 3.5.7.
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Finally, in a result that was announced contemporaneously to the original submission
of the present work, Wang showed that summands in a SONC decomposition of a
polynomial 5 = Pol(A, c) may have supports restricted to A without loss of
generality [101, Theorem 4.2]. In light of the equivalence between the class of SAGE
polynomials and of SONCpolynomials, this result may be viewed as aweaker analog
of our Corollary 3.5.5; specifically, [101, Theorem 4.2] shows SONC certificates
are sparsity-preserving but it does not provide a cancellation-free decomposition.

The distinctions between our polynomial Corollaries 3.5.2 and 3.5.3 versus our
signomial Theorems 3.4.1 and 3.4.3 make clear that polynomial results should not
be conflated with signomial results. With the exception of Section 3.5, our setup
and results in this work pertain to the class of signomials, which in general can have
" ∈ (R \Q)=. The developments in the SONC literature only consider polynomials,
and employ analysis techniques of an algebraic nature which rely on integrality
of exponents in fundamental ways (c.f. [101, Theorem 4.2]). In contrast, our
techniques are rooted in convex duality and are applicable to the broader question
of certifying signomial nonnegativity.

3.5.5 SAGE and SOS
The SOS approach to polynomial nonnegativity considers polynomials 5 in = vari-
ables of degree 23, and attempts to express 5 (x) = ! (x)>V! (x) where V is a PSD
matrix and ! : R= → R(=+33 ) is a lifting which maps x to all monomials of degree
at-most 3 evaluated at x [1–3]. The identity 5 (x) = ! (x)>V! (x) can be enforced
with linear equations on the coefficients of 5 and the entries of V, so deciding
SOS-representability reduces to a semidefinite program.

Because it is extremely challenging to solve semidefinite programs at scale, several
modifications to SOS have been proposed to offer reduced complexity. Kojima et.
al built on earlier work of Reznick [73] to replace the lifting “!” appearing in the
original SOS formulation with a smaller map using fewer monomials [89]. Their
techniques hadmeaningful use-cases, but could fail to perform any reduction in some
very simple situations [89, Proposition 5.1]. Subsequently, Waki et. al introduced
the correlative sparsity heuristic to induce structured sparsity in the matrix variable
V [90]. Shortly thereafter Nie and Demmel suggested replacing the standard lifting
by a collection of smaller {!8}8, so as to express 5 (x) = ∑

8 !8 (x)>V8!8 (x) with
order

(:+3
3

)
PSD matrices V8 for some : � = [91]. Very recently, Ahmadi and

Majumdar suggested one use the standard lifting together with a scaled diagonally
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dominant matrix V of order
(=+3
3

)
;2 these “SDSOS polynomials” are precisely those

polynomials admitting a decomposition as a sum of binomial squares [92].

Each of these SOS-derived works suffers from a drawback that SOS decompositions
may require cancellation on coefficients of summands 58 = 62

8
as one recovers

5 =
∑
8 58. As a concrete example, consider 5 (G, H) = 1 − 2G2H2 + G8/2 + H8/2; this

polynomial is nonnegative (in fact, AGE) and admits a decomposition as a sum of
binomial squares. The trouble is that to decompose 5 as a sum of binomial squares,
the summands 58 = 62

8
require additional terms +G4H4 and −G4H4. By contrast,

SAGE certificates need only involve the original monomials in 5 , and one may
take summand AGE polynomials to be cancellation-free with no loss of generality
(Corollary 3.5.5). The SAGE approach also has the benefit of being formulated
with a relative entropy program of size$ (<2) (Theorem 3.5.1), while SOS-derived
works have complexity scaling exponentially with a polynomial’s degree 3.

We make two remarks in closing. First, it is easy to verify that every binomial
square is an AGE polynomial, and so SAGE can certify nonnegativity of all SDSOS
polynomials. Second, it is well known that proof systems leveraging the AM/GM
inequality (SAGE among them) can certify nonnegativity of some polynomials
which are not SOS. A prominent example here is the Motzkin form 5 (G, H, I) =
G2H4 + G4H2 + I6 − 3G2H2I2.

3.5.6 Extending SAGE polynomials to a hierarchy
We conclude this section by discussing how to obtain hierarchies for constrained
polynomial optimization problems, in a manner which is degree-independent and
sparsity preserving. Adopt the standard form (3.15) for minimizing a polynomial 5
subject to a set of inequality constraints 6(x) ≥ 0 for 6 ∈ �. Here, all polynomials
are over a common set of exponents A ∈ N<×=, with "1 = 0 and < ≥ =. Our
development is based on a hierarchy for signomials that is described in [13, §3.3].

Consider operators � and� taking values �(Pol(A, c)) = A and� (Pol(A, c)) = c

respectively. We shall say our SAGE polynomial hierarchy is indexed by two param-
eters: ? and @. The parameter ? controls the complexity of Lagrange multipliers;
when ? = 0, the Lagrange multipliers are simply _8 ≥ 0. For general ?, the La-
grange multipliers are SAGE polynomials over exponents A′ ≔ �(Pol(A, 1)?).
The parameter @ controls the number of constraints in the nonconvex primal prob-

2A symmetric matrix V is scaled-diagonally-dominant if there exists a diagonal J � 0 so that
JVJ is diagonally dominant. Such matrices can be represented as a sum of 2 × 2 PSD matrices
with appropriate zero padding.
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lem: � = {ℎ8}:
@

8=1 are obtained by taking all @-fold products of the 68. Once the
Lagrangian ! = 5 −W−∑

ℎ∈� ℎ · Bℎ is formed, it will be a polynomial over exponents
A′′ ≔ �(Pol(A, 1)?+@). By the minimax inequality we have

( 5 , 6) (?,@) ≔ sup
W,{Bℎ}ℎ∈�

{ W : � (!) ∈ CPOLY
SAGE (A

′′) and

� (Bℎ) ∈ CPOLY
SAGE (A

′) ∀ ℎ ∈ �} ≤ ( 5 , 6)★.

Following Theorem 3.5.1, the above can be solved in time polynomial in <, : for
each fixed ?, @. As ? and @ increase, we obtain improved bounds at the expense of an
increase in computation. Mirroring [13], one can appeal to representation theorems
from the real algebraic geometry literature [110–112] to prove that this hierarchy
can provide arbitrarily accurate lower bounds for sparse polynomial optimization
problems in which the constraint set is Archimedean (for example, if all variables
have explicit finite upper and lower bounds).

Our broader message here – beyond results on convergence to the optimal value
of specific hierarchies – is that the above construction qualitatively differs from
other hierarchies in the literature, because the optimization problems encountered
at every level of our construction depend only on the nonnegative lattice generated
by the original exponent vectors A. The theoretical underpinnings of this sparsity-
preserving hierarchy trace back to the decomposition result given by Theorem 3.3.1.
Thus, it is possible to obtain entire families of relative entropy relaxations that are
sparsity-preserving, which reinforces our message about the utility of SAGE-based
relative entropy optimization for sparse polynomial problems.

3.6 Towards a complete characterization of SAGE versus nonnegativity
We conclude this chapter with a discussion on the extent to which our results
tightly characterize the distinction between SAGE and nonnegativity for signomials.
This section is split into three parts. In the first part, we describe a process for
identifying cases where CSAGE(A) ( CNNS(A). This process is illustrated with
several examples which suggest that our results from Section 3.4 are essentially
tight. Subsection 3.6.2 presents a formal conjecture regarding the ways in which our
results might be improved, and Subsection 3.6.3 provides a novel dual formulation
for when CSAGE(A) = CNNS(A).

3.6.1 Constructing examples of non-equality
In this subsection we treat A ∈ R<×= as a matrix where the rows are exponent
vectors; its transpose is A>. For a given A matrix we are interested in finding a
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coefficient vector c so that 5 = Sig(A, c) satisfies 5 SAGE
R= < 5★R= . If such c exists,

then it is evident that CSAGE(A) ≠ CNNS(A).

The naive approach to this process would be to construct signomials where the
infimum 5★R= is known by inspection, to compute 5 SAGE

R= , and then to test if the
measured value | 5 SAGE

R= − 5★R= | is larger than would be possible from rounding errors
alone. Unfortunately, it can be quite difficult to construct A and c where 5★R= is
apparent and yet (A, c) are relevant to the conjecture under test.

To address this challenge, we use the “unconstrained SAGE hierarchy” (see [13]) to
compute a sequence of lower bounds ( 5 (ℓ)R= )ℓ∈N. For our purposes, suffice it to say
that

5
(ℓ)
R= ≔ sup{W : Sig(A, 1)ℓ ( 5 − W) is SAGE }

defines a non-decreasing sequence bounded above by 5★R= . Note that in particular
we have 5 (0)R= = 5 SAGE

R= . Thus, while we cannot readily compute | 5 SAGE
R= − 5★R= |, we

can compute a few values of 5 (ℓ)R= for ℓ > 0, and check if | 5 (0)R= − 5
(ℓ)
R= | � 0.

The remainder of this section probes the sensitivity our earlier theorems’ conclusions
to their stated assumptions. All computation was performed with a late 2013
MacBook Pro with a 2.4GHz i5 processor, using CVXPY [113, 114] as an interface
to the conic solver ECOS [107, 115].3 Numerical precision is reported to the farthest
decimal point where the primal and dual methods for computing 5 (ℓ)R= agree.

Example 3.6.1. We test here whether it is possible to relax the assumption of
simplicial Newton polytope in Theorem 3.4.1. Since every Newton polytope in R is
trivially simplicial, the simplest signomials available to us are over R2. With that in
mind, consider

A> =
[
0 2 1 0 0 2
0 0 0 2 1 2

]
.

This choice of A is particularly nice, because were it not for the last element
"6 = (2, 2), we would very clearly have CSAGE(A) = CNNS(A). We tested a few
values for c before finding

c = (0, 3,−4, 2,−2, 1),

which resulted in 5 (0)R= ≈ −1.83333, and 5 (1)R= ≈ −1.746505595 = 5★R= . Because the
absolute deviation | 5 SAGE

R= − 5★R= | ≈ 0.08682 is much larger than the precision to
which we solved these relaxations, we conclude that CSAGE(A) ≠ CNNS(A) for this
choice of A.

3See data.caltech.edu/records/1427 for code.
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Example 3.6.2. Let us reinforce the conclusion from Example 3.6.1. Applying a
180 degree rotation about the point (1,1) to the rows of A, we obtain

A> =
[
0 2 0 2 1 2
0 0 2 2 2 1

]
.

We then choose the coefficients in a manner informed by the theory developed in
Subsection 3.6.3

c = (0, 1, 1, 1.9,−2,−2)

which subsequently defines 5 = Sig(A, c). In this case the primal formulation
for 5 SAGE

R= is infeasible, and so 5
(0)
R= = −∞. Meanwhile, the second level of the

unconstrained hierarchy produces 5 (1)R= ≈ −0.122211863 = 5★R= . Thus in a very
literal sense, the gap | 5 SAGE

R= − 5★R= | could not be larger.

We know from Theorem 3.4.3 that any signomial with at most four terms is nonneg-
ative if and only if it is SAGE. It is natural to wonder if in some very restricted setting
(e.g. univariate signomials) the SAGE and nonnegativity cones would coincide for
signomials with five or more terms; Example 3.6.3 shows this is not true in general.

Example 3.6.3. For 5 = Sig(A, c) with[
A

�� c]> = 
0 1 2 3 4

1 −4 7 −4 1

 .
we have 5 (0)R= ≈ −0.3333333 and 5

(1)
R= ≈ 0.2857720944. Per the affine-invariance

properties of the SAGE and nonnegativity cones, this examples shows CSAGE(A) is
a strict subset of CNNS(A) for every 5 × 1 matrix A with equispaced values.

Together, Examples 3.6.1 through 3.6.3 demonstrate there are meaningful senses in
which Theorems 3.4.1 through 3.4.3 cannot be improved upon.

3.6.2 A conjecture, under mild regularity conditions
Despite the conclusion in the previous subsection, there are settings when we
can prove CSAGE(A) = CNNS(A) in spite of A not satisfying the assumptions of
Theorem 3.4.3. For example, one case in which SAGE equals nonnegativity is when

A = {0, %1, . . . , %=, 31%1, . . . , 3=%=}

where each 38 belongs to the interval (0, 1). Here one proves equality as follows:
for each possible sign pattern of c ∈ CNNS(A), there exists a lower dimensional
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simplicial face F of conv(A) upon which we invoke Theorem 3.4.1, and for which
the remaining exponents (those outside of F) have positive coefficients. We know
that the signomial induced by the exponents outside of F is trivially SAGE, and so
by Theorem 3.4.2 we conclude c ∈ CSAGE(A). As this holds for all possible sign
patterns on c in CNNS(A), we have CSAGE(A) = CNNS(A). However, this case is
rather degenerate, and we wish to exclude it in our discussion via some form of
regularity on A.

The most natural regularity condition on A would be that it admits only the trivial
partition. We impose the stronger requirement that every "8 belongs to either
ext conv(A) or int conv(A). In this setting we have the following corollary of
Theorem 3.4.3.

Corollary 3.6.4. If conv(A) is full dimensional and A has either

1. at most one interior exponent, or

2. = + 1 extreme points and at most two interior exponents

then CSAGE(A) = CNNS(A).

We also formulated the following conjecture when this work was conducted in 2018.
The conjecture has since been resolved in the negative by Forsgård and de Wolff
[21, Section 9]. Still, we provide the original statement and supporting examples.

Conjecture 3.6.5. If A has every " in either ext conv(A) or int conv(A), but A
does not satisfy the hypothesis of Corollary 3.6.4, then CSAGE(A) ≠ CNNS(A).

Note thatwhenA satisfies the stated assumptions and and further has 0 ∈ int convA,
Theorem 3.4.7 ensures that 5 = Sig(A, c) can have 5 SAGE

R= deviate from 5★R= only
by a finite amount. To overcome a potential obstacle posed by this result in the
resolution of Conjecture 3.6.5, one can also consider modifying the hypotheses of
the conjecture to require that all nonextremal " lie in the relative interior of the
Newton polytope. We conclude discussion on this topic with two examples.

Example 3.6.6. Let 5 be a signomial in two variables with

[
A

�� c]> = 
0 1 0 0.30 0.21 0.16
0 0 1 0.58 0.08 0.54

33.94 67.29 1 38.28 −57.75 −40.37

 .
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Then 5 SAGE
R= = −24.054866 < 5

(1)
R= = −21.31651. This example provides the

minimum number of interior exponents needed to be relevant to Conjecture 3.6.5 in
the simplicial case.

Example 3.6.7. Let 5 be a signomial in two variables with

[
A

�� c]> = 
0 1 0 2 0.52 1.30
0 0 1 2 0.15 1.38

0.31 0.85 2.55 0.65 −1.48 −1.73

 ,
then 5 SAGE

R= = 0.00354263 < 5
(1)
R= = 0.13793126. This signomial has the minimum

number of interior exponents needed to be relevant to Conjecture 3.6.5 in the
nonsimplicial case.

3.6.3 A dual characterization of SAGE versus nonnegativity
In this section, we provide a general necessary and sufficient dual characterization in
terms of certain moment-type mappings for the question of CSAGE(A) = CNNS(A).
To establish this dual characterization we use some new notation. Given two vectors
u, v the Hadamard product w = u ◦ v has entries F8 = D8E8; this is extended to allow
sets in either argument in the same manner as the Minkowski sum. The range of the
linear operatorA : R= → RA is indicated byAR=. We extend exp : R→ R first to
vectors elementwise and then to sets pointwise.

We begin with the following proposition (proven in the appendix).

Proposition 3.6.8. If 0 ∈ A, then the following are equivalent:

1. For every vector c, the function 5 = Sig(A, c) satisfies 5★R= = 5 SAGE
R= .

2. CNNS(A) = CSAGE(A).

3. {v ∈ RA : E0 = 1, v in CSAGE(A)†} ⊂ cl conv exp(AR=).

Our dual characterization consists of two new sets, both parameterized by A.
The first of these sets relates naturally to the third condition in Proposition 3.6.8.
Formally, the moment preimage of some exponent vectors A is the set

T(A) ≔ log cl conv exp(AR=).

Here, we extend the logarithm to include log 0 = −∞ in the natural way. The second
set appearing in our dual characterization is defined less explicitly. For a given A,
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we say that S(A) ⊂ RA is a set of SAGE-feasible slacks if 5 = Sig(A, c) has

5 SAGE
R= = inf{〈c, exp y〉 : y in S(A) + AR=}

for every c in RA .

Theorem 3.6.9. Let 0 ∈ A and S(A) be any set of SAGE-feasible slacks over
exponents A. Then CSAGE(A) = CNNS(A) if and only if S(A) ⊂ T(A).

Theorem 3.6.9. To keep notation compact write U = AR= and S = S(A). Also,
introduce W = {v : E0 = 1, v in CSAGE(A)†} ⊂ RA to describe the feasible set for
the dual formulation of 5 SAGE

R= . By the supporting-hyperplane characterizations of
convex sets, the definitions of S and W imply

W = cl conv exp(U + S).

Thus by the equivalence of 1 and 3 in Proposition 3.6.8, it follows that all SAGE
relaxations will be exact if and only if exp(U + S) ⊂ cl conv exp U. We apply a
pointwise logarithm to write the latter condition as U + S ⊂ log cl conv exp U.

Now we prove that T ≔ log cl conv exp U is invariant under translation by vectors in
U. It suffices to show that exp(v + T) = exp T for all vectors v in U. Fixing v in U
we have

exp(v + T) = exp(v) ◦ exp(T)
= exp(v) ◦ cl conv exp(U)
= cl conv exp(v + U)
= cl conv exp(U) = exp(T)

as claimed. This translation invariance establishes that U + S ⊂ log cl conv exp U is
equivalent to S ⊂ log cl conv exp U, and in turn that condition 1 of Proposition 3.6.8
holds if and only if S ⊂ log cl conv exp U. The claim now follows by the equivalence
of 1 and 2 in Proposition 3.6.8.

For constructing sets of SAGE-feasible slacks, one can use a change-of-variables ar-
gument similar to that seen in the proof of Theorem 3.4.1. The following proposition
shows the outcome of such an argument.

Proposition 3.6.10. Let Φ : RA → RA be the extended-real-valued polyhedral
mapping with coordinate functions

Φ# (s) = sup
x∈R=

{
min
"∈A
{〈" − #, x〉 + B"}

}
.
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One choice of SAGE-feasible slacks is the polyhedral cone

S(A) =
{
s ∈ RA | B0 = 0, 0 ≤ s ≤ Φ(s)

}
.
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C h a p t e r 4

A NEW APPROACH TO CONSTRAINED SIGNOMIAL
NONNEGATIVITY

4.1 Introduction
By now we have seen SAGE and SOS methods for proving function nonnegativity.
These methods have transparent applications in bounding the value of an uncon-
strained minimization problem. Here we consider constrained problems. For K as
a proper subset of R=, we want to take advantage of the following:

5★K ≔ inf
x∈K

5 (x) = sup{W : 5 − W is nonnegative on K}.

So, how can we take global nonnegativity certificates and apply them meaningfully
to constrained problems?

One approach takes a page from classical optimization theory. We can replace our
constrained problem by an unconstrained problem by forming a suitable Lagrangian
!, and we can optimize over Lagrange multipliers subject to a constraint that a
shifted Lagrangian ! − W is globally nonnegative. This is pragmatic and has been
in use in simplified forms (i.e., sans nonnegativity certificates) since the earliest
days of optimization. However, traditional Lagrangians often give poor results for
nonconvex problems, since it is possible that local minima for ! fall far outside K.
The real algebraic approach to this problem asks more generally for an identity

5 (x) − W =
∑
6∈�

6(x)_6 (x) for all x ∈ R= (4.1)

where 6 ∈ � are fixed functions known to be nonnegative on K and _6 are globally
nonnegative functions for us to design. Various results from real algebraic geometry
say that if 5★K > W, then under suitable regularity conditions, such an identity exists
for sufficiently expressive _6.

These algebraic methods are very effective for nonconvex problems. However,
the classical optimization literature contains a wealth of methods for strengthening
Lagrange dual problems that were developed without real algebraic geometry. One
such method is partial dualization. The idea is to express an optimization problem’s
feasible set as

K = {x : x ∈ X and � (x) ≥ 0}
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where the constraint x ∈ X is considered “easy” and� (x) ≥ 0 is considered “hard.”
Once we divide our constraints into these categories, we dualize � – that is, we
move � into a Lagrangian – and we minimize the Lagrangian over X.

At first blush this only kicks the can down the road. Hasn’t the set X just replaced
K from before? That depends on what latitude we afford ourselves in choosing X.
The real question is

How much latitude do we have in choosing a partial dual’s “nice set,”
given the tools available to us for handling the final Lagrangian?

This chapter shows that we have tremendous latitude in applying partial dualization
with SAGE signomials, through a concept that we call conditional SAGE. We
show that when X is a convex set, cones of “X-SAGE signomials” are completely
characterized by a relative entropy program involving the support function ofX. This
result is leveraged to obtain a representation for dual X-SAGE cones, which have
a structure enabling a projective solution recovery method for convex relaxations
to signomial programs. The qualitative situation is that if X is tractable, then so
are primal and dual X-SAGE cones. Our methods therefore provide substantially
improved machinery for constrained signomial nonnegativity problems.

This chapter keeps things simple; our goal is to help the reader build familiarity
with the basics of conditional SAGE signomials. Chapters 5 and 6 provide deep
mathematical investigations into this idea and Chapter 7 applies it to polynomials.

Remark 4.1.1. From this chapter onward, the term “SAGE” has a conceptual mean-
ing. It can refer either to the machinery of conditional SAGE (as introduced here) or
the original methods of Chandrasekaran and Shah [13] (which we shall call ordinary
SAGE). We make limited use of the unqualified term “SAGE” when speaking of
specific mathematical objects such as cones.

4.1.1 Related work
The ideas in this chapter are closely related to ordinary SAGE [13] and its im-
mediate relatives: monomial dominating posynomials [17] and nonnegative circuit
polynomials [96]. The connections to [17, 96] are mostly genealogical, as the con-
ditional SAGE framework here relies entirely on the convex duality arguments that
are unique to [13].

The methods presented here have been used by Wachter, Karaca, Darivianakis,
and Charalambous to solve a polynomial optimization problem of interest in power
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systems where the decision variables are nonnegative [63]. SOS methods applied
to the same problem could not scale to match our methods (see also Chapter 8).
Wachter’s unpublished Master’s thesis covers several topics that are absent from
[63], including an exploration of using an arithmetic-geometric inequality over C=

in an attempt to derive a version of SAGE over the complex numbers [64]. Wachter’s
particular approach ends with a negative result.

Next, we have Hamza Fawzi’s lifting maps [116]. In this framework we consider
an abstract set S, a vector-valued function � : S → C where C ⊂ R< is a convex
cone, and observe that functions 5 (x) = 〈c, � (x)〉 are nonnegative on S provided
the coefficient vector c belongs to the dual cone C†. We do not make a connection
to lifting maps in this thesis.

Lastly, we make note of Olga Kuryatnikova’s PhD thesis work, which consists
broadly of analyzing certificates of nonnegativity using convex analysis rather than
real algebraic geometry [117] (see also [118]). Kuryatnikova proves many well-
known representation results in real algebraic geometry and creates new ones.

4.1.2 Notation and preliminary definitions
Weuse the overloaded notation for exponent setsA ⊂ R= as described in Section 2.1.
Recall also that for a vector c ∈ RA and some # ∈ A, we abbreviate c\# ≔

(2")"∈A\#. Signomials are referred to by 5 = Sig(A, c). Throughout this chapter,
� denotes a vector-valued signomial map used in inequality constraint functions.

For our examples we use sageopt and MOSEK [119]. We tun these examples on
three machines, two of which are named. Machine W is an HP Z820 workstation,
with two 8-core 2.6GHz Intel Xeon E5-2670 processors and 256GB 1600MHz
DDR3 RAM. Machine L is a 2013 MacBook Pro, with a dual-core 2.4GHz Intel
Core i5 processor and 8GB 1600MHz DDR3 RAM.

4.2 Conditional SAGE certificates of signomial nonnegativity
In this section we show how SAGE certificates for signomial nonnegativity can
fully leverage partial dualization, in the sense that any tractable convex set X gives
rise to a parameterized and similarly tractable “X-SAGE” nonnegativity cone. The
efficient representation of the X-SAGE cones (which we often call “conditional
SAGE cones”) leads to a practical, principled approach to constrained signomial
nonnegativity. For signomial optimization, the most common sets X are of the form
X = {x : � (x) ≤ 1} where � is a posynomial map.
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4.2.1 Definition and sparsity preservation
A signomial Sig(A, c) is called X-AGE if it is nonnegative on X, and at most one
component of c is negative. The #th X-AGE cone for signomials over exponents
A ⊂ R= is

CX(A, #) =
{
c ∈ RA : c\# ≥ 0 and Sig(A, c) (x) ≥ 0 for all x in X

}
.

Note that X-AGE cones are defined for arbitrary X ⊂ R=, including nonconvex sets,
and convex sets which admit no efficient description. A signomial Sig(A, c) is
called X-SAGE if the coefficient vector c belongs to the Minkowski sum

CX(A) ≔
∑
#∈A
CX(A, #).

We recover the notion of ordinary SAGE by taking X = R=.

Example 4.2.1. Consider the signomial 5 (G) = 4−3G+4−2G+44G+42G−44−G−1−43G

supported on A = {−3,−2, . . . , 3}, together with

51(G) = 0.88 · 4−3G + 0.82 · 4−2G + 2.69 · 4G + 0.12 · 42G − 4 · 4−G ,
52(G) = 0.10 · 4−3G + 0.15 · 4−2G + 0.90 · 4G + 0.12 · 42G − 1, and

53(G) = 0.02 · 4−3G + 0.03 · 4−2G + 0.41 · 4G + 0.76 · 42G − 43G .

These four signomials are plotted below, with 5 in blue.
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The signomials 51, 52, 53 are evidently nonnegative for G ≤ 0, each have at most
one negative term, are supported on A, and sum to 5 . We therefore have that 5 is
X-SAGE for X = −R+.
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It is possible to prove a range of results for X-SAGE signomials without knowing
how to check membership in CX(A). Here is one such result.

Corollary 4.2.2. Let X ⊂ R= be arbitrary. If c is a vector in CX(A) with nonempty
N = {# ∈ A : 2# < 0}, then there exist vectors {c(#)}#∈N satisfying

c(#) ∈ CX(A, #) c =
∑
#∈N

c(#) and 2
(#)
" = 0 for all " ≠ # in N.

One can see Corollary 4.2.2 in action through Example 4.2.1, with X = −R+ and
A = {−3,−2, . . . , 3}. The X-SAGE signomial 5 had three negative terms and so
could be written as a sum of three X-AGE functions. The process of summing
51, 52, 53 to 5 also resulted in no cancellation of coefficients on the basis functions
{4−G , 1, 43G}. This reduced the dimension of the search space for an X-SAGE
decomposition of 5 from 49 (seven X-AGE cones of dimension seven) to only 12.
In large SAGE relaxations, such dimension reduction can reduce computational
costs by orders of magnitude.

Corollary 4.2.2 also has a very important theoretical consequence. It tells us there is
no loss of generality in restricting X-SAGE decompositions of a signomial Sig(A, c)
to those with X-AGE functions also supported on A. Therefore it is equivalent to
say “an X-SAGE function is a sum of X-AGE functions,” without making reference
to a fixed set of exponent vectors.

Remark 4.2.3. The term “X-AGE” is a pseudo-acronym. If an acronym is desired,
one might instead call these functions AGE on X or AGE mod X, and expand “AGE”
in the usual way.

4.2.2 Representing conditional SAGE cones
Nowwe turn to the essential question of how to represent cones of conditional SAGE
signomials. The following theorem demonstrates that if X is a tractable convex set,
then so is CX(A).

Theorem 4.2.4. For exponents A ⊂ R=, a vector # ∈ A, and a convex set X ⊂ R=

with support function fX(,) ≔ supx∈X〈,, x〉, we have

CX(A, #) = {c ∈ RA : there exist . in RA and , in R=

satisfying A†. + , = 0, 〈1, .〉 = 0,

and fX(,) + � (.\#, 4c\#) ≤ 2#}.
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Theorem 4.2.4 is stated with a support function for maximum generality. From
an implementation perspective, it is useful to assume a representation of X. For
example, if X = {x : Gx + b ∈ K} for a matrix G, a vector b, and a convex cone K,
then weak duality ensures

fX(,) ≔ sup{〈,, x〉 : Gx + b ∈ K} ≤ inf{〈b, (〉 : G†( + , = 0, ( ∈ K†}.

The above is all we need to construct an inner-approximation of a given AGE cone.
For all X = {x : Gx + b ∈ K}, we have

{c ∈ RA : there exist . in RA and ( in K†

satisfying A†. = G†(, 〈1, .〉 = 0,

and � (.\#, 4c\#) + 〈(, b〉 ≤ 2#} ⊂ CX(A, #).

If there exists an x> where Gx> + b is in the relative interior of K, then by Slater’s
condition the reverse inclusion in the preceding expression also holds. Through this
approach, we see that if X is relative entropy representable, then so is CX(A).

This thesis only considers X-SAGE signomials when X is a convex set, however there
remains the possibility of using X-SAGE decompositions to certify nonnegativity
when X is nonconvex. To give an example of when this is possible, suppose
X = X1 ∪ X2 where X1 and X2 are convex sets. In this case we trivially have that
CX(A, #) is the intersection of CX1 (A, #) and CX2 (A, #), and so CX(A) inherits a
representation from Theorem 4.2.4.

Remark 4.2.5. The representation of C ≔ C[X1∪X2] (A) described above is smaller
than the standard representation of C′ ≔ CX1 (A) ∩CX2 (A). It is likely the case that
C ( C′; it would be interesting to determine the precise nature of this potential gap.

4.2.3 Some observations on the strength of conditional SAGE bounds
To further illustrate that representations of CX(A) are not required to prove results
for X-SAGE signomials, we provide two elementary propositions concerning op-
timization with conditional SAGE certificates. For 5 = Sig(A, c) with 0 ∈ A,
define

5 SAGE
X ≔ sup{ W : W in R, c − W%0 in CX(A)}

so that 5 SAGE
X ≤ 5★X ≔ inf{ 5 (x) : x in X}.

Proposition 4.2.6. If c ≥ 0, then 5 = Sig(A, c) has 5 SAGE
X = 5★X for all X ⊂ R=.
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Proof. The signomial 5̃ = Sig(A, c− 5★X %0) is nonnegative overX, and its coefficient
vector c − 5★X %0 contains at most one negative entry. This implies that 5̃ is X-AGE,
and hence X-SAGE.

Proposition 4.2.7. If X is bounded, then 5 SAGE
X > −∞ for every signomial 5 .

Proof. IfX is empty then the result follows by verifying that CX(A) = RA . Consider
the case when X is nonempty. In this situation it suffices to prove the result for all 5
of the form 5 (x) = 2 exp〈a, x〉 where 2 ≠ 0 and a belongs to R=. Fixing such 2, a,
the boundedness of X implies the existence of ! ≠ 0 with 5̃ (x) = 2 exp〈a, x〉 + !
nonnegative over x in X and 2! < 0. Since 5̃ is nonnegative over X and contains
exactly one negative coefficient, we have that 5 SAGE

X ≥ −!.

Proposition 4.2.7 shows how convex relaxations based on conditional SAGE certifi-
cates respect compactness.

4.2.4 Proofs of main results

Corollary 4.2.2. Let < = |A| and identify RA = R<. The cones CX(A, #) are of
the form C8 = {c ∈ K : c\8 ≥ 0} where K is the cone of coefficient vectors for
X-nonnegative signomials supported onA. Since this cone K contains R<+ , these C8
satisfy the hypothesis of Lemma 3.3.4. Therefore the proof of the known case with
X = R= (Theorem 3.3.1) generalizes immediately.

Theorem 4.2.4. For the proof we enumerate A = {"1, . . . ,"<}. Without loss of
generality we can take # = "<. Let �X denote the indicator function of X, taking
values �X(x) = 0 when x ∈ X and �X(x) = +∞ otherwise.

Given c\< ≥ 0, the signomial 5 = Sig(A, c) is nonnegative on X if and only if

?★ = inf{�X(x) +
∑<−1
8=1 28 exp C8 : x ∈ R=, t ∈ R<−1, t = ]x} ≥ −! (4.2)

where ! = 2< and ] ∈ R(<−1)×= has rows ("8 − "< : 8 ∈ [< − 1]). The dual to
(4.2) is easily calculated by applying Fenchel duality (c.f. [120]); the result of this
process is

3★ = sup{−fX(,) − � (z, 4c\<) : , ∈ R=, z ∈ R<−1, ]†z + , = 0}. (4.3)

This problem can be stated in a form closer to the theorem’s claim by identifying
z = .\#, and noticing that 〈1, .〉 = 0 implies a# = −

∑
"≠# a" and A†. = ]†z.
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When X is nonempty, one may verify that the hypothesis of [120, Corollary 3.3.11]
(concerning strong duality) holds for the primal-dual pair (4.2)-(4.3). In particular,
?★ ≥ −! holds if and only if −3★ ≤ !, and the dual problem attains an optimal
solution whenever finite. When X is empty, it is clear that ?★ = +∞, and by taking
both , and . as zero vectors, we have 3★ = +∞. The result follows.

4.3 An application in chemical dynamics
Here we consider a problem in chemical dynamics described by Pantea, Koeppl,
and Craciun in [17]. The problem concerns a chemical reaction network (CRN),
encoded as a polynomial map A : R=++ × R<++ → R= that defines a parameterized
dynamical system

d
dC
x(C) = A (x(C); k).

Here, x is a vector of concentrations of chemical species, and k is a vector of
reaction rates between these species. General background on CRNs can be found
in the short tutorial by Yu and Craciun [31]. If each monomial in A involves at most
two distinct species G8, G 9 , then we call the reaction network bi-molecular.

From A we construct polynomials ?(x; k) = det Jac A (x; k) where “Jac” computes
the Jacobian matrix with respect to x. Pantea et al.’s Theorem 2.1 states that for
bi-molecular CRNs, the map A (·; k) is injective on an open convex set Ω ⊂ R= if
and only if ?(x; k) ≠ 0 for all x in Ω. The injectivity property is important because
it means the reaction network can have at most one fixed point over x ∈ Ω.

To see how conditional SAGE can help here, wemust reparameterize the polynomial
?(x; k) into a signomial 5 (x̃, k̃) in x̃ = log x and k̃ = log k. We are interested in
the behavior of 5 (·, k̃) over log Ω for various values of rate constants k. In order
for [17, Theorem 2.1] to apply, we need log Ω to be a convex set. Simple examples
when this happens include when Ω is an open box in R=++ or the intersection of such
a box with a halfspace {x : 〈a, x〉 < 1} defined by some a ≥ 0.

For our particular example we will work with Ω = R=++ and focus on certifying
injectivity of A (·; k) for many values of k simultaneously. From a nonnegativity
standpoint, we will consider k as variables that belong in a box K ⊂ R<++. We will
apply conditional SAGE to lower bound the minimum of 5 over R= × log K, and
conclude A is injective for all values of k ∈ K if that lower bound is positive.
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Here is the full system we consider:

A1(x; k) = −:1G1G2 + :2G4 + 2:5G3 − 2:6G
2
1 − :9G1 + :10

A2(x; k) = −:1G1G2 + :2G4 − :3G2G3 + :4G5 − :11G2 + :12

A3(x; k) = −:3G2G3 + :4G5 − :5G3 + :6G
2
1 − 2:7G

2
3 + 2:8G6 − :13G3 + :14

A4(x; k) = :1G1G2 − :2G4 − :15G4 + :16

A5(x; k) = :3G2G3 − :4G5 − :17G5 + :18

A6(x; k) = :7G
2
3 − :8G6 − :19G6 + :20.

(4.4)

We work towards describing ?(x; k) = det Jac A (x; k) in a few steps. First, we note
there is a general phenomenon in CRN theory that these polynomials tend to be very
sparse and have only a few negative terms (see [17] for discussion and references
supporting this claim). For this system, ? has 91 positive terms, two negative terms,
and the negative terms only depend on x through a bilinear term G2G3.

Per the discussion in [17], many of these parameters k have a common physical
interpretation, and we can reasonably make the assumption that

:9 = :11 = :13 = :15 = :17 = :19 = 1.

To express the polynomial ?, we define the following intermediate expressions in k,

H00 = (1 + :2) (1 + :4) (1 + :5) (1 + :8) ,
H10 = (1 + :8) (:1 + :3 + :1:4 + :1:5 + :2:3 + :1:4:5) ,
H01 = (1 + :2) (:3 + 4:7 + :3:5 + :3:8 + 4:4:7 + :3:5:8) ,
H11 = :1 (:3 + 4:7 + :3:8 + 4:4:7 − :3:5 − :3:5:8) ,
H20 = :1:3 (1 + :8) , H02 = 4:3:7 (1 + :2) , and H12 = 4:1:3:7.

Pantea et al. report that

?(x; k) = H00 + H10G2 + H01G3 + H20G
2
2 + H11G2G3 + H02G

2
3 + H12G2G

2
3 (4.5)

+ terms containing x-variables other than G2 and G3

and they analyzed this bivariate polynomial by hand in a few different ways.

