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ABSTRACT. Given a bounded Euclidean domain Ω, we consider the sequence of optimisers of the kth

Laplacian eigenvalue within the family consisting of all possible disjoint unions of scaled copies of Ω
with fixed total volume. We show that this sequence encodes information yielding conditions for Ω to
satisfy Pólya’s conjecture with either Dirichlet or Neumann boundary conditions. This is an extension of
a result by Colbois and El Soufi which applies only to the case where the family of domains consists of all
bounded domains. Furthermore, we fully classify the different possible behaviours for such sequences,
depending on whether Pólya’s conjecture holds for a given specific domain or not. This approach allows
us to recover a stronger version of Pólya’s original results for tiling domains satisfying some dynamical
billiard conditions, and a strenghtening of Urakawa’s bound in terms of packing density.

1. INTRODUCTION AND MAIN RESULTS

1.1. Pólya’s conjecture for Laplace eigenvalues. For d ≥ 2 let Ω ⊂ Rd be a bounded open set with
Lebesgue measure |Ω|. We consider the Dirichlet eigenvalue problem{

∆u +λu = 0 in Ω

u ≡ 0 on ∂Ω.

It is well known that the eigenvalues of the above problem are discrete and form a sequence

0 <λ1(Ω) ≤λ2(Ω) ≤λ3(Ω) . . . ↗∞
accumulating only at infinity. Moreover, if the boundary ∂Ω is Lipschitz, the Neumann problem{

∆u +µu = 0 in Ω

∂νu ≡ 0 on ∂Ω,

where ν denotes the outer unit normal vector of Ω, also has discrete spectrum and forms a nonde-
creasing sequence

0 =µ0(Ω) ≤µ1(Ω) ≤ . . . ↗∞.

Note that we choose the convention to start numbering Neumann eigenvalues with 0 instead of with
1, which allows for a cleaner statement of our theorems. Both the Dirichlet and Neumann eigenvalues
satisfy so-called Weyl asymptotics

λk =µk +O
(
k1/d

)
= 4π2

(ωd |Ω|)2/d
k2/d +O

(
k1/d

)
,

where ωd denotes the volume of the unit ball in Rd . If Ω has smooth boundary and satisfies some
dynamical conditions, namely that the measure of periodic trajectories in the billiard flow is zero, the
eigenvalues also satisy two-term Weyl asymptotics [21, 35]

(1) λk = 4π2

(ωd |Ω|)2/d
k2/d + 2π2

d

ωd−1 |∂Ω|
(ωd |Ω|) d+1

d

k1/d +o
(
k1/d

)
1
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and

(2) µk = 4π2

(ωd |Ω|)2/d
k2/d − 2π2

d

ωd−1 |∂Ω|
(ωd |Ω|) d+1

d

k1/d +o
(
k1/d

)
.

The regularity assumption on the boundary can be weakened, see [22] for a precise description of the
required conditions. From these asymptotic formulae it is clear that given a domain Ω for which (1)
and (2) hold there exists k∗ = k∗(Ω) such that for all k ≥ k∗,

(3) µk (Ω) < 4π2

(ωd |Ω|)2/d
k2/d <λk (Ω).

Furthermore, the Rayleigh–Faber–Krahn [16, 24] and the Hong–Krahn–Szego [25] inequalities imply
that the right-hand side inequality holds for λ1 and λ2, while the Szegő–Weinberger [37] and the
Bucur–Henrot [12] inequalities ensure the inequality on the left-hand side forµ1 andµ2. In this paper,
we investigate a conjecture of Pólya.

Open problem (Pólya’s conjecture). For all Ω⊂Rd and all k ∈N,

(4) µk (Ω) ≤ 4π2

(ωd |Ω|)2/d
k2/d ≤λk (Ω).

In 1961 Pólya proved that the above inequalities do hold for all domains which tile the plane, and
conjectured that this would be true for general domains [34] — see [23] for the proof for general tiling
domains with Neumann boundary conditions. Pólya’s result was later extended to tiling domains in
higher dimensions by Urakawa, who also obtained lower bounds for all Dirichlet eigenvalues of a
domain based on its lattice packing density [36].

For general domains, the best results so far remain those by Berezin [5] and Li and Yau [30] in the
Dirichlet case, while for Neumann eigenvalues the corresponding result was established by Kröger [26].
In either case, these are based on sharp bounds for the average of the first k eigenvalues of the Lapla-
cian, namely,

1

k

k−1∑
j=0

µ j (Ω) ≤ 4π2d

d +2

(
k

ωd |Ω|
)2/d

≤ 1

k

k∑
j=1

λ j (Ω).

From these inequalities and an estimate in [26] it follows that, for individual eigenvalues,

λk (Ω) ≥ d

d +2

4π2

(ωd |Ω|)2/d
k2/d ,

and

µk (Ω) ≤
(

d +2

2

)2/d 4π2

(ωd |Ω|)2/d
k2/d ,

which both fall short of (4).
Note that inequalities (3) lead naturally to a strenghtening of Pólya’s conjecture, which we also

investigate.

Open problem (Strong Pólya’s conjecture). For all Ω⊂Rd and all k ∈N,

µk (Ω) < 4π2

(ωd |Ω|)2/d
k2/d <λk (Ω).
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As mentioned above, the first two eigenvalues are known to satisfy the strong Pólya’s inequali-
ties since their extremal values are known. However, for higher eigenvalues and although some con-
jectures do exist, there are no other situations where the extremal values are known. Furthermore,
numerical optimisations carried out within the last fifteen years by different researchers using dif-
ferent methods have made it clear that not much structure at this level is to be expected in the mid-
frequency range, in the sense that extremal sets are not described in terms of known functions —
see [32, 1] for the Dirichlet and [1] for the Neumann problems respectively; see also [3, 10] for the
same problem but with a perimeter restriction. In the planar case, it has also been shown that, except
for the first four eigenvalues, the Dirichlet extremal domains are never balls or unions of balls [9].
Recently, it has been shown that the Faber–Krahn inequality may be used to extend the range of low
Dirichlet eigenvalues for which Pólya’s conjecture holds [18]. For instance, in dimensions three and
larger, eigenvalues up to λ4 also satisfy Pólya’s conjecture, with the number of eigenvalues which may
be shown to do so by this method growing exponentially with the dimension.

These findings prompted the study of what happens at the other end of the spectrum, in the high-
frequency regime, in the hope that some structure could be recovered there. The first of such re-
sults proved that, when restricted to the particular case of rectangles, extremal domains converge
to the square as k goes to infinity [2]. In other words, they converge to the domain with minimal
perimeter among all of those in the class of rectangles with fixed area, and indeed, just like with the
first eigenvalue, the geometric isoperimetric inequality plays a role in the proof. This was followed
by an extension of these results to higher-dimension rectangles in both the Dirichlet and Neumann
cases [6, 7, 20, 31]. In the case of general planar domains with a perimeter restriction, it was shown
in [11] that extremal sets converge to the disk with the same perimeter as k goes to infinity, thus again
displaying convergence to the geometric extremal set. Some results regarding existence of convergent
subsequences within classes of convex domains and under a measure restriction were also obtained
in [28].

The connection between the problem of determining extremal domains for the kth eigenvalue and
Pólya’s conjecture was established in 2014 by Colbois and El Soufi [14]. There they showed that the

sequences of extremal values
(
λ∗

k

)d/2 (Dirichlet) and
(
µ∗

k

)d/2 (Neumann) are subadditive and super-

additive, respectively. As a consequence of Fekete’s lemma, both sequences λ∗
k /k2/d and µ∗

k /k2/d are
convergent as k goes to infinity and, furthermore, Pólya’s conjecture is seen to be equivalent to

lim
k→∞

λ∗
k

k2/d
= 4π2

(|Ω|ωd )2/d
and lim

k→∞
µ∗

k

k2/d
= 4π2

(|Ω|ωd )2/d
,

in the Dirichlet and Neumann cases, respectively.
A major obstacle in attacking the general Pólya’s conjecture is that it is not even known if there

exists an open domain minimising λk or maximising µk for k ≥ 3 under volume constraint. This
prevents one from using properties of the minimisers to argue in favor of the conjecture. Our aim will
be to restrict ourselves to the study of classes of domain within which we are able to show existence
of extremisers, but within which the subadditivity and superadditivity results of Colbois and El Soufi
still hold. Note that subadditivity or superadditivity for the optimal eigenvalues do not hold for all
families of domains – if we take as a family of domains rectangles of unit area, the extremisers always
exist but the optimal Dirichlet eigenvalues are λ∗

1 = 2π2, λ∗
3 = 5π2 and λ∗

4 = 35π2/(2
p

6) ≈ 7.144π2,
see [2].

1.2. Suitable families of domains. Before stating our results, let us define precisely the class of do-
mains under consideration in this paper. Given r ∈ (0,∞) and Ω⊂Rd , we denote by rΩ any subset of
Rd obtained from Ω as a result of a homothety with scale factor r and an isometry.
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Definition 1.1. Let Ω1, . . . ,Ωn be bounded, connected, open subsets of Rd . We denote

R :=R(Ω1, . . . ,Ωn) :=
{

N⊔
i=1

riΩni : N ∈N,ni ∈ {1, . . . ,n} ,ri > 0

}
.

The sets Ω1, . . . ,Ωn are called the generators for R. The above notation is to be understood in the
sense that all sets Υ ∈ R are subsets of Rd all of whose connected components are of the form riΩni

for 1 ≤ i ≤ N . We denote by ν(Υ) the number of connected components of Υ, by |Υ| its volume
and we slightly abuse notation by denoting by |∂Υ| the (d − 1)-dimensional Hausdorff measure of
the boundary. We also observe that the family R is closed under disjoint union and homothety, up
to rearrangement. Whenever the Neumann eigenvalue problem is discussed, it is also assumed the
generators have Lipschitz boundary.

One particular instance of this type of families, namely, those generated by rectangles, was used
recently to study the possible asymptotic behaviour of extremal sets in the case of Robin boundary
conditions [19]. We note that in the definition we could allow a countably infinite number of con-
nected components. We are, however, interested in optimisers and it will be clear that sets with an
infinite number connected components can never be one, see Lemmas 2.1 and 2.2.

The following elementary facts about scaling properties of volumes and eigenvalues will be used
repeatedly in this paper:

• |rΥ| = r d |Υ|;
• |r∂Υ| = r d−1 |∂Υ|;
• λk (rΥ) = r−2λk (Υ);
• µk (rΥ) = r−2µk (Υ);

It is easy to see from the first two points that the generator Ω j minimising the isoperimetric ratio

I (Υ) := |∂Υ|d
|Υ|d−1

among Ω1, . . . ,Ωn also does so in R. The first, third and four bullet points imply that the quantities
λk (Υ)d/2 |Υ| and µk (Υ)d/2 |Υ| are invariant by homothety.

