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Abstract 36 

Individuals with mitochondrial disease often present with psychopathological comorbidity, 37 

and mitochondrial dysfunction has been proposed as the underlying pathobiology in various 38 

psychiatric disorders. Several studies have suggested that medications used to treat 39 

neuropsychiatric disorders could directly influence mitochondrial function. This review 40 

provides a comprehensive overview of the effect of these medications on mitochondrial 41 

function. We collected preclinical information on six major groups of antidepressants and 42 

other neuropsychiatric medications and found that the majority of these medications either 43 

positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, 44 

escitalopram, and haloperidol were identified as having exclusively adverse effects on 45 

mitochondrial function. In the absence of formal clinical trials, and until such trials are 46 

completed, the data from preclinical studies reported and discussed here could inform 47 

medication prescribing practices for individuals with psychopathology and impaired 48 

mitochondrial function in the underlying pathology. 49 

 50 

Keywords: Mitochondria, Electron Transport Chain Complex Proteins, Antidepressive 51 

Agents, Drugs, in vivo studies 52 
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Introduction  54 

Mitochondrial involvement in complex psychopathologies has been well established 55 

(Hroudová et al., 2013; Jou et al., 2009; Karabatsiakis et al., 2014; Kato, 2007; Morava and 56 

Kozicz, 2013; Pei and Wallace, 2018; Preston et al., 2018; Rezin et al., 2009a; Rollins et al., 57 

2009; Shao et al., 2008). Individuals with primary mitochondrial disorder due to a pathogenic 58 

variant in either the nuclear or mitochondrial genome (Rodenburg, 2011), present with a high 59 

prevalence of comorbid psychopathology compared to the general population (Anglin et al., 60 

2012; Colasanti et al., 2020; Fattal et al., 2007; Morava et al., 2010; Rollins et al., 2009). 61 

Similarly, both genetic (primary) or acquired (secondary) mitochondrial dysfunction by, e.g. 62 

stress or toxins, has also been implicated in the pathobiology of several complex 63 

neuropsychiatric disorders including major depressive disorder (MDD) (Ferrari and Villa, 64 

2017; Gardner and Boles, 2011; Hroudová et al., 2013; Karabatsiakis et al., 2014; Koene et 65 

al., 2009; Morava and Kozicz, 2013; Rollins et al., 2009; Wallace, 2018), anxiety disorders 66 

(Einat et al., 2005; Hovatta et al., 2010), bipolar disorder (Iwamoto et al., 2004; Konradi et 67 

al., 2004; Rollins et al., 2009; Strakowski et al., 2000), schizophrenia (Prabakaran et al., 68 

2004; Prince et al., 1999; Rollins et al., 2009; Rollins et al., 2017), and post-traumatic stress 69 

disorder (Preston et al., 2020; Preston et al., 2018). A more causal link between 70 

mitochondrial dysfunction and depression (Gong et al., 2011; Madrigal et al., 2001; Rezin et 71 

al., 2008), anxiety (Filiou and Sandi, 2019; Hollis et al., 2015), and bipolar disorder 72 

(Andreazza et al., 2018; Bodenstein et al., 2019; Kasahara et al., 2006; Kato, 2007; Scola et 73 

al., 2013) has also been established in animal models. Interestingly, as a consequence of 74 

genetic alterations, in the case of Down syndrome, individuals may also present with 75 

secondary mitochondrial dysfunction as part of the pathobiology and often have 76 

psychopathological disturbances as a comorbidity (Vacca et al., 2019). Therefore, 77 
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considering the unique bioenergetic characteristics of an individual with psychiatric disease 78 

should be part of clinical practice. 79 

Consideration of an individual's bioenergetic status is especially important because 80 

antidepressants and other neuropsychiatric medications can directly influence mitochondrial 81 

function, for better or for worse, as highlighted in a recent meta-analysis for mitochondrial 82 

electron transport chain (ETC) CI and CIV (Holper et al., 2019). Other reviews on this 83 

subject (Adzic et al., 2016; Behr et al., 2012; de Oliveira, 2016; De Vries et al., 2020; 84 

Neustadt and Pieczenik, 2008) were either not comprehensive in summarizing the 85 

antidepressants’ effect on all mitochondrial ETC complexes, explored other readout 86 

parameters than complex activities, or investigated only a few antidepressants and their effect 87 

on mitochondrial bioenergetics.  88 

Several different classes of antidepressants and other neuropsychiatric medications are 89 

available for the treatment of psychiatric disorders, including tricyclic antidepressants (TCAs; 90 

e.g., amitriptyline, amoxapine, desipramine, imipramine, and nortriptyline), selective 91 

serotonin reuptake inhibitors (SSRIs; e.g., escitalopram, fluoxetine, fluvoxamine, and 92 

paroxetine), serotonin-norepinephrine reuptake inhibitors (SNRIs; e.g., desvenlafaxine, 93 

duloxetine, levomilnacipran, and venlafaxine), monoamine oxidase inhibitors (MAOIs; e.g., 94 

isocarboxazid, phenelzine, selegiline), norepinephrine-dopamine reuptake inhibitors (NDRIs; 95 

e.g., bupropion), and (a)typical antidepressants or antipsychotics (including agomelatine, 96 

aripiprazole, clozapine, haloperidol, loxapine, olanzapine, quetiapine, risperidone, and 97 

tianeptine). Other medications used to treat neuropsychiatric disorders that do not fit in any of 98 

the groups mentioned above include lithium and ketamine. Bupropion is often categorized as 99 

an atypical antidepressant, but here, we categorized it based on its mechanisms of action, viz. 100 

the blockade of norepinephrine and dopamine reuptake (NDRI) (Ascher et al., 1995).  101 
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The absence of empirical data in humans (e.g. from formal clinical trials) combined 102 

with the prevailing anecdotal opinion that antidepressants and other neuropsychiatric 103 

medications impact mitochondrial function has led to unnecessary withholding of relevant 104 

medications from individuals with underlying primary mitochondrial disease or 105 

psychological disease with mitochondrial dysfunction in the underlying pathobiology 106 

(Hroudová et al., 2013; Jou et al., 2009; Karabatsiakis et al., 2014; Kato, 2007; Morava and 107 

Kozicz, 2013; Pei and Wallace, 2018; Preston et al., 2018; Rezin et al., 2009a; Rollins et al., 108 

2009; Shao et al., 2008). Furthermore, guidance is often sought when prescribing 109 

antidepressants or other neuropsychiatric medications for individuals with psychopathology 110 

and comorbid mitochondrial dysfunction. Our aim is to provide a consolidated resource of 111 

preclinical evidence in order to provide a transparent, and unbiased resource on the effects of 112 

neuropsychiatric medications on mitochondrial ETC complex function and closely related 113 

enzymes. 114 

 115 

Methods 116 

PubMed was used to search for original studies published in the English language 117 

between January 1975 and August 2020, investigating the effect of antidepressants or other 118 

neuropsychiatric medications on mitochondrial function in vivo. The following search string 119 

was used, resulting in 785 hits: (antidepressant OR antidepressants OR "antidepressant 120 

drugs") AND (mitochondria OR "mitochondrial function" OR "mitochondrial dysfunction" 121 

OR "electron transport chain" OR "oxidative phosphorylation") AND ("in vivo" OR rat OR 122 

mouse OR animal). The title and abstract of these 785 hits were screened for eligibility based 123 

on the following inclusion and exclusion criteria. Additionally, the authors reviewed the 124 

references of identified papers for eligible studies missed during the initial literature search. 125 

This search resulted in the inclusion of 46 articles in the review (Fig. 1).  126 
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Inclusion criteria: 1) In vivo rodent studies; 2) Studies investigating antidepressants or 127 

other neuropsychiatric medications on mitochondrial ETC complex activity as a primary 128 

outcome measurement; 3) Studies using non-genetically modified animals; 4) Only naïve 129 

animals were considered since pre-treatment with other drugs or stress can also directly 130 

influence mitochondrial protein expression and function, primarily in a negative manner 131 

(Głombik et al., 2016; Głombik et al., 2018; Gong et al., 2011; Madrigal et al., 2001; Picard 132 

and McEwen, 2018; Rezin et al., 2008); 5) Articles representing a primary research paper; 6) 133 

Full text available (conference abstracts excluded).  134 

Exclusion criteria: Studies solely reporting on protein expression, mitochondrial 135 

membrane potential, mitochondrial morphology, mitophagy, mitochondrial DNA copy 136 

number and integrity, and oxidative stress parameters. Although all these processes are linked 137 

to mitochondrial function, they are either upstream or downstream of mitochondrial ETC 138 

function, and the focus of this review is mitochondrial ETC complex activity. In addition, in 139 

vitro studies and studies on discontinued antidepressants have been excluded.  140 

 141 

Assessing mitochondrial function 142 

In order to assess the effects of antidepressants and other neuropsychiatric 143 

medications on mitochondrial energy metabolism, in this review we specifically focused on 144 

the mitochondrial electron transport chain (ETC) complex activity (function). The ETC is 145 

comprised of four enzymatic complexes situated in the inner mitochondrial membrane. In 146 

short, complex I through complex IV (NADH:ubiquinone oxidoreductase [CI], succinate 147 

dehydrogenase [CII or SDH], ubiquinol:cytochrome c oxidoreductase [CIII], and cytochrome 148 

C oxidase [CIV]) are part of the ETC (also called the respiratory chain) where NADH and 149 