In our case we take 5 as the signomial defined by the expression in (x, y) in the top
line of (4.5). This signomial has nine variables (two from x and seven from k), 49
positive terms, and two negative terms. We consider 5 over sets R=× log K where :5

is fixed to a certain value and remaining :8 can vary freely over a common interval.
We choose these regions because [17] performed a partial by-hand analysis of the
case with :5 = 10 and :8 = 1 for all 8 ≠ 5.
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Figure 4.1: Results for testing capacity for multiple equilibria for the chemical
reaction network defined by (4.4). The horizontal axis indicates a restriction of :8
for 8 ≠ 5 to the interval [F−1, F]. The blue dots mark all parameters (F, :5) in a
50-by-50 grid of [101/4, 103/4] × [1, 10] for which the dynamics map is injective.

Figure 4.1 shows the result of applying conditional SAGE to certify positivity of 5
over these sets. The smallest positive SAGE bound for these functions was 0.367
and the largest negative SAGE bound was -1.42. In every case of a negative SAGE
bound we were able to use the dual SAGE relaxation (described in the next section)
to recover a point which proved that 5 attained a negative value on the relevant
domain. Figure 4.1 therefore provides a complete empirical characterization of
the parameter choices (F, :5) for which the CRN defined by (4.4) has capacity for
multiple equilibria according to the injectivity test.

We take a moment to address the efficacy of our method. Because X B R= ×
log K was a rectangular prism, the support function term appearing in the relative
entropy representation for CX(A) could be accommodated by extremely simple
linear inequalities. Our sageopt python package automated the construction of X
given algebraic constraints on k and also performed dimension-reduction based on
our Corollary 4.2.2. The effect of sageopt’s dimension reduction was to reduce
the relative entropy program’s number of variables by more than a factor of 20.
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We solved these SAGE relaxations using MOSEK 9.2 on a Dell XPS 13 9300, with
an Intel Core i7-1065G7 processor (four cores at 1.30GHz) and 16 GB DDR4 RAM
(3733 MT/s). For each choice of K, the SAGE relaxation could be solved in less
than 0.05 seconds on average with little variation in runtime.

We also approached a handful of these problems (for various K) using SOS-based
Lasserre relaxations as implemented in GloptiPoly3 [121]. The lowest order
Lasserre relaxationswe tested took approximately 15 seconds to solve usingMOSEK
and returned a bound of −∞. A likely cause for vacuous bounds can be found in how
the objective function is degree six and the constraint functions (those defining K
and restricting x ≥ 0) are linear. This situation means that the generalized Lagrange
multipliers in a degree-six Lasserre relaxation are SOS polynomials of degree at
most four, and so the objective function is of higher degree than all other terms
in the resulting Lagrangian. Useful bounds can be obtained using degree-six SOS
multipliers and hence a degree-eight Lasserre relaxation. For the sets K we tested,
the degree-eight Lasserre relaxations took 1200 seconds to solve on average.

4.4 Dual perspectives and solution recovery
Dual SAGE relaxations can be used to recover optimal and near-optimal solutions
to signomial programs. For concreteness, we state the simplest such relaxation
here. Let 5 = Sig(A, c) be the minimization objective and X be a convex set in R=.
Additionally, consider a signomial map� with coordinate functions 68 = Sig(A, g8)
that define a possibly nonconvex set {x : � (x) ≥ 0}, and assemble the coefficient
vectors g8 into the rows of a matrix M. With this notation,

( 5 , �)SAGE
X = inf{〈c, v〉 : v ∈ CX(A)†, E1 = 1, Mv ≥ 0} (4.6)

is a convex relaxation of

( 5 , �)★X = inf{ 5 (x) : x ∈ X, � (x) ≥ 0}.

By standard rules in convex analysis, the dual SAGE cone is given by the intersection
of the constituent dual AGE cones. An expression for the dual AGE cones can be
recovered from Theorem 4.2.4 in the case when X is a convex set:

CX(A, #)† = cl
{
v ∈ RA : E# log(v/E#) ≥ [A − #]z#

z#/E# ∈ X, v in RA++, and z# in R=
}
. (4.7)

The auxiliary variables “z” appearing in (4.7) are a powerful tool for solution
recovery. As long as v is in the positive orthant (i.e., if the closure operation in
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(4.7) is not relevant for v) then x ≔ z#/E# belongs to X. Beyond taking individual
ratios, we note that for any J ⊂ A, we have

(∑
"∈J z"

)
/
(∑

"∈J E"
)
∈ X. The

ability to unconditionally recover X-feasible points by perspective transforms of a
dual solution is a powerful feature of the conditional SAGE approach.

In general there remain issues of recovering optimal points, and recovering solutions
when some constraints cannot be pushed into X. Both of these issues can be
resolved if some x★ ∈ X satisfies exp(Ax★) = v (as happens when all relative
entropy constraints in (4.7) are binding and we meet one additional normalization
condition). However it is possible that a SAGE relaxation produces a tight bound,
and yet we cannot find a point x★ ∈ X with exp(Ax★) = v. Therefore it is beneficial
to include heuristics in the solution recovery process. Our basic solution recovery
algorithm is given below.

Algorithm 1 signomial solution recovery from dual SAGE relaxations.
Input: An objective signomial 5 and a signomial map � over exponents A ⊂ R=.
A vector v in CX(A)†. Infeasibility tolerance n .
1: procedure SigSolutionRecovery( 5 , �,A, v, n)
2: solutions← []
3: for # ∈ A do
4: Recover z# in R= s.t. E# log(v/E#) ≥ [A − #]z# and z#/E# ∈ X.
5: solutions.append(z#/E#).
6: if Ax ≠ log v for all x in solutions then
7: Compute xls in argmin{‖ log v − Ax‖ : x in X}.
8: solutions.append(xls).
9: solutions← [ x in solutions if � (x) ≥ −n · 1 ].
10: solutions.sort( 5 , increasing).
11: return solutions.

Assuming (4.7) is used to represent CX(A)†, Algorithm 1’s runtime is dominated
by the constrained least-squares problem in Line 7. Note the only projective trans-
formations used in Algorithm 1 are those with index sets J = {#}; this is due to
a present lack of theory for identifying which of the exponentially-many index sets
J ⊂ A might be useful for solution recovery. It is highly desirable to develop a
systematic theory of solution recovery for dual X-SAGE relaxations, such as that
found in Lasserre relaxations for polynomial optimization. In Lasserre relaxations,
there are necessary and sufficient conditions for success of solution recovery based
on a rank condition for dual variables to SOS multipliers (see [122] for a thorough
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treatment of this topic, and [123, Theorem 2.47] for a concise statement of such a
result).

4.5 Signomial optimization with convex constraints only
The following problem has appeared in many articles concerning algorithms for
signomial programming [77, 80–83].

inf
x∈R3

0.5 exp(G1 − G2) − exp G1 − 5 exp(−G2) (4.8)

s.t. 100 − exp(G2 − G3) − exp G2 − 0.05 exp(G1 + G3) ≥ 0

exp x − (70, 1, 0.5) ≥ 0

(150, 30, 21) − exp x ≥ 0

Problem (4.8) is a good candidate for conditional SAGE relaxations, because each of
the seven constraints defines a tractable convex set. The latter six constraints can be
representedwith six linear inequalities, and the first constraint can be accommodated
by three exponential cones and one linear inequality. Separately, problem (4.8)
is interesting because Lagrangian approaches perform poorly: regardless of how
many products we take of existing constraint functions � = {61, . . . , 67},1 the
“−5 exp(−G2)” term in the objective will cause Lagrangians 5 − ∑

� _�
∏

9∈� 6 9 to
be unbounded below for all values of dual variables _� ≥ 0.

Now we see how SAGE fares with problem (4.8). Set X = {x : � (x) ≥ 0}; since
X is bounded, Proposition 4.2.7 tells us 5 SAGE

X is finite. The dual SAGE relaxation
can be solved with MOSEK on Machine L in 0.01 seconds, and provides us with a
lower bound 5 SAGE

X = −147.86 ≤ 5★X . By running Algorithm 1 on the dual solution,
we recover

x★ = (5.0106353, 3.4011966,−0.4845071) where 5 (x★) = −147.66666.

From this solution, we know that the SAGE bound is within 0.13% relative error
of the true optimal value. The ability to recover near-optimal solutions even in the
presence of a gap 5 SAGE

X < 5★X can be attributed to how conditional SAGE certificates
seamlessly integrate with convex duality and partial dualization.

As it happens, the point x★ returned by Algorithm 1 is actually optimal for Problem
(4.8); to certify this fact, we need stronger SAGE relaxations. We take this oppor-
tunity to introduce a hierarchy of conditional SAGE relaxations. For a nonnegative

1See Subsection 8.3.2 for discussion on why taking products of constraints is useful.
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integer ℓ, we define

5
(ℓ)

X = sup{W : Sig(A, 1)ℓ ( 5 − W) is X-SAGE}. (4.9)

Note the similarity between these bounds and those for unconstrained signomial
optimization we used in Subsection 3.6.1. As in that earlier case, is easy to see that
these bounds are non-decreasing in ℓ. What is more significant, however, is that
these bounds are certain to converge to 5★X provided X is compact. Table 4.1 shows
the result of applying the hierarchy (4.9) to problem (4.8).

level SAGE bound W time (s) L time (s)
0 -147.85713 0.03 0.01
1 -147.67225 0.05 0.02
2 -147.66680 0.08 0.08
3 -147.66666 0.19 0.26

Table 4.1: SAGE bounds for Example 1, with solver runtime for Machines W and L.
A level-3 bound certifies the level-0 solution as optimal, within relative error 10−8.

Remark 4.5.1. The hierarchy (4.9) was originally proposed in [60], as part of the cre-
ation of the “conditional SAGE” concept. The convergence result for the hierarchy
in (4.9) was first proven by A. Wang et al. [124] under some regularity conditions,
and is extended to a far stronger form in Chapter 6.

4.6 Signomial optimization with convex and nonconvex constraints
This section’s example can be found in the 1976 PhD thesis of James Yan [86],
where it illustrates signomial programming in the service of structural engineering
design. This problem is nonconvex even when written in exponential form; such
problems have received limited attention in the engineering design optimization
community, largely due to a lack of reliable methods for solving them. We restate
the problem here with “generalized polynomials”

inf
t∈R4

++

104 (C1 + C2 + C3) (4.10)

s.t. 104 + 0.01 C−1
1 C3 − 7.0711 C−1

1 ≥ 0

104 + 0.00854 C−1
1 C4 − 0.60385 (C−1

1 + C
−1
2 ) ≥ 0

70.7107 C−1
1 − C

−1
1 C4 − C−1

3 C4 = 0

104 ≥ 104 C1 ≥ 10−4 104 ≥ 104 C2 ≥ 7.0711

104 ≥ 104 C3 ≥ 10−4 104 ≥ 104 C4 ≥ 10−4.
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Let X ⊂ R4 be the feasible set cut out by the eight bound constraints and � be the
signomial map that includes all constraints in (4.10) (for a total of 12 inequality
constraints). Using the relaxation (4.6) from Section 4.4, we compute ( 5 , �)SAGE

X =

14.1423 in 0.04 seconds of solver time. This bound is very close to the optimal
value claimed by Yan [86]. However, Algorithm 1 only returns candidate solutions
“x” with equality constraint violations |70.7107 C−1

1 − C
−1
1 C4 − C−1

3 C4 | ≈ 70.

To improve our chances of solution recovery, we use the equality constraint to define
the value C4 ← 70.7107 C3/(C3 + C1). After clearing the denominator (C3 + C1) for
inequality constraints involving C4, we obtain a signomial program in only the vari-
ables C1, C2, C3. We compute the analogous value ( 5 , �)SAGE

X for this configuration
and exponentiate the result of Algorithm 1 to recover

t1:3 = (7.07110 · 10−4, 7.07110 · 10−4, 10−8), C4 =
70.7107C3
C1 + C3

.

This solution is feasible up to machine precision, and attains objective matching the
14.142300 SAGE bound. The entire process of solving the SAGE relaxation and
recovering the optimal solution takes less than 0.05 seconds on Machine W.
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C h a p t e r 5

SUBLINEAR CIRCUITS

5.1 Introduction
Given a finite setA ⊂ R=, a signomial supported onA is a real-linear combination

5 =
∑
U∈A

2"e" of basis functions e" (x) B exp〈", x〉 (5.1)

with coefficients c = (2")"∈A . Signomials are a fundamental class of functions
with applications, for example, in chemical reaction networks [15, 16], aircraft
design optimization [50, 51], and epidemiological process control [125, 126]; see
also [20, 127] and its references for the manifold occurrences in pure and applied
mathematics. From a modeling perspective it is often useful to consider signomials
under a logarithmic change of variables t ↦→ 5 (log t) = ∑

"∈A 2"
∏=
8=1 C

U8
8

so that
for A ⊂ N=, one obtains polynomials over the positive orthant R=++.

A basic question one might ask of a signomial is when the coefficients c are such
that 5 is globally nonnegative. Framing this question in terms of a signomial’s
coefficients affords direct connections to polynomials. If the exponent vectors
A are contained in N=, then 5 is nonnegative on R= if and only if the polynomial
t ↦→ ∑

"∈A 2"
∏=
8=1 C

U8
8
is nonnegative on the nonnegative orthantR=+. Deciding such

nonnegativity problems is NP-hard in general [36]. However, several researchers
have developed sufficient conditions for nonnegativity based on the arithmetic-
geometric mean inequality. In contrast to the well-known sums of squares nonneg-
ativity certificates in the polynomial setting (see, e.g., [128, 129]), the techniques
based on the arithmetic-geometric inequality are not tied to the notion of a poly-
nomial’s degree, and hence also naturally apply to signomials. The earliest results
here are due to Reznick [14], with a recent resurgence marked by the works of
Pantea, Koeppl, and Craciun [17], Iliman and de Wolff [96], and Chandrasekaran
and Shah [13]. Whether considered for signomials or polynomials, such techniques
have appealing forms of sparsity preservation in the proofs of nonnegativity [59,
101].

In this chapter, we are concernedwith the question of when a signomial supported on
exponents A is nonnegative on a convex set X. We approach this problem through
the conditional SAGE methodology described in the previous chapter. To review,
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the method works as follows: if a signomial 5 of the form (5.1) has at most one
negative coefficient 2#, i.e., if

5 =
∑

U∈A\#
2"e" + 2#e# has 2" ≥ 0 for all U in A \ #

thenwemay divide out the corresponding basis function e# to obtain a new signomial
6 =

∑
"∈A 2"e["−#] without affecting nonnegativity. Because 6 is the sum of a

signomial with all nonnegative coefficients (a posynomial) and a constant, it is
convex by construction, and so its X-nonnegativity can be exactly characterized by
applying the principle of strong duality in convex optimization. The outcome of
this duality argument is that 5 is X-nonnegative if and only if there exists a dual
variable . ∈ RA that satisfies a certain relative entropy inequality in ., c, and the
support function of X . Thus, the X-nonnegativity of 5 can be decided in terms of
the subclass of convex optimization called relative entropy programming. The X-
nonnegative signomials with at most one negative coefficient are called X-AGE, and
the signomials which decompose into a sum of such functions are called X-SAGE.
The recognition problem for X-SAGE signomials can likewise be decided by relative
entropy programming.

The purpose of this chapter is to undertake a structural analysis of the cones of
X-SAGE signomials supported on exponents A. At the outset of this research, our
goals were to find counterparts to the many convex-combinatorial properties known
for the unconstrained case X = R= [21, 59, 130], and to understand conditional
SAGE relative to techniques such as nonnegative circuit polynomials [14, 17, 96].
Towards this end we have introduced an analysis tool of sublinear circuits which we
call the X-circuits of A. Our definition of these X-circuits (see Section 5.3) centers
on a local, orthant-wise, strict-sublinearity condition for the support function of X
composed with A. This construction ensures that the special case of R=-circuits
reduces to the simplicial circuits of the affine-linear matroid induced by A.

We demonstrate that analysis by X-circuits is extremely effective in characterizing
the structure of X-SAGE cones. One can prove nearly every result in this manuscript
assuming nothing of X beyond convexity. Some special treatment is given to the case
when X is polyhedral, as this reveals some striking interactions between discrete,
convex, and so-called geometrically convex or multiplicatively convex geometry
(see Section 5.5). In a broader sense, a selection of our results have consequences
for numerical optimization, such as basis identification in optimization with SAGE
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certificates, and a procedure to simplify certain systems of power cone inequalities
on the nonnegative orthant.

5.1.1 Main contributions
We begin by introducing some limited notation. The support function of a convex
set X, denoted fX, is the convex function defined by fX(y) = sup{〈y, x〉 : x ∈ X}.
We regard the exponent set A ⊂ R= as a linear operator from R= to RA . Here
we mostly encounter this operator’s adjoint A†. = ∑

"∈A "a". We use CX(A)
to denote the cone of X-SAGE signomials supported on A. For each # ∈ A, we
denote the corresponding cone of X-AGE functions by

CX(A, #) =
{
5 : 5 =

∑
"∈A

2"e" is X-nonnegative, c\# ≥ 0
}

(5.2)

where c\# denotes the vector in RA\# formed by deleting 2# from c.

The basic tools for our analysis are the X-circuits of A (routinely abbreviated to X-
circuits). We formulate the X-circuits ofA as nonzero vectors .★ ∈ RA at which the
augmented support function . ↦→ fX(−A†.) exhibits a strict sublinearity condition
(see Definition 5.3.1). We characterize X-circuits as generators of suitable convex
cones in RA × R and usually focus on normalized X-circuits , ∈ RA , for which the
nonnegative entries sum to unity. Theorem 5.3.7 shows that in the polyhedral case,
X-circuits are exactly the generators of all one-dimensional elements of a suitable
polyhedral fan. A key consequence of Theorem 5.3.7 is that when X is a polyhedron,
there are only finitely many normalized X-circuits.

Section 5.4 uses the machinery of X-circuits to understand X-AGE cones. First,
we show that if a signomial generates an extreme ray of CX(A, #), then the dual
variable . which certifies its required relative entropy inequality must be an X-
circuit (Theorem 5.4.2). Normalized X-circuits , are then associated to cones of
,-witnessed AGE functions CX(A, ,). The functions in CX(A, ,) are X-nonnegative
signomials admitting a nonnegativity certificate based on a damped power cone
inequality in weights ,. Theorem 5.4.4 shows that every X-SAGE function can be
written as a sum of ,-witnessed AGE functions for X-circuits ,. In proving this,
we formalize the connection between conditional SAGE and prior works for global
nonnegativity [14, 17, 96]. Theorem 5.4.4 also motivates a basis identification
technique where an approximate relative entropy certificate of 5 ∈ CX(A) may
be refined by power cone programming. Combining Theorems 5.3.7 and 5.4.4
yields a corollary that when X is a polyhedron, cones of X-SAGE signomials are (in
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principle) power cone representable; this generalizes results by several authors in
the unconstrained case [131–134].

Section 5.5 undertakes a thorough analysis of CX(A). We begin by associating
X-circuits , with affine functions q, : RA → R given by q, (y) =

∑
"∈A H"_" +

fX(−A†,). We define the circuit graph GX(A) as the smallest convex cone con-
taining these functions and the constant function y ↦→ 1. Upon embedding the
affine functions on RA into RA × R, Theorem 5.5.4 provides the following identity
between the dual SAGE cone CX(A)† and the dual circuit graph GX(A)†

CX(A)† = cl{exp y : (y, 1) ∈ GX(A)†}.

Qualitatively, Theorem 5.5.4 says CX(A)† is not only convex in the classical sense,
but also convex under a logarithmic transformation S ↦→ log S = {y : exp y ∈ S}.
The property of a set being convex under this logarithmic transformation is known
by various names, including log convexity [135], geometric convexity [136, 137], or
multiplicative convexity [138]. This property has previously been considered in the
literature on ordinary SAGE certificates [59, 130], but never in such a systematic
way as in our analysis. For example, in view of Theorem 5.5.4 it becomes natural
to consider Λ★X(A) – the reduced X-circuits of A – as the normalized circuits , for
which q, generates an extreme ray of the circuit graph. The property of a circuit
being “reduced” in this sense is highly restrictive, and yet (by Theorem 5.5.5) we
can construct CX(A) using only ,-witnessed AGE cones as , runs over Λ★X(A).
Finally, through a technical lemma (5.5.12), we show how separating hyperplanes in
the space of the dual circuit graph may be mapped to separating hyperplanes in the
exponentiated space of the dual SAGE cone. This lemma has general applications
in simplifying systems of certain power cone constraints on the nonnegative orthant;
in our context, it serves as the basis for Theorem 5.5.6, paraphrased below.

If X is a polyhedron and CX(A) consists of more than just posynomials, then

CX(A) =
∑

,∈Λ★X (A)
CX(A, ,).

Moreover, CX(A) (
∑

,∈Λ CX(A, ,) for every proper subset Λ ( Λ★X(A).

Theorem 5.5.6 provides the most efficient possible description on CX(A) in terms
of power cone inequalities. Its computational implications are addressed briefly in
Section 5.7.
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Throughout the chapter we illustrate key concepts with the half-line X = [0,∞).
Specifically, Example 5.3.8 addresses the [0,∞)-circuits of a generic point set
A ⊂ R, and Example 5.5.7 covers the corresponding reduced [0,∞)-circuits. This
culminates with a complete characterization of the extreme rays of CX(A) for
X = [0,∞) and A ⊂ R (Proposition 5.6.1).

5.1.2 Related work
Let us begin by introducing some basic concepts from discrete geometry. The
circuits of the affine-linear matroid induced by A are the nonzero vectors .★ ∈
ker(A†) ⊂ RA which sum to zero, andwhose supports are inclusionminimal among
all vectors in ker(A†) that sum to zero. In the SAGE literature one is interested in
simplicial circuits. These are the circuits .★ that, upon scaling by a suitable constant,
have exactly one negative component. The name simplicial is used here because the
convex hull of the support supp .★ := {" : a★" ≠ 0} forms a simplex (possibly of
low dimension); exactly one element in supp .★ is contained in the relative interior
of this simplex. These simplicial circuits are uniquely determined (up to scaling) by
their supports. It is therefore common to call a subset A′ ⊂ A a simplicial circuit
if its convex hull forms a simplex and has a relative interior containing exactly one
element of A′.

To situate conditional SAGE in the literature one should look to the close relatives
of ordinary SAGE: the agiforms of Reznick [14], the monomial dominating posyn-
omials of Pantea, Koeppl and Craciun [17], and the sums of nonnegative circuit
(SONC) polynomials of Iliman and de Wolff [96]. The latter two works determined
necessary and sufficient conditions forR=+ andR=-nonnegativity of polynomials sup-
ported on a simplicial circuit, based on power cone inequalities in the polynomial’s
coefficients and circuit vector. In our context, key developments in this area include
Wang’s discovery of conditions under which a SONC decomposition exists for a
given polynomial [100], andMurray, Chandrasekaran, andWierman’s proof that the
cone of SONC polynomials can be represented by a projection of a cone of SAGE
signomials [59, §5]. From these results it is now understood that although ordinary
SAGE and SONC have important differences, the two methods are equivalent to one
another for purposes of many structural analyses. Through results in this chapter,
we show that the “circuit number” approach of SONC does not generalize to the
X-nonnegativity problem in the same manner as SAGE. However, it is possible to
describe conditional SAGE in a way which is aesthetically similar to SONC via our
,-witnessed AGE cones.
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To appreciate the structural results proven for CX(A) in this work, it is useful to
mention some analogous results proven in the case X = R=. As a signomial general-
ization of an earlier result by Reznick [14], Murray, Chandrasekaran, and Wierman
have shown that every signomial which generates an extreme ray of CR= (A) is
supported on either a singleton or a simplicial circuit [59]. Curiously, a given sig-
nomial 5 can be extremal in CR= (A) forA as the support of 5 , and yet nonextremal
in CR= (A′) for A′ ) A. To account for this, Katthän, Naumann, and Theobald
introduced the concept of a reduced circuit, which they used to obtain a complete
characterization of the extreme rays of CR= (A) [130]. Subsequently, Forsgård and
de Wolff employed regular subdivisions, A-discriminants, and tropical geometry
to study how circuits affect the algebraic boundary of the signomial SAGE cone
[21]. Our results include direct extensions of the above results by Murray et al. and
Katthän et al. to the case of X ( R=. For Forsgård and de Wolff’s work, our circuit
graph generalizes their Reznick cone.

5.2 Preliminaries
Throughout this chapter, X ⊂ R= is closed, convex, and nonempty, and the set
A ⊂ R= is nonempty and finite. We only consider data (A,X) where the func-
tions {e"}"∈A are linearly independent on X. The purpose of this linear indepen-
dence assumption is to ensure the X-nonnegativity cone is pointed. Equivalently,
this assumption ensures the moment cone co{exp(Ax) ∈ RA : x ∈ X} is full-
dimensional.

Recall the following result from the previous chapter.

Proposition 5.2.1 (Theorem 1 of [60]). A signomial
∑

"∈A 2"e" is in CX(A, #) if
and only if there exists a nonzero vector . ∈ RA that satisfies

〈1, .〉 = 0 and fX(−A†.) + � (.\#, 4c\#) ≤ 2#. (5.3)

The larger goal of this chapter is to reveal the additional structure in the X-SAGE
cones CX(A) that is not immediately apparent from Proposition 5.2.1. From the
case X = R=, the additional structure concerned the supports of signomials that
generate extreme rays of CR= (A, #) or CR= (A). In this context it is standard to use
the term simplicial circuit in the sense of subsetsA′ ⊂ A. Specifically,A′ ⊂ A is
a simplicial circuit if it is a minimal affinely dependent set and convA has |A′| − 1
extreme points. This definition of circuits in terms of these subsets A′ ⊂ A is
equivalent to the definition involving numeric vectors .★ ∈ RA (see [21]).
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Proposition 5.2.2 (Theorem 5 of [59]). Let # ∈ A. A signomial 5 =
∑

"∈A 2"e"

belongs to CR= (A, #) if and only if it can be written as a finite sum 5 =
∑:
8=1 5

(8) of
signomials

5 (8) =
∑
"∈A

2
(8)
" e" ∈ CR= (A, #), 1 ≤ 8 ≤ :,

such that the supports {" ∈ A : 2(8)" ≠ 0} are either singletons or simplicial circuits.

Of course, in view of Definition 2.1, Proposition 5.2.2 tells us every 5 ∈ CR= (A)
similarly decomposes into AGE functions supported on singletons and simplicial
circuits.

Revealing the full structure of conditional SAGE cones requires consideration to
more than just a signomial’s support. Therefore, thinking in terms of affine-linear
circuits as subsets � ⊂ A will not suit our purposes. The following definition
codifies our convention of considering affine-linear circuits as numeric vectors.

Definition 5.2.3. A nonzero vector .★ ∈ {. ∈ RA : 〈1, .〉 = 0} in the kernel of
the linear operator . ↦→ A†. = ∑

"∈A "a" is called an R=-circuit if it is minimally
supported and has exactly one negative component.

It is possible that a given A has no R=-circuits, but then every " ∈ A would be an
extreme point of convA. This is a degenerate case that results in CR= (A) containing
only posynomials, but we still give consideration to this possibility throughout the
chapter. In the language ofDefinition 5.2.3, we combine Propositions 5.2.1 and 5.2.2
to obtain the following formulation.

Proposition 5.2.4 (Theorem 4.4 of [21]). Let # ∈ A. A signomial 5 =
∑

"∈A 2"e"

belongs to CR= (A, #) if and only if there exist : ≥ 0 and signomials 5 (8) =∑
"∈A 2

(8)
" e" ∈ �R(A, #), 1 ≤ 8 ≤ :, with 5 =

∑:
8=1 5

(8) and such that for any
signomial 5 (8) which is not supported on a singleton, there exists an R=-circuit
.(8) ∈ RA with � (.(8)\#, 4c

(8)
\#) ≤ 2

(8)
#
.

The relative interior of a convex set S is its interior under the topology induced
by its affine hull (the smallest affine space containing S). A face of a convex set
S ⊂ R= is any closed convex F ⊂ S with the following property: if the line segment
[s1, s2] := {_s1 + (1 − _)s2 : 0 ≤ _ ≤ 1} is contained in S and the relative interior
of [s1, s2] hits F, then the entirety of [s1, s2] is contained in F. We sometimes write
F E S to indicate that F is a face of S.
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A vector v is called an edge generator of a convex cone K if {_v : _ ≥ 0} is an
extreme ray of K. The polar of a convex cone K is K◦ := −K†. Convex sets S ⊂ R=

have convex induced cones indco(S) := cl{(s, `) : ` > 0, s/` ∈ S} ⊂ R=+1 and
recession cones rec S := {z : ∃s ∈ S such that s + _z ∈ S ∀ C ≥ 0}.

We call a set a polyhedron if it can be represented by the intersection of finitely
many half-spaces; polytopes are the bounded polyhedra.

We sometimes use a>b to denote the standard inner product of two vectors a, b in
a common space.

5.3 Sublinear circuits induced by a point set
We begin this section with a functional analytic definition for the X-circuits of a
point setA, generalizingR=-circuits to a constrained setting. After revealing various
elementary properties and discussing some examples, we characterize X-circuits in
more geometric terms in Theorems 5.3.6 and 5.3.7. In particular the latter theorem
interprets X-circuits in terms of normal fans when X is a polyhedron. In Example
5.3.8, we determine the [0,∞)-circuits of a univariate support set A ⊂ R; the
example is developed further in Section 5.5 and culminates in a theorem completely
characterizing the extreme rays of the resulting cone C[0,∞) (A) in Section 5.6.

The derivations in this section are purely combinatorial and convex-geometric, and
make no mention of signomials. However, the definition of X-circuits is ultimately
chosen to prepare for studying X-SAGE cones, and in particular it relates to distin-
guished vectors . ∈ RA that might satisfy (5.3) for certain c ∈ RA . Note that (5.3)
has an implicit constraint .\# ≥ 0 arising from our extended-real-valued definition
of relative entropy. To avoid dependence on relative entropy in this section, we
frame our discussion of X-circuits in terms of cones

N# = {. ∈ RA : .\# ≥ 0, 〈1, .〉 = 0} (5.4)

for vectors # ∈ A.

Definition 5.3.1. A vector .★ ∈ N# is an X-circuit of A (or simply, an X-circuit)
if (1) it is nonzero, (2) fX(−A†.★) < ∞, and (3) it cannot be written as a convex
combination of two non-proportional .(1) , .(2) ∈ N#, for which . ↦→ fX(−A†.) is
linear on [.(1) , .(2)].

The third condition is equivalent to strict sublinearity of . ↦→ fX(−A†.) on any line
segment in N# that contains .★, except for the trivial line segments which generate
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a single ray. The central importance of the sublinearity condition leads us to refer
to X-circuits also as sublinear circuits; the latter term is helpful in remembering the
definition early in our development.

Remark 5.3.2. In the special case X = R=, condition (2) simplifies to A†. = 0. In
conjunction with the definition of N#, this shows that the special case X = R= of
Definition 5.3.1 matches exactly with Definition 5.2.3 of R=-circuits.

Conceptually, Definition 5.3.1 indicates that X-circuits are essential in capturing the
behavior of the augmented support function . ↦→ fX(−A†.) on the givenN#. While
developing this concept formally it is convenient for us to enumerate the positive
support .+ B {" : a" > 0}, and to identify the unique index .− B # ∈ A where
a# < 0. Note that positive homogeneity of the support function tells us that the
property of being a sublinear circuit is invariant under scaling by positive constants.
A sublinear circuit is normalized if its unique negative term a# has a# = −1, in
which case we usually denote it by the symbol , rather than .. We can normalize
a given sublinear circuit by taking the ratio with its infinity norm , = ./‖.‖∞,
because ‖.‖∞ = |a# | for all vectors . ∈ N#.

Example 5.3.3. (The conic case.) It is straightforward to determine which . ∈ N#

are X-circuits of A when X is a cone. In such a setting, the support function of X
can only take on the values zero and positive infinity. Hence, . ↦→ fX(−A†.) is
trivially linear over all of V# B {. ∈ N# : fX(−A†.) < ∞}. The set V# is a cone,
and reformulating fX(−A†.) = 0 as . ∈ (AX)† gives

V# = (ker(A†) + A−1X†) ∩ N#,

where A−1 denotes the pseudo-inverse of A : R= → RA . Therefore, the X-circuits
. ∈ N# are precisely the edge generators of (ker(A†) + A−1X†) ∩ N#.

Regarding again the special case X = R= from this conic perspective, we have
X† = {0}, so A−1X† = {0}, and ker(A†) + A−1X† = ker(A†), which implies
V# = ker(A†) ∩ N#. It is easily shown that edge generators of ker(A†) ∩ N# are
precisely those . ∈ ker(A†) ∩ N# \ {0} for which .+ = {" : a" > 0} are affinely
independent, which recovers the matroid-theoretic notion of affine-linear simplicial
circuits from the point of view of subsets A′ ⊂ A.

The following proposition shows that the affine-independence property is a necessary
condition for all sublinear circuits. The proposition provides insight because it shows
an X-circuit . with X ⊂ R= is restricted to | supp . | ≤ = + 2.
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Proposition 5.3.4. If .★ ∈ N# is an X-circuit, then its positive support (.★)+ =
(supp .★) \ # is affinely independent.

Proof. From a fixed .★ ∈ N#, we construct the vector z = −A†.★ and the set

U = {. ∈ N# : −A†. = z, a# = a
★
#}.

The function . ↦→ fX(−A†.) is a constant and equal to fX(z) on U, and so in order
for .★ to be an X-circuit, it must be a vertex of the polytope U. The set U is in 1-to-1
correspondence with

W = {w ∈ RA\#+ :
∑

"∈A\# (# − ")F" = z, 〈1, w〉 = −a★#}

by identifying w = .\#. We can express W in more illuminating matrix notation
by defining S as the matrix with columns of the form “(# − ", 1)” indexed by
" ∈ A \ #. Specifically, we have W = {w ∈ RA\#+ : Sw = (z,−a★#)}.

Basic polyhedral geometry tells us that all vertices w★ of W use an affinely inde-
pendent set of columns from S. Furthermore, a given set of columns from S is
affinely independent if and only if the corresponding indices of the columns (as
vectors " ∈ A \ #) are affinely independent. Since the correspondence between
. ∈ U and w ∈ W preserves extremality, the vertices of U have affinely independent
positive support .+.

The converse of Proposition 5.3.4 is not true. This is to say: not every vector . ∈ N#

with affinely independent .+ is an X-circuit.

Example 5.3.5. LetA ⊂ R2 consist of the three points "1 = (0, 0), "2 = (1, 0), and
"3 = (0, 1), and fix X = {x ∈ R2 : x ≥ u} for some point u ∈ R2. The vector
.★ = (−2, 1, 1) has (.★)− = "1 = (0, 0), and (.★)+ = {"2,"3} = {(1, 0), (0, 1)}
is affinely independent. Considering .(1) = (−2, 2, 0) and .(2) = (−2, 0, 2), we
have .★ = 1

2 (.
(1) + .(2)) ∈ ri ! for ! B [.(1) , .(2)]. Moreover, the mapping

. ↦→ fX(−A†.) is linear on !, because for any `1, `2 ≥ 0 with `1 + `2 = 1 we have

fX(A†(−`1.
(1) − `2.

(2))) = fX((−2`1,−2`2)) = −2`1D1 − 2`2D2

= fX((−2`1, 0)) + fX((0,−2`2)).

The last equality is true since (1, 1) ∈ R2 maximizes both the objective functions
x ↦→ (−2`1, 0)>x and x ↦→ (0,−2`2)>x on X.1

1Recall, a>b is the dot product of vectors a, b.
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With the basic exercise of Example 5.3.5 complete, we turn to characterizing sub-
linear circuits in full generality.

Theorem 5.3.6. Fix # ∈ A. The convex cone generated by

T = { (., fX(−A†.)) : . ∈ N#, fX(−A†.) < ∞}

is pointed and closed. A vector .★ ∈ N# is an X-circuit of A if and only if
(.★, fX(−A†.★)) is an edge generator for co T.

Proof. Let Q denote the closed convex set Q = {. : . ∈ N#, fX(−A†.) < ∞}.
The claim of the theorem is trivially true if Q = {0}, in which case there are no
X-circuits . ∈ N# and co T = {(0, 0)} has no extreme rays. We therefore assume for
the duration of the proof that Q contains a nonzero vector.

We turn to showing co T is closed and pointed, particularly beginning with point-
edness. For this, observe co T ⊂ N# × R. Since N# contains no lines, there are
no lines in co T of the form (., g) with . ≠ 0. Meanwhile, we know that the line
spanned by (0, 1) cannot be contained in co T, since fX(−A†0) = 0. Now we turn
to closedness of co T. Since Q ⊂ N#, we can normalize Q against {. : a# = −1} to
obtain a compact set

Q1 B {, : , ∈ Q, _# = −1}

that satisfies Q = co Q1. From Q1 we construct

S1 = {(,, fX(−A†,)) : , ∈ Q1}.

The set S1 inherits compactness from Q1 (by continuity of , ↦→ fX(−A†,)), and
the convex hull S2 = conv S1 inherits compactness from S1 (as the convex hull of a
compact set is compact). It is evident that S2 does not contain the zero vector, and
so by [65, Corollary 9.6.1] we have that co S2 is closed. We finish this phase of the
proof by identifying co T = co S2.