Definition 1.2. We define the extremal eigenvalues

λ∗
k (R) = inf

Υ∈R|Υ|≤1

λk (Υ)

and

µ∗
k (R) = sup

Υ∈R|Υ|≥1

µk (Υ).

We shall say that a domain Υ ∈ R is a minimiser for λ∗
k (R) or that it realises λ∗

k (R) if |Υ| ≤ 1 and if
λk (Υ) = λ∗

k (R). Similarly, a domain can be a maximiser for µ∗
k (R) or it realises µ∗

k (R). Note that an
extremiser necessarily verifies |Υ| = 1.

In Section 2, we show that these families R of domains are suitable for the study of asymptotic
eigenvalue optimisation. By suitable, we understand that for every k, there exists Υ ∈ R realising
the extremal eigenvalues, and that the results of [38, 33, 14] describing the extremal eigenvalues and
their associated extremisers still hold within the families R. Existence of the extremisers is proved in
Lemmas 2.1 and 2.2.
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The properties of extremal eigenvalues and their associated extremisers are the subject of Theo-
rems 2.3–2.7. They rely on the fact that two properties are needed for the proofs of these theorems
: closedness under homotheties, and under disjoint unions. Of specific use is Corollary 2.5, which
says that it is sufficient to study the limit of the sequence of optimal eigenvalues if one wants to get
universal bounds within a family R.

1.3. A trichotomy for Pólya’s conjecture. In Section 3, we restrict our search to families R generated
by a single domain Ω. There is no loss of generality here : we will first show that if Pólya’s conjecture
holds within two families R(Ω1) and R(Ω2) in either its standard or strong form, then it also holds in
R(Ω1,Ω2).

Our aim is to characterise the structure of the set of optimisers in R(Ω) depending on whether
Pólya’s conjecture holds or fails in R. This gives, in principle, a way to investigate the conjecture for
a given domain, since Ω ∈ R(Ω). We note that Pólya’s conjecture remains open for except in very
restrictive classes of domains. Indeed, it is only known in the following situations:

• Domains that tile Rd [23, 34];
• For Dirichlet boundary conditions, domains of the formΩ1×Ω2 ⊂Rd1 ×Rd2 , d1+d2 = d where

d1 ≥ 2 and Ω1 itself satisfies Pólya’s conjecture (for instance by tiling Rd1 ) [27].
• For Dirichlet boundary conditions, domains of the form Ω =Ω1 ×Ω2 ⊂ Rd1 ×Rd2 , d1 ≥ 3, Ω1

itself satisfies Pólya’s conjecture andΩ2 is convex, thenΩ satisfies the strong Pólya conjecture
[29].

Notably, even in the case of the ball in Rd where we have explicit formulae for the eigenvalues the
status of the conjecture is unknown.

Our main theorem is as follows.

Theorem 1.3. The following trichotomy holds: either

(1) the generator Ω realises λ∗
k (R) infinitely often and Pólya’s conjecture for Dirichlet eigenvalues

holds for all Υ ∈R(Ω);
(2) the generatorΩ realises λ∗

k only finitely many times, Pólya’s conjecture for Dirichlet eigenvalues
holds for all Υ ∈R(Ω) and, for infinitely many k ∈N,

λ∗
k (R)d/2

k
= (2π)d

ωd
,

or
(3) the generatorΩ realises λ∗

k only finitely many times, Pólya’s conjecture for Dirichlet eigenvalues
does not hold for Ω and, for infinitely many k ∈N,

λ∗
k (R)d/2

k
= inf

j

λ∗
j (R)d/2

j
.

The same trichotomy holds replacing all instances of Dirichlet with Neumann, ofλwithµ, and inf with
sup.

In Theorem 3.4, we furthermore obtain an indication of when Ω can realise λ∗
k (R) or µ∗

k (R) infin-
itely often. Namely, we show that as soon as there exists a subsequence {kn} such that the number of
connected components of the domain realising λ∗

kn
, respectively µ∗

kn
has slower than linear growth,

then Ω realises λ∗
k , respectively µ∗

k infinitely often. This, in combination with Lemmas 2.6 and 2.7
allows us to understand the propagation of extremal domains in R as k →∞.

Finally, when the generatorΩ satisfies the two-term Weyl law (1) or (2), we obtain the following list
of equivalences with the strong Pólya conjecture
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Theorem 1.4. Suppose that Ω⊂Rd is such that the two-term Weyl law (1) holds. Let Ω∗
k =⊔

i≤Nk
ri ,kΩ

be a sequence of domains realising λ∗
k (R). Suppose that

∣∣Ω∗
k

∣∣ = 1 and ri ,k ≥ r j ,k whenever i < j . The
following are equivalent :

(1) The strong Pólya conjecture for Dirichlet eigenvalues holds in R(Ω).
(2) The largest coefficient r1,k → 1 as k →∞.
(3) The largest coefficient r1,k → 1 along a subsequence.

The same equivalence hold replacing all instances of Dirichlet with Neumann, λ with µ, and the two-
term Weyl law (1) with (2).

Comparing those equivalent statements to the trichotomy in Theorem 1.3, it is clear that if the
strong Pólya conjecture holds, Ω realises λ∗

k (R) infinitely often. On the other hand, if Ω does realise
λ∗

k (R) infinitely often, it is the case that r1,k → 1 along a subsequence. Theorem 1.4 indicates that
for domains Ω that satisfy a two-term Weyl law the strong Pólya conjecture for R(Ω) is equivalent to
weaker statements than those needed to imply Pólya’s conjecture in Theorem 1.3.

1.4. Density lower bounds for Dirichlet eigenvalues. In the paper [36], Urakawa obtained a lower
bound for Dirichlet eigenvalues in terms of the lattice packing density of a domain Ω. As an appli-
cation of our construction, we obtain in Section 4 similar results for the asymptotic packing density
defined as follows.

Given a set Ω and n ∈ N , we define the n-th propagation of Ω as the set

Ω(n) =
n⊔
`=1

1

n1/d
Ω .

Definition 1.5. Given two bounded domains Ω and V with volume 1, an integer n ∈ N and a real

number ρ ∈ (0,1], a packing of Ω(n) into V of density ρ is an isometric quasi-embedding f : Ω(n) →
ρ−1/d V . Here, we call a map a quasi-embedding if it is injective on the interior of its domain. Note
furthermore thatΩ, and hence any element in R, is canonically equipped with a Riemannian metric.
The term isometry is to be understood as “preserving Riemannian metrics”.

An asymptotic packing ofΩ into V is a triple P = {(ni ,ρi , fi )}i∈N where {ni }i∈N is a strictly increasing
sequence of integers, {ρi }i∈N ⊂ (0,1] converges to the asymptotic density ρP ∈ (0,1] and each fi is a
packing of Ω(ni ) into V of density ρi .

The packing number or packing density of Ω into V is

ρΩ,V = sup{ρP | P is an asymptotic packing of Ω into V } .

The packing number or packing density of Ω is

ρΩ = sup{ρΩ,V | V is a bounded domain with volume 1 } .

Definition 1.6. A domain D ⊂Rd is a tile or is said to tile Rd if there is an isometric quasi-embedding
F : ti∈ND →Rd , called the tiling, which is surjective.

Remark 1.7. The lattice packing density of Urakawa [36] is always smaller or equal to this packing den-
sity, as it is equivalent to considering only V that are parallelepipeds, as well as having P constrained
more strictly. It is not hard to find examples of concave, simply connected domains that have a higher
asymptotic packing density than their lattice packing density.

We obtain the following theorem for a lower bound on Dirichlet eigenvalues in terms of this as-
ymptotic density.
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Theorem 1.8. For every Ω⊂Rd open and bounded, with |Ω| = 1, the lower bound

inf
k

λ∗
k (R(Ω))d/2

k
≥ ρΩ (2π)d

ωd

holds.

Obviously, the previous Theorem allows us to recover Pólya’s theorem as a corollary.

Corollary 1.9 (Pólya [34]). If Ω tiles Rd , then Pólya’s conjecture holds for any domain in R(Ω).

Proof. If Ω tiles Rd , then ρΩ = 1 (see Proposition 4.2). Then Theorem 1.8 implies the result. �

We also obtain the following strengthening of Pólya’s theorem for domains that are said to simply
tileRd and for which the two-term Weyl law (1) holds, in which case the strong Pólya conjecture holds.

Definition 1.10. Let V ⊂ Rd be a domain of volume 1. A domain Ω is a V -tile or is said tile V if there
is an asymptotic packing P = {(ni ,1, fi )}i∈N of Ω into V with constant packing density 1.

Theorem 1.11. Let V be a a domain in Rd of unit volume satisfying the two-term Weyl law (1). If Ω
tiles V , then Ω realises λ∗

k (R(Ω)) infinitely often and satisfies the strong Pólya conjecture. The same
holds for Neumann eigenvalues, if V satisfies (2) instead.

1.5. Computational results. In Section 5, we investigate numerically the set of extremisers for Dirich-
let eigenvalues within families R generated by the disk, the square, and a rectangle with aspect ratio
5. We chose these domains to see if the markers for the Pólya conjecture differed between the rectan-
gles, for which the conjecture is known to hold, and the disk, for which it’s not. In all four cases, we
look for extremisers up to eigenvalue rank 66 000.

We investigate the number of connected components of the extremising set, in view of Theorem
3.4. In all the cases we are studying, we see that this number is bounded by 5, up to rank 66 000. Recall
that for Pólya’s conjecture to hold, we only need for a subsequence of the extremisers to have a strictly
sublinear growth for their number of connected components.

We also investigate the asymptotic log-density of the number of times the generator can beΩ∗
k . For

a set J ⊂N, we define its counting function as

NJ (x) := #
{

j ∈ J : j ≤ x
}

and its log-density as

(5) F J (x) := log(NJ (x))

log x
.

We have that for every ε> 0,

lim
x→∞F J (x) =α> 0 ⇔ NJ (x) ≥ xα−ε

for x large enough. In particular, for J the set of ranks k for which the generator realisesλ∗
k , limx→∞ F J (x) =

α> 0 implies that the cardinality of J is infinite. The log-density in all cases we investigated seemed
to converge quite quickly to a constant greater than 0.8, albeit not the same constant for the disk and
the various rectangles. It would be an interesting line of investigation to understand the geometric
properties that influence the value of this constant.
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2. EIGENVALUE OPTIMISATION WITHIN A FAMILY

Recall that for Ω1, . . . ,Ωn , each of volume 1, we investigate the family of domains

R(Ω1, . . . ,Ωn) :=
{ ⊔

i∈I
riΩni : I countable,ni ∈ {1, . . . ,n} ,

∑
i∈I

r d
i <∞

}
.