FADH are utilized to transport electrons along the different complexes. The final electron 150 

acceptor is oxygen (O2) at CIV, which is then oxidized to water (H20). This transfer of 151 
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electrons generates energy which is subsequently used to pump protons over the 152 

mitochondrial inner membrane from the mitochondrial matrix to the intermembrane space 153 

establishing an electrochemical gradient. This so-called proton motive force, or membrane 154 

potential, is then harnessed by ATP synthase (complex V; CV) to produce the high energy 155 

content molecule of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and 156 

inorganic phosphate (Pi). This whole process is called oxidative phosphorylation (OXPHOS) 157 

(Fig. 2A).  158 

The activity of each complex can be measured directly and individually using 159 

spectrophotometric measurement approaches (Rodenburg, 2011). Additionally, enzymes 160 

involved in the Krebs cycle, such as citrate synthase (CS) or malate dehydrogenase (MDH), 161 

can be analyzed. CS catalyzes the first step in the Krebs cycle. CS is often used as a proxy for 162 

the mitochondrial matrix, as a measure of the intactness of isolated mitochondria, or to test 163 

the matrix purity after mitochondrial subfractions. CS is also a widely used proxy in clinical 164 

practice as well as in our field of research for mitochondrial mass. MDH catalyzes the last 165 

step of the Krebs cycle and has also been related to the pathology of MDD (Scaini et al., 166 

2010).  167 

In addition to the activities of the individual complexes, respiration analysis is also 168 

frequently used to investigate mitochondrial function, with oxygen consumption acting as a 169 

readout parameter. State 3 and state 4 respiration in the presence of different substrates are 170 

often reported using these assays. State 3 respiration measures ADP-stimulated oxygen 171 

consumption by intact mitochondria. Conversely, state 4 respiration measures oxygen 172 

consumption in the absence of ADP, which measures the energy required for the maintenance 173 

of the membrane potential.  174 

Lastly, four studies included in this review measured mitochondrial complex IV (CIV) 175 

activity using histochemical stainings (González-Pardo et al., 2008; Lambert et al., 1999; 176 
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Prince et al., 1998; Shumake et al., 2010). It is important to note that this technique gives 177 

insight into CIV activity; however, the results are not interchangeable with 178 

spectrophotometric CIV measurements. 179 

 180 

The impact of antidepressants and other neuropsychiatric medications on 181 

mitochondrial function  182 

In this section we focused on the effects of different antidepressants and other 183 

neuropsychiatric medications on mitochondrial function. We divided them into six segments 184 

according to the different drug classes and summarized those classes and their overall effects 185 

on mitochondrial function. We also discussed the potential clinical relevance of these 186 

findings and some suggestions for future study. 187 

 188 

Tricyclic antidepressants (TCAs)  189 

TCAs were among the first antidepressants developed (Stahl, 1998). Although they 190 

have mostly been replaced over time by alternatives with fewer side effects, TCAs remain a 191 

last resort after other antidepressants have failed. They work by blocking the reuptake of 192 

serotonin and norepinephrine but also interact with several other receptor sites, including 193 

histamine, acetylcholine, and epinephrine receptors (Feighner, 1999; Stahl, 1998). The 194 

interaction with these other receptor sites predominantly causes the adverse side effects of 195 

TCAs (Feighner, 1999). There are currently several licensed TCAs on the market. Impact on 196 

mitochondrial function has only been assessed for four of the TCAs: amitriptyline, 197 

desipramine, imipramine, and nortriptyline. Results are summarized in Table 1. 198 

We identified one study investigating amitriptyline and its effect on the complexes of 199 

the mitochondrial ETC. The authors found that a single intraperitoneal (ip) administration of 200 
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amitriptyline negatively influenced complex IV (CIV) activity in several different brain areas 201 

of male CD1 mice (González-Pardo et al., 2008), an outbred mouse strain.  202 

This negative effect of amitriptyline contrasts with studies investigating desipramine 203 

(Villa et al., 2017; Villa et al., 2016). Specifically, the effect of chronic desipramine 204 

administration in male Sprague Dawley rats was investigated. Desipramine increased the 205 

activity of CS in both studies. Depending on the brain area, CIV activity was either increased 206 

in the frontal cortex and hippocampus (Villa et al., 2017; Villa et al., 2016) or decreased in 207 

the hippocampus (Villa et al., 2017). Complex II (CII) and MDH activities were consistently 208 

found to be decreased after desipramine treatment in both studies in the frontal cortex but not 209 

in the hippocampus (Villa et al., 2017; Villa et al., 2016). These results suggest a potential 210 

brain area-specific effect of desipramine on mitochondrial function.  211 

The tricyclic antidepressant that was investigated in the most studies returned was 212 

imipramine, which mostly shows positive or neutral effects on mitochondrial function after 213 

acute or chronic treatments (Abelaira et al., 2011; Della et al., 2012; Katyare and Rajan, 214 

1988; Katyare and Rajan, 1995; Réus et al., 2012a; Réus et al., 2012b). The majority of 215 

studies in male Wistar rats showed an increased CII activity after acute or chronic 216 

administration in several different brain regions (Abelaira et al., 2011; Della et al., 2012; 217 

Réus et al., 2012a; Réus et al., 2012b). Furthermore, CS increased in two studies following 218 

acute administration; however, this effect was gone following chronic administration 219 

(Abelaira et al., 2011; Della et al., 2012). Two studies using female Wistar rats showed, in 220 

general, an increase in state 3 and state 4 respiration in the brain (Katyare and Rajan, 1995) as 221 

well as the liver (Katyare and Rajan, 1988). 222 

Besides these positive effects of imipramine, it seems mitochondrial complex I (CI) 223 

function in the prefrontal cortex was negatively affected in male Wistar rats following a 224 

single injection (Abelaira et al., 2011; Della et al., 2012). Interestingly, this finding was not 225 
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present after chronic imipramine treatment (Abelaira et al., 2011; Della et al., 2012). Réus et 226 

al. (2012a) reported increased CI activity in the striatum but decreased CI activities in the 227 

hippocampus and striatum after a single imipramine administration. In contrast, chronic 228 

imipramine treatment resulted in increased CI activity in the prefrontal cortex (Réus et al., 229 

2012a).  230 

Lastly, the TCA nortriptyline was investigated in two studies returned, and mainly 231 

exhibited neutral or positive effects on mitochondrial function (Scaini et al., 2011; Scaini et 232 

al., 2010). Nortriptyline increased CI, CII, and CIV activity in several brain areas following 233 

chronic administration in male Wistar rats (Scaini et al., 2010)(Scaini et al., 2011). 234 

 235 

Selective serotonin reuptake inhibitors (SSRIs) 236 

The most widely prescribed treatments for MDD and several other psychopathologies 237 

are SSRIs (Moore and Mattison, 2017; Olfson and Marcus, 2009). As the name implies, they 238 

work by selectively inhibiting serotonin reuptake by neurons. SSRIs have similar efficacy to 239 

TCAs, only with fewer side effects (Anderson, 2000; Undurraga and Baldessarini, 2017). 240 

Because of these fewer side effects, treatment discontinuation is lower relative to TCA 241 

treatments (Anderson, 2000). Currently, several different SSRIs are used to treat 242 

neuropsychiatric disorders. Our literature search identified four SSRIs (escitalopram, 243 

fluoxetine, fluvoxamine, and paroxetine) whose effect on mitochondrial function had been 244 

assessed. Results are summarized in Table 2. 245 

We identified two studies investigating the effect of escitalopram on mitochondrial 246 

functioning (Gonçalves et al., 2012; Shetty et al., 2015). The first study showed that chronic 247 

escitalopram treatment in male Wistar rats resulted in an overall negative effect on 248 

mitochondrial function. More specifically, CI, CII, and complex II+III (CII-CIII) activities 249 

were all found to be decreased in several different brain regions, including the cerebellum, 250 
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hippocampus, and striatum (Gonçalves et al., 2012). Conversely, one study found no effect of 251 

chronic escitalopram treatment on mitochondrial functioning in female Wistar rats, although, 252 

in this study, only whole brain homogenate was used to investigate mitochondrial activities 253 

(Shetty et al., 2015).  254 

The majority of the studies investigating SSRIs used fluoxetine; we identified thirteen 255 

studies investigating mitochondrial function following fluoxetine treatment (Adzic et al., 256 

2013; Adzic et al., 2017; Agostinho et al., 2011a; Agostinho et al., 2011b; da Silva et al., 257 

2015a; da Silva et al., 2015b; Shumake et al., 2010; Simões‐Alves et al., 2018; Sonei et al., 258 

2017; Souza et al., 1994; Tutakhail et al., 2019; Villa et al., 2017; Villa et al., 2016). Based 259 

on these studies, one cannot easily conclude whether fluoxetine has a positive or negative 260 

effect on mitochondrial function. Some studies report overall positive or neutral effects on 261 

mitochondrial function (Adzic et al., 2017; Agostinho et al., 2011a; Sonei et al., 2017; 262 

Tutakhail et al., 2019), while other studies found differing effects depending on, for example, 263 

the brain region or dose of administration (Adzic et al., 2013; Agostinho et al., 2011b; 264 

Shumake et al., 2010; Souza et al., 1994; Villa et al., 2017; Villa et al., 2016).  265 

Despite these differences, several similar outcomes were observed between studies 266 

following fluoxetine treatment. First, it seems that after acute or chronic administration, state 267 

4 respiration is elevated (da Silva et al., 2015a; da Silva et al., 2015b; Simões‐Alves et al., 268 

2018; Souza et al., 1994), which would indicate the mitochondria spent more energy on 269 

sustaining the membrane potential. Second, several studies reported that fluoxetine has either 270 

no effect on CS activity (Agostinho et al., 2011a; Agostinho et al., 2011b; Tutakhail et al., 271 