At this point we have that co T is the convex hull of its extreme rays; it remains
to determine the nature of these extreme rays. Since T is a generating set for co T
and contains only vectors of the form (., fX(−A†.)), every edge generator of co T
is given by a nonzero vector (.★, fX(−A†.★)) for appropriate .★. It is clear that
.★ must be an X-circuit in order for (.★, fX(−A†.★)) to be an edge generator of
co T. The harder direction is to show that .★ being an X-circuit is sufficient for
(.★, fX(−A†.★)) to be an edge generator for co T.
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To handle this direction, begin by defining an affinely independent set V = {.(8)}ℓ
8=1

and a vector ) in the relative interior of Δℓ, where .★ =
∑ℓ
8=1 \8.

(8) and

fX(−A†.★) =
∑ℓ
8=1 \8fX(−A†.(8)).

We claim that . ↦→ fX(−A†.) is linear on the entirety of conv V. To see
why, note that the assumption on .★ relative to V means the elements of Φ B

{(.(8) , fX(−A†.(8))) : 8 ∈ [ℓ] ∪ {★}} lie on a common hyperplane on the boundary
of the epigraph H = {(., C) : fX(−A†.) ≤ C}. Since . ↦→ fX(−A†.) is convex, H
is a convex set, and there is some proper face F E H containing Φ. It is evident that
. ↦→ fX(−A†.) is linear on the projection of that face F̂ = {. : ∃C ∈ R (., C) ∈ F}.
Since conv V ⊂ F̂, this proves our claim regarding linearity of . ↦→ fX(−A†.) on
conv V.

By the above argument: if .★ is an X-circuit, then for every ) ∈ riΔℓ and affinely
independent V = {.(8)}ℓ

8=1 ⊂ N# with co V ≠ co{.★}, we have

(.★, fX(−A†.★)) ≠
∑ℓ
8=1 \8

(
.(8) , fX(−A†.(8))

)
.

FromCarathéodory’s Theorem, restricting to affinely independentV ⊂ T is sufficient
to test extremality in co T. Therefore, every circuit .★ ∈ N# induces an edge
generator for co T.

When considering the set “T” in Theorem 5.3.6, it is natural to expect that for
polyhedral X there are only finitely many extreme rays in the cone co T, and hence
only finitely many normalized X-circuits. The remainder of this section serves to
prove this fact; here we use the concept of normal fans from polyhedral geometry.
See, e.g., [103, Chapter 7] (for the bounded case of polytopes), [139, Section 5.4]
or [140, Chapter 2]. For each face F of a polyhedron P, there is an associated outer
normal cone

OP(F) = {w : 〈z, w〉 = fP(w) ∀ z ∈ F}.

Clearly, the support function of a polyhedron P is linear on every outer normal cone,
and in particular the linear representation may be given by fP(w) = 〈z, w〉 for any
z ∈ F. We obtain the outer normal fan of P by collecting all outer normal cones:

�(P) = {OP(F) : F E P}.

The support of �(P) is the polar (rec P)◦. The full-dimensional linearity domains
of the support function are the outer normal cones of the vertices of P (see also [141,
Section 1]).
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Theorem 5.3.7. If X is polyhedral, then . ∈ N# \ {0} is an X-circuit if and only
if co{.} is a ray in �(−AX + N◦#). Consequently, polyhedral X have finitely many
normalized circuits.

Proof. Let % = −AX + N◦#. Using the characterization in [65, Theorem 14.2], the
polar of its recession cone can be expressed as

(rec P)◦ = {. : fX(−A†.) < ∞} ∩ N#,

where we have also used the property

fX(−A†.) = sup
x∈X
〈−A†., x〉 = sup

y∈−AX
〈., y〉 = f−AX(.).

In particular, this also givesfX(−A†.) = fP(.). From P construct the outer normal
fan � B �(P). We claim that co{.} is a ray in �.

It is clear that if a cone K ∈ � is associated to a face F E P, then we may express
fP(.) = 〈z, .〉 for any z ∈ F, and so fP(.) ≡ fX(−A†.) is linear on K. Since the
support of � is (rec P)◦, the cones K ∈ � partition (rec P)◦, i.e.,

(rec P)◦ =
⋃
K∈�

ri(K),

and if K,K′ are distinct elements in �, then ri K ∩ ri K′ = ∅. Therefore, every
. ∈ N# \ {0} for which fX(−A†.) < ∞ is associated with a unique K ∈ �, by way
of . ∈ ri K.

Fix . ∈ (rec P)◦, and let K be the associated element of � that contains . in its
relative interior. If K is of dimension greater than 1, . can be expressed as a convex
combination of non-proportional .(1) , .(2) ∈ K – and clearly . ↦→ fX(−A†.) ≡
fP(.) would be linear on the interval [.(1) , .(2)]. Thus for . to be an X-circuit, it
is necessary that K be of dimension 1. Since P is a polyhedron, � is induced by
finitely many faces. Thus there are finitely many K ∈ � with dim K = 1 and in turn
finitely many normalized X-circuits of A.

Conversely, let .★ ∈ N# \ {0} and co{.★} be a ray in �. Since � is supported on
(rec P)◦, we have fX(−A†.) = fP(.) < ∞.

Let .(1) , .(2) ∈ N# be non-proportional and g ∈ (0, 1) satisfy .★ = g.(1)+(1−g).(2) .
If .(1) or .(2) is outside of (rec P)◦, say, .(1) , then fX(−A†.(1)) = ∞ and thus the
mapping . ↦→ fX(−A†.) cannot be linear on [.(1) , .(2)]. Hence, we can assume
that .(1) , .(2) ∈ (rec P)◦.
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We have to show that the mapping

6 : [0, 1] → R, \ ↦→ fP(\.(1) + (1 − \).(2))

is not linear.

Consider the restriction of the fan � to the coneC := co{.(1) , .(2)}, that is, the
collection of all the cones in {OP(F) ∩ C : F E P}. This is a fan �′ supported on
the two-dimensional cone S := (rec P)◦∩C. On the set S, we consider the restricted
mapping (fP) |S : S → R, w ↦→ fP(w). The linearity domains of (fP) |S are the
two-dimensional cones in�′. Since co{.★} is a ray in the fan� and thus also in the
fan�′, the vectors .(1) and .(2) are contained in different two-dimensional cones of
the fan �′. Hence, the mapping 6 is not linear. Altogether, this shows that .★ is an
X-circuit.

Example 5.3.8. We consider as a running example the one-dimensional case of
X = [0,∞) and A = {U1, . . . , U<} ⊂ R where we can assume U1 < · · · < U<. In
this running example we index by integers 8 ∈ [<] := {1, . . . , <} rather than by
elements " ∈ A. Therefore we identifyRA withR< and use %8 for the 8th unit vector
inR< (for each 8 ∈ [<]). Under these conventions,A is regarded as a column vector
in R<×1 andA† = (U1, . . . , U<) is a row vector R1×<. We claim that the normalized
X-circuits , ∈ R< are the vectors either of the form (1) , = %: − % 9 for 9 < : or of
the form (2)

, =

(
U 9 − U8
U: − U8

)
%: +

(
U: − U 9
U: − U8

)
%8 − % 9 for 8 < 9 < :.

Note that vectors of type (2) satisfyA†, = 0, and in fact are the unique such vectors
that also satisfy supp , = {8, 9 , :}, _ 9 = −1, _8, _: > 0, 〈1, ,〉 = 0.

To derive this claim we consider for fixed 9 ∈ [<] the polyhedron % = −AX + N◦
9

from Theorem 5.3.7. It is evident that this polyhedron is a cone, that may be
expressed as

% = co{(−U1, . . . ,−U<)} + R · 1 −
∑

ℓ∈[<]\ 9
co{%ℓ}.

The rays of its normal fan are the extreme rays of its polar

%◦ = (rec P)◦ = {. ∈ R< : (−U1, . . . ,−U<) · . ≤ 0, (5.5)

〈1, .〉 = 0, aℓ ≥ 0 for ℓ ∈ [<] \ 9}.
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Note that this gives us exactly the set “Q” from the proof of Theorem 5.3.6. This
happens because X is conic and hence the support function fX(−A†.) evaluates to
zero for everyX-circuit .. By Proposition 5.3.4, eachX-circuit inN 9 has atmost three
non-vanishing components a8, a 9 , a: , and, moreover, it has < − 2 of the inequalities
in (5.5) binding. If all those binding inequalities are of the form aℓ ≥ 0, then
with fX(−A†.) < ∞, we obtain the normalized X-circuits of A of type (1). Now
assume that the inequality (−U1, . . . ,−U<) · . ≤ 0 is binding for some normalized
X-circuit . ofA. Since the sign pattern (−, +, +) for (a8, a 9 , a: ) in conjunction with
〈1, .〉 = 0 leads to (−U1, . . . ,−U<) ·. < 0, and the sign pattern (+, +,−) contradicts
the X-circuit condition fX(−A†.) < ∞, we obtain the normalized X-circuits of A
of type (2).

5.4 Sublinear circuits in AGE cones
In this section, we show how the AGE cones CX(A, #) can be further decomposed
using sublinear circuits. These decompositions lay the foundation to understand the
extreme rays of the conditional SAGE cone CX(A).

Our first result here is a necessary criterion for anX-AGE function 5 to be extremal in
CX(A, #). The result states that any . certifying (5.3) for 5 must be an X-circuit (see
Theorem 5.4.2). Definition 5.4.3 introduces ,-witnessed AGE cones as the subset
of signomials in CX(A, #) whose nonnegativity is certified by a given normalized
vector ,. Theorem 5.4.4 then decomposes CX(A, #) through the ,-witnessed AGE
cones, where , is a normalized X-circuit. As a consequence, for polyhedral X, the
cone CX(A) is power-cone representable (see Corollary 5.4.5). The final results of
this section are two elementary propositions concerning representations for primal
and dual ,-witnessed AGE cones. Proposition 5.4.7 in particular is very important
for a characterization of dual SAGE cones, as it reveals a multiplicative convexity
property used extensively in Section 5.5.

The following lemma (proven in Subsection 5.4.1) claims it is possible to decompose
an X-AGE function into simpler summands, under a local linearity condition on the
support function . ↦→ fX(−A†.).

Lemma 5.4.1. Let 5 =
∑

"∈A 2"e" be X-AGE with negative term 2# < 0. If .
satisfying (5.3) can be written as a convex combination . =

∑:
8=1 \8.

(8) of non-
proportional .(8) ∈ N# and .̃ ↦→ fX(−A†.̃) is linear on conv{.(8)}:

8=1, then 5 is not
extremal in CX(A, #).
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Theorem 5.4.2. Let 5 =
∑

"∈A 2"e" be X-AGE with negative term 2# < 0. If
. ∈ RA satisfies (5.3) but is not an X-circuit, then 5 is not extremal in CX(A, #).

Proof. If 5 is an X-AGE function with 2# < 0 and . satisfies (5.3), then we must
have . ≠ 0 and fX(−A†.) < ∞. By the definition of an X-circuit, . may be written
as a convex combination . = \.(1) + (1− \).(2) where .̄ ↦→ fX(−A†.̄) is linear on
[.(1) , .(2)], and furthermore the .(8) are not proportional. We can therefore invoke
Lemma 5.4.1 to prove the claim.

We now eliminate the degree of freedom associated with . laying on a ray. For each
# ∈ A, we introduce the following notation for the associated set of normalized
X-circuits of A:

ΛX(A, #) B {, ∈ N# : , is an X-circuit of A, _# = −1}.

The set of all normalized X-circuits of A is denoted ΛX(A). The main reason for
introducing this notation is how it interacts with the following definition.

Definition 5.4.3. Given , ∈ N# with _# = −1, the ,-witnessed AGE cone is

CX(A, ,) =
{ ∑

"∈A
2"e"

����� c\# ≥ 0 and (5.6)

∏
"∈,+

[
2"

_"

]_"
≥ −2# exp

(
fX(−A†,)

) }
.

The following theorem (proven in Subsection 5.4.2) shows that every signomial in
CX(A, ,) is nonnegative on X. The term “witnessed” in “,-witnessed AGE cone”
is chosen to reflect the defining role of , in the nonnegativity certificate. We only
use ,-witnessed AGE cones for theoretical purposes, and only with , ∈ ΛX(A).
Possible computational uses are offered in Section 5.7.

Theorem 5.4.4. The cone CX(A, #) can be written as the convex hull of ,-witnessed
AGE cones, where , runs over the normalized X-circuits. That is,

CX(A, #) = conv
⋃

,∈ΛX (A,#)
CX(A, ,).

To fully appreciate the significance of Theorem 5.4.4, it is necessary to consider the
elementary “power cone.” In our context, the primal power cone associated with a
normalized vector , ∈ N# is

Pow(,) = {z ∈ Rsupp , :
∏

"∈,+ I
_"
" ≥ |I# |, z\# ≥ 0};
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the corresponding dual cone is given by

Pow(,)† = {w ∈ Rsupp , :
∏

"∈,+ [F"/_"]_" ≥ |F# |, w\# ≥ 0}.

It should be evident that CX(A, ,) can be formulated in terms of a dual ,-weighted
power cone; a precise formula is provided momentarily. For nowwe give a corollary
concerning power cone representability and second-order representability of CX(A)
when X is a polyhedron (see [131, 142] for formal definitions).

Corollary 5.4.5. If X is a polyhedron, then CX(A) is power cone representable. If
in addition AX is rational, then CX(A) is second-order representable and so its
semidefinite extension degree is two.

Corollary 5.4.5 is proven in the appendix. The first part of the corollary gener-
alizes the case X = R= considered by Papp for polynomials [134]. That aspect
of the corollary has uses in computational optimization when applied judiciously.
The second part of Corollary 5.4.5 generalizes results by Averkov [131] and Wang
and Magron [132] for ordinary SAGE polynomials, and recent results by Naumann
and Theobald for several types of ordinary SAGE-like certificates [133]. We have
deliberately framed the second part of the corollary in abstract terms (semidefi-
nite extension degree), because that aspect of the corollary seems not useful for
computational optimization.

We now work towards finding a simple representation of dual ,-witnessed AGE
cones CX(A, ,)†. We begin this process by regarding the primal as a cone of
coefficients contained in RA , and finding an explicit representation of the primal in
terms of the elementary dual power cone Pow(,)†. Towards that end we introduce
a diagonal linear operator Y, : RA → Rsupp , where (Y,w)" = F" for " ∈ ,+, and
(Y,w)# = F# exp(fX(−A†,)) for # B ,−.

Proposition 5.4.6. For , ∈ N# with _# = −1 and fX(−A†,) < ∞, the ,-witnessed
AGE cone admits the representation

CX(A, ,) =
{
c ∈ RA

�� c\# ≥ 0 and

(Y,c − A%#) ∈ Pow(,)† for some A ≥ 0}. (5.7)

Proposition 5.4.6 is proven in the appendix. We can appeal to the proposition to
find a representation for CX(A, ,)† which is analogous to Equation (5.6). The dual
is computed by regarding the primal as a cone of coefficients and the derivation is
given in the appendix.



CHAPTER 5. SUBLINEAR CIRCUITS 88

Proposition 5.4.7. For , ∈ N# with _# = −1 and fX(−A†,) < ∞, the dual
,-witnessed AGE cone is given by

CX(A, ,)† =
{
v ∈ RA+

����� exp(fX(−A†,))
∏
"∈,+

E
_"
" ≥ E#

}
. (5.8)

5.4.1 Proof of Lemma 5.4.1
Let c, ) , and {.(8)}:

8=1 be as in the lemma statement. Construct vectors c(8) by

2
(8)
" =


(2"/a")a(8)" if " ∈ .+

0 otherwise
for all " ∈ A \ #, (5.9)

and 2(8)
#
= fX(−A†.(8)) + � (.(8)\#, 4c

(8)
\#). These c(8) define X-AGE signomials by

construction, and they inherit non-proportionality from the .(8) . We need to show
that

∑:
8=1 \8c

(8) ≤ c, which will establish that 5 can be decomposed as a sum of
these non-proportional X-AGE functions (possibly with an added posynomial).

For indices " ∈ .+, the construction (5.9) relative to . and {.(8)}:
8=1 actually ensures∑:

8=1 \82
(8)
" = 2". For indices " ∈ supp c \ supp . we have

∑:
8=1 \82

(8)
" = 0 ≤ 2". The

definitions of .(8) ensure

fX(−A†.) = fX

(
−A(∑:

8=1 \8.
(8))

)
=

∑:
8=1 \8fX(−A†.(8)). (5.10)

Meanwhile, (5.9) provides a(8)" /2(8)" = a"/2", a fact we can combine this with∑:
8=1 \8a

(8)
" = a" ∀ " ∈ A to deduce

:∑
8=1

\8�

(
.(8)\#, 4c

(8)
\#

)
= �

(
.\#, 4c\#

)
. (5.11)

We combine (5.10) and (5.11) to obtain the desired result
:∑
8=1

\82
(8)
#
=

:∑
8=1

\8

(
fX(−A†.(8)) + �

(
.(8)\#, 4c

(8)
\#

))
= fX(−A†.) + � (.\#, 4c\#) ≤ 2#.

5.4.2 Proof of Theorem 5.4.4
Our proof requires the following proposition.

Proposition 5.4.8. For fixed , in the interior of the <-dimensional probability
simplex and c = (20, 21, . . . , 2<) ∈ R<+1 with (21, . . . , 2<) ≥ 0, we have

−20 ≤
<∏
8=1
[28/_8]_8 ⇔ some . ∈ R<+ satisfies . ‖ , and � (., c\0) − 〈1, .〉 ≤ 20
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– where . ‖ _ means . is proportional to ,.

Proof. The claim is trivial when 20 ≥ 0, and so we consider 20 < 0. Note that
in this case,

∏<
8=1 [28/_8]

_8 must be positive, and � (., c\0) must be finite: both
of these conditions occur precisely when 28 > 0 for all 1 ≤ 8 ≤ <. We therefore
can rewrite −20 = |20 | ≤

∏<
8=1 [28/_8]

_8 as 1 ≤ ∏<
8=1 [28/(|20 |_8)]_8 , and by taking

the log of both sides, obtain � (., c\0) − 〈1, .〉 ≤ 20 for . = |20 |,. For the other
direction, one may write the proportionality relationship . ‖ , as . = B,, and
minimize � (B,, c\0) − B over B ≥ 0 to obtain −∏<

8=1 [28/_8]
_8 .

We now turn to proving Theorem 5.4.4. First, observe that Theorem 5.4.2 tells us
CX(A, #) may be expressed as the convex hull of X-AGE functions 5 =

∑
"∈A 2"e"

where (c, .) satisfies (5.3) for some X-circuit .. Therefore it suffices to show that (i)
for any such function, the normalized X-circuit , = ./|a# | is such that (c, ,) satisfy
the condition in (5.6), and (ii) if any (c, ,) satisfy (5.6), then the resulting signomial
is nonnegative on X. We will actually do both of these in one step.

Suppose . ∈ N# is restricted to satisfy . = B, for a variable B ≥ 0 and a fixed
, ∈ ΛX(A, #). It suffices to show that the set of c ∈ RA for which

∃B ≥ 0 : . = B, and fX(−A†.) + � (.\#, 4c\#) ≤ 2#

is the same as (5.6).

Let A (.) = fX(−A†.) + � (.\#, 4c\#). Apply positive homogeneity of the support
function to see fX(−A†.) = |a# |fX(A†./|a# |), and use . = B, to infer B = |a# |
and fX(−A†./|a# |) = fX(−A†,). Abbreviate 3 := fX(−A†,) and substitute∑

"∈,+ a" = |a# | to obtain

A (.) = ∑
"∈,+ (a" log(a"/2") − a" + a"3) .

The term 3 can be moved into the logarithm by a"3 = a" log(1/exp(−3)). For
" ∈ ,+ we define scaled terms 2̃" = 2" exp(−3), so that

A (.) = ∑
"∈,+ a" log(a"/2̃") − a" .

By Proposition 5.4.8, there exists a . = B, for which A (.) ≤ 2# if and only if

− 2# ≤
∏
"∈,+
[2̃"/_"]_" . (5.12)

Since [2̃"/_"]_" = [2"/_"]_" (exp(−3))_" and
∏

"∈,+ (exp(−3))_" = exp(−3),
(5.12) can be recognized as the inequality occurring within (5.6), which completes
the proof.
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5.5 Reduced sublinear circuits in SAGE cones
The previous section showed that an X-SAGE cone is generated by X-circuits. Here
we seek a much sharper characterization: are all X-circuits really necessary? The
answer to this question depends on whether one means to reconstruct an individual
AGE cone, or the larger SAGE cone. For example, by reinterpreting results from
[59], we may infer that every simplicial R=-circuit , ∈ ΛR= (A, #) generates a cone
CR= (A, ,) that contains an extreme ray ofCR= (A, #). In this way, everyR=-circuit is
needed if one requires complete reconstruction of individual AGE cones. However,
Katthän, Naumann, and Theobald showed that many extreme rays of AGE cones are
not extreme when considered in the sum CR= (A) =

∑
#∈A CR= (A, #). Specifically,

anR=-circuit , ∈ ΛR= (A) is only needed in CR= (A) if exactly one element ofA hits
the relative interior of conv(supp ,) [130, Proposition 4.4]. Circuits satisfying this
property were called reduced. The goal of this section is to develop a reducedness
criterion for X-circuits that yields the most efficient construction of CX(A) by ,-
witnessed AGE cones, see Theorems 5.5.5 and 5.5.6. Achieving this goal is more
difficult than obtaining the results from earlier sections. Therefore we begin by
summarizing and discussing the results, and we provide proofs in later subsections.

5.5.1 Definitions, results, and discussion
The definition of a reduced R=-circuit is of a purely combinatorial nature, involving
the circuit’s support. This is appropriate because when speaking of affine-linear
simplicial circuits, the normalized vector representation , is completely determined
by its support. In the context ofX-circuits, we no longer have this property. Therefore
when developing reduced X-circuits it is useful to have a different characterization
of reduced R=-circuits. Here we can consider how Forsgård and de Wolff defined
the Reznick cone ofA as the conic hull co ΛR= (A) and – in the language of Katthän
et al. – subsequently proved that an R=-circuit , is an edge generator of the Reznick
cone if and only if it is reduced [21].

Our definition of reduced X-circuits involves edge generators of a certain cone in
one higher dimension than the Reznick cone. To describe the cone and facilitate
later analysis, we need the following definition.

Definition 5.5.1. The functional form of an X-circuit . ∈ RA is q. : RA → R
defined by

q. (y) =
∑
"∈A

H"a" + fX(−A†.).
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We routinely overload notation and use q. = (., fX(−A†.)) ∈ RA × R to denote
the functional form of a given X-circuit. When representing the functional form of
an X-circuit by a vector in RA × R, the scalar q. (y) can be expressed as an inner
product q. (y) = (y, 1)>q..

Definition 5.5.2. The circuit graph of (A,X) is

GX(A) = co ({q, : , ∈ ΛX(A)} ∪ {(0, 1)}) ,

where (0, 1) ∈ RA × R.

The idea of generating a cone from augmented circuit vectors (., fX(−A†.)) ∈
RA × R clearly parallels Theorem 5.3.6. While the cones from Theorem 5.3.6 are
considered for one # ∈ A at a time, the circuit graph accounts for all X-circuits at
once. The circuit graph also includes an extra generator that ultimately serves to
make the following definition more stringent.

Definition 5.5.3. The reduced X-circuits of A are the vectors . where ./‖.‖∞ ∈
ΛX(A) and the corresponding functional form q. generates an extreme ray of
GX(A). The set of normalized reduced X-circuits is henceforth denoted Λ★X(A).

There is a subtle issue here that in order for reduced X-circuits to be of any use
to us, the circuit graph must be pointed (else GX(A) would have no extreme rays
whatsoever). We show later in this section that our stated assumption of linear
independence of {e"}"∈A on X ensures GX(A) is pointed. Regardless of whether
or not the circuit graph is pointed, we have the following theorem.

Theorem 5.5.4. CX(A)† = cl{exp y : (y, 1) ∈ GX(A)†}.

Theorem 5.5.4 is noteworthy in several respects. It demonstrates that CX(A)† is con-
vex in the usual sense and convex under a logarithmic transformation ( ↦→ log ( =
{y : exp y ∈ S}. This multiplicative convexity is a significant structural property.
For example, if we know that the log of the moment cone cl(co{exp(Ax) : x ∈ X})
is not convex, then it should be that CX(A) does not contain all X-nonnegative
signomials supported onA. Additionally, Theorem 5.5.4 can be reverse-engineered
to arrive at the concept of a reduced X-circuit: the definition is chosen so that (y, 1)
belongs to GX(A)† if and only if q, (y) ≥ 0 for all , in Λ★X(A). Here, Theorem
5.5.4 is a tool that we combine with convex duality to obtain the following results.
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Theorem 5.5.5. If ΛX(A) is empty, then CX(A) = RA+ . Otherwise,

CX(A) = cl
(
conv

⋃ {
CX(A, ,) : , ∈ Λ★X(A)

})
. (5.13)

We point out how Theorem 5.5.5 involves a closure around the union over ,-
witnessed AGE cones, while Theorem 5.4.4 has no such closure. The need for the
closure here stems from an application of an infinite version of conic duality in the
course of the theorem’s proof, while our proof of Theorem 5.4.4 required no duality
at all. The requisite use of conic duality is simpler when X is a polyhedron, as the
following theorem suggests.

Theorem 5.5.6. If X is a polyhedron and ΛX(A) is nonempty, then the associated
conditional SAGE cone is given by the finite Minkowski sum

CX(A) =
∑

,∈Λ★X (A)
CX(A, ,). (5.14)

Moreover, there is no Λ ( Λ★X(A) for which CX(A) =
∑

,∈Λ CX(A, ,).

The first part of Theorem 5.5.6 follows easily from the arguments we use to prove
Theorem 5.5.5. The second part of the theorem is much more delicate, and in fact
is the reason why GX(A) is defined in the manner of 5.5.2, rather than merely
co{q, : , ∈ ΛX(A)}.

The task of actually finding the reduced X-circuits of A is difficult. When X
is a polyhedron there are finitely many such X-circuits, but the naive method for
finding them involves Fourier-Motzkin elimination on a set of potentially very high
dimension. There is more hope for this problem when X is a cone. In that case,
X-circuits are the extreme rays of (ker(A†) + A−1X†) ∩ N# for # ∈ A,2 and no
lifting is needed to find these extreme rays with a computer. The reduced X-circuits
could then be computed by finding the extreme rays of the convex cone generated
by the X-circuits. The following detailed example finds the reduced X-circuits ofA
in the univariate case with the cone X = [0,∞). The claim made in the example is
used in Section 5.6.

Example 5.5.7. Wecontinue the running example ofX = [0,∞) fromExample 5.3.8.
In particular recall A = {U1, . . . , U<} for U1 < · · · < U<, indexing by 8 ∈ [<], and
working with standard basis %8 ∈ R<. We claim that

Λ★[0,∞) (A) = {%2 − %1} ∪ Λ★R(A) (5.15)
2Recall, A−1 is the pseudo-inverse of A : R= → RA .
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where we have the following formula from [130, Prop. 4.4]

Λ★R(A) =
{(

U8+1 − U8
U8+1 − U8−1

)
%8−1 +

(
U8 − U8−1
U8+1 − U8−1

)
%8+1 − %8 : 1 < 8 < <

}
.

As a first step towards seeing this, observe that since X = [0,∞) is a cone, the
functional form of a [0,∞)-circuit . is simply q. (y) =

∑<
8=1 H8a8. Hence, the reduced

[0,∞)-circuits are exactly the edge generators of the cone co Λ[0,∞) generated by
all the [0,∞)-circuits of types (1) and (2) listed in Example 5.3.8. Therefore, we
have to show that {%2 − %1} ∪ Λ★R(A) are exactly the normalized edge generators of
co Λ[0,∞) .

For the X-circuits % 9 − %8 ( 9 > 8) of type (1) in Example 5.3.8, we show they
decompose if 9 > 8 + 1 or 8 > 1. For 9 > 8 + 1, this is apparent from the
decomposition

% 9 − %8 = (% 9 − % 9−1) + (% 9−1 − %8).

For 9 = 8 + 1 and 8 > 1, we can use the decomposition

%8+1−%8 =
(
−U8+1 − U8
U8 − U8−1

%8−1 +
U8+1 − U8
U8 − U8−1

%8

)
+
(
U8+1 − U8
U8 − U8−1

%8−1 −
U8+1 − U8−1
U8 − U8−1

%8 + %8+1
)

into X-circuits with three non-vanishing components. As final consideration for
type (1), the X-circuit %2− %1 cannot be written as a conic combination of X-circuits
with three non-zero entries, because any conic combination of those X-circuits has
a positive entry in its non-vanishing component with maximal index. For X-circuits
of type (2) from Example 5.3.8, simply note that these are also R-circuits. Therefore
a necessary condition for a type (2) X-circuit , to be extremal in co Λ[0,∞) is that ,
belongs to Λ★R(A).

It remains to show that none of the remaining X-circuits can be written as a convex
combination of the others. First note that an X-circuit . ∈ Λ★R(A) cannot be de-
composed into a sum which involves an X-circuit .̃ with two vanishing components.
Namely, sinceA†. = 0 andA .̃ > 0, we would obtain for the other summand . − .̃
the property A†(. − .̃) < 0 and thus f[0,∞) (−A†(. − .̃)) = ∞, a contradiction.
And of course it is trivially true that no element , ∈ Λ★R(A) can be written as a
convex combination of other such elements. Since co Λ[0,∞) is finitely generated
and there is no S ( {%2 − %1} ∪ Λ★R(A) for which co Λ[0,∞) = co S, we conclude
that {%2 − %1} ∪ Λ★R(A) are the reduced X-circuits of A.

The remainder of this section is organized as follows. Subsection 5.5.2 proves
Theorem 5.5.4, which is instrumental in later subsections. In Subsection 5.5.3 we
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introduce and prove a certain representation result for the circuit graph. Given the
groundwork laid in these two subsections, Subsection 5.5.4 proves Theorem 5.5.5 in
very short order. Subsection 5.5.5 proves Theorem 5.5.6 by refining the arguments
from Subsection 5.5.4.

5.5.2 Proof of Theorem 5.5.4
Proof of Theorem 5.5.4. Use Rockafellar’s [65, Corollary 16.5.2] to invoke Theo-
rem 5.4.4 from a dual point of view, which gives CX(A, #)† =

⋂CX(A, ,)†, where
the intersection runs over all , ∈ ΛX(A, #). Then Proposition 5.4.7 implies

CX(A)† =
{
v ∈ RA+

��� for all , in ΛX(A) and # B ,−,

we have exp(fX(−A†,))
∏
"∈,+

E
_"
" ≥ E#

}
. (5.16)

We claim that CX(A)† can be represented as the closure of its intersection with the
positive orthant, that is, CX(A)† = cl

(
CX(A)† ∩ RA++

)
. Since CX(A) contains all

posynomials and is contained in the nonnegativity cone, the dual CX(A)† contains
the moment cone, but is still contained in the nonnegative orthant. As we have
assumed X is nonempty, CX(A)†must contain a point exp(Ax) ∈ RA++, so CX(A)†∩
riRA+ ≠ ∅. We recall the old Proposition 2.6.4 from the start of this thesis. It tells
us that CX(A)† = cl

(
CX(A)† ∩ RA++

)
.

When considering CX(A)† only over the positive orthant, the inequalities

exp(fX(−A†,))
∏
"∈,+

E
_"
" ≥ E#

appearing in (5.16) may be rewritten as∑
"∈,+ _" log E" − log E# + fX(−A†,) ≡ q, (y) ≥ 0,

where we used _# = −1 and y B log v ∈ RA . Hence,

CX(A)† = cl{exp y : q, (y) ≥ 0 ∀, ∈ ΛX(A)}
= cl{exp y : (y, 1)>(,, g) ≥ 0 ∀, ∈ ΛX(A), g ≥ fX(−A†,)}
= cl{exp y : (y, 1)>(., g) ≥ 0 ∀ (., g) ∈ GX(A)}.

By the definition of the dual cone from convex analysis, the property (y, 1)>(., g) ≥
0 ∀ (., g) ∈ GX(A) is the same as (y, 1) ∈ GX(A)†. This completes the proof.
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The ability to represent CX(A)† in terms ofGX(A)† is key to our proofs of Theorems
5.5.5 and 5.5.6. Note that the theorem remains true when GX(A) is replaced by
the smaller set co{q, : , ∈ ΛX(A)}, because the term (0, 1) simply requires
(y, C) ∈ GX(A)† to have C ≥ 0.

5.5.3 Topological properties of the circuit graph
Theorem 5.5.8. GX(A) = co

(
{q, : , ∈ Λ★X(A)} ∪ {(0, 1)}

)
.

The proof of this theorem essentially reduces to showing that GX(A) is pointed and
closed. The pointedness of the circuit graph is easy to show, but closedness is a
more delicate matter. In fact – our proof that GX(A) is closed relies on the fact
that it is pointed. We therefore prove pointedness before discussing closedness any
further.

Lemma 5.5.9. The closure of the circuit graph contains no lines.

Proof. We focus on proving GX(A)† is full-dimensional. Let |A| = <. We
assumed at the start of this chapter that the moment cone MX(A) B co{exp(Ax) :
x ∈ X} was full-dimensional, i.e., dim MX(A) = <; we use that assumption here.
Specifically, since CX(A) is contained within the nonnegativity cone, we have that
MX(A) ⊂ CX(A)† and so dimCX(A)† = <. By Theorem 5.5.4 and continuity
of the exponential function, we see that if dimCX(A)† = <, then the preimage
S B {y : (y, 1) ∈ GX(A)†} likewise has dimension <. Consider the induced cone
associated with S:

indco(S) = cl{(y, C) : C > 0, y/C ∈ S} = cl{(y, C) : C > 0, (y, C) ∈ GX(A)†}.

The rightmost expression in the above display tells us indco(S) ⊂ GX(A)†. We
claim without proof that since S is a full-dimensional convex set, indco(S) is
similarly full-dimensional. Taking this claim as given, indco(S) ⊂ GX(A)† implies
GX(A)† is full-dimensional. Because GX(A)† is full-dimensional, cl GX(A) =
GX(A)†† ⊃ GX(A) contains no lines.

In the special case where X is a polyhedron, closedness of GX(A) follows from
Theorem 5.3.7, which tells us that ΛX(A) is finite. To prove closedness for arbitrary
convex sets X we need to more carefully appeal to properties of the generating set
{q, : , ∈ ΛX(A)} ∪ {(0, 1)}.

Lemma 5.5.10. The circuit graph is closed.
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Proof. Let S# = {(,, fX(−A†,)) : , ∈ ΛX(A, #)}. By Theorem 5.3.6, the
elements q, ∈ S# are edge generators for the closed convex cone

T# = co{(., fX(−A†.)) : . ∈ N#, fX(−A†.) < ∞}.

From S# we form S′# B conv S#, and find S′# is isomorphic to

S′# = {q, ∈ T# : _# = −1}.

Because S# is bounded, S′# is likewise bounded. Because S′# is a slice of a closed
convex cone T#, we have that S′# is closed. Therefore we conclude S′# is compact.

Now define S′ = (⋃#∈A S′#) ∪ {(0, 1)}. The set S′ is a compact generating set for
GX(A) which does not contain the origin. Since cl GX(A) is known to contain no
lines (Lemma 5.5.9), we apply Proposition B.1.1 to S′, co S′ to infer that co S′ =
GX(A) is closed.

Proof of Theorem 5.5.8. Lemmas 5.5.9 and 5.5.10 show GX(A) is closed and
pointed. By [65, Corollary 18.5.2], we have that GX(A) may be expressed as
the conic hull of any set of vectors containing all of its extreme rays. Since
S = {q, : , ∈ ΛX(A)} ∪ {(0, 1)} is a generating set for GX(A), it must con-
tain all extreme rays of GX(A). However, by definition of Λ★X(A), if , does not
belong to Λ★X(A), then q, ∈ S does not generate an extreme ray of GX(A). We may
therefore form T = S \ {q, : , ∉ Λ★X(A)} and still find GX(A) = co T. This proves
the theorem.

5.5.4 Proof of Theorem 5.5.5.
Proof of Theorem 5.5.5. Using the representation

GX(A) = co
(
{q, : , ∈ Λ★X(A)} ∪ {(0, 1)}

)
provided by Theorem 5.5.8, we can express

(y, 1) ∈ GX(A)† ⇔ (y, 1)>(,, fX(−A†,)) ≥ 0 ∀ , ∈ Λ★X(A). (5.17)

We obtain the following refinement of Equation (5.16), by combining (5.17) with
Theorem 5.5.4:

CX(A)† =
{
v ∈ RA+ : exp(fX(−A†,))

∏
"∈,+

E
_"
" ≥ E# (5.18)

for every , ∈ Λ★X(A) and # B ,−
}
.

Of course, Equation (5.18) can be written as CX(A)† =
⋂

,∈Λ★X (A) CX(A, ,)†. We
appeal to conic duality principles (again, [65, Corollary 16.5.2]) to obtain the claim
of the theorem.
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5.5.5 Proof of Theorem 5.5.6
A conceptual message from the last section is that it can be very useful to analyze
CX(A) in terms of the vectors H where exp y belongs to CX(A)†. This section will
hammer thatmessage home. Webeginwith the lemma that ultimately led us to define
GX(A) as per Definition 5.5.2, rather than as the simpler set co{q, : , ∈ ΛX(A)}.

Lemma 5.5.11. If X is polyhedral and Λ ( Λ★X(A), then there must exist a ỹ ∈ RA

satisfying q,′ ( ỹ) ≥ 0 for all _′ ∈ Λ, yet for some , ∈ Λ★X(A) \Λ we have q, ( ỹ) < 0.