Our first two results concern the existence of eigenvalue extremisers in this restricted collection R.
We recall that for any domain Υ, we denote its number of connected components by ν(Υ).

Lemma 2.1. For all k, there exists a domain Ω∗
k ∈R of volume 1 such that

λk (Ω∗
k ) =λ∗

k (R).

For any minimising domain Υ for λ∗
k (R), ν(Υ) ≤ k.

Proof. Fix k ≥ 1. For any j ∈N∪ {∞}, denote

λ
( j )
k = inf

{
λk (Υ) : Υ ∈R, |Υ| ≤ 1, ν(Υ) = j

}
.

Of course, λ∗
k (R) = inf j λ

( j )
k .

Our first step is to show that if j > k, then λ( j )
k ≥ λ(l )

k for some l ≤ k; It follows in particular that the
previous infimum is a minimum.

The argument for this first step will follow the proof of [8, Lemma 8]. Indeed, considerΥ=⊔
i∈I riΩni ∈

R with |Υ| = 1 and ν(Υ) = j . Suppose without loss of generality that

λ1(r jΩn j ) ≤λ1(r j ′Ωn j ′ ) whenever j ≤ j ′

Let

l = min
{
k,max

{
m :λ1(rmΩnm ) ≤λk (Υ)

}}≤ k,

and

Υ̃= r1Ωn1 t . . .t rlΩnl .

Note that if ν(Υ) =∞, m is still finite since r j → 0 as j →∞, and observe that λk (Υ̃) ≤ λk (Υ). Since
|Υ̃| ≤ 1, we can dilate it to a set Υ̂ of volume 1 whose eigenvalues are all smaller than the ones of Υ̃,
so that λk (Υ̂) ≤ λk (Υ). Taking the infimum of this inequality over all appropriate sets Υ and recalling
that ν(Υ̂) = l ≤ k < j = ν(Υ), we get indeed

λ(l )
k ≤λ( j )

k .

We therefore deduce that

λ∗
k = min

1≤ j≤k
λ

( j )
k .

Our second step is to show that for every 1 ≤ j ≤ k, either there exists a minimiser Υ( j ) ∈R for λ( j )
k

or λ( j )
k ≥λ( j−1)

k .
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The statement is obvious for λ(1)
k , as there is only a finite number of set, namelyΩ1, . . . ,Ωn to verify.

For j > 1, consider a minimising sequence

Υ
( j )
p =

j⊔
i=1

ri ,pΩni ,p

of sets in R which can all be taken to have volume 1, i.e.

λ
( j )
k = lim

p→∞ λk (Υ( j )
p ) .

Assume without loss of generality 1 > r1,p ≥ ·· · ≥ r j ,p for each p. If r j ,p → 0 as p →∞, then for p large

enough, λ1(r j ,pΩn j ,p ) ≥λ( j )
k . This implies that λk (Υ( j )

p \ r j ,pΩn j ,p ) =λk (Υ( j )
p ) but ν(Υ( j )

p \ r j ,pΩ) = j −1,

hence λ( j )
k ≥ λ

( j−1)
k . If r j ,p 6→ 0 as p → ∞, then the set {ri ,p }1≤i≤ j ,p∈N belongs to a compact interval

[ε,1−ε] ⊂ (0,1). For every 1 ≤ i ≤ j let (r ( j )
i ,n( j )

i ) be an accumulation point of {(ri ,p ,ni ,p )}p∈N, then set

Υ( j ) =
j⊔

i=1
r ( j )

i Ω
n( j )

i
∈R.

By continuity of the k-th eigenvalue and of the volume as functions of the variables r1, . . . ,r j , the set

Υ( j ) has volume 1 and verifies λk (Υ( j )) =λ( j )
k .

We proved that there is a set of indices J ⊆ {1, . . . ,k} such that for all j ∈ J , there exists a minimiser

Υ( j ) of λ( j )
k , whereas λ(i )

k ≥ min j∈J λ
j
k for all i ∉ J . Therefore,

λ∗
k = min

1≤ j≤k
λ

( j )
k ,

is realised by the set Ω∗
k := Υ( j ) for any (say, the smallest) index j realising the previous minimum,

thus completing the proof. �

We now show the equivalent lemma for Neumann eigenvalues.

Lemma 2.2. For all k ≥ 1, there exists a domain Ω∗
k ∈R such that

µk (Ω∗
k ) =µ∗

k (R).

For any maximising domain Υ for µ∗
k (R), ν(Υ) ≤ k.

Proof. The first step of this proof is easier in the setting of Neumann eigenvalues. Indeed, no maximis-
ing sequence {Υn} for µ∗

k (R) can have ν(Υn) > k infinitely often, since ν(Υ) > k implies immediately
µk (Υ) = 0.

For the second step, since the supremum forµ∗
k (R) is taken over domains of volume larger or equal

to 1, we need to verify both that no connected component of a maximising sequence converges to 0
and that none grows unbounded. This last possibility is easily excluded by restricting our attention to
maximising sequences of domains which all have volume 1.

Suppose that there is a maximising sequence with the volume of a connected component converg-
ing to 0. In other words, there is a maximising sequence

Υp =
q⊔

i=1
ri ,pΩni ,p

with the following properties.

• For all p, the number of connected components q is smaller than k.
• Arranging r1,p ≤ r2,p ≤ . . . ≤ rq,p , we have that r1,p → 0 as p →∞.



OPTIMAL COPIES AND PÓLYA’S CONJECTURE 10

• The eigenvalues µk (Υp ) increase and converge to µ∗
k (R) as p →∞.

We will write Υp = r1,pΩn1,p ∪Ξp , each of them having volume r d
1,p and 1− r d

1,p respectively.
From [26], we know that there is a constant Ck such that for all k and all domains Υ, µk (Υ) <

Ck . There is an r0 such that for all l , r−2
0 µ1(Ωl ) ≥ Ck . For p large enough so that r1,p < r0, we have

r−2
1,pµ1(Ωn1,p ) >Ck , hence µk (Υp ) =µk−1(Ξp ).

For any η ∈ (0,r0), consider the following sequence of domains of volume 1 in R:

Υ̃
(η)
p = ηΩ1 t

(
1−ηd

1− r d
1,p

)1/d

Ξp .

Without loss of generality, we have supposed η< 1.
For p large and since η< r0,

µk (Υ̃p ) =µk−1

(
1−ηd

1− r d
1,p

)1/d

Ξp


=

(
1− r d

1,p

1−ηd

)2/d

µk (Υp )

= 1

(1−ηd )2/d
µk (Υp )

(
1+O

(
r1,p

))
.

Hence,

µk (Υ̃p )−µk (Υp ) =
(

1+O
(
r1,p

)
(1−ηd )2/d

−1

)
µk (Υp )

≥ 2ηdµk (Υ1)

d

(
1+O

(
r1,p

))
Since µ∗

k (R) > µk (Υ̃p ) this implies that for p large enough, µk (Υp ) ≤ µ∗
k (R)−d−1ηdµk (Υ1), contra-

dicting the fact that it was a maximising sequence.
The same compactness argument as in the Dirichlet case then implies the existence of a maximis-

ers. �

Note that both of these proofs show existence but say nothing about uniqueness. Despite this
possible lack of uniqueness, in this paper we shall writeΩ∗

k to denote any extremiser of λk or of µk on
R.

Lemma 2.3. The sequence {
λ∗

k (R)d/2
}

k∈N
is subadditive, that is for every j1, . . . jp such that j1 + . . . jp = k, we have

λ∗
k (R)d/2 ≤λ∗

j1
(R)d/2 + . . .+λ∗

jp
(R)d/2.

Proof. The proof here follows that of [14, Theorem 2.1]. Fix k ≥ 1 and let j1, . . . , jp ∈ N be such that
j1 +·· ·+ jp = k. By Lemma 2.1, for each 1 ≤ q ≤ p, there exists Ω∗

jq
∈R with volume 1 such that

λ∗
jq

(R) =λ jq (Ω∗
jq

).
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Let

Υq :=
(
λ∗

jq
(R)

λ∗
k (R)

)1/2

Ω∗
jq

,

which implies that λ jq (Υq ) =λ∗
k (R) and that

|Υq | =
(
λ∗

jq
(R)

λ∗
k (R)

)d/2

.

Define the domain

Υ=
p⊔

q=1
Υq .

Since the spectrum of a disjoint union is the union of the spectra, we have

N (λ∗
k (R);Υ) =

p∑
q=1

N (λ∗
k (R);Υq ) =

p∑
q=1

N (λ∗
jq

(Υq );Υq ) ≥
p∑

q=1
jq = k

where N is the eigenvalue counting function

(6) N (λ;Υ) := #{k :λk (Υ) ≤λ} .

It follows thatλk (Υ) ≤λ∗
k (R). Since |Υ|−1/dΥhas volume 1 we haveλ∗

k (R) ≤λk
(|Υ|−1/dΥ

)=λk (Υ)|Υ|2/d ,
thus

|Υ| ≥
(
λ∗

k (R)

λk (Υ)

)d/2

≥ 1,

whence

1 ≤
p∑

q=1
|Υn | = 1

λ∗
k (R)d/2

p∑
q=1

λ∗
jq

(R)d/2.

Multiplying both sides of this inequality by λ∗
k (R)d/2 finishes the proof. �

Lemma 2.4. The sequence {
µ∗

k (R)d/2
}

k∈N
is super-additive, that is for every j1, . . . jp such that j1 + . . . jp = k, we have

µ∗
k (R)d/2 ≥µ∗

j1
(R)d/2 + . . .+µ∗

jp
(R)d/2.

Proof. Suppose on the contrary that there exist j1, . . . , jp ,k ∈N such that j1 +·· ·+ jp = k and

µ∗
k (R)d/2 <µ∗

j1
(R)d/2 + . . .+µ∗

jp
(R)d/2,

that is

1 <
p∑

q=1

(
µ∗

jq
(R)

µ∗
k (R)

)d/2

.
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From Lemma 2.2, for every 1 ≤ q ≤ p there exists Ω∗
jq
∈R with volume 1 such that µ jn (Ω∗

jq
) = µ∗

jq
(R).

We set

Υ =
p⊔

q=1
Υq where Υq =

(
µ∗

jq
(R)

µ∗
k (R)

)1/2

Ω∗
jq

.

It follows that µ jq (Υq ) =µ∗
k (R) and that

|Υ| =
p∑

q=1
|Υq | =

p∑
q=1

(
µ∗

jq
(R)

µ∗
k (R)

)d/2

> 1.