2019; Villa et al., 2017) or increased CS activity following acute administration (Agostinho 272 

et al., 2011a). This increased activity could either indicate a positive effect on mitochondrial 273 

biogenesis after a single injection, which is no longer present after chronic treatment, or this 274 
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could reflect a compensatory mechanism caused by mitochondrial dysfunction or increased 275 

energy demand following the administration of fluoxetine.  276 

Only a few studies investigated CI and CII while no studies investigated complex III 277 

(CIII) function following fluoxetine administration. The one study investigating CI activity 278 

found that acute administration increased CI activity in male Wistar rats (Agostinho et al., 279 

2011b), while chronic administration lowers its activity (Agostinho et al., 2011b). 280 

Conversely, CII activity after chronic fluoxetine treatment was either found to be unaltered in 281 

male Wistar rats (Agostinho et al., 2011b) or decreased in male Sprague Dawley rats (Villa et 282 

al., 2016).  283 

Most studies returned analyzed mitochondrial CIV activity following fluoxetine 284 

treatment. Acute fluoxetine administration does not seem to influence CIV activity in male 285 

Wistar rats (Agostinho et al., 2011b). Conversely, chronic treatment resulted in positive or 286 

negative effects (Adzic et al., 2013; Adzic et al., 2017; Agostinho et al., 2011b; Shumake et 287 

al., 2010; Villa et al., 2017; Villa et al., 2016). Fluoxetine's effect on CIV depended on the 288 

dose, the investigated brain area, as well as the animal model used. For example, chronic 289 

treatment of male "congenitally helpless" Sprague Dawley rats, a rat model of susceptibility 290 

to affective disorders, resulted in increased CIV activity in the ventral tegmental area 291 

(Shumake et al., 2010). At the same time, the habenula, dentate gyrus, and dorsomedial 292 

prefrontal cortex exhibited decreased CIV activity (Shumake et al., 2010), while Villa et al. 293 

(2016) found increased CIV activity in the frontal cortex after chronic fluoxetine 294 

administration in male Sprague Dawley rats (Villa et al., 2016). One study investigated the 295 

effect of fluoxetine (administered via the drinking water) on mitochondrial function in male 296 

Balbc-j mice and found no effect on mitochondrial CIV activity in the skeletal muscle 297 

(Tutakhail et al., 2019). 298 
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Interestingly, sex-specific effects following chronic fluoxetine treatment have also 299 

been reported in Wistar rats (Adzic et al., 2013; Adzic et al., 2017). Specifically, CIV activity 300 

was not altered in the hippocampus in female Wistar rats (Adzic et al., 2013; Adzic et al., 301 

2017), while it was increased in the hippocampus and decreased in the prefrontal cortex in 302 

male Wistar rats (Adzic et al., 2013; Adzic et al., 2017).  303 

Comparable to fluoxetine's effect on mitochondrial function, chronic fluvoxamine 304 

administration showed mixed results on bioenergetics in male Wistar rats (Ferreira et al., 305 

2014). Fluvoxamine treatment resulted in an increased CS activity in the prefrontal cortex but 306 

decreased CS activity in the cerebellum, hippocampus, and cortex. In a similar pattern, CI 307 

was found to be decreased in the hippocampus and striatum (Ferreira et al., 2014). 308 

Interestingly 10 mg/kg fluvoxamine decreased CI activity, while 30 mg/kg increased CI 309 

activity in the prefrontal cortex, suggesting a dose-dependent effect on mitochondrial 310 

function (Ferreira et al., 2014). In summary, one can conclude that chronic fluvoxamine 311 

treatment results in diverging effects on mitochondrial complex activities in different brain 312 

regions in response to different doses. For more details, consult Table 2. 313 

Paroxetine treatment seems to have positive effects on mitochondrial function in male 314 

Wistar rats (Scaini et al., 2011; Scaini et al., 2010). Chronic paroxetine administration 315 

increased CS activity, indicating an increased number of mitochondria, as well as increased 316 

CI, CII, and CIV activities in several brain areas, including the prefrontal cortex, 317 

hippocampus, and striatum (Scaini et al., 2011; Scaini et al., 2010). 318 

 319 

Serotonin-norepinephrine reuptake inhibitors (SNRI)  320 

SNRIs are mostly used as second-line treatments (Forns et al., 2019), and work as 321 

dual inhibitors of both serotonin and norepinephrine reuptake. Of the currently available 322 

SNRIs, we only identified studies assessing venlafaxine's effect on mitochondrial function 323 
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(Scaini et al., 2011; Scaini et al., 2010). These findings are summarized in Table 3. 324 

Venlafaxine increased CII and CIV activity in the prefrontal cortex, and CII activity in the 325 

hippocampus and striatum of male Wistar rats following chronic administration (Scaini et al., 326 

2011; Scaini et al., 2010). 327 

 328 

Norepinephrine-dopamine reuptake inhibitors (NDRI)  329 

NDRIs do not directly influence the serotonin system; they work by inhibiting the 330 

reuptake of norepinephrine and dopamine. In the class of NDRIs, only bupropion is used to 331 

treat depression (Stahl, 1998), and we only identified one study investigating its effect on 332 

mitochondrial function (Ferreira et al., 2012). The results are summarized in Table 4. The 333 

authors' main observation was that chronic treatment with bupropion increased CII activity in 334 

several brain regions, including the hippocampus, striatum, prefrontal cortex, and cerebellum 335 

in male Wistar rats (Ferreira et al., 2012). The authors did not report any effect on other 336 

complexes of the ETC (Ferreira et al., 2012). 337 

 338 

(A)typical antipsychotics  339 

Antipsychotics are primarily used to treat hallucinations and delusions in patients with 340 

neuropsychiatric disorders, while one of the most common off-label uses of antipsychotics is 341 

for treatment-resistant depression (Meltzer, 2013). There are two main classes of 342 

antipsychotics; typical and atypical antipsychotics, with typical antipsychotics being 343 

dopamine antagonists, and atypical antipsychotics being dopamine and serotonin antagonists 344 

(Stahl, 2013). Several mechanisms might explain the working mechanism for antipsychotics 345 

as antidepressants. These include the blockade of neurotransmitter receptors and monoamine 346 

transporters, effects on sleep, decrease of cortisol levels, and an increase in neurotrophic 347 

growth factors (Sagud et al., 2011). Of the several available typical antipsychotics, only 348 
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haloperidol was included in this review. Several more atypical antipsychotics were included, 349 

including aripiprazole, clozapine, and olanzapine. The results are summarized in Table 5.  350 

Only one report investigating the effect of aripiprazole on mitochondrial function was 351 

identified (Streck et al., 2007). After chronic administration, Streck et al. (2007) reported 352 

increased CII activity in the prefrontal cortex at the highest administered concentration in 353 

male Wistar rats, whereas no effect on CIV was found (Streck et al., 2007). 354 

Of the three studies we identified which investigated clozapine (Prince et al., 1997, 355 

1998; Streck et al., 2007), two observed an increase in CIV activity in several brain areas, 356 

including the frontal cortex and hippocampus of male Sprague Dawley rats chronic (Prince et 357 

al., 1997, 1998). Conversely, Streck et al. (2007) found no effect on CIV activity but reported 358 

a decreased CII activity in the striatum of male Wistar rats following chronic clozapine 359 

(Streck et al., 2007). 360 

The same three studies that investigated clozapine also investigated the effects of 361 

haloperidol on mitochondrial function (Prince et al., 1997, 1998; Streck et al., 2007). 362 

Independent of duration (acute or chronic), CI activity was decreased in several brain areas of 363 

male Sprague Dawley rats following haloperidol administration (Prince et al., 1997, 1998). In 364 

contrast, haloperidol exhibited a time-dependent effect on CIV activity in the frontal cortex, 365 

After a short administration, no effect was measured, while after chronic administration for 366 

14 days, CIV activity was decreased. However, following a more prolonged administration of 367 

28 days, CIV activity increased (Prince et al., 1997). This increase in the frontal cortex after 368 

28 days was confirmed in a follow-up study. Interestingly, the same study found that 28 days 369 

of haloperidol administration resulted in decreased CIV activity in the cerebellum (Prince et 370 

al., 1998). In male Wistar rats, no effect of haloperidol was found on CIV in several brain 371 

areas, but CII activity was decreased in the hippocampus and striatum of chronically treated 372 

male Wistar rats (Streck et al., 2007). 373 
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Three studies returned investigated olanzapine’s effects on mitochondrial function 374 

(Agostinho et al., 2011a; Agostinho et al., 2011b; Streck et al., 2007). A single injection of 375 

olanzapine increased CI, CII, and CS activity in the prefrontal cortex, striatum, and 376 

hippocampus of male Wistar rats, but decreased CIV activity in the hippocampus (Agostinho 377 

et al., 2011a; Agostinho et al., 2011b). Chronic treatment, however, decreased CII activity in 378 

the cerebellum, and CIV activity in the hippocampus, while increasing the CII-CIII activity in 379 

the striatum (Agostinho et al., 2011b; Streck et al., 2007). 380 

 381 

Other drugs  382 

The remaining drugs that do not fit into a specific antidepressant category, but can be 383 

used for the treatment of depression, are shown in Table 6. In total, twenty studies were 384 

identified investigating eight different drugs: agomelatine, harmine, ketamine, lithium, 385 

memantine, methylphenidate, tianeptine, and valproate. The relatively novel atypical 386 

antidepressant agomelatine is a melatonergic MT1 and MT2 receptor agonist and 387 

serotoninergic 5-HT2b and 5-HT2c receptors antagonist (Guaiana et al., 2013). Harmine is a β-388 

carboline that produces antidepressant-like effects in animal experiments (Liu et al., 2017). 389 