Proof. Let T1 = {q, : , ∈ Λ★X(A)}∪{(0, 1)} and T2 = {q, : , ∈ Λ}∪{(0, 1)}. Of
course, a vector ỹ satisfies q,′ ( ỹ) ≥ 0 for all ,′ ∈ Λ if and only if ( ỹ, 1) ∈ (co T2)†.
We will show that given the polyhedrality of X and the assumption on Λ, there
exists a vector ỹ for which ( ỹ, 1) ∈ (co T2)† \ (co T1)†. The result will follow
since membership of vectors (y, 1) ∈ (co T1)† is equivalent to q, (y) ≥ 0 for all
, ∈ Λ★X(A).

Since X is polyhedral, Theorem 5.3.7 tells us ΛX(A) is finite, so ΛX(A) is closed
and Λ★X(A) is finite. From closedness of ΛX(A) we have GX(A) = co T1, and in
particular every q, ∈ T1 \ {(0, 1)} is known to generate an extreme ray in GX(A).
Since Λ ( Λ★X(A), there exists a q, ∈ T1 \ T2 which generates an extreme ray of
GX(A). Therefore co T2 is a strict subset of co T1 ≡ GX(A). We may take dual
cones to find (co T2)† ) (co T1)†. Note that since T1 and T2 contain {(0, 1)}, the
dual cones must be contained in K = RA × R+. Furthermore, since X is presumed
nonempty, Theorem 5.5.4 tells us there exists a point (y, 1) ∈ (co T1)†, so the
relative interiors of (co T1)† and (co T2)† are contained within the relative interior
of K. As our last step, use the fact that if one closed polyhedral cone strictly contains
another closed polyhedral cone, then there exists a point in the relative interior
of the larger cone which may be separated from the smaller cone; apply this to
(co T2)† ) (co T1)† to find a point (y′, C′) ∈ ri((co T2)†) \ (co T1)† with C′ > 0.
From this (y′, C′) we rescale ỹ = y′/C′ so that ( ỹ, 1) ∈ (co T2)† \ (co T1)†.

Our next lemma shows how to take a condition stated in terms of Lemma 5.5.11,
and deduce a statement about CX(A)†. The lemma’s proof requires only that X be
nonempty and convex.

Lemma 5.5.12. If ỹ ∈ RA satisfies q, ( ỹ) < 0 for some , ∈ ΛX(A), then exp ỹ ∉

CX(A)†.
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Proof. In this proof we use a>b to take the dot product of vectors a, b, rather
than using the notation of inner products. We will find a vector z ∈ RA where
0 ≤ z> exp y for all exp y ∈ CX(A)†, and yet z> exp ỹ < 0. By continuity, the
condition that 0 ≤ z> exp y for all exp y ∈ CX(A)† will imply the slightly stronger
statement that 0 ≤ z>v for all v ∈ CX(A)†. Therefore z will evidently serve as a
separating hyperplane to prove the desired claim. Let # B ,−.

Since , ∈ ΛX(A), Theorem 5.5.4 says that q, (y) ≥ 0 whenever exp y ∈ CX(A)†.
Combine q, ( ỹ) < 0with strict monotonicity of the exponential function to conclude

exp(q, ( ỹ)) < 1 ≤ exp(q, (y)) for all exp y ∈ CX(A)†. (5.19)

Notice that taking a difference

q, (y) − q, ( ỹ) =
(
,\#

)> (
y\# − ỹ\#

)
− H# + H̃#

eliminates the support function term in q,. Defining D = q, ( ỹ), we multiply both
sides of the non-strict inequality in (5.19) by exp(−D − H̃# + H#) to get

0 ≤ exp
( (
,\#

)> (
y\# − ỹ\#

) )
− exp(−D − H̃# + H#). (5.20)

Convexity of the exponential function tells us that

exp
( (
,\#

)> (
y\# − ỹ\#

) )
≤

(
,\#

)> exp(y\# − ỹ\#),

where the right-hand-side may be rewritten using the Hadamard product(
,\#

)> exp(y\# − ỹ\#) =
(
,\# ◦ exp(−ỹ\#)

)> exp(y\#).

Applying these observations to (5.20) gives

0 ≤
(
,\# ◦ exp(−ỹ\#)

)> exp(y\#) − (exp(−D − H̃#)) exp(H#). (5.21)

Inequality (5.21) is essentially what we need to prove the lemma. Defining z ∈ RA

by I" = _" exp(−H̃") for " ≠ # and I# = − exp(−D− H̃#), we have that 0 ≤ z> exp y

for all exp y ∈ CX(A)†. As explained at the beginning of this proof, we appeal to
continuity to establish 0 ≤ z>v for all v ∈ CX(A)†. One may use

(
,\#

)> 1 = 1 to
trivially evaluate z> exp ỹ = 1 − exp(−D), and since D < 0 by assumption on ỹ, we
conclude z> exp( ỹ) < 0.
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Proof of Theorem 5.5.6. By Theorem 5.5.4, we have the dual description CX(A)† =
cl{exp y : (y, 1) ∈ GX(A)†}. Applying Theorem 5.5.8 then gives

CX(A)† = cl{exp y : q, (y) ≥ 0 ∀_ ∈ Λ★X(A)}.

We rewrite the condition on q, (y) as a condition on v = exp y using the power-cone
formulation in Proposition 5.4.7. Since X is polyhedral, Theorem 5.3.7 tells us there
are finitely many normalized X-circuits ΛX(A). We may therefore express CX(A)†

as a finite intersection of dual ,-witnessed AGE cones,

CX(A)† =
⋂

,∈Λ★X (A)
CX(A, ,)†.

Moreover, each dual ,-witnessed AGE cone CX(A, ,)† is an outer-approximation of
the full-dimensional moment cone co{exp(Ax) : x ∈ X}, hence there exists a point
v> in the interior of the moment cone where v> ∈ intCX(A, ,)† for all , ∈ Λ★X(A).
Therefore, by [65, Corollary 16.4.2] we have

CX(A) = (CX(A)†)† =
∑

,∈Λ★X (A)
(CX(A, ,)†)† =

∑
,∈Λ★X (A)

CX(A, ,),

which establishes the first part of the theorem.

For the second part of the theorem, suppose Λ is a proper subset of Λ★X(A). Consider
the set C =

∑
,∈Λ CX(A, ,) and its dual C† =

⋂{CX(A, ,)† : , ∈ Λ}. Clearly,
since C ⊂ CX(A) we have C† ⊃ CX(A)† – we will show that this containment is
strict, i.e., C† ) CX(A)†. Once this is done, duality will tell us that C ( CX(A).

Since C is contained within the signomial nonnegativity cone we again have that
C† contains the moment cone, and so by Lemma 2.6.4 we have C† = cl(C† ∩ RA++).
Work with C† over the positive orthant using Proposition 5.4.7 to express it as
C† = cl{exp y : y ∈ Y} for Y B {y : q, (y) ≥ 0 ∀, ∈ Λ}. By Lemma 5.5.11
there exists an element ỹ ∈ Y for which some , ∈ Λ★X(A) \ Λ satisfies q, ( ỹ) < 0.
Apply Lemma 5.5.12 to this pair (q,, ỹ) to see that exp ỹ can be separated from the
closed convex set CX(A)†. We have therefore found a point ỹ where exp ỹ ∈ C† and
yet exp ỹ can be separated from CX(A)†, so we conclude C† ) CX(A)†.

Before concluding this section we would like to point out a more general way to
frame our analysis. Given a pair (,, 0) ∈ R< × R where , sums to zero and
has exactly one negative component _8 = −1, we have a power cone constraint
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E8 ≤ exp(0)∏ 9≠8 E
_ 9

9
which may be rewritten to 1 ≤ exp(0)v,. Given a finite set of

such pairs P ⊂ R< × R, we obtain the convex set

F(P) =
{
v ∈ R<+ : 1 ≤ exp(0)v, ∀ (,, 0) ∈ P

}
.

We have effectively shown that if K = co(P∪{(0, 1)}) is pointed and F(P) intersects
the positive orthant, then the unique minimum P★ ⊂ P for which F(P★) = F(P) can
be read off from the extreme rays of the polyhedral cone K.

5.6 Extreme rays of half-line SAGE cones
In the previous section, we showed that by appropriate appeals to convex duality,
one may derive representations of CX(A) with little to no redundancy. Here we
build upon those results to completely characterize the extreme rays of the X-SAGE
cone for the univariate case X = [0,∞).

Proposition 5.6.1. For U1 < · · · < U<, the extreme rays of C[0,∞) ({U1, . . . , U<})
are:

(1) R+ · exp(U1G),

(2) R+ · {exp(U2G) − exp(U1G)},

(3) R+ · {28+1 exp(U8+1G) + 28 exp(U8G) + 28−1 exp(U8−1G) : 2 ≤ 8 ≤ < − 1} with

28+1 > 0, 28−1 > 0, and 28 = −
(
28−1
_8−1

)_8−1 (
28+1
_8+1

)_8+1
,

where

_8+1 =
U8 − U8−1
U8+1 − U8−1

, _8−1 =
U8+1 − U8
U8+1 − U8−1

, and
28−1
28+1
≥ _8−1
_8+1

.

Proof. LetA = {U1, . . . , U<}. By Theorem 5.5.6, all edge generators of C[0,∞) (A)
are either monomials or ,-witnessed AGE functions where , is a reduced [0,∞)-
circuit. By Example 5.5.7, Λ★[0,∞) (A) = {%2 − %1} ∪ Λ★R(A). Since = = 1,
Proposition 5.3.4 says all circuits , have | supp , | ≤ 3. We therefore divide the
proof into considering cases of monomials, and X-AGE functions with two or three
terms.

First we address the monomials. Given 5 (G) = exp(U8G) with 8 > 1, we can
write 5 = 51 + 52 with 51(G) = exp(U8G) − exp(U8−1G) and 52(G) = exp(U8−1G)
– the summand 51 is nonnegative on [0,∞) because U8 > U8−1, and 52 is globally
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nonnegative. Therefore the only possible extremal monomial in C[0,∞) (A) is 5 (G) =
exp(U1G). SinceX = [0,∞), the leading term of any 6 ∈ CX(A)must have a positive
coefficient. Moreover, if 6 is not proportional to 5 , the leading term of 6 must have
an exponent greater than U1. Therefore any convex combination of AGE functions
6 ∈ C[0,∞) (A) which are not proportional to 5 must disagree with 5 (G) in the limit
as G tends to infinity. We conclude 5 is extremal in C[0,∞) (A).

Now we consider the 2-term case, where, by Example 5.5.7, we have to consider
signomials of the form 5 (G) = 22 exp(U2G) − 21 exp(U1G). We observe that 5
is nonnegative on [0,∞) if and only if 22 ≥ 21 ≥ 0, and furthermore that such
signomials are nonextremal unless 21 = 22. To see that 5 (G) = exp(U2G) −exp(U1G)
is indeed extremal, note that 5 cannot be written as a convex combination involving
any 3-termAGE functions, because any conic combination of 3-termAGE functions
has a leading term with positive coefficient on exp(U8G) for some 8 ≥ 3.

We have already proven cases (1) and (2) of the proposition. Using Example 5.5.7,
we know that any extremal 3-term X-AGE function belongs to a ,-witnessed AGE
cone where , is a reduced R-circuit. These reduced R-circuits have the property
supp , = {8−1, 8, 8+1} U8−1_8−1+U8+1_8+1 = U8, _8 = −1. Any X-AGE function with
such a witness is nonnegative on all of R. Therefore any 3-term X-AGE function 5
that is extremal in C[0,∞) (A) is also extremal in �R(A) ⊂ C[0,∞) (A), which (by
[130, Prop. 4.4]) implies

5 (G) = 28+1 exp(U8+1G)−
([
28+1
_8+1

]_8+1 [
28−1
_8−1

]_8−1
)

exp(U8G)+28−1 exp(U8−1G). (5.22)

We have arrived at the final phase of proving part (3) of this proposition. By the
equality case in the arithmetic-geometric mean inequality and using

exp(U8G) =
(
exp(U8+1G)_8+1

) (
exp(U8−1G)_8−1

)
,

one finds the unique minimizer G★ for functions (5.22) satisfies[
28+1 exp(U8+1G★)

_8+1

]
=

[
28−1 exp(U8−1G

★)
_8−1

]
⇔ G★ = ln

(
28−1
28+1

_8+1
_8−1

)
/(U8+1 − U8−1).

If +8 (,, c) B (28−1_8+1)/(28+1_8−1) satisfies +8 (,, c) < 1, then G★ < 0 and by
continuity we have inf{ 5 (G) : G ≥ 0} > 0 – hence the condition +8 (,, c) ≥ 1 is
necessary for extremality. Furthermore, if +8 (,, c) > 1, then the unique minimizer
of 5 given by (5.22) occurs at G★ > 0. Such 5 cannot be decomposed as a convex
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combination which involves 1-term or 2-term AGE functions (which have 5 (G) > 0
for G > 0), and cannot be written as a convex combination consisting solely of
3-term AGE functions [130, Proposition 4.4], therefore any 5 given by (5.22) with
+8 (,, c) > 1 is extremal in C[0,∞) (A). All that remains is to show extremality
of functions (5.22) with +8 (,, c) = 1. This follows from the same argument as
+8 (,, c) > 1, but we must use the stationarity condition 5 ′(0) = 0 to preclude using
2-term extremal AGE functions in a decomposition of 5 .

5.7 Discussion and conclusion
In this chapter we have introduced a convex-geometric notion of an X-circuit, which
mediates a relationship between point sets A ⊂ R= and convex sets X ⊂ R=. By
showing that this notion of anX-circuit allows an alternative construction ofX-SAGE
cones (Theorems 5.4.4 and 5.5.5) which cannot be relaxed (Theorem 5.5.6), we have
demonstrated that conditional SAGE cones exhibit a substantially richer theory than
ordinary SAGE cones. An essential property of this theory is that for general sets
X it is not possible to recover an X-circuit , ∈ ΛX(A, #) given only information on
the signs of its components. As a consequence of this last point – it is not possible
to arrive at the concept of conditional SAGE certificates while relying on a “circuit
number” approach using only the support of a given polynomial or signomial.

Two lines of theoretical investigations stand out for future work. First, there is the
task of formally situating X-circuits in the context of matroid theory (in the case
when X is a polyhedron). Here one can use an interpretation from Theorem 5.3.7,
that X-circuits , ∈ ΛX(A, #) are outer normal vectors to facets of −AX + N◦#. A
broader area of follow-up work is in-depth analysis of multiplicatively-convex sets
S ⊂ R<+ for which log(S) = {t : exp t ∈ S} is convex. Some properties of this
class of sets include closure under intersection, and closure under the induced-cone
operation.

It is of interest to explore the use of the cones CX(A, ,) when , is not an X-circuit.
Given a signomial

∑
"∈A 2"e"with numericalX-SAGEcertificate {(c(#) , .(#))}#∈A ,

c(#) ∈ CX(A, #), c ≈
∑

#∈A c(#) , one could refine this certificate to higher pre-
cision by solving the power-cone program to decompose c as a sum of vectors in
CX(A, ,(#)) for ,(#) = .(#)/|.(#)

#
|. This would be helpful for large scale prob-

lems where {(c(#) , .(#))}#∈A is computed with a first-order solver, or when X is an
especially complicated spectrahedron. In the latter case, the standard description
of CX(A) would be a mixed semidefinite and relative entropy program, while the
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formulations for CX(A, ,(#)) would be pure power cone programs.

The two obstacles to using Theorem 5.5.6 in computation are that |Λ★X(A)| can
be exponential in |A| even when X = R=, and that finding X-circuits requires a
procedure to identify extreme rays of a polyhedral cone. It is not known how
severe this first problem is in practice. For the second problem one could focus
on X-SAGE polynomials (see Chapter 7) where X = [−1, 1]= or X = [0, 1]=. The
cones of such polynomials supported on A ⊂ N= are represented by CY (A) for
Y = {y ∈ R= : y ≤ 0}, and finding Λ★Y (A) is made easier by the fact that Y
is a cone. The main benefit of this approach for polynomials is the prospect of
computing conditional SAGE decompositions in exact arithmetic, especially for
sparse polynomials of high degree.
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C h a p t e r 6

AN ALGEBRAIC APPROACH TO SIGNOMIAL OPTIMIZATION

6.1 Introduction
Consider the problem of computing

5★K = inf
x∈K

5 (x) where K = {x ∈ X : � (x) ≥ 0} (6.1)

for a signomial 5 , a signomial map�, and a convex set X. We have seen in Chapters
3 and 4 how SAGE certificates provide a mechanism for computing lower bounds
on 5★K . We particularly touched on the idea twice that these bounds are not one-
shot procedures; hierarchies of convex relaxations can be devised with the aim of
producing arbitrarily strong bounds on 5★K . The idea of hierarchies of lower bounds
is part of a long tradition in the polynomial optimization community and has also
been studied for SAGE signomials [13, 124].

A lesser-known segment of the polynomial optimization literature involves using
the same nonnegativity certificates to compute upper bounds on the minimum of
a polynomial optimization problem. Abstractly, this approach can be understood
as minimizing the linear function ` ↦→

∫
5 d` over some family of probability

measures ` supported on K. Lasserre pioneered this latter method by parameterizing
probability measures in terms of sums of squares (SOS) polynomials and a reference
measure supported on K [143]. To the best of our knowledge, this idea has not been
studied for signomials.

Wemake advances on both of these fronts through a concept of signomial rings. Our
main theoretical contributions are a Positivstellensatz (a “positive locus theorem”)
for conditional SAGE and an elementary signomial moment theory. These results
lead to hierarchies of REP relaxations that approach the value of a signomial program
from both above and below. We focus primarily on the Positivstellensatz, which
characterizes signomials positive on sets K given by the intersection of a compact
convex set X with preimages of finitely many signomial inequality constraints (as
in Equation (6.1)). Through our experiments we have identified the root cause of a
known numerical difficulty in certain SAGE relaxations; we show how this difficulty
can be overcome by a simple shift of coordinate system.
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6.1.1 Summary of results
Throughout this chapter A ⊂ R= is a distinguished finite ground set that contains
the origin. Every vector " ∈ A is associated with a “monomial” basis function
e" : R= → R that takes values e" (x) = exp〈", x〉.

In Section 6.2 we introduce the signomial ring R[A] as the set of all finite products
and real-linear combinations of basis functions {e"}"∈A . This concept is simply an
organizing framework. It gets us thinking signomials as “polynomial in {e"}"∈A ,”
and leaves it to us to account for the fact that formal indeterminates H" B e" (x) are
not independent of one another. Our techniques show that conditional SAGE has
precisely the features necessary to account for the dependence of these monomials,
even in the case of irrational exponents.

Our first main result is a characterization of signomials that are positive over sets
K = {x ∈ X : 6(x) ≥ 0 for all 6 ∈ �} where X is compact and convex and � is
a finite set of signomials. To describe the result we need some basic terminology.
A signomial is called X-SAGE if it can be written as a sum of X-nonnegative
signomials each with at most one negative term. A posynomial is a signomial with
only nonnegative terms. Theorem 6.3.1 states that if { 5 } ∪ � ⊂ R[A], then 5 is
positive on K only if there exists an A ∈ N for which(∑

"∈A e"
)A
5 = _ 5 +

∑
6∈� _6 · 6,

where _ 5 ∈ R[A] is X-SAGE and each _6 ∈ R[A] is a posynomial. Theorem 6.3.1
is the first signomial Positivstellensatz that does not require rational exponents and it
is the first conditional SAGE Positivstellensatz that permits nonconvex constraints.

Section 6.4 uses Theorem 6.3.1 as the basis for a hierarchy of REP relaxations to
approach the minimum of a signomial 5 over a set K from below. The statement of
the hierarchy has some peculiarities stemming from properties of signomial rings
discussed in Subsection 6.2.2. From a performance perspective, these peculiarities
work to our benefit by providing stronger bounds at lower levels of the hierarchy. We
provide illustrative comparisons of these REP relaxations to SDP relaxations based
on the moment-SOS approach and the global solvers BARON [144], ANTIGONE
[145], LINDO [146], and SCIP [147, 148].

We turn to signomial moment problems in Sections 6.5 and 6.6. We prove a sig-
nomial Riesz-Haviland theorem that, when combined with a moment-determinacy
result, leads to a hierarchy of REP relaxations for approaching the value of a sig-
nomial minimization problem from above. The hierarchy of upper bounds draws
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inspiration from analogous SDP-based hierarchies for polynomial optimization. We
find it useful to frame the idea as follows: we fix a reference measure ` with
supp ` = K, and then minimize the linear function q ↦→

∫
5 q d` over families

of signomials q that are nonnegative on K and satisfy
∫
q d` = 1. By allowing

sufficiently large classes of such signomials q we can approximate a Dirac distribu-
tion centered on a signomial’s minimizer on K (although there are of course some
technicalities involved).

6.1.2 Related work
We begin by speaking to the broader literature on certifying nonnegativity via the
arithmetic-geometric inequality. Beyond SAGE, this includes Reznick’s agiforms
[14], Pantea, Koeppl, and Craciun’s characterization ofR=+-nonnegative circuit poly-
nomials [17], and Iliman and de Wolff’s sums of nonnegative circuits or SONC [96].
The SAGE-SONC relationshipwas initially unclear, butwas resolved in [59, §5]with
the introduction of SAGE polynomials. One can also understand the SAGE-SONC
relationship by implicitly reading results by Wang [100]. Essentially, the unifying
perspective is that both of these approaches characterize elementary nonnegative
functions that are a sum of “monomials” where at most one monomial contributes a
negative value to the overall sum. Further generalizations through this perspective
can be found in [130] (which allows monomials

∏=
8=1 |G8 |U8 ) and [60, §4].

Much of the interest in arithmetic-geometric based nonnegativity certificates stems
from their sparsity preservation properties [59, 101, 130]. As a consequence of this
sparsity preservation, it is possible to implement these methods with complexity that
depends only on the number of terms in the signomial or polynomial [59]. This
property is essential for signomials, since the largest signomial ringR[R=] is not even
a unique factorization domain [127]. In the polynomial setting, much work has gone
into the development of variants of SOS capable of exploiting structured sparsity.
See, e.g., [89, 90, 149, 150]. Arithmetic-geometric certificates are significant in
the polynomial literature precisely because they can take advantage of unstructured
sparsity.

Now we turn to some known results for signomial K-nonnegativity problems. To
our knowledge, the earliest result here is Delzell’s extension of the weak form of
Polya’s Positivstellensatz to signomials [127]. Chandrasekaran and Shah presented
two Positivstellensatz when they introduced SAGE in [13]: one for K = R= and
one for Archimedean K. The second of these is based on reduction to Krivine’s



CHAPTER 6. SIGNOMIAL RINGS 107

Positivstellensatz [111] (see also [112, §5.4.4 (ii)]). Wang, Jaini, Yu, and Poupart
developed the first conditional SAGE Positivstellensatz in the case when K is a
compact convex set [124]. The signomial exponents must be rational for any of
these results to hold. In fact, it is impossible to extend Polya’s Positivstellensatz to
signomials with irrational exponents [127]. We draw comparisons to these results
in Subsection 6.3.1.

Our conditional SAGE Positivstellensatz is ultimately driven by reduction to the
Dickinson-Povh Positivstellensatz for homogeneous polynomials on R=+ \ {0} with
infinitely many homogeneous polynomial inequality constraints [151]. Similar
appeals were made to this Dickinson-Povh Positivstellensatz in [13] (for K = R=)
and [124]. Our techniques are distinct from [13, 124] in that our reduction the to
Dickinson-Povh Positivstellensatz is with consideration to signomial rings. It is
noteworthy that Dickinson and Povh have subsequently used their Positivstellensatz
to develop complete hierarchies for polynomial cone programming [152]. Our
methods can probably be extended to an analogous “signomial cone programming”
but we make no attempt to do so here.

Finally we discuss the literature related to our contributions in signomial moment
theory. The most concrete connections are in our hierarchy of upper bounds for
signomial minimization problems. Indeed, the idea for that hierarchy is lifted
almost directly from a work by Lasserre [143] and a subsequent generalization
by de Klerk, Lasserre, Laurent, and Sun [153]. The approach in [143] involves
semidefinite programming relaxations, so one can say it uses SOS polynomials from
a nonnegativity standpoint. The approach in [153] involves the Cassier-Handelman
hierarchy [154, 155] and is conceptually closer to our method. Several investigations
have been conducted to determine rates of convergence for these upper bounds under
various conditions [156–160]. We leave questions of convergence rates with our
method to future work.

6.1.3 Notation and other remarks
Throughout this chapter X ⊂ R= is a closed convex set with support function
z ↦→ fX(z) = supx∈X〈z, x〉. We specify a signomial by a vector of coefficients in
c ∈ RB (for any finite B ⊂ R=) and write it in a basis expansion 5 = ∑

#∈A 2#e#.

Our experiments are conducted with MOSEK 9.2 on a Dell XPS 13 9300, with an
Intel Core i7-1065G7 processor (4 cores at 1.30GHz) and 16 GBDDR4 RAM (3733
MT/s).
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6.2 Signomial rings
As we explained in Subsection 6.1.1, A ⊂ R= is a finite set that contains the origin
and the signomial ring R[A] is the R-algebra generated by the basis functions
{e"}"∈A . This section explores a way of grading signomial rings by degree. We
begin by defining a sequence of sets

A3 =

{∑
"∈A

F"" : w ∈ NA , 〈1, w〉 ≤ 3
}

for 3 ≥ 1.

Where we note that A1 = A. Next, we formally define the support of a signomial
5 =

∑
"∈� 2"e" as supp( 5 ) = {" : 2" ≠ 0, " ∈ �}. TheA-degree of 5 is then the

smallest integer 3 for which supp( 5 ) ⊂ A3; this number is denoted degA ( 5 ). We
use R[A]≤3 for the space of signomials of A-degree at most 3.

The definition of A-degree is, by itself, enough to get through the proof of our
Positivstellensatz in Section 6.3. In later sections it is important to understand
certain properties of A-degree. We explore those basic properties here.

6.2.1 The A-degree of a single signomial
The concept of A-degree is artificially imposed on signomials. If supp( 5 ) ⊂
A, then the A-degree of 5 is trivially one. Note that unless A is decided by
some external factor, one can always update A ← A ∪ supp( 5 ), and so every
signomial has degree one when considered in a suitable ring. In fact, if we chose to
interpret previous Positivstellensatz and hierarchies of SAGE relaxations in terms
of signomial rings, then we find that they always make such a choice for A.

In this chapter we show it can be advantageous to consider signomials in rings
where their resultingA-degree is greater than one. This creates a need to determine
degA ( 5 ) when there is no special relationship between supp( 5 ) and A. The naive
thing to do in this case is to explicitly find the smallest ℓ for which supp( 5 ) ⊂ Aℓ,
but that algorithm does not terminate if 5 does not belong to R[A]. In practice we
suggest A-degree and membership in R[A] be determined by solving an integer-
linear program. The natural formulation is given as follows, with B = supp( 5 ):

degA ( 5 ) = inf{ ℓ : ℓ ≥ 1, ] ∈ NA×B satisfy∑
"∈A ","# = # and∑
"∈A,"# ≤ ℓ for all # in B}.

This formulation can be used either directly or in a separable calculation degA ( 5 ) =
max{degA (e") : " ∈ supp( 5 )}. There are many simple ways to improve the
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efficiency of computing A-degree, but we do not dwell on this any further. Rather,
we consider an example.

Example 6.2.1. Suppose S ∈ R=×= is a dense symmetric matrix and consider the
polynomial ?( t) = ∏=

8=1 C8 + t>St. From ? we construct the signomial 5 defined
by 5 (x) = ?(exp x). When 5 is viewed in the rings generated by

A = {0} ∪ {%8}=8=1, A
′ = A ∪ {1=}, and A′′ = A′ ∪ {%8 + % 9 : (8, 9) ∈ [=]2}

we have degA ( 5 ) = =, degA ′ ( 5 ) = 2, and degA ′′ ( 5 ) = 1 respectively.

Although A-degree is not intrinsic to signomials, it exhibits essential properties of
coordinate-system invariance. For any b in R= and 5 ∈ R[A], the signomial 6(x) =
5 (x − b) has degA (6) = degA ( 5 ). This shift invariance becomes valuable when
we discuss numerical optimization in Section 6.4. In addition, for any nonsingular
matrix H ∈ R=×=, the signomial 6 defined by 6(x) = 5 (Hx) has deg[AH] (6) =
degA ( 5 ). These invariants are reflected in our proof techniques in Sections 6.3
and 6.5, which are unaffected by changes to (A,X) that preserve the linear image
AX ⊂ RA up to a translation in the range of A.

6.2.2 Behavior of A-degree under multiplication
Polynomial rings enjoy a property where given two nonzero polynomials ? and
@, the degree of the product ?@ is equal to the sum of degrees deg ? and deg @.
Signomial A-degree partly preserves this property. For any two signomials 5 , 6 in
a common ring R[A], we have

degA ( 5 6) ≤ degA ( 5 ) + degA (6). (6.2)

However, the inequality in (6.2) can be strict even when both 5 and 6 are nonzero.
A trivial example of strict inequality is given by 5 = e0, which satisfies 5 = 5 2 and
degA ( 5 ) = 1. Here is a nontrivial example.

Example 6.2.2. Consider a positive integer : ≥ 3 and A = {0, 1, :}. Then 5 (G) =
exp(G) has degA ( 5 ?) = ? for ? ∈ [: − 1] and yet degA ( 5 : ) = 1.

The potential for strict inequality in (6.2) complicates the process of grading R[A]
by A-degree. However, this complication can actually be used to our advantage.
The idea is that for a polynomial ? ≠ 0, the only polynomial @ for which deg(?@) <
deg(?) is @ = 0. By contrast, there are certain support setsA, signomials 5 ∈ R[A],
and nontrivial linear subspaces L ⊂ R[A] where degA ( 5 6) < degA ( 5 ) for every
signomial 6 ∈ L.
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Example 6.2.3. Consider A = {−1, 0, 1, 2} and the signomial 5 (G) = exp(3G).
Clearly degA ( 5 ) = 2, and yet degA (6 5 ) ≤ 1 for every signomial 6 in the one-
dimensional linear space L = {2 exp(−G) : 2 ∈ R} ⊂ R[A].

In view of Example 6.2.3, we have a need to take a signomial 5 and describe the
inclusion-maximumB ⊂ A3 where degA ( 5 6) ≤ 3 for every signomial 6 supported
on B. We denote this set by supp−1

A3 ( 5 ) and note that it can be expressed as

supp−1
A3 ( 5 ) = {" ∈ A3 : " + supp( 5 ) ⊂ A3}. (6.3)

In terms of these support sets, Inequality (6.2) simply tells us that if 5 is of an
A-degree : strictly smaller than 3, then supp−1

A3 ( 5 ) contains A3−: .

Of course, A-degree can behave like polynomial degree in certain situations. Here
is one prominent case.

Proposition 6.2.4. Suppose 5 is a nonconstant signomial in R[A]. If all extreme
points of the convex hull of A3 are among the support of a signomial 6 ∈ R[A]≤3 ,
then degA (6 5 ) = 3 + degA ( 5 ). In particular, the A-degree of (∑"∈A e")3 5 is
equal to 3 + degA ( 5 ) whenever 5 is nonconstant.

6.3 A Positivstellensatz
Throughout this section 5 is a signomial in R[A], X is a compact convex subset of
R=, and � ⊂ R[A] is finite. Here was present a characterization of signomials that
are positive on sets

K = {x ∈ X : 6(x) ≥ 0 for all 6 in �}.

In later sections, this characterization will be used to develop hierarchies of suc-
cessively stronger convex relaxations for approaching 5★K = infx∈K 5 (x) from below
and above (§6.4 and §6.6 respectively).

Theorem 6.3.1. If 5 is positive on K, then there exists an A ∈ N for which(∑
"∈A e"

)A
5 = _ 5 +

∑
6∈� _6 · 6, (6.4)

where _ 5 ∈ R[A] is X-SAGE and the _6 ∈ R[A] are posynomials.

Note how the theorem requires 5 to be positive on K in order to guarantee an identity
that only implies nonnegativity on K. The gap between K-positive signomials and
K-nonnegative signomials is important in optimization, as it makes the difference
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between finite versus asymptotic convergence of our lower bounds. To improve
one’s chances of finding an identity like (6.4) when 5★K = 0, the multipliers (_6)6∈�
can be taken as X-SAGE signomials rather than merely posynomials. There is also
an interesting case when � = ∅, where the representation from Theorem 6.3.1 uses
no multipliers whatsoever.

Corollary 6.3.2. If 5 is positive on X, then there exists a natural number A where
the signomial (∑"∈A e")A 5 is X-SAGE.

Our proof of Theorem 6.3.1 is presented in Subsection 6.3.2; it relies on two black-
box lemmas, which are proven in Subsections 6.3.3 and 6.3.4. The second of these
lemmas contains our main technical innovation outside the use of signomial rings,
and we provide some extra commentary on the lemma following its proof.

6.3.1 Comparison to existing Positivstellensatz
Here we paraphrase two existing SAGE Positivstellensatz in the language of signo-
mial rings. The first such Positivstellensatz was proven in [13] when the concept of
SAGE certificates was introduced. To state the result we use '@ (�) = {

∏@

8=1 68 :
68 ∈ {1} ∪ �}, where “1” refers to the constant signomial e0.

Theorem 6.3.3 ([13]). Suppose the exponents A are rational and that each sig-
nomial in { 5 } ∪ � has A-degree equal to one. Further, assume that � explicitly
includes signomials {* − e", e" − !}"∈A for some positive constants *, !, so that
X = {x : * ≥ e" (x) ≥ ! ∀" ∈ A} is compact. If 5 is positive on K, then there
exists a natural number @ and a set of R=-SAGE signomials (_ℎ)ℎ∈'@ (�) ⊂ R[A]
that satisfy 5 =

∑
ℎ∈'@ (�) _ℎ · ℎ.

We have phrased Theorem 6.3.3 to make clear that if ( 5 , �) satisfy its hypothesis
then they also satisfy the hypothesis of Theorem 6.3.1 for the indicated choice of X.
Theorem 6.3.1 is qualitatively different from Theorem 6.3.3 in that the former does
not require taking products of constraint functions; this distinction is of practical
importance when working with constraint signomials ofA-degree greater than one.

The next Positivstellensatz was proven by Wang et al. [124] shortly after the intro-
duction of conditional SAGE certificates. Its scope is limited to problems where
� = ∅ (i.e., K = X), but is nevertheless distinguished in how its conclusion is
independent of the representation of X.
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Theorem 6.3.4 ([124]). Suppose the exponents A are rational and that 5 has A-
degree one. If 5 is positive on X, then there exists a natural number A for which
(∑"∈A e")A 5 is X-SAGE.

Our Theorem 6.3.1 naturally generalizes Wang at al.’s Theorem 6.3.4 to the con-
strained setting, and in fact our proof of Theorem 6.3.1 draws much inspiration from
[124]. The comparison betweenWang et al.’s Theorem 6.3.4 and our Corollary 6.3.2
is best illustrated with an example.

Example 6.3.5. Return to the signomials from Example 6.2.1. Let "8 9 denote the
entries of thematrixS so the signomial 5 = e1+∑=

8, 9=1 "8 9e[%8+% 9 ] is positive onX. If
we want a certificate that 5 is nonnegative over X, then Theorem 6.3.4 says it suffices
to look for X-SAGE decompositions of functions LA =

(
e0 + e1 +∑=

8≤ 9 e[%8+% 9 ]
)A
5 .

Since the number of terms in LA grows as $ (=2A), the sizes of the REPs used
when searching for the X-SAGE decompositions can scale as rapidly as $ (=4A).
By contrast, Corollary 6.3.2 says it suffices to look for X-SAGE decompositions of
functions L′A =

(∑
"∈A e"

)A
5 where A is any set for which 5 belongs to R[A].

In particular, we can use A = {0} ∪ {%8}=8=1, so the number of terms in L′A would
grow as only $ (=A) � $ (=2A). Corollary 6.3.2 therefore justifies a whole family
of convergent convex relaxation hierarchies with different efficiency profiles as the
hierarchy parameter increases.

Besides the comparisons we have drawn so far, we make no requirement that the
exponentsA are rational. The distinction between rational and irrational exponents
has some mathematical significance. In 2008, Delzell studied the extent to which
Polya’s theorem (for homogeneous polynomials positive on the simplex) generalizes
to signomials in R[R=] [127]. Using the convention of signomials as functions
t ↦→ ∑

" 2" t
", [127] showed that the bivariate signomial 5 ( t) = C21 + C

2
2 − C

1+n
1 C1−n2

is positive on R2
++ when n ∈ (−1, 1), and yet when n is irrational, there exists no

“homogeneous” signomial 6 ∈ R[R=] for which 6 5 has nonnegative coefficients.
That is, it is impossible to generalize even the weak form of Polya’s theorem to
signomials with irrational exponents. Our results show that under a different model
of signomial rings and a compactness assumption, X-SAGE certificates characterize
signomials positive on X even when the exponents are irrational.

6.3.2 Proof of Theorem 6.3.1
Our proofworks bymapping a signomial problem to a polynomial problem, applying
a polynomial Positivstellensatz, and then mapping back to signomials. As a first
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step long this path, we shall call a polynomial ? a polynomialization of 5 if 5 (x) =
?(expAx) for all x in R=. Note that every signomial 5 has a homogeneous
polynomialization of degree degA ( 5 ) (since 0 ∈ A). Henceforth, we assume all
polynomializations are homogeneous.