From this and since |Υ|−1/dΥ has volume 1, we have

µk (Υ) < |Υ|2/dµk (Υ) =µk

(
|Υ|−1/dΥ

)
≤µ∗

k (R) .

Consequentlyµk (Υ) <µ jq (Υn) for each q and we deduce, recalling that the spectrum ofΥ is the union
of the spectra of the Υq ’s,

k +1 ≤ N (µk (Υ);Υ) =
p∑

q=1
N (µk (Υ);Υq ) ≤

p∑
q=1

jq = k ,

where the counting function is defined as in (6) but for Neumann eigenvalues. This contradiction
yields the claim. �

Corollary 2.5. We have

L := lim
k→∞

λ∗
k (R)d/2

k
= inf

k

λ∗
k (R)d/2

k
> 0

and

+∞> M := lim
k→∞

µ∗
k (R)d/2

k
= sup

k

µ∗
k (R)d/2

k
> 0 .

Proof. For the Dirichlet case, that the limit exists and is equal to the infimum follows from Fekete’s
lemma applied to the subadditive and nonnegative sequence ak =λ∗

k (R)d/2. That the limit is positive
is a consequence of the works of Berezin [5] and Li and Yau [30] proving that

λ∗d/2
k

k
≥

(
d

d +2

)d/2 (2π)d

ωd
.

For the Neumann case, that the limit exists in R and is equal to the supremum follows from Fekete’s
lemma applied to the super-additive and linearly bounded sequence ak =µ∗

k (R)d/2, where the linear

boundedness results from Kröger’s estimate [26]1

µ∗d/2
k

k
≤ d +2

2

(2π)d

ωd
.

That the limit is positive follows from µk (Ω) ≤µ∗
k and from Weyl’s asymptotic law

lim
k→∞

µk (Ω)d/2

k
= (2π)d

ωd
.

�

1In Kröger’s article, Neumann eigenvalues are numbered starting with 1 so that µ1 = 0.
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Pólya’s conjecture therefore holds in R(Ω) if and only if

L = (2π)d

ωd
= M

and thus reduces to finding a subsequence of extremisers Ω∗
k such that

lim
k→∞

λk (Ω∗
k )d/2

k
= (2π)d

ωd
= lim

k→∞
µk (Ω∗

k )d/2

k
.

The following lemma is an adaptation of a famous result of Wolf and Keller [38] to the class R. Our
proof however differs somewhat from the original proof.

Lemma 2.6. For every k ∈N,

λ∗
k (R)d/2 = min

{
min

j
λk (Ω j )d/2, min

j1+...+ jp=k

p∑
q=1

λ∗
jq

(R)d/2

}
.

Furthermore, for any Ω∗
k realising λ∗

k (R), there exists a partition j1 + . . .+ jp = k such that

Ω∗
k =

p⊔
q=1

αqΩ
∗
jq

:=
p⊔

q=1

√√√√ λ∗
k (R)

λ∗
jq

(R)
Ω∗

jq
.

Proof. If λ∗
k is realised by one of the Ω j , we are done. Suppose it is not. By Lemma 2.1, any minimiser

for λk has at most k connected components. One also sees that the largest eigenvalue smaller or
equal to λ∗

k (R) of each component has to be equal to λ∗
k (R). If not it would be possible to decrease

λ∗
k (R) by shrinking slightly a component for which that’s not the case. This means slightly expanding

the other components, thus decreasing the eigenvalue.
In other words, if Ω∗

k is an optimal domain for λ∗
k (R), then each of its p components (p ≤ k) will

have some eigenvalue rank jq such that

Ω∗
k =tp

q=1Υq , Υq =αqΩnq ,

where
p∑

q=1
αd

q = 1,
p∑

q=1
jq = k,

and

λ j1 (Υ1) = . . . =λ jp (Υp ) =λ∗
k (R).

Furthermore, each of these Υq realises λ∗
jq

, otherwise it could be replaced by a domain who does

while improving the eigenvalue. The identities between the eigenvalues of the different components
may now be written as

α2
qλ jp (Ωnp ) =α2

pλ jq (Ωnq ), q = 1, . . . , p −1,

or
αd

qλ
d/2
jp

(Ωnp ) =αd
pλ

d/2
jq

(Ωnq ), q = 1, . . . , p −1, .

Summing up these identities for j from 1 to p −1,(
p−1∑
q=1

αd
q

)
λd/2

jp
(Ωnp ) =αd

p

p−1∑
q=1

λd/2
jq

(Ωn1 ).
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Hence

(1−αd
p )λd/2

jp
(Ω) =αd

p

p−1∑
q=1

λd/2
jq

(Ωnq )

and

αd
p =

λd/2
jp

(Ωnp )

p∑
q=1

λd/2
jq

(Ωnq )

.

We finally obtain
λk (Ω∗

k ) = α−2
p λ jp (Ωnp )

=
(

p∑
q=1

λd/2
jq

(Ωnq )

)2/d

,

yielding the desired result. �

A corresponding statement for Neumann eigenvalues is proved by Poliquin and Roy-Fortin [33] by
closely mirroring Wolf and Keller’s proof, and the result is recollected and somewhat generalised by
Colbois and El Soufi [14]. We include their proof in our formalism for completeness.

Lemma 2.7. For every k ∈N,

µ∗
k (R)d/2 = max

{
max

j
µk (Ω j )d/2, max

j1+...+ jp=k

p∑
q=1

µ∗
jq

(R)d/2

}
.

Furthermore, for any Ω∗
k realising µ∗

k (R), there exists a partition j1 + . . .+ jp = k such that

Ω∗
k =

p⊔
q=1

αqΩ
∗
jq

:=
p⊔

q=1

√√√√ µ∗
k (R)

µ∗
jq

(R)
Ω∗

jq
.

Proof. Once again, if µk is realised by one of theΩ j , we are done. A rather simple induction argument
reduces the problem to the case p = 2 and Ω∗

k = Υ1 tΥ2 into two nonempty unions of connected
components, so that |Υ1|, |Υ2| > 0 and |Υ1|+ |Υ2| = |Υ∗

k | = 1.
Choose k+1 of the N (µ∗

k (R),Ω∗
k ) lowest and linearly independent eigenfunctions onΩ∗

k , say u0, . . . ,uk

ordered according to their eigenvalues, in such a way that every eigenfunction with eigenvalue strictly
smaller than µ∗

k (R) is chosen and that every eigenfunction is supported in either Υ1 or Υ2.2 We have
in particular µk (uk ) = µ∗

k (R) ≥ µk (Ω) > 0, where the last inequality follows since Ω is connected. For
every 0 ≤ l ≤ k, the function ul is not identically zero on at least one of the two Υq ’s; without loss of
generality, assume that uk is not identically zero on Υ1. Notice that if the number of ul ’s which are
not identically zero on Υ1 is j1 +1, then µ j1 (Υ1) =µk (uk ).

Since the spectrum of Ω∗
k = Υ1 tΥ2 is the (ordered) union of the spectra of Υ1 and Υ2, and since

the ul ’s span any eigenfunction onΩ∗
k with eigenvalue strictly smaller than µ∗

k (R), the number of ul ’s
which are not identically zero on Υ2 is j2 = k − j1. Considering the ( j2 + 1)-th eigenfunction on Υ2

we get µ j2 (Υ2) ≥ µ∗
k (R) > 0; in particular j2 ≥ 1. We claim that in fact µ∗

k (R) = µ j2 (Υ2); to see this,
suppose on the contrary that µ∗

k (R) < µ j2 (Υ2). Then consider any sufficiently small deformation Ω′

(with volume 1) of Ω∗
k obtained by contracting Υ1 to Υ′

1 and dilating Υ2 to Υ′
2, so as to have

µ j2−1(Υ′
2) <µ j2−1(Υ2) ≤µ j1 (Υ1) <µ j1 (Υ′

1) <µ j2 (Υ′
2) <µ j2 (Υ2) .

2Recall that u0 is necessarily a locally constant function.
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Hence µk (Ω′) = µ j1 (Υ′
1) and thus µk (Ω′) > µ∗

k (R). This contradicts the maximality of Ω∗
k . As a result

µ j1 (Υ1) = µ j2 (Υ2) = µ∗
k (R) > 0. Since µ j (D) > 0 if and only if j ≥ ν(D), we deduce ji ≥ ν(Υi ) ≥ 1. That

we have a partition follows from j2 := k − j1.
We claim that the normalised domain |Υ1|−1/dΥ1 realises µ∗

j1
(R). Suppose differently: There exists

a maximiser Ω∗
j1

(with volume 1) such that µ j1 (|Υ1|−1/dΥ1) < µ j1 (Ω∗
j1

) =µ∗
j1

(R), from which it follows
that

(7) µ∗
k (R) =µ j1 (Υ1) = |Υ1|−2/dµ j1 (|Υ1|−1/dΥ1) < |Υ1|−2/dµ∗

j1
(R) .

Consider the domain

Ω̃= Υ̃1 tΥ2 =
(
µ∗

j1
(R)

µ∗
k (R)

)1/2

Ω∗
j1
tΥ2 .

Equation (7) implies that its volume is strictly greater than |Υ1||Ω∗
j1
|+ |Υ2| = 1. The j1 +1 first eigen-

values coming from Υ̃1 have eigenvalue at most µ∗
k (R), the ( j1 +1)-th eigenvalue µ j1 (Υ̃1) being equal

to this value. Together with the same j2 = k − j1 eigenfunctions on Υ2 as before, we deduce that
µk (Ω̃) = µ∗

k (R). Therefore the (k + 1)-th eigenvalue of the normalised domain |Ω̃|−1/d Ω̃ is strictly
larger than µ∗

k (R), which is a contradiction to the maximality of Ω∗
k . A similar argument implies that

the normalised domain |Υ2|−1/dΥ2 realises µ∗
j2

(R). Incidentally, |Υi | = (µ∗
ji

(R)/µ∗
k (R))d/2.

�

3. A TRICHOTOMY

In this section, we set out to prove Theorem 1.3. Note that all of the results of the previous sections
have a Dirichlet and Neumann version, where the only difference is that the inequalities are reversed.
As such, we will only prove the Dirichlet case of Theorem 1.3, and only state the corollaries in term
of the Dirichlet eigenvalues. However, since we rely only on the formal properties obtained in the
previous section, all the results also apply for Neumann eigenvalues, reversing the inequalities when
needed and changing the proofs mutatis mutandis.

We start with the following proposition, allowing us to consider classes of domains generated by
a single domain Ω. As such, when no confusion arises we may write R for R(Ω) once a generating
domain is fixed.