Ketamine and memantine are both glutamate N-methyl-D-aspartate (NMDA) receptor 390 

antagonists (Abdallah et al., 2015; DeWilde et al., 2015) with antidepressant effects (Ates-391 

Alagoz and Adejare, 2013). Ketamine is classically used as an anaesthetic (Kurdi et al., 392 

2014), but in recent years subanesthetic doses of ketamine have shown promise as a treatment 393 

for depression; it is mostly known for its rapid effects in patients with treatment-resistant 394 

depression (Serafini et al., 2014). Memantine is typically used in treating Alzheimer disease, 395 

but an increasing number of studies have investigated its antidepressant effects (Zdanys and 396 

Tampi, 2008). Lithium is mainly used as a mood-stabilizing agent that can also be used as an 397 

adjunctive treatment for MDD or in individuals suffering from treatment-resistant depression 398 
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(Edwards et al., 2013). Methylphenidate is usually prescribed to treat attention deficit 399 

hyperactivity disorder (Challman and Lipsky, 2000). While the mode of action of 400 

methylphenidate is similar to that of NDRIs, we have categorized it here as, in clinical 401 

practice, it is rarely categorized as an NDRI, regardless of its mechanism of action. The 402 

atypical antidepressant tianeptine increases serotonin uptake in the brain and is a -opioid 403 

receptor agonist that can be used to treat depressive disorders, including in individuals with 404 

concomitant depression and anxiety symptoms (Gassaway et al., 2014; Kasper and McEwen, 405 

2008; Wagstaff et al., 2001). Valproate is mainly used to treat bipolar disorders (Citrome, 406 

2014; Liu, 2014), but has recently also been found to be an effective adjunctive treatment in 407 

individuals with treatment-resistant depression (Fengpei, 2018; Ghabrash et al., 2016).  408 

We identified two studies that investigated the effect of the atypical antidepressant 409 

agomelatine on mitochondrial function (de Mello et al., 2016; Gupta and Sharma, 2014). The 410 

first did not find any effect of agomelatine on mitochondrial function in either male or female 411 

Wistar rats after chronic administration (Gupta and Sharma, 2014). The second study, on the 412 

other hand, found several mixed effects of agomelatine on mitochondrial function (de Mello 413 

et al., 2016). After chronic administration of lower doses, agomelatine increased, but at 414 

higher doses decreased CI activity in the prefrontal cortex, cerebellum, and striatum of male 415 

Wistar rats (de Mello et al., 2016). For CIV activity, this phenomenon was reversed; at lower 416 

concentrations agomelatine decreased, while at higher concentrations, it increased CIV 417 

activity (de Mello et al., 2016). This discrepancy between studies could be attributed to the 418 

differential experimental setups: Gupta and Sharma (2014) gave the drug via an oral cannula 419 

with lower doses compared to the study by de Mello et al. (2016), which utilized higher-dose 420 

ip injections. 421 

One study returned investigating harmine demonstrated that a single dose increased 422 

CI and CIV activity in the striatum in male Wistar rats (Réus et al., 2012a). Chronic 423 
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administration of harmine gave similar effects on mitochondrial function as a single 424 

administration (Réus et al., 2012a). 425 

Ketamine and its effect on mitochondrial function was investigated in five studies, all 426 

using male Wistar rats (Rezin et al., 2010; Rezin et al., 2009b; Venâncio et al., 2013; 427 

Venâncio et al., 2015; Zugno et al., 2015). The results from these studies are relatively 428 

heterogeneous with two studies reporting no effect on mitochondrial activity after either a 429 

single injection (Rezin et al., 2009b) or chronic administration of ketamine (Rezin et al., 430 

2010). Another study reported both positive, as well as negative effects, depending on the 431 

brain area and the investigated mitochondrial ETC complex after a single ketamine injection 432 

(Zugno et al., 2015). In addition to the brain, mitochondrial activity was also investigated in 433 

the rat liver following chronic ketamine administration (Venâncio et al., 2013). This 434 

prolonged administration resulted in a decreased CI activity, as well as increased state 3 and 435 

state 4 respiration rates in the presence of the substrates glutamate and malate (Venâncio et 436 

al., 2013). In addition, Venâncio et al. (2015) investigated ketamine administration at higher 437 

concentrations (50-150 mg/kg ip injections) compared to the aforementioned studies (Rezin 438 

et al., 2010; Rezin et al., 2009b; Venâncio et al., 2013; Zugno et al., 2015) which primarily 439 

resulted in an increased state 4 respiration and decreased CI activity in the brain following a 440 

single injection (Venâncio et al., 2015). 441 

Seven studies returned investigated the effects of lithium on mitochondrial activity 442 

(Bachmann et al., 2009; Feier et al., 2013; Kim et al., 2016; Lambert et al., 1999; Streck et 443 

al., 2015; Tan et al., 2012; Valvassori et al., 2010). In general, most studies returned 444 

concluded that lithium did not affect mitochondrial function, based on multiple animal 445 

models, administration durations, administration methods, as well as multiple brain areas 446 

investigated (Bachmann et al., 2009; Feier et al., 2013; Kim et al., 2016; Lambert et al., 1999; 447 

Streck et al., 2015; Tan et al., 2012; Valvassori et al., 2010).  448 
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We identified one study investigating the effects of memantine on mitochondrial 449 

function in male Wistar rats (Réus et al., 2012b). The activities of CI, CII, and CII-CIII were 450 

increased in the hippocampus and striatum following a single injection (though only at the 451 

lowest concentration) (Réus et al., 2012b). After chronic administration, the activities of CI 452 

(prefrontal cortex), CII (prefrontal cortex and striatum), CII-CIII (prefrontal cortex, 453 

hippocampus, striatum), and CIV (prefrontal cortex, hippocampus, striatum) were increased, 454 

while CI activity was decreased in the hippocampus and striatum (Réus et al., 2012b). 455 

We identified two studies which investigated the effects of methylphenidate on 456 

mitochondrial function (Fagundes et al., 2010; Fagundes et al., 2007). Following a single 457 

injection, a decreased CI activity was reported in the cerebellum and prefrontal cortex of 458 

male Wistar rats (Fagundes et al., 2010). However, this decreased CI activity was not 459 

detectable following chronic administration with methylphenidate (Fagundes et al., 2010), 460 

and the activities of CII and CIV were instead increased in several brain regions, including 461 

the cerebellum, cortex, striatum, hippocampus, and prefrontal cortex (Fagundes et al., 2007). 462 

The atypical antidepressant tianeptine and its effects on mitochondrial function was 463 

investigated by two studies (Della et al., 2012; Della et al., 2013). These studies also showed 464 

that there were differing effects of either a single or chronic administration of tianeptine on 465 

mitochondrial function in male Wistar rats. Specifically, a single injection of tianeptine 466 

decreased CS activity in the prefrontal cortex, while CS activity increased in the 467 

hippocampus following chronic administration (Della et al., 2012; Della et al., 2013). 468 

Similarly, after a single injection, CIV was not affected, while after prolonged administration, 469 

CIV activity was increased in the hippocampus (Della et al., 2012; Della et al., 2013). One 470 

finding that is consistent between acute and chronic administration of tianeptine is the 471 

increased activity of CII-CIII in the hippocampus (Della et al., 2012; Della et al., 2013). 472 
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Lastly, we identified four studies that met our inclusion criteria analyzing the effects 473 

of valproate on mitochondrial function (Bachmann et al., 2009; Feier et al., 2013; Streck et 474 

al., 2015; Valvassori et al., 2010). Similar to the lithium treatment studies, most 475 

mitochondrial parameters were not affected by administration of valproate (Bachmann et al., 476 

2009; Feier et al., 2013; Streck et al., 2015; Valvassori et al., 2010). However, one study 477 

showed positive effects following valproate administration, namely an increased CII activity 478 

in the cerebral cortex of C57BL/6 mice (Streck et al., 2015). It is important to note that the 479 

specific C57BL/6 strain cannot be determined based on the information provided. This would 480 

have been important information since there are several C57BL/6 mouse strains. The 481 

C57BL/6J and C57BL/6Jcrl strains lack an important mitochondrial enzyme caused by a 482 

deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene, while two other strains 483 

possess this gene (C57BL/6N and C57BL/6eiJ). A lack of NNT could have direct effects on 484 

mitochondrial function, making it important to specify and be considered when interpreting 485 

findings from different C57BL/6 mouse strains (Bertero and Maack, 2018; Enríquez, 2019; 486 

Ho et al., 2017). 487 

 488 

Discussion 489 

Antidepressants are the first line of treatment in various psychiatric diseases. The 490 

complex and heterogeneous nature of most psychiatric diseases results in differing treatment 491 

response. Specifically, only about 50% of individuals experience remission and a relatively 492 

large percentage of individuals do not respond, or develop resistance, to antidepressant 493 

medications (Al-Harbi, 2012; Kessler et al., 2003). Therefore, identifying modulators of 494 

treatment response and personalized treatment are of utmost relevance. One such modulator 495 

could be mitochondrial dysfunction (also see introduction). Therefore, considering the unique 496 

bioenergetic characteristics of an individual with psychological disease could lead to 497 
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personalized antidepressant treatment suited to their underlying mitochondrial bioenergetic 498 

capacity, in a personalized medicine approach.  499 

We highlighted antidepressants and other neuropsychiatric medications from several 500 

different classes and their effects on mitochondrial function. We found that several of these 501 

medications positively influenced mitochondrial function, including nortriptyline, paroxetine, 502 

venlafaxine, bupropion, aripiprazole, and memantine (Fig. 2B). Several other medications 503 

showed both positive and negative influences on mitochondrial function, including 504 

imipramine, desipramine, fluoxetine, fluvoxamine, methylphenidate, agomelatine, clozapine, 505 

olanzapine, tianeptine, ketamine, and lithium (Fig. 2B). Ultimately the effects of 506 

antidepressants and other neuropsychiatric medications on mitochondrial function appear to 507 

depend on the particular brain area, the treatment duration, and the concentration of the drug 508 

administered. Lastly, we also identified three drugs that had detrimental effects on 509 

mitochondrial function, including amitriptyline, escitalopram, and haloperidol (Fig. 2B). 510 