Example 6.3.6. Consider the univariate case A = [1/4; 1/2; 1/3; 0] ∈ R4×1. The
signomial 5 (G) = exp(G) admits several polynomializations, among them ?1(y) =
H2

1H2 and ?2(y) = H3
3. Note that ?1 � ?2 on the variety {y ∈ R4 : H2

1 = H2, H
2
2 = H

3
3}.

The above example suggests a signomial ring R[A] is equivalent to the ring of
polynomials on RA , modulo a suitable binomial ideal to capture the relationships
between ", # ∈ A. In order to interpret a signomial ring in this way, we need
exp(AR=) to be the intersection of a toric variety with a positive orthant. By con-
sideringA = {1,

√
2, 0} we see that this cannot be the case in general. This provides

one example of how fully general signomial rings are resistant to techniques from
traditional algebraic geometry. However, the differences between signomial and
polynomial rings are less pronounced when considering these functions only over
compact sets. Specifically, by restricting our attention to signomial nonnegativity
on compact sets, we are able to prove Theorem 6.3.1 by appeals to the following
results of Dickinson and Povh.

Theorem 6.3.7 ([151]). Let ? be a homogeneous polynomial on RA , and let& be a
finite set of homogeneous polynomials on RA that includes the constant polynomial
y ↦→ 1. If ? is positive on {y ∈ RA+ : @(y) ≥ 0 for all @ ∈ &} \ {0}, then for some
A ∈ N there exist homogeneous polynomials {`@}@∈& with nonnegative coefficients
such that (∑"∈A H")A ?(y) =

∑
@∈& `@ (y)@(y).

For general choices of (A,X) we also require a reduction from a semi-infinite
nonnegativity problem to a finite nonnegativity problem, as follows.

Theorem 6.3.8 ([151]). Consider a countable set {?} ∪& of homogeneous polyno-
mials onRA . If ? is positive on {y ∈ RA+ : @(y) ≥ 0 for all @ ∈ &}\{0}, then there
exists a finite&′ ⊂ & for which ? is positive on {y ∈ RA+ : @(y) ≥ 0∀ @ ∈ &′}\{0}.

Next, given a polynomial ? on RA , we have the signomialization x ↦→ ?(expAx).
Signomialization transparently preserves important algebraic properties. For ex-
ample, if we signomialize a polynomial that has nonnegative coefficients in the
monomial basis, then we obtain a posynomial. In addition, if 6 is the signomializa-
tion of a polynomial ? and ? is a polynomialization of some signomial 5 , then 6 = 5 .



CHAPTER 6. SIGNOMIAL RINGS 114

The following lemma roughly shows how these concepts help map Dickinson-Povh
certificates to conditional SAGE certificates.

Lemma 6.3.9. Let & = &1 ∪ &2 be a finite set of polynomials on RA where the
signomialization of each @ ∈ &2 is X-AGE and suppose ? is a polynomialization
of 5 . If (∑"∈A H")A ?(y) =

∑
@∈& `@ (y)@(y) for polynomials `@ with nonnegative

coefficients and a natural number A, then there exists an X-SAGE function _ 5 ∈
R[A] for which (∑"∈A e")A 5 = _ 5 +

∑
@∈&1 _@6@, where _@ is the signomialization

of `@ and 6@ is the signomialization of @.

The work in our proof of Theorem 6.3.1 is to derive polynomial data from signomial
data so that the hypotheses of Lemma 6.3.9 are satisfied. Much of this work is
accomplished in our next lemma.

Lemma 6.3.10. There exists a countable set of homogeneous polynomials &(X) on
RA satisfying the following properties:

(i) each @ ∈ &(X) has at most two terms,

(ii) expAX = {y ∈ RA : @(y) ≥ 0 for all @ ∈ &(X), H0 = 1},

(iii) if y is a nonzero vector where @(y) ≥ 0 for all @ ∈ &(X), then y > 0.

As a consequence of conditions (i) and (ii) in the lemma, the signomialization of
any @ ∈ &(X) has at most two terms and is X-nonnegative.

Proof of Theorem 6.3.1. Fix 5 > 0 on K := {x ∈ X : 6(x) ≥ 0∀ 6 ∈ �}. Let
? be a polynomialization of 5 , &(�) be a set of polynomializations of � (one
polynomial for each signomial in �), and &(X) be as in Lemma 6.3.10. Define the
region K? = expAK within RA and the set of polynomials & = &(X) ∪&(�).

We begin by noting the identity K? = (expAX) ∩ {expAx : 6(x) ≥ 0∀ 6 ∈ �}.
Next, we apply Lemma 6.3.10 andwe use the fact that 6(x) = @(expAx) when @ is a
polynomialization of 6. This allows us to write K? purely in terms of homogeneous
polynomials: K? = {y : H0 = 1, @(y) ≥ 0∀ @ ∈ &}. From here we drop the
constraint H0 = 1 to obtain T = {y : @(y) ≥ 0∀ @ ∈ &}. Apply the third property
of &(X) from Lemma 6.3.10 to see that T \ {0} is contained within RA++.

Let 3 = degA ( 5 ) and consider an arbitrary vector y ∈ T \ {0}. Since ? is homo-
geneous, we have ?(y) = H30 ?(y/H0). Similarly, because all polynomials defining
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T are homogeneous, we have that ỹ := y/H0 is in K?. By the definition of K? we
know that every vector ỹ ∈ K? can be represented as ỹ = expAx for suitable x ∈ K.
Since ? is a polynomialization of 5 , we find ?(y) = H30 5 (x), which is positive by
assumption on 5 ,K. We therefore have that ? is positive on T \ {0}.

ByTheorem6.3.8 there exists a&′ ⊂ & that is finite andwhere ? is positive onT′\{0}
for T′ := {y : @(y) ≥ 0 ∀ @ ∈ &′}. We are free to assume &′ = &(X)′ ∪ &(�)
where &(X)′ ⊂ &(X) includes the constant polynomial y ↦→ 1. By Theorem
6.3.7, there exists an A ∈ N and homogeneous polynomials {ℎ@}@∈&′ on RA with
nonnegative coefficients where

(∑"∈A H")A ?(y) =
∑
@∈&′ ℎ@ (y)@(y).

From property (i) of&(X) we know that each constraint polynomial @ ∈ &(X)′ has at
most two terms. In addition, property (ii) of &(X) tells us that the signomialization
of any @ ∈ &(X)′ is X-nonnegative. It is easily verified that all X-nonnegative
signomials with at most two terms are X-AGE. We may therefore apply Lemma
6.3.9 to obtain

(∑"∈A e")A 5 = _ 5 +
∑
@∈&(�) _@6@

for signomials 6@ (x) = @(expAx), posynomials _@ (x) = `@ (expAx), and an
X-SAGE _ 5 ∈ R[A]. We complete the proof by noting that {6@}@∈&(�) = �.

We emphasize that the decomposition promised in Theorem 6.3.1 makes no refer-
ence to the set &(X) used in our proof of the theorem. This reflects how such a
decomposition exists for given A ∈ N if (but not only if) there are any polynomials
&(X) satisfying Lemma 6.3.9 where the polynomialization of 5 admits a Dickinson-
Povh certificate over {y : @(y) ≥ 0 for all @ ∈ &(�) ∪&(X)} with exponent A. So
by virtue of using SAGE certificates we do not need to construct &(X) explicitly,
and in fact we automatically do at least as well as choosing the best possible &(X)
consistent with Lemmas 6.3.10 and Theorems 6.3.7 and 6.3.8.

6.3.3 Proof of Lemma 6.3.9
Let A ∈ N be such that the stated polynomials `@ exist, and let _@, 6@ be the signomi-
alizations given in the lemma statement. Since `@ are polynomials with nonnegative
coefficients, the signomializations _@ are posynomials. Set _ 5 =

∑
@∈&2 _@6@. We

are given that the signomialization 6@ of any @ ∈ &2 is X-AGE. Since the product of
an X-AGE function with a posynomial is X-SAGE, and sums of such products are
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likewise X-SAGE, we find that the stated _ 5 is X-SAGE. Completing the proof is a
matter of purely algebraic identifications. Namely,

(∑"∈A e" (x))A 5 (x) = (∑"∈A e" (x))A ?(expAx)
=

∑
@∈&

`@ (expAx)@(expAx) = _ 5 (x) +
∑
@∈&1

_6 (x)6@ (x),

where the last equality decomposed the sum over & = &1 ∪ &2 and applied the
definitions of _ 5 , _@, and 6@.

6.3.4 Proof of Lemma 6.3.10
We build up this set of polynomials incrementally. To avoid clutter we use the
symbol & rather than &(X) for the proof, and we set T := {y : @(y) ≥ 0∀ @ ∈ &}
for the current value of &. Begin by initializing & = {y ↦→ H" : " ∈ A}, so that
T = RA+ . Then update & to include the 2( |A| − 1) linear functions

@+" (y) = H0

(
max
x∈X

e" (x)
)
− H" and @−" (y) = H" − H0

(
min
x∈X

e" (x)
)

for " ∈ A \ {0}. The functions @+" ensure that any vector y ∈ T with H0 = 0
necessarily satisfies y = 0. Conversely, the functions @−" ensure that when H0 > 0
we have y > 0. When considered together, we have that if y is a nonzero vector in
T, then y > 0, and so the set of polynomials & already satisfies property (iii) in the
lemma statement.

We turn to property (ii). Recall the notation where %" is the standard basis vector
in RA corresponding to " ∈ A. Then y belongs to expAX if an only if there exists
a z ∈ AX where H" = e%" (z). The set AX is compact and convex, therefore by a
continuity argument (or a direct application of [161, Theorem 3.1]) there exists a set
S ⊂ ZA ×R where z ∈ AX holds if and only if 〈a, z〉 ≤ log 1 for all (a, log 1) ∈ S.
We can take the set S to be countable by always choosing log 1 = fX(A†a). For
given (a, log 1) ∈ S, take componentwise maximums $ = 0 ∧ a and + = 0 ∧ (−a),
so the inequality 〈a, z〉 ≤ log 1 is equivalent to e$ (z) ≤ 1e+ (z). For each such
signomial inequality there is a polynomial inequality y$ ≤ 1y+ that is equivalent in
the relevant regime y ∈ T, H0 = 1. Setting E = ‖a‖1 − ‖+‖1 and D = ‖a‖1 − ‖$‖1,
we homogenize the polynomial inequality defined above to an equivalent form
@(y) = 1HE0y

+ − HD0y
$ ≥ 0. We finalize& by updating it to contain all homogeneous

polynomials obtained in this way. Since all reformulations employed here were
reversible over RA++, we have (ii): expAX = {y : @(y) ≥ 0∀ @ ∈ &, H0 = 1}.

As property (i) holds by construction, the proof is complete.
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Remark 6.3.11. The exponents of the polynomials in&were derived from halfspaces
that contain the compact convex set AX. Since AX is low-dimensional in general,
some of these halfspaces can come together to form hyperplanes containing AX.
Let H ⊂ NA denote the set of all integral normal vectors of hyperplanes that
contain AX. For a ∈ H we can use the construction described above to obtain a
polynomial y ↦→ @(y) = 1HE0y

+ − HD0y
$ where @(expAx) = 0 for all x in X. If

X is full-dimensional then the real locus of these polynomials is more or less the
smallest toric variety that contains Y := expAR=. It is possible that Y is poorly
approximated by a variety; in this case we are leveraging compactness to provide
a local description for expAX in terms of infinitely many polynomial inequalities.
Prior assumptions from [13, 124] that A ⊂ Q= were used to construct polynomial
equations for describing expAR= as the intersection of a variety with the positive
orthant.

6.4 A complete hierarchy of lower bounds
This section demonstrates how the concept of signomial rings leads to improved
methods for lower-bounding and solving nonconvex optimization problems. For-
mally, given a finite set of signomials { 5 } ∪� and a convex set X, we would like to
solve

5★K = inf
x∈K

5 (x) where K = {x ∈ X : 6(x) ≥ 0 for all 6 in �}. (6.5)

Our high-level approach here is quite standard. We want certificates that shifted
signomials 5 − W are nonnegative on K, and such certificates are available to us
through Theorem 6.3.1. In order to implement this idea we just need to grade the
certificates according to largest A-degree of the constituent signomials.

We recall two essential definitions from Section 6.2. First, the A-degree of a
signomial ℎ is the smallest integer ℓ for which supp(ℎ) ⊂ Aℓ. Second, for a given
signomial ℎ and positive integer 3, the set B ≔ supp−1

A3 (ℎ) is the largest B ⊂ A3

for which degA (ℎe#) ≤ 3 for every #B.

Definition 6.4.1. Given an integer 3 where A := 3 − degA ( 5 ) ≥ 0, the A-degree 3
SAGE bound for Problem (6.5) is

5
(3)

K := sup W s.t. (∑"∈A e")A ( 5 − W) −∑
6∈� _66 ∈ CX(A3), (6.6)

W ∈ R, and _6 ∈ CX

(
supp−1

A3 (6)
)
for each 6 ∈ �.

When 3 < degA ( 5 ), we set 5
(3)

K = −∞.
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We make no assumptions about the A-degree of constraint signomials; degenerate
cases are covered by the fact that supp−1

A3 (6) can be empty, which in turn forces
_6 = 0. Note it is possible that degA (6) > 3 and yet supp−1

A3 (6) is nonempty.
When the hierarchy is applied to problems with an equality constraints 6(x) = 0,
one simply uses an unconstrained multiplier _6 ∈ Span{e" : " ∈ supp−1

A3 (6)}.

Corollary 6.4.2. The sequence 5 (1)K , 5
(2)

K , . . . is nondecreasing and bounded above
by 5★K . If the signomials { 5 } ∪ � belong to R[A] and X is compact, then

lim
3→∞

5
(3)

K = 5★K .

Proof. The sequence is nondecreasing because supp−1
A3 (6) ⊂ supp−1

A3+1 (6) and
CX(B) ⊂ CX(B′) whenever B ⊂ B′ ⊂ R=. That is, the feasible sets grow with
3. The sequence is bounded above by 5★K because every feasible solution certifies
5 (x) ≥ W for all x ∈ K. Under the assumptions on X and R[A], convergence to 5★K
follows from Theorem 6.3.1 and the fact that posynomials are trivially X-SAGE.

Corollary 6.4.2 is the first completeness result for minimizing an arbitrary signomial
subject to constraints given by a compact convex set and a conjunction of arbitrary
(but finitely many) signomial inequalities. It is also the first completeness result for
a hierarchy that uses conditional SAGE certificates in the presence of nonconvex
constraints. The approach is also notable because the hierarchy is indexed by a single
parameter 3 (much like a Lasserre-relaxation). By contrast, other SAGE-based
hierarchies have been indexed by two or even three parameters. This difference
stems from how we decide supports of the generalized Lagrange multipliers _6
with consideration to the signomial ring R[A] and the A-degree of the constraint
functions 6.

The remainder of this section explores the practicality of our hierarchy through three
examples, stated in terms of variables t = exp x. Through the latter two problems it
becomes evident that a shift of coordinate system can be crucial in accurately com-
puting 5 (3)K . We get ahead of these examples in Subsection 6.4.2, where we discuss
problem scaling for SAGE relaxations and signomial and polynomial optimization
more generally.

6.4.1 Polynomial optimization on the positive orthant
If all signomials in (6.5) have integer exponents and finite lower bounds on the
decision variable x, then the problem can be written with polynomials in t by
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clearing denominators. The following nonconvex quadratic program was obtained
by applying this procedure to [162, Problem 23].

min
t∈R5

++

5.3578 C23 + 0.8357 C1C5 + 37.2393C1 (6.7)

s.t

0.06663 C2C5 − 0.02584 C3C5 + 0.0734 C1C4 + 1000 ≥ 0

0.33085 C3C5 − 0.853007 C2C5 − 0.09395 C1C4 + 1000 ≥ 0

0.4200 C1C2 + 0.30586 C23 + C2C5 − 1330.3294 ≥ 0

0.2668 C1C3 + 0.40584 C3C4 + C3C5 − 2275.1326 ≥ 0


�nonconvex

1000 − 0.24186 C2C5 − 0.10159 C1C2 − 0.07379 C23 ≥ 0

1000 − 0.29955 C3C5 − 0.07992 C1C3 − 0.12157 C3C4 ≥ 0

(102, 45, 45, 45, 45) − t ≥ 0

t − (78, 33, 27, 27, 27) ≥ 0

}
�box

Wehave labeled the set of inequality constraints that are nonconvex in x as�nonconvex

and use�box for the signomials that imply box constraints on x. We use�all to refer
to all constraints appearing in (6.7). By applying solution recovery to the SAGE
relaxations discussed below, one can certify that the optimal solution to this problem
is t★ ≈ (78, 33, 29.99574, 45, 36.77533) with optimal objective 5★K ≈ 10122.4932.

This problem lets us illustrate the effect of considering different signomial rings and
different sets of “algebraic” constraints �. While exploring these effects, we fix

X = {x : 6(x) ≥ 0 for all 6 ∈ �all \ �nonconvex}.

We examine three cases where set � to �all, to �all \ �box, and to �nonconvex. For
each choice of � we consider two types of signomial rings. For the naive rings we
take A as the smallest set so every signomial in { 5 } ∪ � has A-degree one. The
naive rings have generating sets of size 19, 15, and 12 (as � gets smaller). We also
use a natural ring A = {0, %1, . . . , %=} that reflects how (6.7) is polynomial in t.

Performance data for the SAGE relaxations is given in Tables 6.1 and 6.2. We see
finite convergence for the hierarchy in four out of the six choices of (�,A). The
best bound at each hierarchy level used �all. This reflects a known phenomenon
where incorporating a constraint in an explicit algebraic way can improve bounds
even when the constraint is nominally accounted for in the set X. The fact that the
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presence of �box in � affects finite convergence may be due to how box constraints
are binding at optimality for (C1, C2, C4). Another key point from the data is that the
solver runtimes scale more gracefully when using the natural ring compared to the
naive ring. This is to be expected, since the natural ring is smaller than the naive
rings.

Table 6.1: Natural-ring SAGE bounds and solver runtimes for problem (6.7).

A-degree 3 SAGE bounds solver runtimes (s)
3 �all �all \ �box �nonconvex �all �all \ �box �nonconvex
2 10022.940 19322.848 19322.849 0.070 0.015 0.015
3 10122.493 19964.326 19954.832 0.588 0.184 0.132
4 - 10122.493 10074.250 - 1.314 1.368

Table 6.2: Naive-ring SAGE bounds and solver runtimes for problem (6.7).

A-degree 3 SAGE bounds solver runtimes (s)
3 �all �all \ �box �nonconvex �all �all \ �box �nonconvex
1 10022.929 19322.848 19322.849 0.045 0.015 0.015
2 10122.493 10069.946 10059.838 1.600 0.289 0.338
3 - 10122.493 10112.300 - 7.939 7.918

Let us now consider SOS-based Lasserre relaxations for problem (6.7). Using
GloptiPoly3 as an interface to MOSEK, the we obtain an exact solution at the
hierarchy’s lowest level and the necessary semidefinite program is solved in only
0.23 seconds. Since the fastest exact conditional SAGE relaxation took 0.588
seconds, the SOS approach is the clear winner here. However, as a final comparison
we consider another SAGE relaxation, here with X = R=, � = �all, the natural
ring, and 3 = 3. This also solves (6.7) exactly and the relative entropy program
needs only 0.27 seconds to solve. Therefore while (6.6) comes with guarantees for
compact X, it still performs well with noncompact X on this low-degree polynomial
optimization problem.

6.4.2 Problem scaling
When signomial programs are considered in variables t = exp x, the optimal solu-
tions often have different decision variables span several orders of magnitude. One
reason for this is that signomial models involve physical quantities with particular
choices for units. Although it is possible to choose units where decision variables are
similarly scaled at optimality, this may not be a natural thing to do from a modeling
standpoint. This creates a need for algorithmic tools for signomial optimization that
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are insensitive to scaling of the variable t. The following proposition shows that our
hierarchy has such scale invariance.

Proposition 6.4.3. Consider a signomial objective function 5 and a set of constraint
signomials � ∪ �′ where X = {x : 6(x) ≥ 0 for all 6 ∈ �′} is convex. Given a
vector b ∈ R=, construct translated problem data

• 5b defined by 5b (x) = 5 (x − b),

• �b = {x ↦→ 6(x − b) : 6 ∈ �}, and

• Xb = {x : 6(x − b) ≥ 0 for all 6 ∈ �′}.

Then the for every 3 and every signomial ring R[A], the A-degree 3 SAGE bound
for Problem 6.5 is the same for problem data ( 5 , �,X) and ( 5b, �b,Xb).

We should emphasize that scale invariance of a SAGE bound does not mean that
the behavior of algorithms for REP are fully scale-invariant. Changes to problem
scaling in finite precision arithmetic can affect both the speed at which an REP
solver converges and even whether the solver converges at all. This proposition
really shows that we are free to choose a coordinate system that works well for an
REP solver without fear of changing the SAGE bound.

Proposition 6.4.3. Let ℎ be a signomial on R= and consider ℎb defined by ℎb (x) =
ℎ(x − b). It is easy to verify that ℎ is X-SAGE if and only if ℎb is [X + b]-SAGE.
Additionally, it is clear that supp(ℎ) = supp(ℎb), and this implies both degA (ℎ) =
degA (ℎb) and supp−1

A3 (ℎ) = supp−1
A3 (ℎb). Finally, observe that Xb = X + b.

Using these facts we can map any feasible solution to Problem 6.6 for data ( 5 , �,X)
to a feasible solution to the analogous problem for data ( 5b, �b,Xb)without changing
W. By symmetry (essentially replacing b by −b) any solution to Problem 6.6 for
data ( 5b, �b,Xb) can likewise be mapped to a feasible solution for problem data
( 5 , �,X) without changing W. As the set of feasible choices for W is the same under
these two formulations, we have that the A-degree 3 SAGE bounds coincide.

6.4.3 A benchmark in alkylation process design
Our next problem captures the design of an alkylation process in chemical engineer-
ing. A detailed derivation of the original model (in ten variables) may be found in
[163] and the now-standard formulation (in seven variables) can be found in [41,
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p. 7.2.1]. We have cleared denominators in the signomial program [41, p. 7.2.1] to
obtain a cubic polynomial optimization problem. All coefficients in the formulation
are positive; we refer the reader to [41] for their precise values.

min
t∈R7

++

21C1 + 22C1C6 + 23C3 + 24C2 + 25 − 26C3C5 (6.8)

s.t. C1 − 27C1C
2
6 − 28C3 + 29C1C6 ≥ 0

C3 − 210C1 − 211C1C6 + 212C1C
2
6 ≥ 0

1 − 213C
2
6 − 214C5 + 215C4 + 216C6 ≥ 0

C5 − 217 − 218C6 − 219C4 + 220C
2
6 ≥ 0

C3C4 − 221C3C4C7 − 222C2 + 223C2C4 ≥ 0

C3C4C7 − 224C3C4 − 225C2C4 + 226C2 ≥ 0

C5 − 227 − 228C7 ≥ 0 1 − 229C5 + 230C7 ≥ 0

1 − 231C3 + 232C1 ≥ 0 C3 − 233C1 − 234 ≥ 0

C3C4 − 235C2 + 236C2C4 ≥ 0 C2 − 237C2C4 − 238C3C4 ≥ 0

1 − 239C1C6 − 240C1 + 241C3 ≥ 0

C1 − 242C3 − 243 + 244C1C6 ≥ 0

(2000, 120, 3500, 93, 95, 12, 162) − t ≥ 0

t − (1500, 1, 3000, 85, 90, 3, 145) ≥ 0.

In order to reflect the polynomial structure in (6.8) we set A = {0, %1, . . . , %7}.
We approach this problem first through conditional SAGE. Let X be the set defined
by the seventeen signomial inequalities 6(x) ≥ 0 where 6 has exactly one positive
term, and have � include all twenty-eight constraints. Table 6.3 shows the results
of using MOSEK 9.2 to compute 5 (3)K and 5

(4)
K for (6.8). The reported solutions

are feasible up to relative error at most 10−8, however the primal solutions exhibit
substantial absolute constraint violation.

The solution quality data in Table 6.3 lead us to speculate that (i) the reported
objective is larger than actually possible for a feasible primal solution, and (ii) the
given dual solution is actually suboptimal.

We can validate this speculation by considering a rescaled version of the problem.
Specifically, we consider the change of variables

t̂ ← (C8D8 / 10)78=1 for u = (2000, 120, 3500, 93, 95, 12, 162).
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Table 6.3: MOSEK solution summary for SAGE relaxations to problem (6.8). The
primal and dual objectives agree to six significant digits. The four-tuples give a
solution’s ℓ∞-norm, then violations of elementwise affine constraints, violations of
bound constraints, and violations of conic constraints.

3 objective time primal soln. norm & viols. dual soln. norm & viols.
3 1224.52 008.6 (1 · 108, 3 · 10−2, 3 · 10−3, 0) (3 · 1010, 0, 8 · 10−6, 0)
4 1285.98 104.5 (8 · 107, 2 · 10−1, 1 · 10−1, 0) (1 · 1010, 0, 2 · 10−6, 0)

In terms of exponential-form signomials, this amounts to an affine shift x̂ ← x −
log(10/u). Table 6.4 provides bounds and solver run-times for this rescaled problem
using both X-SAGE (conditional SAGE) and R=-SAGE (ordinary SAGE). Applying
solution recovery to the dual X-SAGE relaxation with 3 = 4 produces a de-scaled
solution

t★ ≈ (1698.192, 53.662, 3031.305, 90.109, 95.000, 10.500, 153.540)

that is feasible within absolute error 3 · 10−7 and satisfies 5 (log t★) ≈ 1227.23. The
matching X-SAGE and R=-SAGE bounds show this is essentially optimal. Note
that in contrast to the runtime performance of X-SAGE and R=-SAGE relaxations
for problem (6.7), here the X-SAGE approach solves problem (6.8) over eight times
faster than the R=-SAGE approach.

Table 6.4: SAGE bounds and solve times for the rescaled version of problem (6.8).

A-degree 3 SAGE bound solver runtime
3 conditional ordinary conditional ordinary
3 1206.86 1125.12 23.83 222.83
4 1227.23 1224.98 50.56 284.12
5 - 1227.23 - 429.43

6.4.4 Design of a chemical reactor system
Here we consider the design of a chemical reactor system as described by Blau
and Wilde in [164] and [39]. This problem is a proper signomial program and
we approach it through the naive ring. None of the constraints in this problem
are convex in x, however we can infer convex constraints by considering the case
6(x) ≥ 0 in each of the constraints 6(x) = 0. We apply the hierarchy (6.6) to this
problem by taking X as the convex set cut out by these five inequality constraints.
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min
t∈R8

++

2.0425 C0.782
1 + 52.25 C2 + 192.85 C0.92 + 5.25 C32 + 61.465 C0.467

6 (6.9)

+ 0.01748 C1.33
3 /C0.84 + 100.7 C0.546

4 + 3.66·10−10 C2.85
3 /C1.74

+ 0.00945 C5 + 1.06·10−10 C2.85 /C
1.8
4 + 116 C6 − 205 C6C7 − 278 C32C7

s.t. 1 − 129.4/C32 − 105/C6 = 0

1 − 1.03 · 105 C32C7/(C3C8) − 1.2 · 106/(C3C8) = 0

1 − 4.68 C32/C1 − 61.3 C22/C1 − 160.5 C2/C1 = 0

1 − 1.79 C7 − 3.02 C32C7/C6 − 35.7 /C6 − 1 = 0

1 − 1.22 · 10−3 C3C8/(C0.24 C0.85 ) − 1.67 · 10−3 C8C
0.4
3 /C

0.43
4

− 3.6·10−5 C3C8/C4 − 2 · 10−3 C3C8/C5 − 4 · 10−3 C8 = 0

This initial problem statement is horrifically scaled – the coefficients in the objective
alone span twelve orders of magnitude. Trying to solve even the lowest-level SAGE
relaxations with MOSEK returns “unknown” status codes here. We therefore scale
the variables about the initial estimates provided in [39]

t̃ = (103, 10, 105, 102, 105, 103, 10−1, 10)

and we call solvers with a scaled objective 5̂ B 5 /104.

The coefficients in the scaled problem span only four orders of magnitude and the
SAGE relaxations can be solved reliably. We compute

5
(1)

K = 16377.32 in 0.13 seconds, and

5
(2)

K = 17462.73 in 24.37 seconds.

We run solution recovery on the dual formulation for 5 (2)K to obtain a point x′, and
refine this with COBYLA (a zeroth-order local solver, see [165]) to get x′′. These
solutions satisfy

5 (x′) = 17486.52 and ‖� (x′)‖∞ = 2.05 · 10−5, as well as

5 (x′′) = 17485.99 and ‖� (x′′)‖∞ = 5.85 · 10−15

where we have abused notation by writing � (x) B (6(x))6∈� . The point x′′ is
feasible to nearlymachine precision and sowe can reasonably conclude 5 (x′′) ≥ 5★K .
We combine this with the SAGE bound to obtain ( 5★K − 5

(2)
K )/ 5

★
K ≤ 0.0013. That

is, the A-degree 2 SAGE relaxation solves (6.9) within one percent relative error.
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One can alternatively approach this problem through a global solver from the tra-
ditional nonlinear programming community. We tested BARON, ANTIGONE,
LINDO, and SCIP – which together are four out of the five global nonlinear solvers
in the Mittelmann benchmarks.1 We ran each of these solvers by passing it (6.9)
once in variables t and once in variables x. When passing the problem in variables t
we had to disable warnings from GAMS about unbounded monomials with negative
exponents. For all configurations we used a time limit of 7200 seconds, allocated 8
threads, and left the machine otherwise unused.

In these experiments, SCIP terminated after 7200 seconds with no feasible solution
and no lower bound. Precise results for the remaining solvers are reported in Table
6.4.4. The overall takeaway is that SAGE produced the same solution as these
solvers, but with an REP that could be solved in half the time as the fastest of
these methods. Only LINDO was able to certify its solution as globally optimal.
By contrast with LINDO, the performance of SAGE is independent of whether
signomials are considered as generalized polynomials in t or as functions of x.

Table 6.5: Results of applying global solvers fromGAMS to a reactor design problem
in chemical engineering (6.8). All solvers returned a solution with objective value
approximately equal to 17485.99.

Using t as optimization variable Using x as optimization variable
solver time (s) lower bound solver time (s) lower bound

BARON 163 −∞ 7200 −∞
ANTIGONE 145 −16880.380 7200 −∞
LINDO 1468 17484.314 50 17485.988

Remark 6.4.4. This model first appeared in [164], which was written very much
for practicing engineers. Later, the problem was considered as an example for a
proposed algorithm for equality-constrained signomial programming [39]. We used
the formulation [39] since it was easier to read than that in [164]. However, there
is a clear typo in [39, Equation 4]: the term “32

+
/,” appears with two different

coefficients. We consulted the original paper [164] and believe the correct version
of [39, Equation 4] is 4.6833

+
/, + 6.1332

+
/, + 160.53+/, = 1. The bounds

and runtime results reported here are equally informative regardless or whether or
correction was valid.

1The fifth solver (COUENNE) was not available in our version of GAMS (33.2.0).
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6.5 Outer-approximations and signomial moment theory
In this section we establish a theory of moments for signomials. We begin with
definitions that are analogous to those in the moment-SOS literature for polynomial
optimization. We then state our main result – a method to develop successively
stronger outer-approximations for the cone of signomials in R[A] that are nonnega-
tive on K. Proving our main result requires establishing a signomial Riesz-Haviland
theorem and a moment-determinacy result. We draw liberally from [123] in its ex-
position on analogous results for polynomials and from [112] for basic ingredients
proven for abstract algebras.

6.5.1 Definitions
Throughout this section and the next, we use A∞ to denote the smallest subset
of R= that contains all the A3 . Clearly, signomials 5 ∈ R[A] are in one-to-one
correspondence with finitely supported sequences f = ( 5")"∈A∞ . Most of our
arguments in this section focus on the dual space to R[A], which we identify with
RA∞ . Sequences y ∈ RA∞ are associated to linear functions !y : R[A] → R
defined by !y (e") = H". We call !y the Riesz functional of y.

We take note of two ways to express the output of a Riesz functional. In full
generality, applying !y to 5 =

∑
"∈A∞ 5"e" can be written as !y ( 5 ) = 〈 f , y〉. We

are more interested in the special case when y is a moment sequence. That is, when
there is a finite Borel measure ` for which

H" =

∫
e" (x) d`(x) for all " ∈ A∞.

We call such a ` a representing measure for y. Moment sequences are important
because the value of theRiesz functional can be expressed as !y ( 5 ) =

∫
5 (x) d`(x).

Next, we introduce a concept directly analogous to the “localizing matrix” in the
moment-SOS literature. In our case, the localizer induced by a sequence y ∈ RA∞
and a dimensional parameter 3 ∈ Z++ ∪ {∞} is the linear operator

+3 ( · y) : R[A] → RA3 defined by 5 ↦→ (!y ( 5 e") : " ∈ A3).

We abbreviate the case +3 (e0y) by +3 (y).

Localizers help us make abstract arguments concrete. For example, a localizer can
truncate infinite sequences y ∈ RA∞ to +3 (y) = (H" : " ∈ A3). One can also see
that if theA-degree of a signomial 5 is at most 3, then we can identify 5 by a vector
of coefficients f ∈ RA3 and evaluate a Riesz functional by !y ( 5 ) = 〈 f , +3 (y)〉.
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That second point is important: given a convex cone C ⊂ R[A]≤3 , the condition
that +3 (y) ∈ C† is the same as !y ( 5 ) ≥ 0∀ 5 ∈ C.

6.5.2 Main result: nonnegativity cones from the outside

Theorem 6.5.1. Let A be injective and K be compact. Consider any sequence
� = (C3)3≥1 of closed convex cones where (i) C3 ⊂ R[A]≤3 , (ii) every 5 ∈ C3

is K-nonnegative, and (iii) for every K-positive 5 ∈ R[A], there exists some 3 for
which 5 ∈ C3 . If y is the moment sequence of a Borel measure ` with supp ` = K,
then 5 ∈ R[A] is K-nonnegative if and only if +3 ( 5 y) ∈ C†

3
for all integers 3 ≥ 1.

We believe Theorem 6.5.1 is interesting as-stated, but it is only useful if we have
access to an appropriate sequence of sets �. Such sequences can nominally be
obtained through our Positivstellensatz in Theorem 6.3.1. However, as we saw in
Section 6.4, grading certificates provided by our Positivstellensatz according to A-
degree is complicated. We therefore instead focus on when K = X for a compact
convex set X and rely on Corollary 6.3.2 to obtain the sequence �. Specifically, for
3 ∈ Z++ ∪ {∞}, we define nested cones

C3X (A) =
{
5 ∈ R[A]≤3 : ∃A ∈ N with (∑"∈A e")A 5 ∈ CX(A3)

}
. (6.10)

The sets C3X (A) consist of X-SAGE signomials supported on A3 , as well as many
signomials that require modulation before admitting a SAGE certificate. Observe
that in particular C1

X (A) = CX(A1) and that when X is compact C∞X (A) contains
all 5 ∈ R[A] that are positive on X.

Corollary 6.5.2. LetA be injective, X be a compact convex set, and y be the moment
sequence induced by a Borel measure ` with support X. A signomial 5 ∈ R[A] is
X-nonnegative if and only if +3 ( 5 y) ∈ C3X (A)

† for all integers 3 ≥ 1.

Corollary 6.5.2 is used in Section 6.6 to prove of a hierarchy of REP relaxations
for approaching 5★X from above. We can develop another consequence of Theorem
6.5.1 by considering how these cones C3X (A) are nested. Specifically, we can
obtain nested outer approximations for cones of X-nonnegative signomials of given
A-degree.

Corollary 6.5.3. LetA be injective, X be a compact convex set, and y be the moment
sequence induced by a Borel measure ` with support X. Fix an integer 3 ≥ 1, let
PX(A) denote the cone of X-nonnegative signomials in R[A]≤3 , and define

Qℓ
X(A) =

{
5 ∈ R[A]≤3 : +ℓ ( 5 y) ∈ CℓX(A)

†} for ℓ ∈ Z++ ∪ {∞}.
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We have Q1
X(A) ⊃ Q2

X(A) ⊃ · · · ⊃ Q∞X (A) = PX(A).

6.5.3 Supporting results for signomial moments
Here we present two basic results for signomial moments that go into our proof of
Theorem 6.5.1. The first of these results is a Riesz-Haviland type theorem, which
describes when the condition “!y ( 5 ) ≥ 0 for all K-nonnegative 5 ” ensures that y
has a representing measure supported on K. The second of these results concerns
when that representing measure is unique. Our proofs results draw heavily from
Marshall’s book [112, §3].

Theorem 6.5.4. Suppose K ⊂ R= is closed and that for every unbounded sequence
(xC)C∈N ⊂ K, we have lim supC max"∈A 〈", xC〉 = +∞. Given a sequence y ∈ RA∞ ,
there exists a finite Borel measure ` on K such that∫

e" (x) d`(x) = H" for all " ∈ A∞

if and only if !y ( 5 ) ≥ 0 for all signomials 5 ∈ R[A] nonnegative on K.