Proposition 3.1. If Pólya’s conjecture holds within R(Ω1) and R(Ω2), then it holds within R(Ω1,Ω2).
The same is true of the strong Pólya conjecture.

It is clear that it is sufficient to show that if Pólya’s conjecture holds for two domains Υ1 ∈ R(Ω1)
and Υ2 ∈ R(Ω2), then it holds for the disjoint union of these two domains Υ1 tΥ2. This will rely on
the following abstract lemma about superlinear sequences.

Lemma 3.2. Let {ak : k ∈N} and {bk : k ∈N} be two increasing sequences satisfying

ak ≥ k

A
and bk ≥ k

B
for some A,B > 0. Denote ck the sequence obtained as the arrangement in increasing order of all ele-
ments in {ak }t {bk }, repeated with multiplicity. Then,

ck ≥ k

A+B
.

The same holds when all inequalities are replaced with strict inequalities.
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Proof. Without loss of generality, we assume that ck = ap for some 1 ≤ p ≤ k. We distinguish two cases
: p = k and 1 ≤ p < k. In the former situation, we have that

ck = ak ≥ k

A
> k

A+B
.

In the second case, it follows that ap ≥ b j for all j , 1 ≤ j ≤ k −p. We then have

k

A+B
= p + (k −p)

A+B
(8)

≤ Aap

A+B
+ Bbk−p

A+B
≤ ap = ck ,

where the last line holds from the fact that ap ≥ max
{

ap ,bk−p
}
, hence it is also greater than any

convex combination of both. This concludes the proof, and it is readily seen that if the inequalities in
the statement of the lemma were strict, then the second line in (8) would be a strict inequality. �

To prove Proposition 3.1, apply the previous lemma with ak = λk (Ω1)d/2, bk = λk (Ω2)d/2, A =
ωd |Ω1|
(2π)d , and B = ωd |Ω2|

(2π)d .
Let us now define the set J := J (Ω) ⊂N of indices where the generator Ω realises λ∗

k (R(Ω)), that is

J (Ω) := {
k ∈N :λk (Ω) =λ∗

k (R(Ω))
}

.

Clearly, J is never empty since 1 ∈ J (Ω) for any Ω.

Proposition 3.3. Suppose J (Ω) is infinite, so that there exists a sequence j1 < j2 < ·· · ↗ +∞ such that
Ω=Ω∗

jn
(R(Ω)) for all n. Then Pólya’s conjecture is true for every Υ ∈R(Ω).

Proof. On the one hand, Weyl’s law implies

lim
n→∞

λ jn (Ω)

j 2/d
n

= 4π2

ω2/d
d

.

On the other hand, since Ω realises λ∗
jn

(R) for every n, it follows from Corollary 2.5

lim
n→∞

λ jn (Ω)

j 2/d
n

= inf
k

λ∗
k (R)

k2/d
= 4π2

ω2/d
d

.

We therefore conclude that λk (Υ)d/2 k−1 ≥ (2π)dω−1
d for every Υ ∈ R with volume 1, which is Pólya’s

conjecture. �

The following theorem characterises when J is finite.

Theorem 3.4. The set J (Ω) is finite if and only if there exists a constant c such that for all k, ν(Ω∗
k ) ≥ ck.

Proof. If J is infinite, it is clear that such a constant c does not exist. Conversely, suppose that the set
J = {k ∈N : λk (Ω) =λ∗

k (R) } is finite. This implies that any minimiser realising λ∗
k (R) is of the form

Ω∗
k = ⊔

j∈J

nk, j⊔
m=1

rk, jΩ
∗
j .

The number of connected components of Ω∗
k is

(9) ν(Ω∗
k ) = ∑

j∈J
nk, j ,
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and referring to Lemma 2.6 we get

(10) λ∗
k (R)d/2 = ∑

j∈J
nk, jλ

∗
j (R)d/2.

Corollary 2.5 states that there is a constant c such that λ∗
k (R)d/2 ≥ c ′k. Let j ′ = max J , combining (9)

and (10) we obtain

ν(Ω∗
k ) ≥ 1

λ j ′(Ω)d/2

∑
j∈J

nk, jλ
∗
j (R)d/2

≥ c ′

λ j ′(Ω)d/2
k.

The proof is completed by taking c = c ′λ j ′(Ω)−d/2. �

Considering that all known results in the literature point to the validity of Pólya’s conjecture, we are
thus naturally led to the following, stronger, conjecture.

Open problem. For every domain Ω⊂ Rd there exists a subsequence λ∗
kn

(R(Ω)), with minimisers Ω∗
kn

such that

ν(Ωkn ) = o (kn) .

That this open problem is a potentially strictly stronger statement than Pólya’s conjecture follows
from this partial converse to Proposition 3.3 .

Proposition 3.5. Suppose J (Ω) ⊂N is finite. Then,

inf
k

λ∗
k (R(Ω))d/2

k
= min

j∈J

λ j (Ω)d/2

j
≤ (2π)d

ωd
.

Furthermore, for infinitely many j ∈N
λ∗

j (R(Ω))

j
= inf

k

λ∗
k (R(Ω))

k
.

Before starting with the proof, let us observe two things about this statement. First, it means that
infk λ

∗
k (R(Ω))d/2k−1 is realised. Second, it means that if Ω is a minimiser in R(Ω) only for finitely

many k’s and if Pólya’s conjecture holds, then Pólya’s bound is attained since the realised minimum
of λ∗

k (R(Ω))d/2 would be exactly (2π)d kω−1
d .

Proof. Let

L′ = min
j∈J

λ j (Ω)d/2

j
.

It exists as J is finite, and L′ ≥ L. For any k 6∈ J , a set which realises λ∗
k (R) necessarily has several

connected components. It results from Lemma 2.6 that

λ∗
k (R)d/2 = ∑

j∈J
n jλ j (Ω)d/2

where
{
n j : j ∈ J

}
are nonnegative integers such that∑

j∈J
n j j = k.
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Therefore

λ∗
k (R)d/2

k
= 1

k

∑
j∈J

n jλ
d/2
j ≥ 1

k

∑
j∈J

n j j L′ = L′,

which immediately implies

L = inf
k

λ∗
k (R)d/2

k
≥ L′ = min

j∈J

λ j (Ω)d/2

j
≥ L.

Furthermore, since λk (Ω) ≥λ∗
k (R) for every k ∈N and since Weyl’s law implies that

lim
k→∞

λk (Ω)d/2

k
= (2π)d

ωd
,

we get from Corollary 2.5 that indeed

min
j∈J

λ j (Ω)d/2

j
= lim

k→∞
λ∗

k (R)d/2

k
≤ (2π)d

ωd

Finally, recall that for any set Υ we defined Υ(n) := n1/d ⊔n
`=1Υ. We see that |Υ| = ∣∣Υ(n)

∣∣ and that for

all j , λ j (Υ)d/2 j−1 =λn j (Υ)d/2(n j )−1. Therefore, if j is an eigenvalue rank such that

λ j (Ω)d/2

j
= inf

k

λ∗
k (R)d/2

k
,

then for all n ∈N
λn j (Ω(n))d/2

n j
= inf

k

λ∗
k (R)d/2

k

so that the infimum is attained infinitely often.
�

Proof of Theorem 1.3. We have proved in Proposition 3.3 that if J is infinite, then Pólya’s conjecture
holds. The two other parts of the trichotomy are proved by Proposition 3.5.

�

We now turn our attention to the proof of Theorem 1.4, in the case where the domain Ω satisfies
the two-term Weyl law (1).

Proof of Theorem 1.4. In all generality, clearly (2) implies (3), and (1) implies (3). Indeed, (1) places
us in the first possibility of the trichotomy Theorem 1.3, which implies (3). We shall show that the
assumption that a two-term Weyl law holds can be used to infer that (1) implies (2) and that (3) implies
(1).
Proof of (1) implies (2). Write the sequence of minimisers, all of volume 1, as

Ω∗
k =

νk⊔
q=1

rk,qΩ,

where νk := ν(Ω∗
k ) <∞ by Lemma 2.1. Suppose that the rk,q coefficients are in decreasing order,

rk,1 ≥ . . . ≥ rk,νk .
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It follows from Lemma 2.6 that for every 1 ≤ q ≤ νk there is jq := jq (k) ∈ J such that

rk,q =
(
λ jq (Ω)

λ∗
k (R)

)1/2

,

and j1 + . . .+ jνk = k. It follows from Weyl’s law that

lim
k→∞

rk,1 = 1 ⇐⇒ lim
k→∞

j1(k)

k
= 1.

Suppose that the righthand side of the previous equivalence does not hold, i.e. that there exists δ> 0
and a subsequence, that we still label with k, such that for all k, j1(k) ≤ (1−δ)k. For all ε> 0, it follows
from the two-term Weyl law that there exists a rank N such that for all j > N ,

(11) λ j (Ω)d/2 ≥ (2π)d

ωd
j +

 (2π)ωd−1

4ω
2d−1

d

d

|∂Ω|−ε


︸ ︷︷ ︸
:=A−ε

j
d−1

d .

For all k, let Q :=Q(k) be defined as

Q :=
{

0 if jq ≤ N for all 1 ≤ q ≤ νk ,

max
{

q : jq > N
}

otherwise.

We define

Υk :=
Q⊔

q=1
rk,qΩ and Ξk :=

νk⊔
q=Q+1

rk,qΩ.

We claim that ν(Ξk ) is bounded in k. Indeed, it follows from the strong Pólya conjecture that there
exists M such that for all j > M ,

λ j (Ω)d/2

j
<
λ jq (Ω)d/2

jq

for all q >Q. Writing

jQ+1 + . . .+ jνk = j ′ > ν(Ξk ),

it follows from Lemma 2.6 that if j ′ ≥ M , then

λ j ′(Ξk )d/2 =λ∗
j ′(R)d/2

≤
νk∑

q=Q+1
jq
λ j ′(Ω)d/2

j ′

<
νk∑

q=Q+1
λ jq (Ω)d/2

=λ j ′(Ξk )d/2,

a contradiction. Hence, ν(Ξk ) ≤ j ′ < M , and

(12) k0 :=
Q∑

q=1
jq ≥ k −M
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Recall that we assumed that there is δ > 0 such that j1 < (1−δ)k, and it follows from (12) that, up to
choosing δ a bit smaller, j1 < (1−δ)k0. Let R := R(k) be defined as

R := max

{
r : 2 ≤ r ≤Q and

1

k0

Q∑
q=r

jq > δ
}

,

and we denote

δk := 1

k0

Q∑
q=R

jq .