Interestingly, the effects of the antidepressants and other neuropsychiatric medications 511 

assessed in this review on mitochondrial function does not seem to relate in any way to the 512 

class of the drug. Therefore, in clinical practice, the class of antidepressant would not guide 513 

clinicians on the effect of an antidepressant on mitochondrial function.  514 

 515 

Limitations of the literature 516 

Although the effects of various antidepressants and neuropsychiatric medications on 517 

mitochondrial function in rodents is widely studied, there are still several research gaps in the 518 

field. For example, as far as we were able to ascertain, no studies investigated the effect of 519 

monoamine oxidase inhibitors on mitochondrial function.  520 

We found several studies where not all mitochondrial complexes of the ETC were 521 

assayed. This lack of data could be important as it can mask negative or positive effects of 522 
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certain drugs on mitochondrial function. For example, a potentially positive effect on CIV 523 

does not necessarily mean a positive effect on CI or CII as seen in, e.g.: (Abelaira et al., 524 

2011; Agostinho et al., 2011b; Réus et al., 2012b; Villa et al., 2016). Another limitation is 525 

that we often lack confirmation of the described effects of antidepressants or other 526 

neuropsychiatric medications on mitochondrial function by other laboratories/research 527 

groups. Several studies presented in this review had been performed by a single laboratory 528 

and have not been replicated independently by other laboratories. 529 

In addition to this, none of the identified studies used CS or any other marker for 530 

mitochondrial mass such as mtDNA copy number or any other specific mitochondrial 531 

markers as a normalization method, instead all studies normalized to total cellular protein 532 

content. Besides that, of the 45 included studies, only fifteen investigated CS activity. 533 

Interestingly, approximately half of the CS results showed an increased activity following 534 

administration of the several drugs investigated, highlighting the need to measure CS more 535 

often. This finding is important as we already noted that CS is also a marker for 536 

mitochondrial mass, indicating that these drugs may positively influence mitochondrial 537 

biogenesis. This would consequently increase the total ETC complex activities, without 538 

directly influencing individual ETC enzyme activities. As such, the apparent increases in 539 

mitochondrial ETC complex activity observed in these studies may reflect an increase in 540 

mitochondrial biogenesis and mitochondrial mass rather than a specific effect on the 541 

investigated mitochondrial ETC complexes. Future research is warranted to investigate if this 542 

specific increase in CS activity is a result of increased mitochondrial proliferation or another 543 

mechanism. Therefore, it is important for future studies to not only normalize to total cellular 544 

protein content, but also to include other measurements for normalization purposes, such as 545 

citrate synthase. 546 
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Another significant limitation of the field is that there are almost no human data 547 

available (absence of formal clinical trials) on the impact of antidepressants or other 548 

neuropsychiatric medications on mitochondrial function. This limitation is mostly due to the 549 

lack of clinically validated and specific non-invasive tests to assess mitochondrial function in 550 

humans. This is important as brain bioenergetics following treatment could differ between 551 

rodents and humans. One striking example of this is the contrasting observation of valproate 552 

on mitochondrial function in humans and rodents. In rodents, several studies showed a 553 

neutral or positive effect of valproate on mitochondrial function. However, in clinical 554 

practice, it is widely agreed that valproate should only be used in exceptional circumstances 555 

in patients with mitochondrial disease because of its potentially lethal side effects, in 556 

particular in individuals with POLG disease (De Vries et al., 2020). Such critical species 557 

differences could also be the case with other medications and could hamper the translation 558 

and extrapolation of preclinical results to clinical practice and guidance on prescribing 559 

antidepressants or other neuropsychiatric medications.  560 

Furthermore, sex differences between antidepressants and other neuropsychiatric 561 

medications and mitochondrial function have only been sparsely investigated. More 562 

specifically, only five studies returned by our criteria reported on female animals. 563 

Investigation of sex differences is necessary as clear sex biases have been reported in various 564 

psychopathologies (Karg et al., 2014; Kessler et al., 1994) and the mitochondrial physiology 565 

and mitochondrial function may likewise differ between men and women (Demarest and 566 

McCarthy, 2015; Ventura-Clapier et al., 2017). 567 

Lastly, for the vast majority of existing licensed medications to treat neuropsychiatric 568 

disorders, mitochondrial toxicity is unknown. Therefore, it will be necessary to screen for 569 

mitochondrial toxicity in antidepressants and other neuropsychiatric medications. Given the 570 

different symptoms of depressive disorder, we would also advise the design of future clinical 571 
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studies to explore which drugs (or combination or drugs) would be advisable for a particular 572 

symptom in major depression. This would lead to more personalized treatment which would 573 

more closely respond to the need(s) of the patient. 574 

Considering these research gaps, as well as the high importance of these data for the 575 

clinical practice, future studies including humans, sex differences, and between laboratory 576 

validations of findings are warranted before firm conclusions can be drawn. 577 

 578 

Conclusion 579 

All medications that have been studied in vivo are summarized in Fig. 3. 580 

Antidepressants and other neuropsychiatric medications that are considered safe for 581 

individuals with underlying mitochondrial dysfunction are listed under the "Increase" header, 582 

drugs that require some caution are listed under the "Mixed" header, while drugs exhibiting 583 

deleterious effects on mitochondrial ETC complex activities, and which therefore should be 584 

used with caution in clinical practice, are listed under the "Decrease" header. In this context, 585 

increase and decrease refer to the effect of the drug on mitochondrial function, whereas 586 

mixed shows both increased and decreased mitochondrial function. 587 

Despite the paucity of empirical data in humans and the absence of formal clinical 588 

trials, this review provides a transparent and unbiased opinion on antidepressants and other 589 

neuropsychiatric medications that potentially worsen mitochondrial function. Our review 590 

could guide clinical care and support a position of more conservative use of those 591 

medications treating individuals with mitochondrial disease, but also to prevent unnecessary 592 

withholding of relevant treatments from individuals with underlying primary mitochondrial 593 

disease or psychological disease with mitochondrial dysfunction in the underlying 594 

pathobiology. In the absence of formal clinical trials, and until such trials are completed, real-595 

world data on the experience of prescribing medications to individuals with primary 596 
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mitochondrial disease should be collated and published, to further inform prescribing practice 597 

in this group of patients with complex symptomatology. 598 

Our ability to stratify individuals with psychopathology based on their trait or 599 

acquired body/brain bioenergetics would significantly improve efforts to personalize 600 

treatment considering the unique bioenergetic characteristics of individuals with psychiatric 601 

disease. Unfortunately, currently, this is not yet possible. A potential approach could be to 602 

use more easily accessible peripheral tissues, such as blood or fibroblasts, to assess ETC 603 

complex activities, which could be used as a proxy for the bioenergetic status of the brain 604 

(Picard et al., 2018). One significant caveat is that it is highly debated how much peripheral 605 

complex activities indeed mirror brain bioenergetics, and further research is necessary to find 606 

adequate peripheral biomarkers for brain bioenergetic status. Until this becomes a reality, we 607 

recommend a more careful use of medications that negatively influence mitochondrial 608 

function for individuals with suspected primary mitochondrial disease (genetic) or secondary 609 

mitochondrial dysfunction (e.g. environmental stress, toxins etc.).  610 

Notably, after a thorough review of the data, we conclude that several antidepressants 611 

or other neuropsychiatric medications could be used safely in individuals with 612 

psychopathology and comorbid mitochondrial disease or mitochondrial dysfunction while 613 

some require more caution. Only three drugs assessed (amitriptyline, escitalopram, and 614 

haloperidol) were found to have negative effects on mitochondrial function.  615 

We recommend that combined clinical guidance of psychiatrists and clinical 616 

metabolic experts be considered when prescribing medications to individuals with psychiatric 617 

disease with mitochondrial dysfunction in the underlying pathobiology to ensure that 618 

treatment is tailored to the individual needs of the patient. 619 

 620 
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Figure legends 991 

 992 

Figure 1. Flowchart of the literature search and study selection process. n = number of 993 

publications 994 

 995 

Figure 2. Schematic overview of the electron transport chain (ETC) and oxidative 996 

phosphorylation (OXPHOS) system and the global effect of different drugs on each measured 997 

complex. A) As a first step, complex I (CI) and complex II (CII) oxidize NADH and FADH2. 998 

The electrons generated during that process are transported through coenzyme Q (CoQ), 999 

complex III (CIII), cytochrome C (Cyt. C), and complex IV (CIV) to finally molecular 1000 

oxygen. During this process, protons are pumped over the inner mitochondrial membrane to 1001 

the intermembrane space by CI, CIII, and CIV, generating an electrochemical gradient. This 1002 

gradient is subsequently used by complex V (CV) to generate ATP from ADP. B) Overview 1003 

of the global effect of all investigated drugs and their effect on each complex of the ETC, 1004 

state 3 and state 4 respiration, CS activity, MDH activity, as investigated by the various 1005 

studies. A green ‘+’ sign indicates an overall increased function of that specific complex 1006 

following administration of that drug, a red ‘-’ sign indicates a decreased function following 1007 

administration of that drug, a yellow ‘/’ indicates that both increased and decreased functions 1008 

have been observed following administration of that drug, a dark grey ‘~’ indicates that this 1009 

complex was analyzed but there was no effect observed, whereas a light grey ‘o’ indicates 1010 

that that specific complex is not analyzed for that drug. References: 1 = (Scaini et al., 2010); 1011 