Clearly, Theorem6.5.4 applieswhenK is compact. IfK is convex, then the hypothesis
is satisfied if and only if the intersection of the recession cone of −AK and RA+
consists only of the origin. If we consider two closed sets K,K′ where K ⊂ K′

and (A,K′) satisfy the hypothesis of Theorem 6.5.4, then (A,K) also satisfy the
hypothesis of Theorem 6.5.4. In particular, we may conclude that if A contains
the origin in the interior of its convex hull, then (A,K) satisfies the hypothesis of
Theorem 6.5.4 for any K ⊂ R=.

To prove Theorem 6.5.4 we rely on the following result. Let Cont(Ω,R) denote the
ring (R-algebra) of all continuous functions 5 : Ω→ R.

Theorem 6.5.5 (Theorem 3.2.2, [112]). Let � be an R-algebra, Ω a Hausdorff
space, and ˆ: � → Cont(Ω,R) an R-algebra homomorphism. Assume there exists
a ? ∈ � such that ?̂ ≥ 0 in Ω and, for each integer : ≥ 1, the sublevel set
Ω: = {x ∈ Ω : ?̂(x) ≤ :} is compact. Then, for any linear functional ! : � → R
satisfying ! ({0 ∈ � : 0̂ ≥ 0 on Ω}) ⊂ R+, there exists a Borel measure ` on Ω such
that ! (0) =

∫
Ω 0̂ d` for all 0 ∈ �.

Proof of Theorem 6.5.4. The claim follows from Theorem 6.5.5 by the following
identification: � = R[A],Ω = K, and ˆ: R[A] → Cont(K,R) with 5̂ (x) = 5 (x)
for all x ∈ K, i.e., 5̂ is the restriction of the signomial 5 to K. Consider the
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distinguished signomial k =
∑

"∈A e". It suffices to show that for any : the sublevel
set Ω: = {x ∈ K : k̂(x) ≤ :} is compact. It is obvious that Ω: is closed. Moreover,
in order for a point x to belong to Ω: it is necessary that 〈", x〉 ≤ log : for all
" ∈ A. By the theorem’s assumption, any unbounded sequence in K cannot satisfy
this property. Therefore all sequences (xC)C∈N ⊂ Ω: are bounded, which implies
compactness of Ω: .

The proof of this section’s main result requires that moment sequences admit unique
representing measures. A measure is called moment determinate if it is the unique
Borel measure that gives rise to its moment sequence. It is well known that in the
polynomial case, measures supported on compact sets are moment-determinate. We
prove the same is true for signomials.

Theorem 6.5.6. SupposeA is injective and K is compact. If y is a moment sequence
of two finite Borel measures `1, `2 with supp `1 ⊂ K and supp `2 ⊂ K, then `1 = `2.

Proof. If we can show that !y : R[A] → R has a unique continuous extension !y :
Cont(K,R) → R, then the theorem’s claimwill follow from theRieszRepresentation
Theorem (see [112, §3.2.1]). Following [112], the uniqueness of such an extension
can be stated as follows: for every q ∈ Cont(K,R), we have

sup
5 ∈R[A]

{!y ( 5 ) : q − 5 ≥ 0 on K} = inf
5 ∈R[A]

{!y ( 5 ) : 5 − q ≥ 0 on K}. (6.11)

It is easily shown that (6.11) holds if every function in Cont(K,R) can be ap-
proximated to arbitrary precision (in sup norm) by a signomial in R[A]. The
Stone-Weierstrass Theorem tells us that such an approximation exists if signomials
in R[A] can separate points, i.e., if for every pair of distinct x, x′ ∈ K, there exists
an 5 ∈ R[A] for which 5 (x) ≠ 5 (x′).

We now show that signomials in R[A] can separate points. Let x and x′ be distinct
points in R=. By the injectivity of A, the images z B Ax and z′ B Ax′ are
likewise distinct in RA . Recall that these vectors have components I" = 〈", x〉 and
I′" = 〈", x′〉, so the condition that z ≠ z′ means there exists a # ∈ A for which
〈#, x〉 ≠ 〈#, x′〉. We exponentiate both sides of that non-equality to find

e# (x) = exp〈#, x〉 ≠ exp〈#, x′〉 = e# (x′),

which that tells us that e# ∈ R[A] separates x, x′.
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It is of note that in the polynomial case, there are conditions under which we can
conclude that a moment sequence is generated by a moment-determinate measure
with noncompact support. See, for example, [123, Proposition 2.37(a)]

Remark 6.5.7. Our proof of Theorem 6.5.4 somewhat informally called Ω = K a
Hausdorff space. If K ⊂ R= were open, then we could formally take the Hausdorff
space to be all open subsets of K using the standard topology on R=. However,
Theorem 6.5.4 clearly allows for sets K that are not open. So, what is the actual
topology used to create a Hausdorff space from closed subsets of R=? Marshall
glosses over this, but repeatedly indicates that it is valid to identify Ω = K when
K is any closed subset of R=. The differences between Marshall’s treatment of the
polynomial case and our proof can be resolved by requiring that conv(A) contains
the origin in its interior.

6.5.4 Proof of Theorem 6.5.1
For this proof we denote the cone of K-nonnegative signomials ofA-degree at most
3 by P3 . Properties (i) and (ii) of � tell us that C3 ⊂ P3 .

Suppose 5 is K-nonnegative. We will show that +3 ( 5 y) ∈ C†
3
holds for all 3. As

a first step, define ŷ ∈ RA∞ by Ĥ" =
∫

e" (x) 5 (x) d`(x) for all " ∈ A∞. Because
5 is K-nonnegative, the differential quantity dq(x) = 5 (x) d`(x) defines a finite
Borel measure on K, so ŷ is a moment sequence. Meanwhile, the simple identity
!y ( 5 e") = Ĥ" tells us that +3 ( 5 y) = +3 ( ŷ) for all 3. Combine these to see that
+3 ( 5 y) ∈ P†

3
for all 3. The result follows since P†

3
⊂ C†

3
.

Now we address the theorem’s other claim: we show that if +3 ( 5 y) ∈ C†
3
for all 3,

then 5 is nonnegative on K.

Once again, we define ŷ ∈ RA∞ by Ĥ" =
∫

e" (x) 5 (x) d`(x) so that +3 ( ŷ) =
+3 ( 5 y). Let 3 be any fixed positive integer. We claim that ! ŷ (6) ≥ 0 for all 6 ∈ P3;
by a continuity argument this claim holds if ! ŷ (6) ≥ 0 for all K-positive 6 with
degA (6) ≤ 3. Let us fix such a 6. By property (iii) of �, there exists an integer
3′ ≥ degA (6) for which 6 ∈ C3 ′. Now, our assumption on ŷ includes +3 ′ ( ŷ) ∈ C†

3 ′,
which tells us ! ŷ (6) ≥ 0! Therefore ! ŷ (6) ≥ 0 for every 6 ∈ P3 for our arbitrary
fixed 3. We can now invoke Theorem 6.5.4 to see that there is some Borel measure
k with suppk ⊂ K and ŷ as its moment sequence. Because K is compact and A is
injective, Theorem 6.5.6 tells us that k is unique.
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By now we have shown that there is a unique Borel measure k for which∫
e" (x) 5 (x) d`(x) =

∫
e" (x) dk(x) for all " in A∞. (6.12)

Getting from (6.12) to “ 5 ≥ 0 on K” requires two steps. The main step is to
carefully use moment determinacy (Theorem 6.5.6) to show that 5 (x) d`(x) is a
Borel measure on K. The claim then follows by an application of [123, Lemma 3.1].

So we turn to showing that 5 (x) d`(x) induces a Borel measure. Begin by intro-
ducing B1 = {x ∈ K : 5 (x) ≥ 0} and B2 = {x ∈ K : 5 (x) < 0}. We want to show
that B2 is empty but we have no tools to do this directly. Instead, we use B1,B2 to
define the functions

q1(B) =
∫

B∩B1

5 (x) d`(x) and q2(B) =
∫

B∩B2

(− 5 (x)) d`(x).

These functions are finiteBorelmeasures since 5 is continuous andK is compact. We
can therefore define the signed measure q = q1 − q2 and note that

∫
e" (x) dq(x) =∫

e" (x) dk(x) for all " ∈ A∞ – equations that can be rewritten as∫
e" (x) dq1(x) =

∫
e" (x) d(k + q2) (x) for all " in A∞.

The key is that now, q1 and k + q2 are Borel measures, therefore the fact that their
moments match lets us use Theorem 6.5.6 to conclude that they are unique, i.e.,
q1 = k + q2. From here we simply rewrite q = q1 − q2 = k to see that since k is a
Borel measure, so is q.

6.6 A complete hierarchy of upper bounds
In this section we develop a signomial analog to hierarchies of upper bounds for
polynomial minimization. The original idea for this approach comes from [143].
We were made aware of this idea in a more abstract sense through a presentation by
de Klerk at the 2019 ICCOPT meeting in Berlin, Germany (see [153, 156]).

Throughout this section we consider the problem of computing

5★X B inf{ 5 (x) : x ∈ X}. (6.13)

We assume that X is convex for ease of exposition; our proof techniques show that
the deeper assumption is having access to a sequence of arbitrarily strong inner-
approximations of a given signomial nonnegativity cone. We also use the notation
where y ∈ RA∞ is the moment sequence for a reference measure ` supported on X.
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6.6.1 A simple upper bound
Let k be a signomial in CX(A1) with coefficient vector 7 ∈ RA1 . If we assume that
!y (k) = 1 (equivalently, 〈+1(y),7〉 = 1), then the differential quantity dk(x) :=
〈7, expAx〉 d`(x) defines a probability distribution on X. For any signomial 5 ∈
R[A], direct calculations yield

inf{ 5 (x) : x ∈ X} ≤
∫

5 (x) dk(x)

=
∑
"∈A1

k"!y ( 5 e")

= 〈7, +1( 5 y)〉.

Therefore, if we can compute the localizers+1( 5 y), +1(y) ∈ RA1 , then we can solve
the tractable convex program

_1 := inf { 〈+1( 5 y),7〉 : 〈+1(y),7〉 = 1, k ∈ CX(A1)} (6.14)

to obtain an upper bound _1 ≥ 5★X . In practice it is very important to ask how to
construct the vectors +1( 5 y), +1(y) given the reference measure ` (or simply given
the moment sequence y). We provide some remarks on how that can be done later in
this section (see Subsection 6.6.2). Although, we will say up front that this section’s
results are of only theoretical interest at the moment.

6.6.2 The hierarchy of upper bounds
Consider the following optimization problems, parameterized by integers ℓ ≥ 1:

_ℓ = inf
7
{ 〈+ℓ ( 5 y),7〉 : 〈+ℓ (y),7〉 = 1, k ∈ CℓX(A)}. (6.15)

One can show that _ℓ ≥ 5★X by similar reasoning as before. In order to prove
convergence _ℓ → 5★X , we need the consider the dual to (6.15). This dual is given
by

_ℓ = sup
_

{_ ∈ R : +ℓ ( 5 y) − _+ℓ (y) ∈ CℓX(A)
†}. (6.16)

We prove strong duality for (6.15)-(6.16) towards the end of this section, along with
some other exploration of the special structure in problem (6.16).

Theorem 6.6.1. Let A be injective, 5 be a signomial in R[A], and X ⊂ R= be a
compact convex set. The hierarchy given by the sequence (_ℓ)ℓ≥1 is complete, i.e.,
_ℓ ↓ 5★X as ℓ →∞.
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Proof. Assume for now that strong duality holds for (6.15)–(6.16). By consideration
to the formulation in (6.15), it is easy to see that _ℓ is decreasing. Simply rewrite
that problem as

_ℓ = inf
k

{∫
5 k d` :

∫
k d` = 1, k ∈ CℓX(A)

}
and note that the size of the feasible set for this problem is increasing in ℓ.

Since X is compact and 5 is continuous, we know that 5★X is a real number. The
sequence (_ℓ)ℓ≥1 is therefore decreasing and bounded below by 5★X . Let _

★ denote
the limit of this sequence and suppose that _★ > 5★X . By consideration to the
formulation (6.16), this limit satisfies

+ℓ (( 5 − _★)y) ∈ CℓX(A) for all ℓ ∈ Z++ ∪ {∞}.

But then by Corollary 6.5.2, we have that 5 − _★ is nonnnegative on X! This
contradicts our earlier assumption that _★ > 5★X , and so we must have _★ = 5★X , and
this completes our proof.

Note that in general the convergence is only asymptotic and not finite. That is, in
general, there does not exist a finite ℓ such that _ℓ = 5★X .

Theoretically the methodology developed above, particularly Theorem 6.6.1, can
be applied to any signomial 5 and compact convex set X. However, for practical
purposes we are limited to cases where we know or can actually compute the
moments of the reference measure ` on X. There are a few interesting cases
where the sequence of moments y ∈ RA∞ can be derived either in closed form or
numerically. An especially simple case is when ` is the uniform measure on a box
X. Other examples with closed-form expressions for signomial moments include
uniform measures over ellipsoids [166, Theorem 3.2] and solid simplices [166,
Theorem 2.6]. If ` is the uniform measure on a polytope then one can nominally
compute moments by triangulating that polytope with simplices (see [167]).

6.6.3 More on the one-variable “primal” relaxation
Although we introduced problem (6.15) before (6.16), we actually call (6.16) the
primal in the primal-dual pair. We use this terminology because it is consistent with
analogous hierarchies for polynomial optimization. We now establish strong duality
for this primal-dual pair.
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Proposition 6.6.2. For any probability measure ` with supp ` ⊂ X (X not necessar-
ily compact, or convex) and associated moment sequence y ∈ RA∞ , the primal-dual
pair (6.16)-(6.15) exhibits strong duality. If 5★X > −∞ and supp ` has nonempty
interior, then (6.15) attains an optimal solution.

Proof. First we prove strong duality in the sense of objective values. Since y is a
moment sequence, we have that +ℓ (y) = (H" : " ∈ Aℓ) is elementwise positive. It
is obvious that the posynomial k =

∑
"∈Aℓ e" belongs to the interior of CℓX(A), and

so defining B B 〈+ℓ (y),7〉 > 0, the signomial k′ = k/B is strictly feasible for the
dual problem (6.15). The claim follows by invoking Slater’s condition.

Now suppose 5★X > −∞ and X has nonempty interior. Then for any _ < 5★X − 1 and
every nonzero function k ∈ CℓX(A), we have

〈+ℓ (( 5 − _)y),7〉 =
∫
( 5 (x) − _)︸       ︷︷       ︸

>1

k(x) d`(x) >
∫

k(x) d`(x) > 0.

By the above inequalities, we have that +ℓ (( 5 − _)y) = +ℓ ( 5 y) − _+ℓ (y) belongs to
the interior of CℓX(A)

†. Therefore (6.16) is strictly feasible, and by Slater’s condition
(6.15) attains an optimal solution.

For the remainder of this section we speak to nice structures in problem (6.16).
Beyond the fact that the problem nominally has a single variable, ifX is a polyhedron,
then CX(A)† ⊂ RA can be represented by finitely many power-cone inequalities
without any lifting (apply Corollary 5.4.5 and Proposition 5.4.7). Therefore when X
is a polyhedron it is nominally possible towrite (6.16) as a finite power-cone program
in a single variable. However, finding the lifting-free power-cone representation of
CX(A)† is usually not tractable. In practice one should solve (6.16) using the
standard relative entropy lift for CX(A)† and by bisection on _.

Consider the special case of (6.16) with ℓ = 1. Then for each fixed value of _,
we can solve |A1 | convex feasibility problems to determine if +1( 5 y) − _+1(y)
belongs to CX(A1)†. Each of these convex feasibility problems is in = variables,
and if X = {x : Mx ≤ h} is a polyhedron, then these feasibility problems are linear
programs (as z#/E# ∈ X is represented as Mz# ≤ hE#).

We now turn to finding a representation of CℓX(A)
† with ℓ > 1. For a positive integer

9 and a signomial 6 ∈ R[A]≤8, the moment reduction map " 9 (6) : RA8+ 9 → RA 9 is
the linear operator whose "th row (" ∈ A 9 ) is the coefficient vector of e"6 expressed
in RA8+ 9 .
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Lemma 6.6.3. Let 6 be a signomial in R[A]≤8. The dual cone to K 9 (6) = { 5 ∈
R[A]≤ 9 : 6 5 is X-SAGE} is

K 9 (6)† = {v ∈ RA 9 : ∃y ∈ CX(A8+ 9 )†, v = " 9 (6)y}.

Proof. A vector v ∈ RA 9 belongs to K 9 (6)† if and only if

0 = inf{!v ( 5 ) : 6 5 is X-SAGE}.

We apply duality to this problem. Since 5 ∈ R[A]≤ 9 and 6 ∈ R[A]≤8, we have that
6 5 ∈ R[A]≤8+ 9 . The constraint that 6 5 is X-SAGE can therefore be associated to a
dual variable y ∈ CX(A8+ 9 )†. We form the Lagrangian L( 5 , y) := !v ( 5 ) − !y (6 5 )
for the above optimization problem (where 5 ∈ R[A]≤ 9 is an unconstrained primal
variable). Membership of v ∈ K 9 (6)† is therefore equivalent to the existence of
y ∈ CX(A8+ 9 )† where ∇ 5L( 5 , y) = 0. To express this condition explicitly we
expand

L( 5 , y) =
∑
"∈A 9

5" (E" − !y (e"6)),

so that ∇ 5L( 5 , y) = 0 reduces to “E" = !y (e"6) for all " ∈ A 9”. Next, use
!y (e"6) =

∑
#∈A8+ 9 H# (e"6)#. Therefore taking ((e"6)# : # ∈ A8+ 9 ) as row " of

" 9 (6) for each " ∈ A 9 , we have ∇ 5L( 5 , y) = 0 if and only if v = " 9 (6)y.

Proposition 6.6.4. Fix ℓ ∈ N+, and for 9 ≤ ℓ define F 9 = (
∑

"∈A e")ℓ− 9 . The dual
cone to CℓX(A) is

CℓX(A)
† =

{
v ∈ RAℓ : ∀ 9 ≤ ℓ, ∃y 9 ∈ CX(Aℓ)† where v = " 9

(
F 9

)
y 9

}
.

Proof. Using the notation from Lemma 6.6.3, we have CℓX(A) =
∑ℓ
9=1 Kℓ (F 9 ).

Since Minkowski sum and intersection are dual operations we get CℓX(A)
† =

∩ℓ
9=1Kℓ (F 9 )†. The claim follows by substituting the expressions for Kℓ (F 9 )† ob-

tained from Lemma 6.6.3.
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C h a p t e r 7

CONDITIONAL SAGE FOR POLYNOMIALS

7.1 Introduction
Our first substantive contributions in this thesis were in Chapter 3, where we studied
SAGE signomials and introduced the idea of globally nonnegative SAGE polyno-
mials. We have paid little attention to polynomials since then, preferring instead
to pursue the deeper questions surrounding the conditional SAGE signomials from
Chapter 4. This pursuit has been fruitful. We have, through Chapters 5 and 6,
come a long way in understanding nonnegative signomials as a fundamental class
of functions.

Still, polynomials reign supreme in mathematical modeling. It is not enough to
leave the task of jumping from signomials to polynomials as an exercise for the
reader. This chapter presents a proper notion of “conditional SAGE polynomials”
that we introduced in [60]. We start with an unassuming definition –

a polynomial x ↦→ ∑
"∈A 2"x

" is called X-AGE if it is nonnegative on
X and at most one term 2#x

# attains a negative value on X

– and we proceed by taking sums. Recalling our results from Chapter 3, it is clear
that taking X = R= recovers our original notion of SAGE polynomials. It is also
clear that when X = R=+, cones of coefficients for X-AGE polynomials are the same
as those of ordinary AGE signomials. What of other cases? Well, that can be tricky.
Here it is not convexity of X that determines when an X-SAGE polynomial cone is
tractable, but rather convexity of an appropriate logarithmic transform of X.

The organization of this chapter is similar to that of Chapter 4. The remainder
of this section presents notation and provides background material. Definitions,
representations, and other basic theorems for the conditional SAGE polynomial
cones are given in Section 7.2. Section 7.3 addresses solution recovery from dual
SAGE relaxations, and Section 7.4 provides a worked example with a special focus
on solution recovery. Section 7.5 uses a range of SAGE-based techniques (including
ordinary SAGE polynomials) for an example polynomial optimization problem on
R=+. Further numerical experiments with these SAGE polynomials can be found in
Section 8.5.
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7.1.1 Notation and definitions
We refer to polynomials by Pol(A, c) and signomials by Sig(A, c). The cone of X-
AGE signomials supported onAwith free term # ∈ A is denotedCAGE(A,X, #) and
the resulting cone of X-SAGE signomials is CSAGE(A,X). We drop the annotation
“X” from those cones to mean X = R=.

We use two named machines for our examples, as in Chapter 4. Machine W is
an HP Z820 workstation, with two 8-core 2.6GHz Intel Xeon E5-2670 processors
and 256GB 1600MHz DDR3 RAM. Machine L is a 2013 MacBook Pro, with a
dual-core 2.4GHz Intel Core i5 processor and 8GB 1600MHz DDR3 RAM.

7.1.2 Background
SAGE signomials can be used to certify global polynomial nonnegativity (see [59]
or Chapter 3). For a finite set A ⊂ R= and a vector c in RA , we define the set of
signomial representative coefficient vectors as

SR(A, c) = {ĉ ∈ RA : 2̂" = 2" whenever " is in 2N=, and

2̂" ≤ −|2" | whenever " is not in 2N=}.

Using a termwise argument, if ĉ belongs to SR(A, c) and Sig(A, ĉ) is nonnegative
on R=, then Pol(A, c) must likewise be nonnegative on R=. We define the cone of
coefficients for SAGE polynomials as

CPOLY
SAGE (A) � {c : SR(A, c) ∩ CSAGE(A) is nonempty }. (7.1)

Alternatively, one may define an AGE polynomial as a nonnegative polynomial
Pol(A, c) where at most one term 2"x

" attains a negative value as x varies over R=.
Taking sums of such functions will also recover the cone in (7.1).

The theory of ordinary SAGE certificates has connections to a long-running history
of similar nonnegativity certificates. The earliest developments here are the agiforms
introduced by Reznick in 1989 [14]. More recently, Pébay, Rojas, and Thompson
studied maximization of circuit functions [93], Pantea, Koeppl, and Craciun intro-
duced monomial dominating posynomials [17],1 and Iliman and de Wolff proposed
sums of nonnegative circuit polynomials (SONC) [96]. When polynomial SAGE
certificates were introduced, it was shown that a polynomial admits a SAGE de-
composition if and only if it admits a SONC decomposition [59, Corollary 21];
this led to the first polynomial-time algorithm for optimizing over cones of SONC

1See also August, Koeppl, and Craciun [29].
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polynomials [59, Theorem 16].2 Most recently, Katthän, Naumann, and Theobald
proposed a class of SAGE-like functions which mix polynomials and generalized
polynomials [130]; the techniques presented in this chapter apply to such functions
with straightforward changes.

Lastly we mention sums of squares (SOS) polynomials. A polynomial 5 is said to
be SOS if it can be written in the form 5 =

∑<
8=1 5

2
8
for appropriate polynomials 58.

In the context of polynomial optimization, one usually parameterizes the SOS cone
by a number of variables = and a maximum degree 23; this cone can be represented
as {? : ?(x) = !=

3
(x)>S!=

3
(x), S � 0} where !=

3
: R= → R(=+33 ) is the map from

a vector x to the vector of all monomials of degree at-most-3 evaluated at x. The
connection between SOS-representability and semidefinite programming was first
observed by Shor [1], and was subsequently developed by Parrilo [2] and Lasserre
[3].

7.2 The conditional SAGE polynomial cones
We call 5 = Pol(A, c) an X-AGE polynomial if it is nonnegative over X, and 5 (x)
contains at most one term 2#x

# which is negative for some x in X. The #th X-AGE
polynomial cone is given by

CPOLY
AGE (A, #,X) =

{
c ∈ RA : Pol(A, c) (x) ≥ 0 for all x in X,

2" ≥ 0 if " ≠ # and x" > 0 for some x in X,

2" ≤ 0 if " ≠ # and x" < 0 for some x in X }.

Naturally, 5 = Pol(A, c) is an X-SAGE polynomial if c belongs to

CPOLY
SAGE (A,X) �

∑
#∈A
CPOLY

AGE (A, #,X).

Let us work through some consequences of the definition.

For starters, if x" takes on positive and negative values as x varies over X, then
for every # ∈ A \ " and every c ∈ CPOLY

AGE (A, #,X), we must have 2" = 0. Note
that in order for x" to take on both positive and negative values, " cannot be even
(" ∉ 2N=). If X contains an open ball around the origin, then x" takes on both
positive and negative values if and only if " is not even. Thus, the definition of
X-AGE polynomials agrees with the definition of ordinary AGE polynomials, as
proposed in Section 3.5.

2See [59, Section 5] for discussion on this topic and related results by Wang [100].
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Another important case is when X is a subset of the nonnegative orthant. This point
is addressed in some detail later in this section; as a preliminary remark, we note
that by considering the connection between polynomials and signomials, one can
easily see that if X ⊂ R=++ then CPOLY

AGE (A, #,X) = CAGE(A, #, log X).

Many of theorems for signomials from Chapter 4 apply directly to X-SAGE polyno-
mials. For example, it is easy to show the polynomial analog to Proposition 4.2.7:
if X is bounded, then 5 = Pol(A, c) with 0 ∈ A has

5 SAGE
X = sup{ W : W in R, c − W%0 in CPOLY

SAGE (A,X)} > −∞.

Corollary 4.2.2 likewise extends to polynomials. Other than substituting AGE
signomial cones with AGE polynomial cones, the only difference is thatN becomes
N = {" ∈ A : 2"x" < 0 for some x in X}.

Now we turn to representation of SAGE polynomial cones. By applying a simple
continuity argument one can show that if X = cl int X ⊂ R=+ then CPOLY

SAGE (A,X) =
CSAGE(A, log X). This claim is strengthened slightly andmademore explicit through
the following theorem.

Theorem 7.2.1. Suppose X = cl{x : 0 < x, � (x) ≤ 1} for a continuous map � :
R= → RA . Then for Y = {y : � (exp y) ≤ 1}, we have CPOLY

SAGE (A,X) = CSAGE(A,Y).

The proof of Theorem 7.2.1 is straightforward, and hence omitted. A more sophis-
ticated result concerns when X possesses a certain sign-symmetry.

Theorem 7.2.2. Suppose X = cl{x : 0 < |x |, � ( |x |) ≤ 1} for a continuous map
� : R= → RA . Then for Y = {y : � (exp y) ≤ 1}, we have

CPOLY
SAGE (A,X) = {c : SR(A, c) ∩ CSAGE(A,Y) is nonempty }. (7.2)

By combining Theorem 4.2.4 with Theorems 7.2.1 and 7.2.2, we know that there
exist a range of sets X for which optimization over X-SAGE polynomials is tractable.
There remains the potentially nontrivial task of formulating a problem so that one
of these theorems provides an efficient representation of CPOLY

SAGE (A,X); important
examples of when this is possible include constraints such as

−0 ≤ G 9 ≤ 0, ‖x‖? ≤ 0, |x" | ≥ 0, and G2
9 = 0

where 0 > 0 is a fixed constant.
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Theorem 7.2.2. Suppose c ∈ CPOLY
SAGE (A,X) is given by a sum c =

∑
#∈A c(#) , where

c(#) belongs to the #th X-AGEpolynomial cone over exponentsA. Define {c̃(#)}#∈A
as follows

2̃
(#)
" =


−|2(#)" | if # is not even, and " = #

2
(#)
" if otherwise

.

By the invariance of X under reflection about hyperplanes {x : G 9 = 0}, and
continuity of polynomials, we have that

0 ≤ inf{ Pol(A, c(#)) (x) : x in X} = inf{ Pol(A, c̃(#)) (x) : x in X ∩ R=+}
= inf{ Sig(A, c̃(#)) (y) : y in Y}.

The signomials Sig(A, c̃(#)) are thus nonnegative over Y = {y : � (exp y) ≤ 1}, and
posses at most one negative coefficient. This implies that c̃ �

∑
#∈A c̃(#) belongs

to CSAGE(A,Y). One may verify that c̃ also satisfies c̃ ∈ SR(A, c), and so we
conclude that the right-hand-side of Equation (7.2) contains CPOLY

SAGE (A,X).

Now we address the reverse inclusion. Let c be such that SR(A, c) ∩ CSAGE(A,Y)
is nonempty. One may verify that basic properties of CSAGE(A,Y) and SR(A, c)
ensure that if the intersection is nonempty, it contains an element c̃ satisfying
|c | = | c̃ |. Henceforth fix c̃ satisfying these conditions. Next we appeal to a relaxed
form of Corollary 4.2.2. Setting N = {# ∈ A : 2̃# ≤ 0}, there exist vectors c̃(#)

satisfying

c̃ =
∑

#∈N c̃(#) , c̃(#) ∈ CAGE(A, #,Y), and 2̃
(#)
" = 0 for all # ≠ " in N .

Note the definition of SR(A, c) ensures that N = {# : # ∉ 2N=, or 2# ≤ 0}. Thus
we define c(#) by

2
(#)
" =


(sgn 2") |2̃" | if # is not even, and " = #

2̃
(#)
" if otherwise

so that c =
∑

#∈N c(#) , and each c(#) has the necessary sign pattern for membership
in the #th AGE cone with respect to A,X. Finally, note that

inf{Pol(A, c(#)) (x) : x in X} = inf{Sig(A, c̃(#)) (y) : y in Y} ≥ 0.

to complete the proof.
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7.3 Solution recovery and sparse moment problems
Just like in the signomial case from Chapter 4, dual SAGE relaxations can be used
to recover optimal and near-optimal solutions to polynomial optimization problems.
We state a particularly elementary relaxation here. Let 5 = Pol(A, c) be the
minimization objective and X be some subset of R=. Additionally, consider a
polynomial map � with coordinate functions 68 = Pol(A, g8), and assemble the
coefficient vectors g8 into the rows of a matrix M. In this notation,

inf{〈c, v〉 : v ∈ CPOLY
SAGE (A,X)†, 〈%0, v〉 = 1, Mv ≥ 0} (7.3)

is a convex relaxation of

( 5 , �)★X = inf{ 5 (x) : x ∈ X, � (x) ≥ 0}. (7.4)

We need a representation for CPOLY
SAGE (A,X)† in order for (7.3) to be useful. We can

obtain such representations as corollaries from Theorems 7.2.1 and 7.2.2.

Corollary 7.3.1. Fix Y = {y : � (exp y) ≤ 1} for a continuous � : R= → RA .

• If X = cl{x : 0 < x, � (x) ≤ 1}, then CPOLY
SAGE (A,X)† = CSAGE(A,Y)†.

• If X = cl{x : 0 < |x |, � ( |x |) ≤ 1}, then

CPOLY
SAGE (A,X)† = {v : there exists v̂ in CSAGE(A,Y)† with

|v | ≤ v̂, and E" = Ê" when " ∈ 2N=}.

Corollary 7.3.1 holds regardless of whether or not Y is convex. However, to take
advantage of it, we need Y to be a tractable convex set. We therefore assume Y is
convex for the remainder of the section.

Solution recovery for polynomial optimization is more difficult than for signomial
optimization, because monomials possess both signs and magnitudes. We propose a
two-phase approach for this problem, where different techniques are used to recover
variable magnitudes and variable signs. The main ideas for each phase are described
in Sections 7.3.1 and 7.3.2, while the formal algorithms are given in the appendix.
The recovered signs and magnitudes are then combined in an elementary way, as
given by the following algorithm.
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Algorithm 2 solution recovery for dual SAGE polynomial relaxations.
Input: An objective polynomial 5 and a polynomial map � supported on exponents
A. Vectors v ∈ CPOLY

SAGE (A,X)† and v̂ ∈ CSAGE(A,Y)†. Tolerances ncon, n0 > 0.
1: procedure PolySolutionRecovery( 5 , �,A, v, v̂, ncon, n0)
2: M← VariableMagnitudes(A, v, v̂, n0). # Algorithm 3
3: S← {1}
4: if X is not a subset of R=+ then
5: S.union( VariableSigns(A, v) ) # Algorithm 4
6: solutions← [].
7: for xmag in M and s in S do
8: x ← xmag ∗ s # denotes elementwise multiplication
9: if � (x) ≥ −ncon · 1 then
10: solutions.append(x)
11: solutions.sort( 5 , increasing).
12: return solutions.

If v is optimal for an appropriate SAGE relaxation and v = (x" : " ∈ A) for an
elementwise nonzero x in X, then Algorithm 2 will return an optimal solution to
problem (7.4).

7.3.1 Recovering variable magnitudes
Given a v ∈ CPOLY

SAGE (A,X)†, we want to find an x ∈ X satisfying (x")"∈A = |v |.

Regardless of whether X is sign-symmetric or contained in the nonnegative or-
thant, the variable v ∈ CPOLY

SAGE (A,X) is associated with an auxiliary variable
v̂ ∈ CSAGE(A,Y), and the variable v̂ is associated with additional auxiliary variables
z# as part of the standard representation for dual Y-AGE signomial cones. As we
discussed in Section 4.4, the vectors y# = z#/Ê# belong to Y, and so the vectors
x# = exp y# must belong to X. These vectors x# are not only feasible with respect
to X, but also satisfy (x")"∈A = v̂ under the binding-constraint and normalization
conditions alluded to in Section 4.4. Since v̂ = |v | always holds at least for X ⊂ R=+,
the vectors x# = exp(z#/Ê#) are reasonable candidates for variable magnitudes.

It is possible that |v | ≠ v̂ when X is sign-symmetric. This is particularly likely when
v is subject to additional linear constraints, such as Mv ≥ 0. Therefore when X is
sign-symmetric, it is worth considering variable magnitudes which supplement the
ones described above. We propose that one picks a threshold n0 > 0, computes

y ∈ argmin{∑":E"≠0(〈", y〉 − log |E" |)2 : y in Y, (7.5)

〈", y〉 ≤ log(n0) for all E" = 0},
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and exponentiates x = exp y. The role of n0 is to ensure x satisfies |x |" ≤ n0

whenever E" = 0. Values of n0 below machine precision are reasonable here.

A formal statement of our method for magnitude recovery (Algorithm 3) can be
found in the appendix.

7.3.2 Recovering variable signs
In this subsection we consider A as a tall < × = matrix. Row 8 of A is "8 and the
9 th entry of "8 is U8 9 .

Let M−1(v) denote the set of x ∈ R= satisfying v = (x"1 , . . . , x"<). Henceforth,
fix v and assume M−1(v) is nonempty. Here we describe how to find vectors s in
{+1, 0,−1}= so that at least one x ∈ M−1(v) satisfies G8 > 0 when B8 = +1, G8 = 0
when B8 = 0, and G8 < 0 when B8 = −1. Once we describe this process, we relax the
problem slightly so B8 = +1 allows G8 = 0.

First we address when B8 should equal zero. Let U = {8 ∈ [<] : E8 ≠ 0}. Consider
how if some x ∈ M−1(v) has G 9 = 0, then we must have U8 9 = 0 for all 8 in U (else
x"8 = E8 ≠ 0 would fail). Thus when U8 9 = 0 for all 8 in U, we set B 9 = 0 without loss
of generality. Now let W = { 9 ∈ [=] : U8 9 > 0 for some 8 in U}; these are indices
for which B 9 is not yet decided. Consider the vector (v < 0) ∈ {0, 1}= with values
(v < 0)8 = 1 if E8 < 0, and zero if otherwise. Let A[U, :] be the submatrix of A
formed by rows {"8}8∈U, and similarly index (v < 0). Finally, solve

A[U, :]z ≡ (v < 0) [U] mod 2 and I 9 = 0 for all 9 in [=] \W (7.6)

for z in {0, 1}=. The remaining (B 9 ) 9∈W are B 9 = −1 if I 9 = 1 and B 9 = 1 otherwise.

An individual solution to (7.6) can be computed efficiently by Gaussian elimination
over the finite field F2. Our formal algorithm for solution recovery provides the
option to recover all solutions to (7.6), using additional techniques from finite-field
linear algebra (c.f. [168]). See the appendix for details.

7.4 An example with sign-symmetric constraints
This section’s example is to minimize a function appearing in the formulation of
the cyclic =-roots problem. The general cyclic =-roots problem is a challenging
benchmark problem in computer algebra [169]. Our problem is to minimize

5 (x) = −64
7∑
8=1

∏
9∈[7]\{8}

G 9 (Ex3)
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over the box X = [−1/2, 1/2]7. To our knowledge, this problem was first used as an
optimization benchmark in the work by Ray and Nataraj, on computing the extrema
of polynomials over boxes [170]. One may verify that 5★X = −7, and that this
objective value is attained at x (1) = 1/2 and x (2) = −1/2. Despite this problem’s
simplicity, it requires nontrivial computational effort with SOS methods. The
lowest relaxation order that allows GloptiPoly3 [121] to compute 5★X = −7 results in
a semidefinite program that takes MOSEK 90 seconds to solve with Machine W.

SAGE relaxations automatically exploit the structure in this problem. Since the
seven functions 58 (x) = 1 − 64

∏
9≠8 G 9 are X-AGE and sum to 5 + 7, we have that

−7 ≤ 5 SAGE
X ≤ 5★X . To address the dual SAGE relaxation and solution recovery, we

introduce the matrix A = (U8 9 : (8, 9) ∈ [8] × [7]), with final row "8 = 0, U88 = 0
for 8 ≤ 7, and U8 9 = 1 for the remaining entries. Next we write X = {x : x2 ≤ 1/4},
and for Y = {y : exp(2y) ≤ 1/4} numerically solve

5 SAGE
X = inf{−64 · 1>v1:7 : − v̂ ≤ v ≤ v̂,

v̂ in CSAGE(A,Y)†, E8 = Ê8 = 1} = −7.