There is no loss of generality in assuming δ < 1/3. That the jq are in decreasing order ensures that
in that case δ < δk < 1−δ. Recall that for all 1 ≤ q ≤ Q, jq > N hence (11) holds. It is a consequence
again of Lemma 2.6 that

(13)

λ∗
k (R)d/2 ≥

Q∑
q=1

λ jq (Ω)d/2

≥
Q∑

q=1

[
(2π)d

ωd
jq + (A−ε) j

d−1
d

q

]

≥ (2π)d

ωd
k + (A−ε)

Q∑
q=1

j
d−1

d
q +O(1).

We study the sum in the last line of the previous display. It follows from subadditivity of the function
x 7→ xα for α< 1, and from kα0 = kα+O

(
kα−1

)
that

Q∑
q=1

j
d−1

d
q ≥

(
R−1∑
q=1

jq

) d−1
d

+
(

Q∑
q=R

jq

) d−1
d

≥
(
(1−δk )

d−1
d +δ

d−1
d

k

)
k

d−1
d +O

(
k−1/d

)
It is a simple exercise to see that the function x 7→ xα+ (1− x)α, α < 1 being concave and symmetric
on [0,1] and δ< δk < 1−δ imply that

(1−δk )
d−1

d +δ
d−1

d

k ≥ (1−δ)
d−1

d +δ d−1
d ≥ 1+

(
21/d −1

)
δ=: 1+ cdδ,

and cd > 0. Putting this back into (13), it follows that

λ∗
k (R)d/2 ≥ (2π)d

ωd
k + (A−ε) (1+ cdδ)k

d−1
d +O(1).

Choosing

ε= cdδA

2(1+ cdδ)

gives, for k large enough, that

λ∗
k (R)d/2 ≥ (2π)d

ωd
k +

(
A+ Acdδ

3

)
k

d−1
d .

However, since

λk (Ω)d/2 = (2π)d

ωd
k + Ak

d−1
d +o

(
k

d−1
d

)
,



OPTIMAL COPIES AND PÓLYA’S CONJECTURE 21

we have that for k large enough, λk (Ω)d/2 <λ∗
k (R)d/2, a contradiction. Hence, for any δ> 0 there are

no subsequences along which j1(k) < (1−δ)k for all k. It is readily seen that rk,1 converges to 1.
Proof of (3) implies (1). Assume that the Strong Pólya conjecture doesn’t hold for R(Ω). It follows
from Lemma 2.6 that it cannot hold for Ω, so that there is a rank j such that

(14) λ j (Ω)d/2 ≤ (2π)d

ωd
j .

By assumption there is a subsequence, labeled by k, such that

Ω∗
k = (1−εk )ΩtΥk ,

with εk → 0. From Lemma 2.6, for every k there exists a rank jk such that

(15) λ∗
k (R)d/2 = (1−εk )−dλ jk (Ω)d/2,

and that Ω=Ω∗
jk

. It follows from Corollary 2.5 and equation (15) that jk →∞. By the two-term Weyl
law (1), there is A > 0 such that

λ jk (Ω)d/2 = (2π)d

ωd
jk + A j

d−1
d

k +o

(
j

d−1
d

k

)
,

hence there exists a constant C > 0 such that for every k large enough,

(16) λ jk (Ω)d/2 − (2π)d

ωd
jk ≥C j

d−1
d

k .

We now show that for large enough k, Ω is in fact not a minimiser for λ jk amongst R. Write jk =
nk j + r , with j as in (14) and 0 ≤ r < j . Consider the domain Ω′ defined as

(17) Ω′ =
(
λr (Ω)

λ j (Ω)

)1/2

n−1/d
k Ωt

(
nk⊔

q=1
n−1/d

k Ω

)
.

We have constructed Ω′ explicitly so that the first component in (17) has n2/d
k λ j (Ω) as its r th eigen-

value, and all the other components have n2/d
k λ j (Ω) as its j th eigenvalue, it then follows that

λ jk (Ω′)d/2 = nkλ j (Ω)d/2.

Furthermore, ∣∣Ω′∣∣= (
1+

(
λr (Ω)

λ j (Ω)

)d/2 1

nk

)
.

Combining these equalities with (14), we deduce that

∣∣Ω′∣∣λ jk (Ω′)d/2 ≤
(

1+
(
λr (Ω)

λ j (Ω)

)d/2 1

nk

)
(2π)d

ωd
nk j

=
(

1+
(
λr (Ω)

λ j (Ω)

)d/2 j

jk − r

)
(2π)d

ωd
( jk − r )

= (2π)d

ωd
jk +O(1)

This combined with estimate (16) implies that for k large enough,
∣∣Ω′∣∣λ jk (Ω′)d/2 <λ jk (Ω)d/2, contra-

dicting optimality of Ω for λ jk . �
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For the next few results we shall assume that Ω is a minimiser only finitely many times, namely
Ω =Ω∗

k if and only if k ∈ J = { j1, . . . , jp } ⊂N. Our goal is to investigate what the minimisers can be in

such a case. We shall continue to write simply L = infk k−1λ∗
k (Rd/2). We shall say that a minimiserΩ∗

k
realises L if λk (Ω∗

k )d/2 k−1 = L.
Recall that for a set Υ ∈R and n ∈ N , the n-th propagation of Υ is the set

Υ(n) =
n⊔
`=1

1

n1/d
Υ .

Observe that |Υ| = |Υ(n)| and that λk (Υ)d/2 k−1 =λnk (Υ(n))d/2 (nk)−1 for any n ∈N.

Definition 3.6. A minimiserΩ∗
k propagates as a minimiser in R if for every n ∈Nwe haveΩ∗ (n)

k =Ω∗
nk .

A minimiser Ω∗
k weakly propagates as a minimiser in R if there exist a sequence of integers n1 < n2 <

·· ·↗+∞ and a corresponding sequence of minimisers in R of the form

(18) Ω∗
k ′

i
= riΩ

∗ (ni )
k t Υi .

Proposition 3.7. A minimiser Ω∗
k realises L if and only if it propagates as a minimiser in R(Ω).

Proof. Fix k ∈N and a minimiser Ω∗
k . We have λ∗

nk (R) ≤ λnk

(
Ω(n)

k

)
= n2/dλk (Ω∗

k ). Fix n > 1. Whether

or not nk belongs to J , there exist nonnegative integers n1, . . . ,np such that nk =∑p
i=1 ni ji and

λ∗
nk (R)d/2 =

p∑
i=1

niλ
d/2
ji

≥
p∑

i=1
ni ji L = nkL.

Therefore we have

(19) L ≤ λ∗
nk (R)d/2

nk
≤
λnk

(
Ω(n)

k

)d/2

nk
= λk (Ω∗

k )d/2

k
.

In view of this, it follows that Ω∗
k realises L if and only if for every n ∈N both inequalities in (19) are

equalities.
In turn, this is equivalent to only the second inequality being an equality for every n. Indeed, the

latter would imply that the sequence n 7→λ∗
nk (R)d/2 (nk)−1 is constant, but we know that it converges

to L as n →∞ hence the first inequality being an equality too.

Now for any fixed n, the equality λ∗
nk (R)d/2 (nk)−1 =λnk

(
Ω(n)

k

)d/2
(nk)−1 is equivalent to the claim

that Ω(n)
k realises λ∗

nk (R). Consequently, the second inequality in (19) being an equality for every
n ∈ N means precisely that Ω∗

k propagates as a minimiser. �

Lemma 3.8. A minimiser Ω∗
k propagates as a minimiser in R(Ω) if and only if it weakly propagates as

a minimiser in R(Ω).

Proof. The "only if" part is trivial. For the "if" part, consider a sequence of minimisers Ω∗
k j

as in

equation (18). It follows from Lemma 2.6 that for each j ∈ N, the set Ω
∗ (n j )
k realises λ∗

n j k (R). As a

consequence of this and of Corollary 2.5, we compute

λk (Ω∗
k )d/2

k
=
λk

(
Ω

∗ (n j )
k

)d/2

n j k
=
λ∗

n j k (R)d/2

n j k
−→

j→+∞
L .
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This means that Ω∗
k realises L. Proposition 3.7 thus implies that Ω∗

k propagates as a minimiser in
R. �

Let us consider the sets

KL := KL(Ω) := {k ∈N : λ∗
k (R)d/2 k−1 = L } and JL := JL(Ω) = J (Ω)∩KL(Ω) .

We observe that KL is closed under finite sums.
Continuing with the assumption of finite J , Proposition 3.5 implies that the set is not empty. Set

jL = max JL . Proposition 3.7 implies that the minimiser Ω =Ω∗
j associated to j ∈ JL propagates as a

minimiser in R. One might expect these minimisers to be special, for instance to have a minimum
numbers of connected components among minimisers of a given eigenvalue functional, if not to be
unique. These expectations are even more vivid for the propagations of Ω∗

jL
. The next result investi-

gates these possibilities.

Lemma 3.9. Assume JL(Ω) is finite and set jL := max JL(Ω). Let j ∈ JL(Ω). If there exist n ∈ N and a

minimiser Ω∗
n j 6= Ω∗ (n)

j , then { j } ( JL(Ω). If furthermore ν
(
Ω∗

n j

)
≤ ν

(
Ω∗ (n)

j

)
, then j < jL . If instead

ν
(
Ω∗

n j

)
> ν

(
Ω∗ (n)

j

)
, then there exists j ′ ∈ JL(Ω) such that j ′ < j .

Proof. Both Ω∗ (n)
j and Ω∗

n j realises λ∗
n j (R). As a result of Lemma 2.6 we have a decomposition

(20) Ω∗
n j =

p⊔
i=1

ni⊔
m=1

riΩ
∗
ji

with
p∑

i=1
ni ji = n j

which induces the equality

λ∗
n j (R)d/2 =

p∑
i=1

niλ
∗
ji

(R)d/2 .

We claim that there is an index h such that jh 6= j and nh > 0. Otherwise the only positive ni would
be nl where jl = j ; It would follow from (20) that nl = n and that ri = n−1/d

l , hence Ω∗
n j =Ω(n)

j . This is

a contradiction with our assumptions, hence the claim.
Since j ∈ JL , Ω∗ (n)

j realises L and so does Ω∗
n j . We compute

L =
λn j (Ω∗

n j )d/2

n j
= 1

n j

p∑
i=1

niλ
∗
ji

(R)d/2

= 1

n j

p∑
i=1

ni ji

λ∗
ji

(R)d/2

ji
≥ 1

n j

p∑
i=1

ni ji L = L ,

which implies that λ∗
ji

(R)d/2 j−1
i = L for every i such that ni > 0, so in particular for i = h. This means

jh 6= j satisfies jh ∈ JL , hence { j }( JL .