2 = (Scaini et al., 2011); 3 = (Ferreira et al., 2012); 4 = (Réus et al., 2012a); 5 = (Streck et al., 1012 

2007); 6 = (Bachmann et al., 2009); 7 = (Valvassori et al., 2010); 8 = (Feier et al., 2013); 9 = 1013 

(Streck et al., 2015); 10 = (Katyare and Rajan, 1995); 11 = (Abelaira et al., 2011); 12 = (Réus 1014 

et al., 2012b); 13 = (Della et al., 2012); 14 = (Katyare and Rajan, 1988); 15 = (Della et al., 1015 
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2013); 16 = (Fagundes et al., 2007); 17 = (Fagundes et al., 2010); 18 = (Gupta and Sharma, 1016 

2014); 19 = (de Mello et al., 2016); 20 = (Agostinho et al., 2011b); 21 = (Agostinho et al., 1017 

2011a); 22 = (Prince et al., 1997); 23 = (Prince et al., 1998); 24 = (Lambert et al., 1999); 25 = 1018 

(Tan et al., 2012); 26 = (Kim et al., 2016); 27 = (Ferreira et al., 2014); 28 = (Rezin et al., 1019 

2009); 29 = (Rezin et al., 2010); 30 = (Venâncio et al., 2013); 31 = (Venâncio et al., 2015); 1020 

32 = (Zugno et al., 2015); 33 = (Souza et al., 1994); 34 = (Shumake et al., 2010); 35 = (Adzic 1021 

et al., 2013); 36 = (da Silva et al., 2015a); 37 = (da Silva et al., 2015b); 38 = (Sonei et al., 1022 

2017); 39 = (Villa et al., 2016); 40 = (Adzic et al., 2017); 41 = (Villa et al., 2017); 42 = 1023 

(Tutakhail et al., 2019); 43 = (Simões‐Alves et al., 2018); 44 = (González-Pardo et al., 2008); 1024 

45 = (Gonçalves et al., 2012); 46 = (Shetty et al., 2015). 1025 

 1026 

Figure 3. Summary of all antidepressants, antipsychotics, and other medications used as 1027 

adjuvants for treating depression, studied concerning mitochondrial function. The different 1028 

drugs are categorized based on their impact on mitochondrial function, which is either 1029 

positive, mixed, or negative.  1030 

 1031 

  1032 
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Table legends 1033 

Table 1. Summary of studies investigating the effect of different tricyclic antidepressants 1034 

(TCAs) in association with mitochondrial functioning. Acute treatment is defined as a one-1035 

time administration, whereas chronic treatment durations are defined in the table. IP 1036 

injections were daily in chronic administration studies unless stated otherwise.  1037 

 1038 

Table 2. Summary of studies investigating the effect of different selective serotonin reuptake 1039 

inhibitors (SSRIs) in association with mitochondrial functioning. Acute treatment is defined 1040 

as a one-time administration, whereas chronic treatment durations are defined in the table. IP 1041 

and subcutaneous injections were daily in chronic administration studies unless stated 1042 

otherwise.  1043 

 1044 

Table 3. Summary of studies investigating the effect of different serotonin-norepinephrine 1045 

reuptake inhibitors (SNRIs) in association with mitochondrial functioning. Acute treatment is 1046 

defined as a one-time administration, whereas chronic treatment durations are defined in the 1047 

table. IP injections were daily in chronic administration studies unless stated otherwise.  1048 

 1049 

Table 4. Summary of studies investigating the effect of different norepinephrine-dopamine 1050 

reuptake inhibitors (NDRI) in association with mitochondrial functioning. Acute treatment is 1051 

defined as a one-time administration, whereas chronic treatment durations are defined in the 1052 

table. IP injections were daily in chronic administration studies unless stated otherwise.  1053 

 1054 

Table 5. Summary of studies investigating the effect of different (a)typical antipsychotics in 1055 

association with mitochondrial functioning. Acute treatment is defined as a one-time 1056 
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administration, whereas chronic treatment durations are defined in the table. IP injections 1057 

were daily in chronic administration studies unless stated otherwise.  1058 

 1059 

Table 6. Summary of studies investigating the effect of different other drugs in association 1060 

with mitochondrial functioning. Acute treatment is defined as a one-time administration, 1061 

whereas chronic treatment durations are defined in the table. IP and subcutaneous injections 1062 

were daily in chronic administration studies unless stated otherwise.  1063 

 1064 



Table 1 (TCA summary) 1 - 3

Reference Species studied Dose (administration) Brain 
regions/Tissue

Treatment 
duration (days)

Findings

Gonzalez-
Pardo et al. 
(2008)

Male CD1 mice
42 days old

20 mg/kg 
(ip injection)

CIV staining, 
multiple brain 
areas

Acute CIV decreased (thalamus, anteromedial nucleus, medial septum, 
nucleus accumbens, nucleus basalis of Meynert, bed nucleus of the 
stria terminalis, diagonal band of Broca, hippocampus; CA3 subfield, 
hippocampus; dentate gyrus)

Villa et al. 
(2016)

Male Sprague Dawley 
rats
7 weeks old

15 mg/kg 
(ip injection)

Frontal cortex 
(different 
mitochondrial 
fractions)

Chronic (21d) CS increased (HM) 
CII decreased (LM)
CIV increased (FM, HM)
MDH decreased (LM)

Villa et al. 
(2017)

Male CD Sprague Dawley 
rats
7 weeks old

15 mg/kg 
(ip injection)

Hippocampus 
Frontal cortex 
(different 
mitochondrial 
fractions)

Chronic (21d) CS increased (HM in cortex)
CII decreased (LM in cortex)
CIV increased (FM in cortex and hippocampus; HM in cortex)
CIV decreased (HM in hippocampus)
MDH decreased (LM in cortex)

Katyare and 
Rajan (1988)

Female Wistar rats
270g

10 mg/kg 
(ip injection, twice 
daily)

Liver Chronic (7d) State 3 respiration increased with glutamate, beta-hydroxybutyrate, 
pyruvate+malate as substrates
State 4 respiration similar increase to state 3 respiration

Chronic (14d) Similar pattern as after 7 days treatment
Katyare and 
Rajan (1995)

Female Wistar rats
275g

10 mg/kg 
(ip injection, twice 
daily)

Whole brain Chronic (7d) State 3 respiration increased with glutamate, beta-hydroxybutyrate, 
pyruvate+malate, and succinate as substrates - With ascorbate + 
TMPD state 3 decreased
State 4 respiration similar pattern to state 3 respiration

Chronic (14d) Similar pattern as after 7 days treatment, only state 4 + succinate not 
significant

Amitriptyline

Desipramine

Imipramine
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Abelaira et al. 
(2011)

Male Wistar rats 
60 days old

30 mg/kg
(ip injection)

Amygdala
Hippocampus
Prefrontal cortex

Acute CS increased (amygdala)
CI decreased (prefrontal cortex)
CII increased (amygdala)
CII-CIII no effect measured 
CIV increased (hippocampus)

Chronic (14d) CS no effect measured
CI no effect measured
CII increased (prefrontal cortex and hippocampus)
CII-III increased (prefrontal cortex, amygdala, and hippocampus)
CIV no effect measured

Della et al. 
(2012)

Male Wistar rats
60 days old

30 mg/kg 
(ip injection)

Amygdala
Hippocampus
Nucleus 
accumbens
Prefrontal cortex

Acute CS increased (amygdala)
CI decreased (prefrontal cortex)
CII increased (amygdala)
CII-III no effect measured
CIV no effect measured
MDH no effect measured

Chronic (14d) CS no effect measured
CI no effect measured
CII increased (prefrontal cortex, hippocampus)
CII-CIII increased (prefrontal cortex, hippocampus, amygdala)
CIV no effect measured
MDH no effect measured

Reus et al. 
(2012a)

Male Wistar rats
60 days old

10, 20, and 30 mg/kg 
(ip injection)

Prefrontal cortex
Striatum

Acute CI no effect measured
CII decreased (striatum 20 and 30 mg/kg)
CII-CIII no effect measured
CIV increased (striatum 30 mg/kg)

Chronic (14d) CI no effect measured
CII increased (prefrontal cortex, 20 mg/kg)
CII-CIII no effect measured
CIV no effect measured
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Reus et al. 
(2012b)

Male Wistar rats
60 days old

10, 20, and 30 mg/kg 
(ip injection)

Acute CI increased (striatum, 10 mg/kg)
CII increased (hippocampus, 30 mg/kg; striatum 10 mg/kg)
CII-CIII no effect measured
CIV no effect measured

Chronic (14d) CI increased (prefrontal cortex, 10 mg/kg)
CI decreased (hippocampus, 20 and 30 mg/kg; striatum, 30mg/kg)
CII increased (hippocampus, 30 mg/kg)
CII-CIII no effect measured
CIV increased (hippocampus and striatum, 30 mg/kg)

Scaini et al. 
(2010)

Male Wistar rats
250-300g

15 mg/kg 
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (15d) CS no effect measured
CI increased (prefrontal cortex, hippocampus, striatum, cortex)

Scaini et al. 
(2011)

Male Wistar rats
250-300g

15 mg/kg 
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex 
Striatum

Chronic (15d) CI no effect measured
CII increased (hippocampus, striatum)
CII-III no effect measured
CIV increased (prefrontal cortex, striatum, cortex)

CI = mitochondrial complex I; CII = mitochondrial complex II; CIII = mitochondrial complex III; CIV = mitochondrial complex IV; CS = citrate synthase; FM = non-
synaptic mitochondria (post-synaptic); HM = intrasynaptic heavy mitochondria (presynaptic); ip = intraperitoneal; LM = intrasynaptic light mitochondria 
(presynaptic); MDH = malate dehydrogenase.