MOSEK solves this problem in 0.01 seconds with Machine W.

We recover candidate magnitudes by using the eight Y-AGE cones associated with
the auxiliary variable v̂ ∈ CSAGE(A,Y)†. To machine precision, each of these AGE
cones yields the same candidate magnitude |x | = 1/2. The optimal moment vector
v = 1/64 is elementwise positive, and so sign-pattern recovery is a matter of finding
all solutions to the system Az ≡ 0 mod 2. There are exactly two solutions to this
system: z(1) = 0, and z(2) = 1. The first of these gives rise to signs s(1) = 1,
and the second of these results in s(2) = −1. By combining these candidate signs
with candidate magnitudes, we obtain candidate solutions {1/2,−1/2}; since these
solutions are feasible and obtain objective values matching the SAGE bound, we
conclude that both candidate solutions are minimizers of 5 over X.

7.5 An example with nonnegative decision variables
Our next problem appears in work on bounded degree sums of squares (BSOS) and
sparse bounded degree sums of squares (Sparse-BSOS) methods for polynomial
optimization [171, 172]. The latter paper reports BSOS and Sparse-BSOS compute
( 5 , 6)★

R6 = −0.41288 in 44.5 and 82.1 seconds respectively, when using SDPT3-4.0
on a machine with a 4-core 2.6GHz Core i7 processor and 16GB RAM.
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inf
x∈R6

5 (x) � G6
1 − G

6
2 + G

6
3 − G

6
4 + G

6
5 − G

6
6 + G1 − G2 subject to (7.7)

61(x) � 2G6
1 + 3G2

2 + 2G1G2 + 2G6
3 + 3G2

4 + 2G3G4 + 2G6
5 + 3G2

6 + 2G5G6 ≥ 0

62(x) � 2G2
1 + 5G2

2 + 3G1G2 + 2G2
3 + 5G2

4 + 3G3G4 + 2G2
5 + 5G2

6 + 3G5G6 ≥ 0

63(x) � 3G2
1 + 2G2

2 − 4G1G2 + 3G2
3 + 2G2

4 − 4G3G4 + 3G2
5 + 2G2

6 − 4G5G6 ≥ 0

64(x) � G2
1 + 6G2

2 − 4G1G2 + G2
3 + 6G2

4 − 4G3G4 + G2
5 + 6G2

6 − 4G5G6 ≥ 0

65(x) � G2
1 + 4G6

2 − 3G1G2 + G2
3 + 4G6

4 − 3G3G4 + G2
5 + 4G6

6 − 3G5G6 ≥ 0

66:10(x) � 1 − 61:5(x) ≥ 0

611:16(x) � x ≥ 0

We note that Problem (7.7) is very sparse; it includes only 22 of the
(12

6
)
= 924

distinct monomials that could appear in a degree 6 polynomial optimization prob-
lem in 6 variables. This problem is also a good example for conditional SAGE
polynomials, because it allows for several choices in partial dualization.

We approach this problem with a particular level of a hierarchy of SAGE relaxations
for polynomial optimization. Rather than state the hierarchy in full generality (see
Subsection 8.5.1), we say that a pair (�̃,X) induces a bound ( 5 , �̃)SAGE

X equal to

sup W s.t. 5 − W −
∑
6̃∈�̃

B6̃ · 6̃ is an X-SAGE polynomial

B6̃ are X-SAGE polynomials over exponents A ∪ (2A).

In the formulation above,A ⊂ N= is the smallest set for which every polynomial in
{ 5 , x ↦→ 1} ∪ �̃ is in the span of the monomial basis {x ↦→ x"}"∈A .

The simplest way to approach Problem (7.7) to use no partial dualization at all–
simply take X = R=. Indeed, it is possible to solve Problem (7.7) with only these
ordinary SAGE certificates, however computing ( 5 , 6)SAGE

R6 = −0.41288 requires
101 seconds of solver time on Machine W.

A preferable alternative is to use partial dualization with X = R6
+. With this choice

of X it is natural to drop now trivially-satisfied constraints from 6, and work with 6̂ =
63:10. This allows us to compute ( 5 , 6̂)SAGE

X = −0.41288 in 3.04 seconds of solver
time on Machine W, and 4.4 seconds of solver time on Machine L. Significantly,
the SAGE relaxation solve time on Machine L is an order of magnitude smaller than
the BSOS solve time reported in [172].
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The most aggressive choice for partial dualization is X = {x : x ≥ 0, 66:7(x) ≥ 0}.
With this choice of X one may use 6̂ = (63:5, 68:10), or 6̂ = 63:10; in the first case
Machine W computes ( 5 , 6̂)SAGE

X = −0.47121 in 3.3 seconds, and in the second case
Machine W computes ( 5 , 6̂)SAGE

X = −0.41288 in 5.67 seconds.
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C h a p t e r 8

THE SAGEOPT PYTHON PACKAGE

8.1 Introduction
This chapter describes the sageopt1 python package and some experiments we
conducted with this package in [60].

These experiments are separated into groups of signomial optimization and poly-
nomial optimization (Sections 8.4 and 8.5). In both cases we make use of certain
hierarchies of SAGE-based convex relaxations. These hierarchies were designed in
a heuristic way by borrowing ideas from [13] and the signomial hierarchy does not
incorporate our advances in Chapter 6. Still, even the heuristically designed hier-
archy was successful in solving polynomial optimization problems with practical
relevance in electrical engineering [63, 64].

All experiments were conducted on Machine W using MOSEK 9.0.70(beta). Sub-
sections 8.4.1 and 8.5.1 only state the SAGE relaxations in primal form. However,
these experiments were conducted by symbolically constructing primal and dual
problems, and solving them separately from one another. In order to communicate
the quality of these numeric solutions, we generally report “SAGE bounds” to the
farthest decimal point where the primal and dual objectives agree.

Remark 8.1.1. This chapter has several named “Example” problems that are written
out in full. These examples are numbered starting with “Example 5.” The first four
examples have actually appeared in Chapters 4 and 7. We did not re-index these
examples because we wanted to make it easy to cross-reference with [60].

8.2 About sageopt
Sageopt is designed so the mathematics in this thesis translates into python code
with as little modification as possible. We implement everything “in-house,” in-
cluding symbolic Signomial and Polynomial objects, and an algebraic modeling
language for convex optimization. The convex optimization modeling system sup-
ports explicit primal and dual SAGE cone constraints. The SAGE constraints are
part of the public API and have data structures to manage presolve and dimension-
reduction techniques.

1Also acceptably styled as SAGEopt.
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It should be straightforward for a control theorist to performLyapunov analysis using
only the symbolic Signomial and Polynomial objects and sageopt’s convex
optimizationmodeling system. However, the situation is more complicated whenwe
get to using SAGE for nonconvex signomial and polynomial optimization. Sageopt
therefore includes several pre-defined hierarchies of convex relaxations for such
problems. The hierarchies are given in primal and dual forms, and solution recovery
algorithms are implemented for the dual forms. At present, the particular hierarchies
are given in Section 8.4 (for signomials) and Subsection 8.5.2 (for polynomials).

Here is an example showing how easy it is to use sageopt.

1 import sageopt as so

2 import numpy as np

3

4 # Define problem data: min f(x) subject to g(x) >= 0

5 t = so.standard_sig_monomials(3) # t = exp(x)

6 f = 0.5 * t[0] / t[1] - t[0] - 5 / t[1]

7 gts = [100 - t[1] / t[2] - t[1] - 0.05 * t[0] * t[2],

8 150 - t[0], t[0] - 70,

9 30 - t[1], t[1] - 1,

10 21 - t[2], t[2] - 0.5]

11 X = so.infer_domain(f, gts, [])

12

13 # Construct , solve, and post-process a SAGE relaxation

14 prob = so.sig_relaxation(f, X)

15 simple_bound = prob.solve()

16 x_opt = so.sig_solrec(prob)[0]

17 t_opt = np.exp(x_star)

18

19 # Certify that the recovered point was optimal

20 strong_bound = so.sig_relaxation(f, X, ell=3).solve()

Listing 8.1: Using sageopt to solve the problem in (4.8)

Some unconstrained optimization features of sageopt have counterparts in the
POEM python package [99, 109]. GloptiPoly3 [121] and SOSTOOLS [173] are the
SOS counterparts to sageopt.

8.2.1 Integration with GPKit
Sageopt’s main limitation is that it requires users to work with vectorized mod-
els. You can only have a single decision variable x in some subset of R=. This
limitation is not very restrictive given the expressive data structures available in
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python, but it could still be a hurdle that prevents an a practicing engineer from
using sageopt. To overcome this limitation, we collaborated with Berk Ozturk do
develop a basic interface with the GPKit modeling platform. GPKit is a popular
tool for optimization-driven engineering design [174] and is even used at Virgin
Hyperloop to create large-scale signomial programming models [56].

Here is a toy example that showcases sageopt’s integration with GPKit.

1 import sageopt as so

2 import numpy as np

3 from sageopt.interop.gpkit import gpkit_model_to_sageopt_model

4 from gpkit import Variable , Model, SignomialsEnabled

5 from gpkit.constraints.sigeq import SingleSignomialEquality

6 #

7 # Build a toy GPKit model (for illustrative purposes)

8 #

9 x = Variable(’x’)

10 y = Variable(’y’)

11 with SignomialsEnabled():

12 constrs = [0.2 <= x,

13 x <= 0.95,

14 SingleSignomialEquality(x + y, 1)]

15 gpkm = Model(x*y, constraints)

16 #

17 # Recover data for the sageopt model

18 #

19 som = gpkit_model_to_sageopt_model(gpkm) # a dictionary

20 eqs, gts = som[’sp_eqs’], som[’gp_gts’]

21 f = som[’f’]

22 X = so.infer_domain(f, gts, [])

23 prob = so.sig_constrained_relaxation(f, gts, eqs, X, p=1)

24 #

25 # Solve and recover solution

26 #

27 prob.solve(solver=’ECOS’, verbose=False)

28 soln = so.sig_solrec(prob)[0]

29 geo_soln = np.exp(soln)

30 vkmap = som[’vkmap’]

31 x_val = geo_soln[vkmap[x.key]]

32 y_val = geo_soln[vkmap[y.key]]

Listing 8.2: Using sageopt with GPKit

The master branch of sageopt currently only supports GPKit versions below 1.0.
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We have a branch on sageopt’s GitHub repository that is ready for when GPKit
1.0 is released to the public. Future plans for integration with these two packages
include a proper data structure for signomial programs within sageopt (rather than
requiring lists of Signomial objects). Such a data structure has been prepared as
part of our work in Chapter 6, but we have yet to move that work into the public
sageopt repository.

8.2.2 Coniclifts in sageopt 0.5
Sageopt does not solve SAGE relaxations on its own; it relies on third-party convex
optimization solvers, such as ECOS [107, 115] or MOSEK [119]. These solvers
require input in very specific standard-forms. Coniclifts provides abstractions
that allow us to state SAGE relaxations in high-level syntax, andmanage interactions
with these low-level solvers.

SAGE constraints in coniclifts

Coniclifts includes direct implementations of primal and dual SAGE cones,
which have virtually identical constructors and public attributes. These classes also
share a common data structure called an ExpCoverHelper, to ensure that certain
presolve procedures are applied in a symmetric way for both primal and dual SAGE
constraints.

One aspect of presolve is easiest to state with primal SAGE constraints. Suppose c is
an affine expression of some decision variables W, ,. If certain components of c are
constant with respect to W, ,, then we can take advantage of the fixed sign of those
components to reduce the number of AGE cones used in a constraint “c ∈ CX(A).”
This presolve procedure is justified by Theorem 3.3.1 and its corollaries.

Coniclifts also maintains several options for controlling exactly how a primal or
dual SAGE constraint is compiled into a low-level standard form. Some of these
questions are mundane, such as when to introduce slack variables and when to relax
an equality constraint to an inequality without loss of generality. A more significant
question is whether to eliminate the equality constraints of the form A†. = 0 in
primal SAGE constraints as in our proof of Theorem 3.5.1.

Coniclifts’ design

Coniclifts is built around a few core ideas, including
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• transparency in the problem compilation process,

• ease-of-extension for experts in convex optimization,

• no dependence on a C or C++ backend,

• full compatibility with NumPy.

In order to achieve full compatibility with NumPy, coniclifts takes an elemen-
twise approach to symbolic expressions. Specifically, we begin with a few simple
abstractions for scalar-valued symbolic expressions, and wraps those abstractions
in a custom subclass of NumPy’s “ndarray.” The coniclifts abstractions for
scalar-valued symbolic expressions are as follows:

• A ScalarExpression class represents scalar-valued affine functions of cer-
tain irreducible primatives. ScalarExpressions are operator-overloaded to
support +, −, and ∗. This allows ndarrays of ScalarExpressions to fall
back on many functions which are implemented for numeric ndarrays.

• An abstract ScalarAtom class specifies the behavior of the irreducible prim-
itives in ScalarExpressions. The ScalarAtom class immediately special-
izes into ScalarVariables (far and away the most important ScalarAtom)
and NonlinearScalarAtoms. NonlinearScalarAtoms are implemented
on a case-by-case basis, but include such things as the exponential function
and the vector 2-norm.

To our (very limited!) knowledge, coniclifts is the only algebraic modeling
system for optimization built directly on top of NumPy.

8.3 Principles for optimization via nonnegativity certificates
We are motivated by a desire to solve optimization problems

( 5 , �)★X = inf{ 5 (x) : x in X ⊂ R=, � (x) ≥ 0} (8.1)

where 5 is a function from R= to R and � is a vector-valued map on R=. Our
primary goal is to produce lower bounds ( 5 , �)lbX ≤ ( 5 , �)

★
X . In the event that

( 5 , �)lbX = ( 5 , �)★X , we are also interested in recovering optimal solutions to (8.1).

Remark 8.3.1. Equality constraints can nominally be handled by two-sided inequal-
ities. Actual implementations of the techniques described in this chapter (for exam-
ple, as provided in sageopt) treat equality constraints in more efficient ways.
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We begin by reviewing the Lagrange dual relaxation of the above problem, both in
minimax form and as a nonnegativity problem. From there we review standard tech-
niques for strengthening nonnegativity-based relaxations of problems such as (8.1);
this includes the use of redundant constraints, nonconstant Lagrangemultipliers, and
strengthening nonnegativity certificates via modulation. We then introduce partial
dualization. Until we discuss partial dualization, the set X appearing in Problem 8.1
shall be the whole of R=.

8.3.1 Dual problems in nonconvex optimization
The simplest way to lower bound ( 5 , �)★R= is via the Lagrange dual. For each
coordinate function 6 of �, we introduce a dual variable _6 ∈ R+ and consider the
Lagrangian ! (x, ,) = 5 (x) − 〈,, � (x)〉. The Lagrange dual problem is to compute

( 5 , �)LR= = sup
,≥0

inf
x∈R=

! (x, ,).

By the minimax inequality, we can be certain that ( 5 , �)LR= ≤ ( 5 , �)
★
R= .

There are many situations when the Lagrange dual problem is intractable. For
signomial and polynomial optimization, one usually needs to compute yet another
lower bound ( 5 , �)dR= ≤ ( 5 , �)

L
R= . We start by introducing a parameterized function

k(W, ,) which takes values k(W, ,) (x) = ! (x, ,) − W. One reformulates the dual as

( 5 , �)LR= = sup{W : , ≥ 0, W in R, k(W, ,) (x) ≥ 0 for all x in R=},

and the constraint that “k(W, ,) defines a nonnegative function” is then tightened to
“k(W, ,) satisfies a particular sufficient condition for nonnegativity.” The expecta-
tion is that the sufficient condition can be expressed by tractable convex constraints
on variables W and ,. For example, SOS certificates for polynomial nonnegativity
can be expressed via linear matrix inequalities, and SAGE certificates for signomial
and polynomial nonnegativity can be expressed with the relative entropy function.

8.3.2 Strengthening dual bounds in nonnegativity relaxations
A common method for strengthening dual problems is to introduce redundant con-
straints to the primal problem, particularly by taking products of existing constraint
functions. As an example of this principle in action, consider the toy polynomial
optimization problem

inf{ −G2 : −1 ≤ G ≤ 1 } = −1.
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One may verify that ( 5 , �)LR = −∞, but by adding the single redundant constraint
(1 − G) (1 + G) ≥ 0, we can certify a dual bound −1 ≤ ( 5 , �)★R.

A more subtle method is to reconsider what is meant by “dual variables.” For the
Lagrange dual problem we use scalars _6 ∈ R+, however it is just as valid to have _6
be a function, provided it is nonnegative overR=. Such a method is well-suited to our
nonnegativity-based relaxations of the dual problem. The following toy signomial
program illustrates the utility of this approach

inf{− exp(2G) : 1 ≤ exp(G) ≤ 2} = −4.

Again the Lagrange dual problem returns a bound of −∞, but by considering
_8 (G) = [8 exp(G) with [8 ≥ 0, the resulting dual bound is −4 ≤ ( 5 , �)★R.

A third method for strengthening dual bounds only becomes relevant when working
with strict inner-approximations of nonnegativity cones. For two functions F, 5
with F positive definite, it is clear that 5 is nonnegative if and only if the product
F · 5 is nonnegative. The method of modulation is to choose a generic positive-
definite function F so that if 5 fails a particular test for nonnegativity (say, being
SOS, or being SAGE), there is still a chance that the product F · 5 passes a test
for nonnegativity. Indeed, modulation is a crucial tool for computing successive
bounds for unconstrained problems

5★R= B inf{ 5 (x) : x in R=} = sup{W : 5 (x) − W ≥ 0 for all x in R=}.

Suppose for example that 5 is a signomial over exponentsA; then forF = Sig(A, 1)
we can compute a non-decreasing sequence of lower bounds

5
(ℓ)
R= = sup{W : W in R, Fℓ ( 5 − W) is SAGE} ≤ 5★R= .

For suitable conditions on A (c.f. [13, Theorem 4.1]), we have 5
(ℓ)
R= → 5★R=

as ℓ tends to infinity. From an implementation perspective, the constraint that
“k(W) B Fℓ ( 5 − W) is SAGE” is tractable because the coefficient vector of k(W) is
an affine function of W.

Modulation can similarly be applied to constrained optimization. Suppose that
! (x, ,) is the Lagrangian for Problem 8.1, and refer to the function x ↦→ ! (x, ,)
as ! (,). Then rather than requiring that “! (,) − W is SAGE,” one can require that
“k(W, ,) B Fℓ (! (,) − W) is SAGE.” This increases the size of the feasible set for
variables W and ,, and remains tractable due to the affine dependence of k(W, ,)
on W and ,. Such modulation leads to a non-decreasing sequence of bounds which
converge to ( 5 , �)LR= under suitable conditions.
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Remark 8.3.2. Our framing of the method of modulation is meant to keep things
simple. However, in the real algebraic geometry literature, it would be more appro-
priate to say that we are looking for certificates of nonnegativity involving rational
functions. For example, rather than asking that 5 be SOS, we can ask that 5 is a
sum of squares of rational functions.

8.3.3 Partial dualization
Partial dualization is a technique for strengthening dual bounds, which is at least as
strong as any choice of redundant constraints or nonconstant Lagrange multipliers.
Considering Problem (8.1) now with X ( R=, the natural generalization of the
Lagrange dual is

( 5 , �)dX B sup{ W : , ≥ 0, W in R, !(x, ,) − W ≥ 0 for all x in X}. (8.2)

In the important case when X is compact, we are guaranteed to have ( 5 , �)dX > −∞,
a property which is in stark contrast to the Lagrange dual. We call (8.2) a partial
dual if X = {x : 68 (x) ≥ 0 for all 8 in �} was constructed from some subset � ⊂ [:]
of the constraint functions. Note that in the extreme case with X = {x : � (x) ≥ 0},
we have ( 5 , 0)dX = ( 5 , �)

★
R= . This is to say, partial dualization provides a mechanism

to completely eliminate duality gaps.

We now provide a simple example that combines partial dualization and nonneg-
ativity certificates. Suppose we want to minimize a univariate polynomial 5 over
an interval [0, 1], subject to a polynomial inequality constraint 6(G) ≥ 0. In this
case we may form a Lagrangian ! (G, _) = 5 (G) − _6(G) with _ ≥ 0, and find the
largest constant W so that G ↦→ ! (G, _) − W is nonnegative over G ∈ [0, 1]. A result
by Powers and Reznick states that a degree-3 polynomial “?” is nonnegative over
an interval [0, 1] if and only if it can be written as ?(G) = B(G)2 + ℎ[0,1] (G)C (G)2,
where ℎ[0,1] (G) = (1 − G) (G − 0), and B, C are polynomials of degree at most 3 and
3 − 1 respectively [175]. Therefore the partial dual ( 5 , 6)d[0,1] can be framed as an
SOS relaxation

( 5 , 6)d[0,1] = sup{W : 5 − _6 − W = B̃ + C̃ · ℎ[0,1] , _ ≥ 0,

B̃ ∈ SOS(23), C̃ ∈ SOS(2(3 − 1))}.

Where we have used “SOS(23)” to denote the cone of SOS polynomials in one
variable that are of degree at most 23. This example is particularly nice, as all
nonnegative univariate polynomials are actually SOS.
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Our last concept is how partial dualization manifests in the dual of the dual, also
known as the moment relaxation. In describing this concept we use the notation
from Chapter 7. Fix A ⊂ R= with 0 ∈ A and a set X ⊂ R=. Consider an objective
5 = Pol(A, c) and constraint functions � = {Pol(A, g8)}8∈[:] , and assemble the
coefficient vectors g8 to form the rows of a matrix M ∈ R:×A . The partial dual
( 5 , �)dX can be written as the convex cone program

( 5 , �)dX = sup{W : , ≥ 0, W ∈ R, c − W%0 − M†, ∈ CNNP(A,X)},

and we can apply conic duality to obtain

( 5 , �)dX = inf{〈c v〉 : 〈v, %0〉 = 1, Mv ≥ 0, v ∈ CNNP(A,X)†}.

The set CNNP(A,X)† is the closed cone generated by all vector-valued expectations
Ex∼� [(x" : " ∈ A)], where � is a probability measure conditioned on x ∈ X. As
we saw in Chapters 4 and 7, moment relaxations can be used in solution recovery
schemes to certify ( 5 , �)dX = ( 5 , �)

★
X .

8.4 Signomial optimization
The examples in this section were drawn from the PhD thesis of James Yan [86],
a popular benchmarking paper by Rijckaert and Martens [162], and the more con-
temporary works [83, 84]. This section is organized chronologically with respect to
these sources. Many of the problems considered here can be found elsewhere in the
literature; see Shen et al. [77, 80, 82], Wang and Liang [78], and Qu et al. [81].

SAGE recovers best-known solutions for all but six of the twenty-nine problems
considered here. For every one of these six problematic examples, numerical issues
resulted in solver failures for level-(?, @, ℓ) relaxations whenever ? > 0; the results
for these six problems should not be taken as definitive. For the twenty-three
problems where SAGE recovered best-known solutions, there are two important
trends we can observe. First, our solution recovery algorithms are more likely to
succeed with a conditional SAGE relaxation than with an ordinary SAGE relaxation,
even when the ordinary SAGE relaxation is tight. Second, solution refinement by
the COBYLA local solver can help tremendously in the presence of suboptimal
strictly-feasible initial solutions (Example 8), and in the presence of both large and
small constraint violations (Examples 9 and 6 respectively). The initial condition
from a SAGE relaxation in local refinement is important; the underlying COBYLA
solver can and will return suboptimal solutions if initialized poorly.
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8.4.1 Two reference hierarchies for signomial optimization
Here we describe a particular set of choices for two SAGE-based hierarchies for
signomial programming. When we say “{ 5 } ∪ � are signomials over exponents
A,” we mean that {x ↦→ exp〈", x〉}"∈A is the smallest monomial basis spanning all
linear combinations of 5 , 6 ∈ �, and the function x ↦→ 1.

First we describe a SAGE-based hierarchy that does not use the minimax inequality,
i.e., a hierarchy applicable when all constraints can be moved into X. Formally, for
a signomial 5 over exponents A, a set X ⊂ R=, and an integer ℓ ≥ 0, the level-ℓ
SAGE relaxation for 5★X is

5
(ℓ)

X B sup{ W : Sig(A, 1)ℓ ( 5 − W) is X-SAGE}. (8.3)

The special case with ℓ = 0 is sometimes denoted “ 5 SAGE
X .”

Now we consider functional constraints; let { 5 } ∪ � be a set of signomials over
exponentsA. SAGE relaxations for the problem of computing ( 5 , �)★X are indexed
by three integer parameters: ?, @, and ℓ. Starting from ? ≥ 0 and @ ≥ 1, define
A[?] as the matrix of exponent vectors for Sig(A, 1)?, and define � [@] as the set
of all products of at-most-@ elements of 6. The SAGE relaxation for ( 5 , �)★X at level
(?, @, ℓ) is then

( 5 , �) (?,@,ℓ)X = sup W s.t. Bℎ are signomials over exponents A[?]
! B 5 − W −∑

ℎ∈� [@] Bℎ · ℎ
Sig(A, 1)ℓ! is an X-SAGE signomial

Bℎ are X-SAGE signomials. (8.4)

The decision variables in (8.4) are W ∈ R and the coefficient vectors of {Bℎ}ℎ∈� [@] .
The most basic level of this hierarchy is (?, @, ℓ) = (0, 1, 0). This corresponds to
using scalar Lagrange multipliers (Bℎ ≥ 0), the original constraints (� [0] = �), and
modulating the Lagrangian by the signomial that is identically equal to 1. Note that
when ? > 0, the Lagrange multipliers Bℎ need only be nonnegative on X, rather than
over the whole of R=.

Remark 8.4.1. It is often useful to apply a local solver to the output of Algorithm 1.
The term “Algorithm 1L” henceforth refers to the use of Algorithm 1, followed by
solution refinement with Powell’s COBYLA solver [165].2 Our later experiments

2A FORTRAN implementation is accessible through SciPy’s optimize submodule. We use
this implementation with RHOBEG=1, RHOEND= 10−7, and MAXFUN= 105.
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show that equality constraints can stymie solution recovery even when SAGE com-
putes ( 5 , �)★X . We therefore suggest that one eliminate equality constraints through
substitution of monomials exp(G8), when possible. Alternatively, one can allow
large violations of any problematic constraints in Algorithm 1, and pass the returned
values as near-feasible points to a local solver, as in Algorithm 1L.

8.4.2 Problems from the PhD thesis of James Yan
We attempted to solve nine example problems appearing James Yan’s 1976 PhD
thesis Signomial programs with equality constraints : numerical solution and ap-
plications [86]. This section reproduces two of the six problems which we solved to
global optimality via SAGE certificates. Yan’s “ProblemB” (page 88) and “Problem
C” (page 89) serve as our Examples 5 and 6 respectively.

First we consider Example 5

inf
x∈R4

5 (x) B 2 − exp(G1 + G2 + G3) (Ex5)

s.t. 61(x) B 4 − exp G3 − 15 exp(G2 + G3) − 1.5 exp(G3 + G4) ≥ 0

62:5(x) B (1, 1, 1, 2) − exp x ≥ 0

66:9(x) B exp x − (1, 1, 1, 1)/10 ≥ 0

q1(x) B exp G1 + 2 exp G2 + 2 exp G3 − exp G4 = 0.

It is possible to quickly compute ( 5 , 6, q)★
R4 = 1.925 with both conditional and

ordinary SAGE certificates, although conditional SAGE certificates exhibit better
performance for solution recovery. Specifically, ( 5 , 6, q) (1,1,0)

R4 = 1.92592592 can be
computed in 0.12 seconds, but no solution can be recovered fromAlgorithm 1 unless
n is set to an unacceptably large value of 0.1. Instead we set X = {x : 6(x) ≥ 0},
compute ( 5 , 6, q) (1,1,0)X = 1.92592593 in 0.18 seconds, and by running Algorithm 1
recover x★ satisfying 6(x★) > 1E-11, |q(x★) | < 1E-8, and 5 (x★) = 1.92592593.

Remark 8.4.2. The formulation of Example 5 given here differs from that in [60].
Specifically, we have corrected a typo in [60] that had the constant “1.5” in the defin-
ing expression for 61 incorrectly given as “15.” This difference is a typographical
error; all SAGE bounds and runtimes here are the same as in [60].
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Now we turn to Example 6

inf
y∈R3

++

H0.6
1 H2 + H2H

−0.5
3 + 15.98H1 + 9.0824H2

2 − 60.72625H3 (Ex6)

s.t. H−2
2 H3 − H1H

−2
2 − 0.48 ≥ 0

H0.5
1 H2

3 − H
0.25
1 H3 − H

2
2 − 5.75 ≥ 0

(1000, 1000, 1000) ≥ y ≥ (0.1, 0.1, 0.1)
H2

1 + 4H2
2 + 2H2

3 − 58 = 0

H1H
−1
2 H2.5

3 + H2H3 − H
2
2 − 16.55 = 0.

With X = {x ∈ R3 : 6(x) ≥ 0}, we can compute ( 5 , 61:2, q) (0,1,0)X = −320.722913
in 0.04 seconds. By runningAlgorithm1with nineq =1E-8 and neq =1E-6, we recover
x with objective 5 (x) = −320.722913 and that is feasible up to tolerance 8E-7. We
then pass this solution to COBYLA with RHOEND=1E-10, and subsequently recover
x★ with the same objective, but a constraint violation of only 5E-13.

The remaining problems which we solved to optimality were “Problem A” on page
60, “Problem A” on page 88, “Problem D” on page 89, and the problem in equation
environment “(6.15)” on page 106. The last of these was introduced in Section 4.6.
The problemswhichwe did not solve to optimality were “ProblemB” on page 61, the
problem in equation environment “(6.29)” on page 113, and the problem in equation
environment “(6.36)” on page 120. In each of these unsolved cases, we encountered
solver-failures for level-(?, @, ℓ) relaxations whenever ? > 0. Therefore the bounds
computed for each of these problems were essentially limited to those of Lagrange
dual problems, with modest partial dualization.

8.4.3 Problems from the benchmarking paper of Rijckaert and Martens
We consider problems 9 through 18 of the popular signomial-geometric program-
ming benchmark paper by Rijckaert and Martens [162]. Of these ten problems,
seven met with at least moderate success, in that SAGE relaxations produced mean-
ingful lower bounds on a problem’s optimal value, and also facilitated recovery of
best-known solutions to these problems. SAGE certificates allow us to certify global
optimality for four of these seven problems. Problem statistics and a summary of
SAGE performance is given in Table 8.1.

We reproduce Rijckaert and Martens’ problems 10 and 15 as our Examples 7 and 8
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respectively; both problems are written in exponential-form

inf
x∈R3

5 (x) B 0.5 exp(G1 − G2) − exp G1 − 5 exp(−G2) (Ex7)

s.t. 61(x) B 100 − exp(G2 − G3) − exp G1 − 0.05 exp(G1 + G3) ≥ 0

62:4(x) B (100, 100, 100) − exp x ≥ 0

65:7(x) B exp x − (1, 1, 1) ≥ 0.

The bound constraints appearing in Example 7 are not included in [162], however
5 is unbounded below if we omit them. The solution proposed in [162] has exp x =
(88.310, 7.454, 1.311), and objective value 5 (x) = −83.06. The actual optimal
solution has value −83.25, and this can be certified by running Algorithm 1 on
a dual solution for 5 (3)X = −83.2510, where X = {x : 6(x) ≥ 0}. Solving the
necessary SAGE relaxation takes 0.1 seconds on Machine W.

Now we have Example 8

inf
x∈R10

5 (x) B 0.05 exp G1 + 0.05 exp G2 + 0.05 exp G3 + exp G9 (Ex8)

s.t. 61(x) B 1 + 0.5 exp(G1 + G4 − G7) − exp(G10 − G7) ≥ 0

62(x) B 1 + 0.5 exp(G2 + G5 − G8) − exp(G7 − G8) ≥ 0

63(x) B 1 + 0.5 exp(G3 + G6 − G9) − exp(G8 − G9) ≥ 0

64(x) B 1 − 0.25 exp(−G10) − 0.5 exp(G9 − G10) ≥ 0

65(x) B 1 − 0.79681 exp(G4 − G7) ≥ 0

66(x) B 1 − 0.79681 exp(G5 − G8) ≥ 0

67(x) B 1 − 0.79681 exp(G6 − G9) ≥ 0.

A level (1,1,0) ordinary SAGE relaxation for Example 8 can be solved in 2.8 seconds
on Machine W; this returns the bound ( 5 , 6) (1,1,0)

R10 = 0.2056534. When Algorithm
1 is run on the dual solution, it returns a point x satisfying 5 (x) ≈ 0.38 and
6(x) ≥ 0.053. However by subsequently running Algorithm 1L, we obtain x★

satisfying 5 (x★) = 0.20565341 and 68 (x★) ≥ 1E-8 for all 8 in [:]. We thus
conclude that the level-(1, 1, 0) SAGE relaxation was tight.

Remark 8.4.3. In [60], the number “11.9643” in the first row of Table 8.2 was
incorrectly given as “11.9600.” We have two other remarks on this problem. First,
by applying a monotonicity analysis, it’s easy to show that the optimal objective
is in fact 11.9643. That is, Algorithm 1L does return the optimal solution in this
case, even though our SAGE bound does not tell us as much. Second, the reported
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Num. in [162] = : solution quality optimal?
9 2 1 same unknown
10 3 1 improved yes
11 4 2 same yes
12 8 4 same unknown
13 8 6 no solution no
14 10 7 same unknown
15 10 7 same yes
16 10 7 same yes
17 11 8 no solution no
18 13 9 no solution no

Table 8.1: Columns = and : give number of variables and number of inequality con-
straints for the indicated problem. “Solution quality” is “same” (resp. “improved”)
if Algorithm 1L returned a feasible solution with objective equal to (resp. less than)
that proposed in [162]. Problems 9, 12, and 14 are discussed in Table 8.2. We
encountered solver failures for level-(1, 1, 0) relaxations of problems 13, 17, and 18.

SAGE relaxation Algorithm 1 Algorithm 1L
Num. in [162] (?, @, ℓ) bound 5 (x) min 6(x) 5 (x) min 6(x)

9 (3,3,1) 11.7 12.500 0.00438 11.9643 2.00E-10
12 (0,2,1) -6.4 -5.7677 0.00034 -6.0482 -5.00E-09
14 (0,4,0) 0.7 2.5798 0.01541 1.14396 -8.00E-09

Table 8.2: Problems for which we did not certify optimality, but nevertheless
recovered best-known solutions by using SAGE relaxations. Note that Algorithm
1 returned strictly-feasible solutions in each of these cases. In the next section
we present examples where Algorithm 1 does not return feasible solutions, and so
solution refinement (i.e. Algorithm 1L) becomes more important.

objective value in the paper by Rijckaert and Martens is 11.91, but if you actually
evaluate the objective function at the point provided by Rijckaert and Martens, you
get 11.96392 and a constraint violation of 5E-6.

8.4.4 Problems from contemporary sources
Here we describe our attempts at solving six problems from the 2014 article by Hou,
Shen, and Chen [83], as well as four problems from the 2014 article by Xu [84].
SAGE relaxations are quite successful in this regard: seven of the ten problems are
solved to global optimality (verified SAGE bounds), while best-known (but possibly
suboptimal) solutions are obtained for the remaining three problems. Summary
results can be found in Tables 8.3 and 8.4.
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source num. = :1 :2 objective infeasibility optimal?
[83] 1 4 10 0 0.7650822 0 yes
- 2 2 5 0 11.964337 0 yes
- 3 3 7 0 -147.66666 0 yes
- 5 5 16 0 10122.493 4.00E-13 unknown
- 7 3 6 0 -10.363636 2.00E-15 yes
- 8 15 37 6 156.21963 4.00E-14 yes

[84] 4 2 1 1 1.3934649 2.00E-10 yes
- 5 6 9 4 -0.3888114 5.00E-17 unknown
- 6 2 4 2 1.1771243 4.00E-12 yes
- 7 6 20 3 10252.790 8.00E-14 unknown

Table 8.3: Columns =, :1, and :2 specify the number of variables, inequality
constraints, and equality constraints in the indicated problem. The last three columns
specify the objective value and constraint violation of a solution obtained by running
Algorithm 1L on the output of a dual SAGE relaxation, as well as a note on whether
the objective matched a SAGE bound. Problems with “unknown” optimality status
are described in Table 8.4.