Assume now moreover ν
(
Ω∗

n j

)
≤ ν

(
Ω∗ (n)

j

)
= n. By the pigeonhole principle and – in case the previ-

ous inequality is an equality – by Ω∗
n j 6=Ω∗ (n)

j , at least one of the connected components of Ω∗ (n)
j has

volume strictly greater than n−1. Put differently, if h is the index of such a component then rh > n−1/d .
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We compute

L =
λ∗

jh
(R)d/2

jh
=

r d
h λ jh (rhΩ

∗
jh

)d/2

jh

=
r d

h λ
∗
n j (R)d/2

jh
>

n−1λ∗
n j (R)d/2

jh
= j

jh

λ∗
n j (R)d/2

n j
= j

jh
L ,

which means that j < jh and a fortiori that j < jL .

Assume now instead ν
(
Ω∗

n j

)
> ν

(
Ω∗ (n)

j

)
= n. The pigeonhole principle now implies that at least

one connected component has volume strictly less than n−1. The same argument as before with the
direction of inequalities inverted yields the existence of j ′ = jh ∈ JL such that j > j ′. �

A consequence of this last lemma is that for n ∈N, the domain with the least number of connected
components realising the eigenvalue λ∗

n jL
(R) is unique and is given by the propagation Ω∗ (n)

jL
.

Another consequence of the proof is that KL is generated by JL , that is any k ∈ KL is a finite sum of

elements in JL . Indeed, given k ∈ KL \ JL and a minimiserΩ∗
k , the propagationΩ∗ ( jL )

k realises λ∗
jL k (R).

The connected components of this propagation are thus contracted copies of minimisers canonically
associated with JL and so are the ones of Ω∗

k , hence the result. The minimisers Ω∗
ji
=Ω with ji ∈ JL

are thus the building blocks of any minimiser realising L.

4. BOUNDS FROM PACKINGS

We have just seen that the failure of Pólya’s conjecture for a domain Ω implies that infinitely many
minimisers in R(Ω) are realised by propagators Ω(n) = ∪n

j=1n−1/dΩ. It is thus natural to study the
spectrum of those propagators, notably by geometrically realising them as subsets of other domains,
that is by packing the Ω(n)s into others domains. This packing idea leads to the main result in this
section, to wit an estimate from below on L = infk∈N λ∗

k (R)d/2 k−1 in term of the "packing density" of
Ω. Recall that this packing density was defined in Definition 1.5

We start by proving a few properties of this packing density.

Lemma 4.1. Given three bounded domains Ω, V and W ,

ρΩ,W ≥ ρΩ,V ρV ,W .

Proof. Given any ε> 0, there exist a packing g of Ω(m) into V of density ρg > ρΩ,V −ε and an asymp-
totic packing P = {(ni ,ρi , fi )}i∈N of V into W with asymptotic density ρP > ρV ,W − ε. It is very clear
how g and P can be "composed" to yield an asymptotic packing ofΩ into W with asymptotic density
ρgρP > ρΩ,V ρV ,W −O(ε). The lemma readily follows.

�

Proposition 4.2. Let Ω and V be two bounded domains in Rd with volume 1. Suppose that Ω tiles
Rd and that the upper Minkowski dimension of ∂V is strictly smaller than d. Then ρΩ,V = 1 and thus
ρΩ = 1.

Remark 4.3. We recall that the upperbox dimension or upper Minkowski dimension of a set S ⊂ Rd

could be defined as

dup(S) := d − liminf
r→0+

log |S(r )|
logr
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where S(r ) := {y ∈Rd : ‖y −S‖ < r } is the r -neighborhood of S.

Proof. For simplicity, suppose 0 ∈ int(V ) ⊂ Rd and consider that any homothety to be performed
below is with respect to 0. We shall also think of the tiling F as a mere quasi-inclusion and we will
not use F in our notations.

Since V is bounded, there exists R > 0 such that V ⊂ r V for all r ≥ R. Consequently, we have the
sequence of inclusions

V ⊂ RV ⊂ R2V ⊂ R3V ⊂ . . .

Without lost of generality, take R ∈N.
DenoteΩi the i -th componentΩ in the disjoint unionti∈NΩ. For n ∈N, let In ⊂Nbe the largest set

such that Ωi ⊂ nV for every i ∈ In . This set is finite as its cardinality is at most |nV |/|Ω| = n. Because
of the previous paragraph, IR i ⊂ IR i+1 for every i ∈N. For i ∈N, set ni = # IR i .

Because Ω and hence Ω are bounded, the latter is contained in an open ball B of diameter D . Let

(nV )2D = { p ∈ nV : dist(p, (nV )c ) ≥ 2D } .

We claim that the set (nV )2D \∪i∈In Ωi is empty. Suppose otherwise; then there exist a point x in this
nonempty set and, sinceΩ is a tile, an index i ∈ (In)c such that x ∈Ωi ⊂ Bi . The definition of In implies
Ωi ∩(nV )c 6= ;, so there exists y in this latter intersection and thus in Bi . It follows that dist(x, y) < 2D ,
which is a contradiction. This proves the claim, and consequently (nV )2D ⊂∪i∈InΩi ⊂ nV .

By assumption on ∂(nV ), the volume of the 2D-neighbourhood of ∂(nV ) grows like o(nd ), so that
the volume of (nV )2D grows like nd −o(nd ). From the set inclusions obtained in the previous para-
graph, the same asymptotic is true for the growth of the volume of ∪i∈In Ωi , that is of ] In .

Consider the asymptotic packing P = {(ni ,ρi , fi )}i∈N given by ni = ] IR i , ρi = ni /nd and

fi : Ω(ni ) ∼=ti∈IRi n−1/d
i Ωi ,→ n−1/d

i nV = ρ−1/d
i V .

From the previous paragraph we get ρP = limi→∞ρi = 1, thus ρΩ,V = 1. �

The previous result suggests to define another, a priori smaller notion of packing density, namely
the lower packing number or lower packing density of Ω is

ρ
Ω
= inf

{
ρΩ,V

∣∣∣V bounded domain, |V | = 1, dupperbox(∂V ) < d
}

.

Corollary 4.4. For any bounded domain Ω⊂Rd ,

ρ
Ω
= ρΩ,V > 0

for any bounded tile V ⊂Rd whose boundary has upperbox dimension strictly less than d.

Proof. Let W ⊂Rd be any bounded domain whose boundary has upper Minkowski dimension strictly
less than d . Then from the two previous results we get ρΩ,W ≥ ρΩ,V ρV ,W = ρΩ,V . Taking the infimum
over all W yields the equality claimed in the statement.

To prove the inequality, let’s take V = [0,1]d . Since Ω is bounded, there clearly is some ρ ∈ (0,1]

such that Ω can be packed in ρ−1/d V . Since V (i d ) fully pack V for each integer i , by "composing"
packings we deduce that there is at least one asymptotic packing of Ω into V with constant density
ρ > 0, and a fortiori we get ρΩ,V > 0. �
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Remark 4.5. In the few last results, the assumption on the upperbox dimension – which guaranteed
that the boundary had vanishing Lebesgue measure – was not superfluous. Indeed, given any ε> 0, it
is possible to find a bounded tile Vε ⊂Rd with volume 1 such that |int(Vε)| < ε, for instance by applying
a suitable symmetric adaptation of Knopp’s construction of a Osgood "surface" on the sides of a cube;
the packing density of a typical domain Ω into Vε would thus be smaller than ε. We leave the details to
the industrious reader.

We are now in a position to prove a lower bound on

L := infk λ
∗
k (R)d/2 k−1

for the Dirichlet Laplacian eigenvalue problem in the class R(Ω).

Lemma 4.6. Assume that KL = {k ∈N : λ∗
k (R)d/2 k−1 = L } is non-empty. Then

(21) L ≥ ρΩ (2π)d

ωd
.

Proof. Using Lemma 2.6 in a way we already repeatedly used it before, we deduce from the assump-
tion KL 6= ; that JL = {k ∈ KL : λk (Ω) =λ∗

k (R) } 6= ;. Pick some j ∈ JL .
Let ε> 0 and consider an open bounded domain V with volume 1 such thatρΩ,V ≥ ρΩ−ε/2. Conse-

quently, there exist an asymptotic packing P = {(ni ,ρi , fi )}i∈N of Ω into V such that ρP = limi→∞ρi ≥
ρΩ−ε.

The isometric quasi-embedding fi : Ω∗ (ni )
j → ρ−1/d

i V allows us to view Ω
∗ (ni )
j as a genuine subset

of ρ−1/d
i V . Considering the well-known fact that any Dirichlet eigenvalue functional Υ 7→ λk (Υ) is

decreasing with respect to inclusion, namely that Υ1 ⊂Υ2 implies λk (Υ1) ≥λk (Υ2), it follows that

λni j

(
Ω

∗ (ni )
j

)d/2 ≥λni j

(
ρ−1/d

i V
)d/2

.

The left-hand side is equal to niλ j (Ω∗
j ) = ni j L, whereas the right-hand side equals ρi λni j (V )d/2.

Therefore

L ≥ ρi
λni j (V )d/2

ni j
.

Since limi→∞ρi = ρP ≥ ρΩ−ε and because of Weyl’s asymptotic law, taking the limit i →+∞ on the
right-hand side yields

L ≥ (ρΩ−ε)
(2π)d

ωd
.

As this is true for any ε> 0, the result follows. �

Theorem 1.8 follows as a corollary of the previous Lemma.

Proof of Theorem 1.8. The set J = {k ∈N : Ω realises λ∗
k (R) } is either infinite or finite. If it is infinite,

Proposition 3.3 implies Pólya’s conjecture and a fortiori (21) as ρΩ ≤ 1. If instead it is finite, then
Proposition 3.5 implies that KL is non-empty and the claim follows from the previous lemma. �

We now prove that if a domain V of unit volume satisfies a two-term Weyl law for Dirichlet eigen-
values, then all V -tiles satisfy the strong Pólya conjecture.
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Proof of Theorem 1.11 for Dirichlet eigenvalues. Fix a rank j for which Ω realises λ∗
j . Since Ω is a V -

tile, there is an asymptotic packing P = {(ni ,1, fi )}i∈N of Ω into V with constant packing density 1.
Since V satisfies the two-term Weyl law (1), there is M ∈N such that

λm(V )d/2

m
> (2π)d

ωd
∀m ≥ M .

Consider i ∈N sufficiently large so that ni j ≥ M , and consider the (full) packing fi :Ω(ni ) →V . Invok-
ing the monotonicity of Dirichlet eigenvalues we thus get

λ j (Ω)d/2

j
= λni j (Ω(ni ))d/2

ni j
≥ λni j (V )d/2

ni j
> (2π)d

ωd
.