Nortriptyline

Hippocampus
Prefrontal cortex
Striatum



Table 2 (SSRI summary) 1 - 4

Reference Species studied Dose (administration) Brain 
regions/Tissue

Treatment 
duration

Findings

Goncalves et 
al. (2012)

Male Wistar rats
250-300g

10 mg/kg
(ip injection)

Cerebellum
Hippocampus
Posterior cortex
Prefrontal cortex
Striatum

Chronic (14d) CS no effect measured
CI decreased (cerebellum, hippocampus, striatum)
CII decreased (striatum)
CII-CIII decreased (cerebellum, hippocampus, striatum, posterior 
cortex)
CIV no effect measured
MDH no effect measured

Shetty et al. 
(2015)

Female Wistar rats
200-230g

20 mg/kg
(oral administration)

Whole brain Chronic (12d) CI no effect measured
CII no effect measured
CIV no effect measured

Souza et al. 
(1994)

Liver Acute State 3 respiration no effect measured
State 4 respiration increased
RCR no effect measured
(with both alpha ketoglutarate and succinate)

No effect on Vmax
Chronic (12d) No effect on state 3 respiration

Increased state 4 respiration
No effect on RCR
(with both alpha ketoglutarate and succinate)

Decreased Vmax
Shumake et al. 
(2010)

Male "congenitally 
helpless" rats (Sprague 
Dawley origin)
450-550g

5 mg/kg
(ip injection)

CIV staining, 
multiple brain 
areas

Chronic (14d) CIV increased (ventral tegmental area)
CIV reduced (habenula, dentate gyrus, dorsomedial prefrontal cortex)

Agostinho et 
al. (2011a)

Male Wistar rats
60 days old

12.5 and 25 mg/kg
(ip injection)

Acute CS increased (striatum, 25 mg/kg)

Chronic (28d) CS no effect measured (after 2 and 24 hours)

Escitalopram

Fluoxetine

Hippocampus
Prefrontal cortex
Striatum

Male Wistar Rats 
250g

Acute: 20 mg/kg
Chronic: 10 mg/kg
(ip injection)
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Agostinho et 
al. (2011b)

Hippocampus
Prefrontal cortex
Striatum

Acute CI increased (hippocampus, 25 mg/kg)
CII no effect measured
CII-CIII no effect measured
CIV no effect measured

Chronic (28d) CI decreased (prefrontal cortex, 12 mg/kg (24h))
CII no effect measured
CII-CIII decreased (striatum, 25 mg/kg (24h))
CIV decreased (hippocampus, 12 and 25 mg/kg (24h))

No effects 2 hours after sacrificing
Adzic et al. 
(2013)

5 mg/kg 
(ip injection)

Hippocampus
Prefrontal cortex

Chronic (21d) Female
CIV increased (prefrontal cortex)
Male
CIV decreased (prefrontal cortex)
CIV increased (hippocampus)

da Silva et al. 
(2015a)

Male Wistar rats
24 hours old

10 mg/kg 
(subcutaneous 
injection)

Brown adipose 
tissue
(Measured at PND 
60)

Chronic (21d) Basal respiration rate (state 4) increased
Uncoupled respiration rate increased
Mitochondrial O2 consumption no effect measured

da Silva et al. 
(2015b)

Male Wistar rats
24 hours old

10 mg/kg 
(subcutaneous 
injection)

Hypothalamus 
EDL muscle 
(Measured at PND 
60)

Chronic (21d) CS increased (hypothalamus and EDL muscle)
Basal respiration rates (state 4) increased (hypothalamus and EDL)
ADP-stimulated respiration (state 3) increased (EDL)
Uncoupled respiration rate increased (hypothalamus and EDL)

Villa et al. 
(2016)

Male Sprague Dawley 
rats
7 weeks old

10 mg/kg 
(ip injection)

Frontal area of 
cortex
(different 
mitochondrial 
fractions)

Chronic (21d) CII decreased (LM)
CIV increased (FM, HM)
MDH decreased (LM)

Adzic et al. 
(2017)

Hippocampus Chronic (21d) Female 
CIV no effect measured
Male
CIV increased

Male and female Wistar 
rats
3 months old

5 mg/kg 
(ip injection)

Male Wistar rats
60 days old

12 and 25 mg/kg
(ip injection)

Male and female Wistar 
rats
3 months old
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Sonei et al. 
(2017)

Male Wistar rats
28 days old

7.5 mg/kg 
(via drinking water)

Brain 
Heart

Chronic (21d) CII activity no effect measured
MDH activity no effect measured
Membrane potential no effect measured
ATP levels no effect measured

Villa et al. 
(2017)

Male Sprague Dawley 
rats
7 weeks old

10 mg/kg 
(ip injection)

Hippocampus Chronic (21d) CS no effect measured
CII decreased (LM in cortex and hippocampus)
CIV increased (FM cortex and hippocampus; HM in cortex)
CIV decreased (HM in hippocampus)
MDH decreased (LM in cortex)
MDH increased (HM in hippocampus)

Simões-Alves 
et al. (2018)

Wistar rats
24-hours old

10 mg/kg 
(subcutaneous 
injection)

Liver
(Measured at PND 
60)

Chronic (21d) Basal respiration rate increased
State 3 respiration increased
State 4 respiration increased
Uncoupled respiration rate increased

Tutakhail et al. 
(2019)

Male Balbc-j mice
21-25g

18 mg/kg
(in drinking water)

Gastrocnemius 
Muscle

Chronic (6 weeks) CS no effect measured
CIV no effect measured

Ferreira et al. 
(2014)

Male Wistar rats
250-300g

10, 30, and 60 mg/kg 
(ip injection)

Cerebellum
Hippocampus
Posterior cortex
Prefrontal cortex
Striatum

Chronic (14d) CS increased (prefrontal cortex, 30 mg/kg)
CS decreased (cerebellum, 60 mg/kg; hippocampus, 60 mg/kg; 
cortex, 10 and 30 mg/kg)
CI decreased (prefrontal cortex, 10 mg/kg; hippocampus, 10 mg/kg; 
striatum, 10 mg/kg)
CI increased (prefrontal cortex, 30 mg/kg)
CII increased (prefrontal cortex, 30 mg/kg; cerebellum, 30 mg/kg; 
cortex, 10 mg/kg)
CII-CIII decreased (prefrontal cortex, 10 mg/kg; cerebellum, 30 and 
60 mg/kg)
CIV decreased (prefrontal cortex, 10 and 30 mg/kg; hippocampus, 30 
and 60 mg/kg; cortex, 60 mg/kg)
MDH decreased (prefrontal cortex, 10 mg/kg; striatum, 10, 30, 60 
mg/kg)

Fluvoxamine
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Scaini et al. 
(2010)

Male Wistar rats
250-300g

10 mg/kg 
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (15d) CS increased (prefrontal cortex, hippocampus, striatum, cortex)
CII increased (prefrontal cortex, hippocampus, striatum, cortex)

Scaini et al. 
(2011)

Male Wistar rats
250-300g

10 mg/kg 
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (15d) CI increased (prefrontal cortex, hippocampus, striatum, cortex)
CII increased (hippocampus, striatum, cortex)
CII-CIII no effect measured
CIV increased (prefrontal cortex)

CI = mitochondrial complex I; CII = mitochondrial complex II; CIII = mitochondrial complex III; CIV = mitochondrial complex IV; CS = citrate synthase; FM = non-
synaptic mitochondria (post-synaptic); HM = intrasynaptic heavy mitochondria (presynaptic); ip = intraperitoneal; LM = intrasynaptic light mitochondria 
(presynaptic); MDH = malate dehydrogenase.

Paroxetine



Table 3 (SNRI summary) 1 - 1

Reference Species studied Dose (administration) Brain 
regions/Tissue

Treatment 
duration

Findings

Scaini et al. 
(2010)

Male Wistar rats
250-300g

10 mg/kg 
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (15d) CS no effect measured
CII increased (prefrontal cortex)

Scaini et al. 
(2011)

Male Wistar rats
250-300g

10 mg/kg
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (15d) CI no effect measured
CII increased (hippocampus, striatum, cortex)
CII-CIII no effect measured
CIV increased (prefrontal cortex)

Venlafaxine

CI = mitochondrial complex I; CII = mitochondrial complex II; CIII = mitochondrial complex III; CIV = mitochondrial complex IV; CS = citrate synthase; ip = 
intraperitoneal.
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Reference Species studied Dose (administration) Brain 
regions/Tissue

Treatment 
duration

Findings

Ferreira et al. 
(2012)

Male Wistar rats
250-300g

10 mg/kg
(ip injection)

Cerebellum
Hippocampus
Hypothalamus
Posterior cortex
Prefrontal cortex
Striatum

Chronic (14d) CS no effect measured
CI no effect measured
CII increased (hippocampus and striatum)
CII-CIII no effect measured
CIV no effect measured
MDH no effect measured

Bupropion

CI = mitochondrial complex I; CII = mitochondrial complex II; CIII = mitochondrial complex III; CIV = mitochondrial complex IV; CS = citrate synthase; ip = 
intraperitoneal; MDH = malate dehydrogenase.