We explicitly reproduce problem [83]-8 as our Example 9

inf
y∈R15

++

∑4
8=1 H8+11(12.62626 − 1.231059H8) (Ex9)

s.t. H12 − H11 ≤ 0, H11 − H12 ≤ 50, H10 − H4 ≤ 0

H9 − H10 ≤ 0, H8 − H9 ≤ 0, 2H7 − H1 ≤ 1

H3 − H4 ≤ 0, H2 − H3 ≤ 0, H1 − H2 ≤ 0

50H4 + H10H15 − 50H10 − H4H15 ≤ 0

50H10 + H4H5 + H9H14 − 50H9 − H3H14 − H8H15 ≤ 0

50H7 + H2H13 + H7H12 − 50H8 − H1H12 − H8H13 ≤ 0

50H8 + H1H12 + H8H13 − 50H7 − H2H13 − H7H12 ≤ 0

50H8 + 50H9 + H3H14 + H8H13 − H2H13 − H9H14 ≤ 500

H6H11 + H1H12 + H7H11 − H6H12 ≤ 0

100H8+5 + 0.0975H2
8 − 3.475H8 − 9.75H8H8+5 ≤ 0 for all 8 in [5]

y ≥ (1.000000, 1, 9, 9, 9, 1, 1.000000, 1, 1, 1, 50, 0.0, 1.0, 50, 50)
y ≤ (8.037732, 9, 9, 9, 9, 1, 4.518866, 9, 9, 9, 100, 50, 50, 50, 50).

Six of the fifteen variables in Example 9 have matching upper and lower bounds –
these are the six equality constraints alluded to in Table 8.3. Our formulation differs
from [83]-8, in that a constraint “G3G2 − G3 ≤ 0” in the original problem statement
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was replaced by “H2 − H3 ≤ 0” in our problem statement. This change is necessary
because the original problem is actually infeasible.

We approach Example 9 by maximizing our use of partial dualization: the set
X ⊂ R15 includes all bound constraints, all but two of the first nine inequality
constraints, as well as the constraint fourth from the end of the problem statement.
The equality constraints implied for variables H3, H4, H5, H6, H14, H15 are not included
in the Lagrangian. A level-(0,1,0) conditional SAGE relaxation then produces
a bound ( 5 , 6)★X ≥ 156.2196 in 0.05 seconds. By running Algorithm 1L with
nineq = 100, we subsequently obtain the solution

y★1:8 = (8.037732, 9, 9, 9, 9, 1, 1, 1.15686275)
y★9:15 = (1.21505203, 1.58987319, 50, 3E-50, 1, 50, 50).

The solution y★ is feasible up to forward-error 3.6E-14, and attains an objective value
of 156.219629. Because this objective matches the SAGE bound, we conclude that
y★ is optimal up to relative error 2E-7.

source-num. (?, @, ℓ) bound nineq neq objective infeasibility
[83]-5 (0,1,0) 9171.00 1.00E-08 0 10122.493 4.00E-13
[84]-5 (2,2,0) -0.390 1.00E-08 1 -0.3888114 5.00E-17
[84]-7 (0,1,0) 9397.8 1.00E-08 1 10252.790 8.00E-14

Table 8.4: Signomial programs for which we did not certify optimality, but never-
theless recovered best-known solutions by using SAGE relaxations. Columns nineq
and neq indicate the value of infeasibility tolerances when running Algorithm 1, prior
to feeding the output of Algorithm 1 to COBYLA as part of Algorithm 1L. The last
two columns list the objective function value and constraint violations for the output
of Algorithm 1L. [84]-7 reports a solution x̃ with smaller objective value, however
that solution violates an equality constraint q(x) = 0 with error |q(x̃) | > 0.11.

8.5 Polynomial optimization
Remark 8.5.1. As with Algorithm 1 in the signomial case, it is useful to apply a
simple local solver to the output of Algorithm 2 as a sort of solution refinement. We
use the term “Algorithm 2L” in reference to such a method, with COBYLA as the
local solver.

8.5.1 Two reference hierarchies for polynomial optimization
If X ⊂ R=+, then one should use the same hierarchies described in Subsection 8.4.1,
where “Sig” is replaced by “Pol” and constraints that a function is “an X-SAGE
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signomial” are replaced by constraints that the function is “an X-SAGE polynomial.”
This section focuses on the more complicated case when X is sign-symmetric.

Our reference hierarchy for functionally constrained polynomial optimization is
similar to that used for signomial programming. Let 5 , {68}:1

8=1, and {q8}
:2
8=1 be

polynomials over common exponents A ∈ N<×=, and fix sign-symmetric X ⊂ R=.
Define Â as the matrix formed by stackingA on top of 2A, and then removing any
duplicate rows. The SAGE relaxation for ( 5 , 6, q)★X at level (?, @, ℓ) is then

( 5 , 6, q) (?,@,ℓ)X = sup W s.t. Bℎ, Iℎ are polynomials over exponents Â[?]
! B 5 − W −∑

ℎ∈6[@] Bℎ · ℎ −
∑
ℎ∈q[@] Iℎ · ℎ

Pol(2A, 1)ℓ! is an X-SAGE polynomial

Bℎ are X-SAGE polynomials. (8.5)

As before, the decision variables are W ∈ R, and the coefficient vectors of {Bℎ}ℎ∈6[@] ,
{Iℎ}ℎ∈q[@] . The main difference between (8.5) and it’s signomial equivalent (8.4),
is that the Lagrange multipliers are slightly more complex in (8.5). This change was
made to improve performance for problems where only a few rows of A belong to
the nonnegative even integer lattice.

Our minimax-free reference hierarchy for polynomial optimization is meaningfully
different from the signomial case. We begin by assuming a representation X =

cl{x : 0 < |x |, � ( |x |) ≤ 1}, and subsequently defining Y = {y : � (exp y) ≤ 1}.
Let � and� be operators on polynomials so that 5 = Pol(�( 5 ), � ( 5 )) always holds,
and let s be the vector in R< with B8 = 1 when "8 is even, and B8 = 0 otherwise. The
SAGE relaxation for 5★X at level (?, @) is

5
(?,@)

X = sup W s.t. k B Pol(A, s)? ( 5 − W) (8.6)

c ∈ SR(�(k), � (k))
[Sig(�(k), 1)]@ Sig(�(k), c) is Y-SAGE

over optimization variables c and W.

Formulation 8.6 uses two parameters out of desire tomitigate both sources of error in
the SAGE polynomial cone: that attributable to the use of signomial representatives,
and that attributable to the gap between Y-SAGE and Y-nonnegativity. As we show
in Subsection 8.5.2, the signomial representative complexity parameter “@” can
make the difference in our ability to solve problems when X = R=.
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8.5.2 Polynomial optimization problems from the literature
Here we review results of the reference hierarchies from Subsection 8.5.1, as ap-
plied to twenty-two polynomial optimization problems from the literature. We begin
with six unconstrained and eight box-constrained problems (drawn from [176] and
[170] respectively). There are two important lessons which we highlight with the
box-constrained problems. First, bound constraints should still be included in the
Lagrangian, even if they can be completely absorbed into the set “X” in a condi-
tional SAGE relaxation. Second, even if the original problem does not feature many
sign-symmetric constraints, it is often easy to infer valid sign-symmetric constraints
which can improve performance of a conditional SAGE relaxation. The remaining
eight problems discussed in this section have nonconvex objectives, nonconvex in-
equality constraints, and constraints that the optimization variables are nonnegative
[171]. Our experience with such problems is that partial dualization plays a crucial
role in solving them efficiently, primarily with the simpler constraints x ≥ 0.

Table 8.5 describes the unconstrained and box-constrained problems; three such
problems are reproduced here, as our Examples 10 through 12.

inf{ 5 (x) B 4G2
1 − 2.1G4

1 + G
6
1/3 + G1G2 − 4G2

2 + 4G4
2 : x in R2} (Ex10)

The polynomial 5 in Example 10 is known as the six-hump camel function; its
minimum is 5★

R2 ≈ −1.0316. By using polynomial modulators, a level-(3,0) relax-
ation returns a bound −1.03170 in 0.63 seconds of solver time on Machine W. By
instead solving a level-(0,2) relaxation (i.e., modulating the signomial representative
of 5 − W) we obtain −1.031630 ≤ 5★

R2 in 0.19 seconds. Example 10 shows how the
two-parameter hierarchy (8.6) can be of practical importance.

Our next two examples are box-constrained problems from the work of Ray and
Nataraj [170]; their problems “Capresse 4” and “Butcher 6” serve as our Examples
11 and 12. A consistent trend for these problems is that even when a feasible set X
can be incorporated entirely into an X-SAGE cone, it is still useful to take products
of constraints, and solve a relaxation such as (8.5) which includes those constraints
in the Lagrangian.

infx∈R4 5 (x) B −G1G
3
3 + 4G2G

2
3G4 + 4G1G3G

2
4 + 2G2G

3
4 + 4G1G3 (Ex11)

+ 4G2
3 − 10G2G4 − 10G2

4 + 2

s.t. 61:4(x) B x + (1, 1, 1, 1)/2 ≥ 0

65:8(x) B (1, 1, 1, 1)/2 − x ≥ 0
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Letting X = {x ∈ R4 : −0.5 ≤ G8 ≤ 0.5}, one can compute ( 5 , 6) (1,2,0)X =

−3.180096, where the equality is verified by recovering a solution with Algorithm
2. Example 11 is noteworthy because the recovered solution required no local-solver
refinement that occurs in Algorithm 2L.

inf
x∈R6

5 (x) B G6G
2
2 + G5G

2
3 − G1G

2
4 + G

3
4 + G

2
4 − 1/3G1 + 4/3G4 (Ex12)

s.t. 61:6(x) B x + (1, 0.1, 0.1, 1, 0.1, 0.1) ≥ 0

67:12(x) B (0, 0.9, 0.5,−0.1,−0.05,−0.03) − x ≥ 0

We can produce a tight bound for Example 12 with ordinary SAGE certificates:
a level-(0,3,0) relaxation returns −1.4392999 ≤ ( 5 , 6)★ in 0.67 seconds. Solution
recovery is not so easy. Unless wemove to a computationally expensive level-(0,3,1)
ordinary SAGE relaxation, Algorithm 2 fails to return a feasible point. Instead, we
infer valid inequalities for use in a conditional SAGE relaxation:

|G1 | ≤ 1, |G2 | ≤ 0.9, |G3 | ≤ 0.5, and

0.1 ≤ |G4 | ≤ 1, 0.05 ≤ |G5 | ≤ 0.1, 0.03 ≤ |G6 | ≤ 0.1.

The resulting level (0,3,0) relaxation can be solved in 0.64 seconds. We recover a
feasible solution with Algorithm 2, which matches the SAGE bound after refinement
by COBYLA. Example 12 reinforces a message from signomial optimization: even
if an ordinary SAGE relaxation can produce a tight bound, a conditional SAGE
relaxation is likely to fare better with solution recovery. Example 12 also shows how
useful sign-symmetric constraints can be inferred from bound constraints which are
not sign-symmetric.

Now we turn to problems featuring nonconvex inequality constraints [171]. One
of these problems was introduced in Section 7.5 as “Example 4,” and all of these
problems have a similar structure to that of Example 4. Most importantly, problems
featured here include nonnegativity constraints x ≥ 0. The natural SAGE hierarchy
solves all of these problems; see Table 8.6.

There are a few subtle distinctions between signomial programs (SPs) with gener-
alized polynomials, and the nonnegative polynomial optimization problems (POPs)
considered here. While a polynomial optimization problem over x ≥ 0 may include
G8 = 0 in the feasible set, generalized-polynomial SPs cannot allow this (since there
is the possibility of dividing by zero, or encountering indeterminate forms). Thus
solution recovery from SAGE relaxations is nominally more challenging for a true
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source name = 3 minimum SAGE solved
[176] Rosenbrock variable 4 0 yes
- 6-hump camel 2 6 -1.0316 yes
- 3-hump camel 2 6 0 yes
- Beale 2 8 0 no
- Colville 4 4 0 no
- Goldstein-Price 2 8 3 no

[170] L.V. 4 4 4 -20.8 yes
- Cap 4 4 4 -3.117690 yes
- Hun 5 5 7 -1436.515 no
- Cyc 5 5 4 -3 yes
- C.D. 6 6 2 -270397.4 no
- But 6 6 3 -1.4393 yes
- Heart 8 8 4 -1.367754 yes
- Viras 8 8 2 -29 yes

Table 8.5: Results for SAGE on unconstrained and box-constrained polynomial
minimization problems. Column “3” indicates the degree of the polynomial to
be minimized. The Rosenbrock example allows for different numbers of variables,
though results from [59] show SAGE is tight for any number of variables. The Beale,
Colville, and Goldstein-Price polynomials proved very difficult for optimization via
SAGE certificates.

nonnegative POP, relative to a generalized polynomial SP. Despite this challenge,
Algorithm 2L successfully recovers optimal solutions for all of these problems. See
Table 8.7 for details.

The other important distinction between generalized-polynomial SPs and nonneg-
ative POPs, is that there exist established SOS based methods for dealing with
nonnegative POPs. Thus it is useful to understand the performance of SAGE-based
methods in the context of SOS-based methods for polynomial optimization. Al-
though SAGE relaxations took a very long time to solve problems P4_6 and P4_8,
the runtimes for problems such as P6_8 are remarkable. The unspecified machine
in [171] took over 1600 and 200 seconds to solve P6_8with BSOS and SOS respec-
tively, while SAGE can solve the same problem in under 4 seconds on a mid-tier
laptop from 2013. It seems to the authors that SAGE provides a compelling option
for nonnegative polynomial optimization problems, at least for low levels of the
reference hierarchy (such as (1, 1, 0), or (0, @, 0) with small @).
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name : minimum (?, @, ℓ) W time (s) L time (s)
P4_4 8 -0.033538 (1,1,0) 0.47 0.7
P4_6 7 -0.060693 (1,1,1) 289 292
P4_8 7 -0.085813 (2,1,0) 396 460
P6_4 8 -0.576959 (1,1,0) 3.45 4.1
P6_6 8 -0.412878 (1,1,0) 3.04 4.37
P6_8 8 -0.409020 (1,1,0) 3.25 3.83
P8_4 8 -0.436026 (1,1,0) 7.18 7.25
P8_6 8 -0.412878 (1,1,0) 8.67 8.21

Table 8.6: Generic polynomial optimization problems, over the nonnegative orthant
[171, 172]. Names “P=_3” indicate the number of variables = and degree 3 of the
given problem. Column : gives the number of inequality constraints, excluding
constraints x ≥ 0, as well as those which trivially follow from x ≥ 0. SAGE solved
all problems listed here, at the indicated level of the hierarchy, and with the indicated
solver runtimes for the primal-form relaxations.

Algorithm 2 Algorithm 2L
name 5 (x) min 6(x) 5 (x) min 6(x)
P4_4 -0.033386 0.00E-00 -0.033538 0.00E-00
P4_6 -0.057164 4.06E-02 -0.060693 -2.44E-14
P4_8 -0.066671 1.42E-01 -0.085813 -3.46E-14
P6_4 -0.570848 4.04E-08 -0.576959 -1.03E-13
P6_6 -0.412878 5.46E-09 -0.412878 -1.68E-13
P6_8 -0.409018 1.07E-07 -0.409020 -5.82E-14
P8_4 -0.436024 3.27E-08 -0.436026 -2.58E-13
P8_6 -0.412878 2.78E-43 -0.412878 -2.55E-12

Table 8.7: Comparison of Algorithm 2 and Algorithm 2L for solution recovery
for eight nonconvex polynomial optimization problems in the literature (ref. [171,
172]). Both algorithms were initialized with solutions to a level-(1,1,0) conditional
SAGE relaxation, and Algorithm 2L always recovers an optimal solution. It is
especially notable that Algorithm 2L recovers optimal solutions for problems P4_6
and P4_8, since level-(1,1,0) relaxations do not produce tight bounds for these
problems.

8.5.3 Minimizing random sparse quartics over the sphere
Here we describe how SAGE relaxations fare for minimizing sparse quartic forms
over the unit sphere. This class of test problems is inspired from similar computa-
tional experiments by Ahmadi and Majumdar in their work on LP and SOCP-based
inner-approximations of the SOS cone [92].

Our method for generating these problems is as follows: initialize 5 = 0 as a
polynomial in = variables, and proceed to iterate over all tuples “C” in [=]4. With
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probability = log =/=4, sample a coefficient 2C from the standard normal distribution,
and add the term 2Cx

"C to 5 , where "C ∈ [4]= has UC 9 = |{8 : C8 = 9}|. The
expected number of terms in 5 after this procedure is roughly = log =. Once a
polynomial is generated, we solve a level-(0,2,0) conditional SAGE relaxation for
( 5 , 6)★R= , where 6(x) = 1 − x>x.3 The set “X” in the conditional SAGE relaxation
is X = {x : 6(x) ≥ 0}. Figure 8.1 and Table 8.8 report results for 20 problems
in 10 variables, 20 problems in 20 variables, 14 problems in 30 variables, and 10
problems in 40 variables.

Figure 8.1: Upper-bounds on the optimality gap | ( 5 , 6) (0,2,0)X − ( 5 , 6)★R= |/| ( 5 , 6)
★
R= |.

The value ( 5 , 6)★R= in these calculations was replaced by the objective value of a
solution produced by Algorithm 2L. SAGE solved 4 problems in 10 variables, 10
problems in 20 variables, 6 problems in 30 variables, and 4 problems in 40 variables.

8.6 Broader observations from numerical experiments
Here we provide expanded remarks on three aspects of our numerical experiments.
First, we address which SAGE relaxations appear to be numerically difficult, and
provide a reason for why this might happen. Then we report some of the sizes
of the SAGE relaxations as represented by cone programs suitable for low-level
solvers. Finally, we demonstrate that these low-level cone programs actually have
an extremely useful substructure which is not exploited by MOSEK or ECOS.

3Because 5 is homogeneous, x>x = 1 may be relaxed to x>x ≤ 1 without loss of generality.
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solve time (s) = = 10 = = 20 = = 30 = = 40
mean 7.54E−01 6.50E−00 6.46E+01 4.59E+02
std dev. 8.74E−02 8.54E−01 1.38E+01 7.20E+01

Table 8.8: Solver runtimes for level-(0,2,0) conditional SAGE relaxations, on Ma-
chine W. Similar runtimes can be expected for Machine L with = ∈ {10, 20, 30}.
Solve times with Machine L can take much longer for = ≥ 40, since only part of the
problem fits in RAM.

For both signomial and polynomial optimization problems, there is significant bene-
fit to solving level-(?, @, ℓ) relaxations with Lagrange multiplier complexity ? > 0.
However, we encountered several problems where any choice of ? > 0 resulted in
a solver failure due to numerical issues. One explanation for the difficulty of such
SAGE relaxations could be how (8.4) and (8.5) set the complexity of a Lagrange
multiplier without consideration to its associated constraint function. Compare to
the usual SOS-based Lasserre hierarchy, where a degree : constraint polynomial
68 (x) ≥ 0 appearing in a degree 23 relaxation gets an SOS multiplier of degree
2b(23 − :)/2c. For SAGE relaxations, one could set the support of a Lagrange
multiplier with consideration to how the product of the constraint function and La-
grange multiplier affect the sparsity pattern of the final Lagrangian. Suitably chosen
supports for nonconstant Lagrange multipliers could also result in bounds which are
stronger than those produced by reference hierarchies (8.4) and (8.5).

Remark 8.6.1. The hierarchy for signomial optimization in (6.4.1) addresses the
problem mentioned above!

One of the main functions of sageopt is to cast abstract SAGE relaxations into
low-level standard forms, with feasible sets {x ∈ R3 : Gx + b ∈  } for some
G ∈ R#×3 and  ⊂ R# which is a product of elementary convex cones. There
are several settings within sageopt which affect how this compilation process is
performed. The impact of different settings for the use of slack variables becomes
very apparent as one solves SAGE relaxations farther up a hierarchy (Table 8.9).
Regardless of compilation settings, the resulting cone programs end up being large
and sparse as reference hierarchy parameters increase. It is possible to construct
smaller cone programs by inferring signs on certain coefficients of a modulated
Lagrangian, and then appealing to Corollary 4.2.2. Sageopt already performs a
simple version of such dimension-reduction, which is particularly helpful for the
minimax-free hierarchy defined in Equation 4.9.
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Level (?, @, ℓ) (0,1,0) (1,1,0) (1,1,1)
(#, 3, B): slacks (953, 342, 4E-3) (80542, 21896, 8E-5) (2275860, 574775, 3E-6)
(#, 3, B): direct (840, 229, 6E-3) (62653, 4007, 5E-4) (1714437, 13352, 1E-4)

Table 8.9: Dimensions of G ∈ R#×3 and sparsity B = nnz(G)/(#3) in sageopt’s
low-level representation of feasible sets for dual relaxations of [171, Problem P4_6].
“Slacks” is the default behavior for sageopt version 0.2, which was used for
experiments in this article. “Direct” (no slacks) is the default for sageopt version
0.5.2. See also Tables 8.6 and 8.7.

Figure 8.2: Sparsity patterns of Cholesky factors, which can be used to solve
linearized KKT systems in interior-point methods for SAGE relaxations to [171,
Problem P4_6]. All Cholesky factors used a simple reversed elimination order
3, 3 − 1, . . . , 1 relative to the original positive definite KKT systems which follow
from sageopt 0.5.2’s low-level problem data.

Solving linearized KKT equations is the largest computational expense in each
iteration of an interior-point algorithm for convex cone programming. For ease of
exposition, suppose equality constraints in a low-level cone program are represented
by two-sided inequality constraints. Under this assumption, both MOSEK and
ECOS solve linearized KKT equations by performing a sparse LDL factorization
of a symmetric indefinite matrix of order # + 3. Another approach to solving the
linearized KKT equations applies a block-elimination to the indefinite system, to
obtain a symmetric positive definite system of dimension 3 � # [177]. In the
case of cone programs generated by sageopt for dual SAGE relaxations, the only
coupling across dual AGE cones occurs through the moment vector v, therefore
reduction to positive definite KKT systems would be extremely efficient (see Figure
8.2). It is of interest to see how SAGE relaxations scale with a solver which could
take advantage of this structure. The Julia-based Hypatia.jl convex optimization
solver is a good candidate for such a task [178].
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A p p e n d i x A

PROOFS FOR CHAPTER 3

A.1 Proof of Lemma 3.3.6
Denote suppH (,) = {b 9 : 9 ∈ [3], _ 9 ≠ 0}. The proof is constructive, where
there is nothing to prove when suppH , is simplicial. Suppose then that , ∈ Λ has
nonsimplicial suppH (,). We show that it is possible to decompose , = I,(1) + (1−
I),(2) for some I ∈ (0, 1) and ,(8) ∈ Λ where supp ,(8) ( supp ,. It should be clear
that if this is possible, then the process may be continued in a recursive way if either
suppH (,(8)) are nonsimplicial, and so the claim would follow.

The statement “, ∈ Λ” means that h may be expressed as a convex combination of
vectors in suppH (,), and so by Minkowski-Carathéodory, there exists at least one
,(1) in ΛG with supp ,(1) ( supp , and simplicial suppH (,(1)). We will use , and
,(1) to construct the desired ,(2) and I.

For each real C, consider ,′C ≔ ,(1) + C (, − ,(1)). It is easy to see that for all
C, the vector ,′C belongs to the affine subspace {w : h = Hw, 1>w = 1}, and
furthermore the support of ,′C is contained within the support of ,. Now define
) = max{C : ,′C in Δ3}; we claim that ) > 1 and that the support of ,′

)
is a proper

subset of the support of ,. The latter claim is more or less immediate. To establish
the former claim consider how ,′C (as an affine combination of ,(1) , ,) belongs to Δ3
if and only if it is elementwise nonnegative. This lets us write ) = max{C : ,′C ≥ 0}.
Next, use our knowledge about the support of ,′C to rewrite the constraint “,′C ≥ 0”
as “_(1)

8
+ C (_8 −_(1)8 ) ≥ 0 for all 8 in supp ,.” Once written in this form, we see that

for C = 1 all constraints are satisfied strictly. It follows that ) > 1 at optimality and
that the support of ,′

)
is distinct from (read: a proper subset of ) that of ,.

We complete the proof by setting ,(2) = ,′
)
and I = 1 − 1/) .

A.2 Proof of Lemma 3.4.4
Denote 5 = Sig(A, c) and 6 = SigF(A, c) for the face F of P ≔ conv(A). We
may assume without loss of generality that P contains the origin. If F = P then
6 = 5 and the claim is trivial. If otherwise, the affine hull of F must have some
positive codimension ℓ, and there exist supporting hyperplanes {S8}ℓ8=1 such that
F = [∩ℓ

8=1S8] ∩ P. We can express S8 as {x : 〈s8, x〉 = A8} for a vector s8 and a
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scalar A8. Because P is convex we know that it is contained in one of the half spaces
{x : 〈s8, x〉 ≤ A8} or {x : 〈s8, x〉 ≥ A8}. By possibly replacing (s8, A8) by (−s8,−A8),
we can assume that P is contained in {x : 〈s8, x〉 ≤ A8}. In addition, the assumption
that 0 belongs to P ensures that each A8 is nonnegative. Now define s =

∑
8∈[ℓ] s8 and

A =
∑
8∈[ℓ] A8 ≥ 0. The pair (s, A) is constructed to satisfy the following properties:

• For every " in F, we have 〈", s〉 = A.

• For every " not in F, we have 〈", s〉 < A.

Finally, define ℎ = 5 − 6, which has no exponents in F. The remainder of the proof
is case analysis on A.

If A = 0 then we must have A8 = 0 for all 8. The condition that A8 = 0 for all 8
implies that F is contained in a linear subspace U which is orthogonal to s, and so
nonnegativity of 6 over R= reduces to nonnegativity of 6 over U. Suppose then that
there exists some x̂ in U where 6(x̂) is negative. For any vector y in the orthogonal
complement of U we have 6(x̂ + y) = 6(x̂). Meanwhile no matter the value of x̂ we
know that limC→∞ ℎ(x̂ + Cs) = 0. Using 5★R= ≤ inf{ 5 (x̂ + Cs) : C in R} ≤ 6(x̂), we
have the desired result for A = 0: 6★ < 0 implies 5★R= < 0.

Now consider the case when A is positive.Define the vector ŝ = A s/‖s‖2; we produce
an upper bound on 5★R= by searching over all hyperplanes {x : 〈ŝ, x〉 = C} for C in R.
Specifically, for any x in R= there exists a scalar C and a vector y such that x = C ŝ + y
and 〈ŝ, y〉 = 0. In these terms we have

6(C ŝ + y) = exp(C‖ ŝ‖2)
∑

"∈A∩F
2" exp(C〈" − ŝ, ŝ〉)︸              ︷︷              ︸

=1 for all C

exp〈", y〉. (A.1)

Hence assuming 6★ < 0 means
∑

"∈A∩F 2" exp〈", ŷ〉 < 0 for some ŷ in Span(s)⊥.
Using this ŷ, one may verify that

lim
C→∞

5 (C ŝ + ŷ) = −∞, (A.2)

and so when A is positive, 6★ < 0 implies 5★R= < 0.

A.3 Proof of Proposition 3.6.8
The cases (2) ⇒ (1) and (3) ⇒ (1) are easy.

¬(2) ⇒ ¬(1). Because CNNS(A) and CSAGE(A) are full dimensional closed convex
sets, the condition CSAGE(A) ≠ CNNS(A) implies that CNNS(A) \ CSAGE(A) has



APPENDIX A. PROOFS FOR CHAPTER 3 173

nonempty interior. Assuming this condition, fix a vector c̃ and a radius A such
that �( c̃, A) ⊂ CNNS(A) \ CSAGE(A).1 This allows us to strictly separate c̃ from
CSAGE(A), which establishes 5★R= ≥ 5 SAGE

R= + A > 5 SAGE
R= .

(1) ⇒ (3). Now suppose that 5★R= = 5 SAGE
R= for all relevant 5 . In this case,

the function c ↦→ inf{〈c, v〉 : v ∈ Ω} is the same for Ω = cl conv expAR= or
Ω = {v : E1 = 1 and v in CSAGE(A)★}. This function completely determines the set
of all half spaces containing Ω. Since Ω is closed and convex, it is precisely equal
to the intersection of all half spaces containing it; the result follows.

1�(x, 3) is ℓ2 ball centered at x of radius 3.
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A p p e n d i x B

PROOFS FOR CHAPTER 5

B.1 A proposition for use in Lemma 5.5.10

Proposition B.1.1. Suppose S ⊂ R< \ {0} is compact (not necessarily convex) and
set T = co S. If it is known a priori that cl T is pointed, then T = cl T is closed.

Proof. Since cl T is pointed, there exists a distinguished element t★ ∈ T for which
〈t★, t〉 > 0 for all t ∈ (cl T) \ {0}. Consider the set H = {t ∈ T : 〈t★, t〉 = 1}. It is
clear that H is bounded, co H = T, and 0 ∉ H. If H is closed, then by [65, Corollary
9.6.1] we will have that co H = T is also closed. We show that H is closed by directly
considering sequences in H. We express these sequences with the help of the <-fold
Cartesian product S< = S × · · · × S ⊂ R<2 .

Let (h(:)):∈N ⊂ H have a limit in R<. Since H is of dimension at most < − 1 and
is generated by S, Carathéodory’s Theorem tells us that for every : there exists a
weighting vector ,(:) ∈ R<+ and a block vector q (:) = (s(:)1 , . . . , s(:)< ) ∈ S< where

h(:) =
∑<
8=1 _

(:)
8

s(:)
8
.

Because S is compact, the continuous function s ↦→ 〈t★, s〉 attains a minimum on
s★ ∈ S. Since S does not contain zero, we have that 〈t★, s★〉 = 0 > 0. It follows
that _(:)

8
≤ 1/0 for each 8 ∈ [<] and K ∈ N. The sequences (,(:)):∈N ⊂ [0, 1/0]<

and (q (:)):∈N ⊂ S< are bounded, and therefore ((,(:) , q (:))):∈N has a convergent
subsequence. The limits ,(∞) and q (∞) of these convergent subsequences must
belong to [0, 1/0]< and S<, respectively. By continuity, we have

h(∞) B lim
:→∞

h(:) =
∑<
8=1 _

(∞)
8

s(∞)
8
,

hence h(∞) ∈ H. Since we have shown that all convergent sequences in H converge
to a point in H, we have that H is closed.

B.2 Proof of Corollary 5.4.5
By Theorem 5.3.7, polyhedral X have finitely many X-circuits, up to scaling. Apply
Theorem 5.4.2 and finiteness of the normalized circuits ΛX(A) to write

CX(A) =
∑

,∈ΛX (A)
CX(A, ,).
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The first claim follows as each of the finitely many sets CX(A, ,) appearing in
the above sum are (dual) power cone representable. For the second claim observe
that under the rationality assumptions we have ΛX(A) ⊂ QA . Using # B ,− and
< B | supp , |, it is known that the <-dimensional ,-weighted power cone (and its
dual) are second-order representable when ,\# is a rational vector in the (< − 1)-
dimensional probability simplex [142, Section 3.4]. The last claim follows as the
semidefinite extension degree of the second-order cone is two [142, Section 2.3].

B.3 Proof of Proposition 5.4.6
First, we note that some inequality constraints c\# ≥ 0 are implied by (Y,c−A%#) ∈
Pow(,)†. It is necessary to include the inequality constraints explicitly, to account
for the case when supp , ( A. The condition (Y,c − A%#) ∈ Pow(,)† can be
rewritten as ∏

"∈,+
[2"/_"]_" ≥ |2# exp(fX(−A†,)) − A |. (B.1)

Meanwhile, the minimum of |2# exp(fX(−A†,)) − A | over A ≥ 0 is attained at A = 0
when 2# < 0 and A = 2# exp(fX(−A†,)) when 2# ≥ 0. In the 2# < 0 case the
constraint (B.1) becomes∏

"∈,+
[2"/_"]_" ≥ −2# exp(fX(−A†,)).

In the 2# ≥ 0 case the constraint (B.1) is vacuous, since
∏

"∈,+ [2"/_"]_" ≥ 0 is
implied by c\# ≥ 0. As the constraint in the preceding display is similarly vacuous
when 2# > 0, we see that it can be used in lieu of (B.1) without loss of generality.

B.4 Proof of Proposition 5.4.7
Let # = ,− as is usual. To v ∈ RA associate Val(v) = inf{v>c : c ∈ CX(A, ,)}. A
vector v belongs to CX(A, ,)† if and only if Val(v) = 0. We will find constraints on
v so that the dual feasible set for computing Val(v) is nonempty, which in turn will
imply Val(v) = 0.

We begin by noting that for any element " ∈ A \ supp ,, the only constraints on
2", E" for c ∈ CX(A, ,), v ∈ CX(A, ,)† are 2" ≥ 0, E" ≥ 0; therefore we assume
A = supp , for the remainder of the proof. When considering the given expression
for Val(v) as a primal problem, we compute a dual using (5.7) from Proposition
5.4.6. Under the assumption A = supp ,, the constraint c\# ≥ 0 is implied by
(Y,c − A%#) ∈ Pow(,)†. Therefore when forming a Lagrangian for Val(v) using
(5.7), the dual variable to “c\# ≥ 0” may be omitted.



APPENDIX B. PROOFS FOR CHAPTER 5 176

For the remaining constraints (Y,c − A%#) ∈ Pow(,)† and A ≥ 0 we use dual
variables - ∈ Pow(,) and C ∈ R+ respectively; the Lagrangian is

L(c, A, -, C) = v>c − ->(Y,c − A%#) − CA
= c>(v − Y,-) − A (C − `#).

For the Lagrangian to be bounded below over c ∈ RA and A ∈ R, it is necessary
and sufficient that v = Y,- and `# = C. Since we have assumed supp , = A and
fX(−A†,) < ∞, the diagonal linear operator Y, is symmetric positive definite, so
we can express the requirements on -, C as

Y−1
, v = - and `# = C.

Therefore the conditions Y−1
, v ∈ Pow(,), E# ≥ 0 are equivalent to

Val(v) = inf
{

sup{L(c, A, -, C) : (-, C) ∈ Pow(,) × R+} : (c, A) ∈ RA × R
}

= sup
{

inf{L(c, A, -, C) : (c, A) ∈ RA × R} : (-, C) ∈ Pow(,) × R+
}
= 0.

The proposition follows by applying the definitions of Pow(,) and Y,.
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A p p e n d i x C

ALGORITHMS FOR CHAPTER 7

In the discussion that follows, A = (U8 9 : (8, 9) ∈ [<] × [=]) is an < × = matrix
with rows "8.

Algorithm 3 magnitude recovery for dual SAGE polynomial relaxations.
Input: A matrixA ∈ N<×=. Vectors v ∈ CPOLY

SAGE (A,X)† and v̂ ∈ CSAGE(A,Y). Zero
threshold parameter n0 > 0.
1: procedure VariableMagnitudes(A, v, v̂, n0)
2: M← []
3: for 9 = 1, . . . , < do
4: if Ê 9 = 0 then
5: Continue
6: Recover z 9 in R= s.t. Ê 9 log(v̂/Ê 9 ) ≥ [A − 1" 9 ]z 9 and (z 9 , Ê 9 ) ∈ co Y.
7: M.append(exp(z 9/Ê 9 ))
8: if (x"1 , . . . , x"<) ≠ |v | for all x in M then
9: Compute (y, C) solving Problem 7.5, for given n0.
10: M.append(exp y)
11: return M.

As in the signomial case, Algorithm 3 always returns a vector x ∈ X. Assuming
that z from Line 7 are already computed as part of representing v̂, the complexity of
this algorithm is dominated by Line 12. The runtime of Line 12 is in turn negligible
relative to solving a SAGE relaxation to obtain vectors v and v̂. Infeasibility errors
encountered in Line 12 should be handled by jumping to Line 15.
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Algorithm 4 sign recovery for dual SAGE polynomial relaxations.
Input: A matrix A ∈ N<×=. A vector v in R<. A Boolean heuristic.
1: procedure VariableSigns(A, v, heuristic)
2: U← {8 : E8 ≠ 0 and "8 is not even }
3: W← { 9 : U8 9 ≡ 1 mod 2 for some 8 in U}
4: Z← {z ∈ {0, 1}= : A[U, :]z ≡ (v < 0) [U] mod 2, I8 = 0 for 8 in [=]\W}
5: S← {}
6: for z in Z do
7: s← 1
8: for 9 in { 9 : U8 9 > 0 for some 8 in U} do
9: B 9 ← −1 if I 9 = 1, 1 if I 9 = 0
10: S← S ∪ {s}
11: If S = ∅ and heuristic, update S← {HueristicSigns(A, v)}.
12: return S.

Let us describe the ways in which Algorithm 4 differs from the discussion in
Subsection 7.3.2. First- there are changes to the sets U and W. The set U now
drops any rows "8 from A where "8 is even; it is easy to verify that this does not
affect the set of solutions to the appropriate linear system. The set W changes by
only considering 9 where at least one U8 9 ≡ 1 mod 2. This change is valid because
if U8 9 is even for all 8, then the sign of variable G 9 is irrelevant to the underlying
optimization problem, and we make take G 9 ≥ 0 without loss of generality.

Next we speak to the “hueristic” sign recovery. We partly mean to leave this as open-
ended, however for completeness we describe the algorithm used in sageopt. The
goal is to find a vector s in {+1,−1} so that the signs of sA � (s"1 , . . . , s"<) match
the signs of v to the greatest extent possible. However, we consider how having s"8

match the sign of E8 may not be very important if E8 is very small. Therefore we
use a merit function " (s) = v>sA to evaluate the quality of candidate signs s. We
apply a greedy algorithm to maximize the merit function " (s) as follows: initialize
s = 1, and a set of undecided coordinates C = {1, . . . , =}. As long as the set C is
nonempty, find an index 8★ ∈ C so that changing B8★ = 1 to B8★ = −1 maximizes
improvement in the merit function. If the improvement is positive, then perform the
update B8★ ← −1. Regardless of whether or not the improvement is positive, remove
8★ from C. Once C is empty, return s.
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