Considering Proposition 3.5, this implies that Ω realises λ∗
k infinitely often. Using Corollary 2.5, we

deduce

L := inf
k

λ∗
k (R)d/2

k
= inf

j∈J

λ∗
j (R)d/2

j
.

It also means that L is not attained among the indices in J . We claim that L is not attained in
R at all, from which the last part of the theorem readily results. Suppose otherwise, so that there
exist k ∈ N and Ω∗

k ∈ R such that λk (Ω∗
k )k−1 = L. By Lemma 2.6, any connected component of Ω∗

k
is a (contracted copy of some) minimiser Ω∗

m . Note in particular that m ∈ J . From Proposition 3.7
follows thatΩ∗

k propagates as a minimiser, henceΩ∗
m weakly propagates as a minimiser by definition.

Lemma 3.8 implies that Ω∗
m propagates as a minimiser, and so Ω∗

m realises L by Proposition 3.7. This
is a contradiction. �

The proof of Theorem 1.11 for Neumann eigenvalues is a bit more subtle and this is due to the
fact that Neumann eigenvalues do not behave in any simple way under inclusion. This is also why
Theorem 1.8 or modifications of it fail in that situation : the behaviour under inclusion depends on
the eigenfunctions of the Laplacian. When the quasi-embeddings are actually surjective, however, we
can adapt [13, Theorem 63] to our needs.

Lemma 4.7. Let V1, . . . ,VN ,W ⊂ Rd be domains with Lipschitz boundaries. Assume that F : V :=
tN

j=1V j → W is an isometric quasi-embedding, which induces a pullback map F∗ : H 1(W ) → H 1(V )

between Sobolev spaces. Denote EV (k) ⊂ H 1(V ) and EW (k) ⊂ H 1(W ) the subspaces generated by the
first k Neumann eigenfunctions on V and W , respectively. Then for any fixed k ∈N, there is a nonzero
ϕ ∈ EW (k) such that F∗ϕ is L2-orthogonal to EV (k −1) and

µk (V ) ≤
‖ϕ‖2

L2(W )

‖F∗ϕ‖2
L2(V )

µk (W ) .

Proof. Let { fk }k∈N and {gk }k∈N be L2-orthonormal bases of Neumann eigenfunctions on V and W re-
spectively, numbered in increasing order of their eigenvalue. Since F is an isometric quasi-embedding,
we can define pushforwards F∗ fk ∈ L2(W ) by extension by 0 outside the image of F , and {F∗ fk }k∈N
are still L2-orthonormal. Given k ∈N, consider a nonzero linear combination ϕ= ∑k

j=0 a j g j , so that

‖ϕ‖2
L2(W )

= ∑k
j=0 a2

j . The requirement that it be L2-orthogonal to the first k functions F∗ f j uniquely

specifiesϕ up to a multiplicative constant; we note that F∗ϕ is then L2-orthogonal to the first k func-
tions f j . On the one hand, we have∫

W
‖∇ϕ‖2dm =

k∑
i , j=0

ai a j

∫
W
〈∇gi ,∇g j 〉dm =

k∑
j=0

a2
jµ j (W ) ≤µk (W )‖ϕ‖2

L2(W ) ,
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while on the other hand ∫
W

‖∇ϕ‖2dm =
∫

V
‖∇F∗ϕ‖2dm ≥µk (V )‖F∗ϕ‖2

L2(V )

due to the fact that f0, . . . , fk−1,ϕ ∈ H 1(V ) generates a k-dimensional subspaces and the variational
characterization of µK (V ) as the infimum over such subspaces of the maximum of the Rayleigh quo-
tient over elements of the subspace. The claim readily follows. �

Corollary 4.8. In the context of the previous lemma, if we further assume that F is surjective, then
µk (V ) ≤µk (W ) for all k.

Proof. Since the boundary of V has vanishing Lebesgue measure (being Lipschitz) and since F is an
isometry, it follows that ‖ϕ‖2

L2(W )
= ‖F∗ϕ‖2

L2(V )
. �

We now have all the necessary ingredients to prove Theorem 1.11.

Proof of Theorem 1.11 for Neumann eigenvalues. The proof follows the same scheme as the proof of
Theorem 1.11 for Dirichlet eigenvalues, using everywhere the corresponding results; notably, mono-
tonicity is replaced by the Corollary 4.8 and Lemma 2.6 is replaced by Lemma 2.7 �

5. COMPUTATIONAL RESULTS

The proposed way of approaching Pólya’s conjecture for a given domain Ω generates a sequence
of extremal sets made up of copies of Ω. As we have seen, this sequence encodes information as to
whether the generator set Ω satisifes the conjecture, which goes beyond whether the corresponding
eigenvalues satisfy inequalities (4). These include the behaviour of the number of connected com-
ponents of the sequence of extremal sets and the behaviour of the largest scaling coefficient r1,k , for
instance.

In this section, we present an investigation of the set of ranks for which the generator is a min-
imiser for the Dirichlet eigenvalues, and how the above indicators evolve. We chose as generators the
disk, the square, and a rectangle of aspect ratio 1:5. The reasons for choosing these generators are as
follows.

• The exact values of the eigenvalues are known, and can be computed to high accuracy even
at high ranks. This would not necessarily be the case if we had to approximate eigenvalues
using, say, finite element methods.

• It is not known whether or not the disk satisfies Pólya’s conjecture, as opposed to rectangles.
This means that we can compare the evolution of the indicators in comparison for those two
settings.

To generate the set of minimisers, we proceed in two steps. The first one consists in creating a list of
eigenvalues for the generators; for the square and the rectangle this is not a problem since eigenvalues
are given by sum of squares of integers. For the disk the first step consists in generating the zeros of
Bessel functions. We denote by jν,k the k-th zero of the Bessel function Jν. The generation of the list
of jν,k was done using the Chebfun MATLAB package [15]. Two things were important to consider:

• Bessel functions of high rank ν are very small (under machine precision) but strictly positive
for a large interval starting at 0. Root finding algorithms would nevertheless find zeros in that
range.

• All zeros have to be accounted for under a given value.

The first point is adressed by using the well-known fact that the first zero of the Bessel functions Jν is
always located at some x > ν, and Jν is sufficiently large within that range that no spurious zeros are
found. The second point is adressed by using the property that if ν′ > ν, then for all k ∈ N, we have
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that jν′,k > jν,k . Hence, we can choose as natural stopping points the first zero of a Bessel function of
rank N . We then find all jν,k ∈ [ν, jN ,1] and we can be assured that no zeros have been skipped. The
following pseudo-code will generate the list of Dirichlet eigenvalues of the disk (keeping in mind that
the multiplicity of the eigenvalues coming from Bessel zeros of rank ν≥ 1 is 2, and those coming from
J0 have multiplicity 1).

Algorithm 5.1: GENERATEDISKEIGENVALUES(N )

bound = First root of JN above N
evalues = All roots j 2

0,k between 0 and bound
for ν= 1 to N

do evalues = evalues +2 copies of all roots j 2
ν,k between ν and bound

return (evalues)

To find the roots, we used the routine associated with the chebfun type of the aforementionned
Chebfun package.

To find the minimisers, we used an approach based on Theorem 2.6. For some eigenvalue rank, say
k, the minimiser is either the generator, or, for any partition of the set of connected components into
two subsets, these two subsets themselves realise λ∗

j (R) and λ∗
j ′(R) for some j + j ′ = k. Furthermore,

in any such case λ∗
k = λ∗

j +λ∗
j ′ . We therefore can find the minimisers recursively, if we have a list of

the eigenvalues of the generator, and a list of previous minimisers. The following pseudocode will
generate such a list under these conditions; it is defined recursively and outputs a pair consisting
of the list of minimal eigenvalues and a list of the ranks each connected component making up the
minimiser at rank k minimises themselves, according to Theorem 2.6.

Algorithm 5.2: {MINEVS,RANKS}(g ener ator ev s,k)

mi n = g ener ator ev s[k]
mi nr ank = k
for j = 1 to k/2

do if mi nev s[ j ]+mi nev s[k − j ] < mi n

then
{

mi n = mi nev s[ j ]+mi nev s[k − j ]
mi nr ank = j

mi nev s[k] = mi n
if mi nr ank == k

then r anks[k] = {k}
else r anks[k] = r anks[mi nr ank]∪ r anks[k −mi nr ank]

The trichotomy in Theorem 1.3 indicates that if the generator itself is a minimiser infinitely often
in R, then Pólya’s conjecture holds in this case, as well as for any disjoint union of it. As such, we
investigate the log-density of the number ranks for which the generator itself is a minimiser, that is,
the function defined in (5).

Theorem 1.4 tells us that another indicator to verify is the largest homothety coefficient rk of the
minimiser, and that the strong Pólya conjecture is equivalent to this coefficient converging to 1 as
k →∞. As seen in the proof of Theorem 1.4, this is implied also by the rank of the maximal eigenvalue
supported by one of the connected component growing asymptotically like k.

We show these relevant quantities for the case of the disk in Figure 1, with the corresponding values
for the square being shown in Figure 2 for comparison. At a first glance, the qualitative behaviour for
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FIGURE 1. Logarithmic density, largest value of coefficient rk , largest rank of an
eigenvalue on one connected component and the corresponding logarithmic plot,
in the case of the disk.

FIGURE 2. Same as in Figure 2, now in the case of the square.

these two examples appears to be similar, with the only major difference that is visible is that the loga-
rithimc density for the disk as a minimiser in the corresponding sequence appears to be approaching
a value somewhat below that of the square.
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In view of Theorem 3.4, another interesting indicator is the number of connected components of
the minimisers. As we have proved, if it grows at o (k) rate, k being the eigenvalue rank, then Pólya’s
conjecture holds. In the range of eigenvalues that we investigated, Figure 3 shows that for the disk,
square and a rectangle with side ratio 1 : 5, the number of connected components of the minimisers
keeps quite small, both the disk and the square having a maximum of five components, while the
elongated rectangle exhibits at most only three.

FIGURE 3. Histograms of the number of components: from left to right, disk, square,
and rectangle with sides in the proportion of 1 : 5.

Of course, one cannot deduce Pólya’s conjecture from these experiments. However, they show
that from the perspective of the quantities introduced in this paper the behaviour of the disk up to
the range considered is not that dissimilar from that of the square, for instance, which is known to
satisfy Pólya’s conjecture. Furthermore, seeing that the behaviour of these indicators is in line with
Pólya’s conjecture holding, one might hope that it would be easier to prove indirectly results about
the number of connected components of an extremiser, or about convergence to the generator.
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