Table 5 (atypical antipsychotics summary) 1 - 2

Reference Species studied Dose (administration) Brain 
regions/Tissue

Treatment 
duration

Findings

Streck et al. 
(2007)

Male Wistar rats
250-300g

2, 10, and 20 mg/kg
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal
Striatum

Chronic (28d) CII increased (prefrontal cortex, 20mg/kg)
CIV no effect measured

Prince et al. 
(1997)

Male Sprague-Dawley 
rats
8 weeks old
250-300g

20 mg/kg
(ip injection)

Cerebellum
Frontal cortex
Hippocampus
Striatum

Chronic (28d) CI no effect measured
CIV increased (frontal cortex and hippocampus)

Prince et al. 
(1998)

Male Sprague-Dawley 
rats
8 weeks old
350-400g

20 mg/kg
(ip injection)

CIV staining, 
multiple brain 
areas

Chronic (28d) CIV increased (frontal cortex, lateral orbital cortex, CA2, CA3, CPu, 
core of nucleus accumbens, septum, pontine nucleus)

Streck et al. 
(2007)

Male Wistar rats
250-300g

25 mg/kg 
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal
Striatum

Chronic (28d) CII decreased (striatum)
CIV no effect measured

Prince et al. 
(1997)

Acute (2d) CI decreased (striatum, frontal cortex, hippocampus, and cerebellum)
CIV no effect measured

Chronic (14d) CI decreased (striatum, frontal cortex, hippocampus, and cerebellum)
CIV decreased (frontal cortex)

Chronic (28d) CI decreased (striatum and frontal cortex)
CIV increased (frontal cortex) 

Aripiprazole

Clozapine

Haloperidol
Cerebellum
Frontal cortex
Hippocampus
Striatum

1 mg/kg
(ip injection)

Male Sprague-Dawley 
rats
8 weeks old
250-300g
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Prince et al. 
(1998)

Male Sprague-Dawley 
rats
8 weeks old
350-400g

1 mg/kg
(ip injection)

CIV staining, 
multiple brain 
areas

Chronic (28d) CIV increased (frontal cortex)
CIV decreased (cerebellum)

Streck et al. 
(2007)

Male Wistar rats
250-300g

1.5 mg/kg 
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (28d) CII decreased (hippocampus, striatum)
CIV no effect measured

Streck et al. 
(2007)

Male Wistar rats
250-300g

2.5, 5, and 10 mg/kg 
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal
Striatum

Chronic (28d) CII decreased (cerebellum, all concentrations)
CIV no effect measured

Agostinho et 
al. (2011a)

Male Wistar rats
60 days old

3 and 6 mg/kg 
(ip injection)

Acute CS increased (prefrontal cortex, 6 mg/kg; hippocampus, 3 mg/kg; 
striatum, 3 and 6 mg/kg)

Chronic (28d) CS no effect measured (2 or 24 hours)
Agostinho et 
al. (2011b)

Male Wistar rats
60 days old

3 and 6 mg/kg 
(ip injection)

Acute CI increased (prefrontal cortex, 6 mg/kg; striatum, 6 mg/kg)
CII increased (prefrontal cortex, 6 mg/kg; hippocampus, 6 mg/kg)
CII-CIII no effect measured
CIV no effect measured

Chronic (28d) CI no effect measured
CII no effect measured
CII-CIII increased (striatum, 3 mg/kg (2h))
CIV decreased (hippocampus, 3 and 6 mg/kg (24h))

CI = mitochondrial complex I; CII = mitochondrial complex II; CIII = mitochondrial complex III; CIV = mitochondrial complex IV; CS = citrate synthase; ip = 
intraperitoneal; MDH = malate dehydrogenase.

Hippocampus
Prefrontal cortex
Striatum

Hippocampus
Prefrontal cortex
Striatum

Olanzapine
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Reference Species studied Dose (administration) Brain 
regions/Tissue

Treatment 
duration

Findings

Gupta and 
Sharma (2014)

Male and female Wistar 
rats
3–5 months old
200–250g

2 and 4 mg/kg
(oral canula)

Striatum Chronic (19d) CI no effect measured
CII no effect measured
CIV no effect measured

de Mello et al. 
(2016)

Male Wistar rats
250-300g

10, 30, and 50 mg/kg 
(ip injection)

Cerebellum 
Hippocampus
Posterior cortex
Prefrontal cortex
Striatum

Chronic (14d) CI increased (10mg/kg; prefrontal cortex, cerebellum, striatum)
CI decreased (30 and 50 mg/kg; prefrontal cortex, cerebellum, 
hippocampus, striatum, posterior cortex)
CII increased (50mg/kg; posterior cortex)
CIV decreased (10 and 30 mg/kg; striatum, posterior cortex)
CIV increased (50mg/kg; hippocampus)

Reus et al. 
(2012a)

Male Wistar rats
60 days old

5, 10, and 15 mg/kg 
(ip injection)

Prefrontal cortex
Striatum

Acute CI increased (prefrontal cortex, 15 mg/kg; striatum, 10mg/kg)
CII no effect measured
CII-CIII no effect measured
CIV increased (striatum, 10mg/kg)

Chronic (14d) CI increased (prefrontal cortex, 5 mg/kg)
CII no effect measured 
CII-CIII no effect measured
CIV increased (striatum, 5 mg/kg)

Rezin et al. 
(2009b)

Male Wistar rats
300g

15 mg/kg 
(ip injection)

Cerebellum 
Cerebral cortex

Acute CI no effect measured
CIII no effect measured
CIV no effect measured

Rezin et al. 
(2010)

Male Wistar rats
300g

15 mg/kg 
(not specified)

Cerebellum
Cerebral cortex

Chronic (7d) CI no effect measured
CIII no effect measured
CIV no effect measured

Agomelatine

Harmine

Ketamine
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Venancio et al. 
(2013)

Male Wistar rats
90-110 days old

5 and 10 mg/kg 
(subcutaneous 
injection, twice daily)

Rat liver Chronic (14d) CI decreased both concentrations
CII no effect
CIII no effect
CIV no effect
CV no effect

State 3 - glutamate + malate decreased (both concentrations)
State 3 - succinate no effect
State 4 - glutamate + malate decreased (both concentrations)
State 4 - succinate no difference
RCR - glutamate + malate no effect
RCR - succinate no effect

Venancio et al. 
(2015)

Male Wistar rats
90-110 days old

50, 100, and 150 
mg/kg 
(ip injection)

Brain Acute CI decreased (all concentrations)

State 3 respiration no effect measured
State 4 respiration increased (all concentrations)
State3/State 4 no effect measured
Membrane potential no effect measured

Zugno et al. 
(2015)

Male Wistar rats
60 days old

5, 15, and 25 mg/kg 
(ip injection)

Hippocampus
Prefrontal cortex
Striatum

Acute CI no effect measured
CII increased (prefrontal cortex, all concentrations)
CII-CIII decreased (prefrontal cortex, 5 mg/kg)
CII-CIII increased (hippocampus and striatum 25 mg/kg)
CIV decreased (hippocampus, all concentrations)
MDH no effect measured

Lambert et al. 
(1999)

Male Sprague-Dawley 
rats 
250-300g

Orally; lithium 
containing food

Chronic (5d)
Lithium 
concentration: 
0.35 to 0.43

CIV no effect measured

Chronic (21d)
Lithium 
concentration: 
0.37 to 0.47

CIV decreased (cingulate cortex and striatum)

CIV staining, 
multiple brain 
areas

Lithium
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Bachmann et 
al. (2009)

Adult male Wistar Kyoto 
rats
200-250g

Orally lithium 
containing food

Frontal cortex Chronic (21d) CIV no effect measured

Valvassori et 
al. (2010)

Chronic (7d) CI no effect measured
CII no effect measured
CIII no effect measured
CIV no effect measured

Chronic (14d) CI no effect measured
CII no effect measured
CIII no effect measured
CIV no effect measured

Tan et al. 
(2012)

Male Sprague–Dawley 
rats 
230–270g

Via food
0.55-+0.08 mM blood 
concentration

Frontal cortex Chronic (21d) CI no effect measured
CIII no effect measured

Feier et al. 
(2013)

Male Wistar rats
250-300g

47.5 mg/kg 
(ip injection, twice 
daily)

Amygdala
Hippocampus
Prefrontal cortex
Striatum

Chronic (7 d) CS no effect measured
CI no effect measured
CII no effect measured
CII-CIII no effect measured
CIV no effect measured
MDH no effect measured

Streck et al. 
(2015)

Male C57BL/6 mice
30-35g

47.5 mg/kg 
(ip injection, twice 
daily)

Cerebellum
Cerebral cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (7d) CS activity no effect measured
CI no effect measured
CII no effect measured
CII-CIII no effect measured
CIV no effect measured
MDH no effect measured

Kim et al. 
(2016)

Male Fisher CDF (F-344) 
rats
2 months old
200-250g

Via food, eventually 
0.7mM plasma and 
brain levels

Frontal cortex Chronic (42d) CI no effect measured
CIII no effect measured
CV no effect measured

Hippocampus
Prefrontal cortex
Striatum

47.5 mg/kg 
(ip injection, twice 
daily)

Male Wistar rats
3-4 months old
220-310g
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Reus et al. 
(2012b)

Male Wistar rats
60 days old

5, 10, and 20 mg/kg 
(ip injection)

Hippocampus
Prefrontal cortex
Striatum

Acute CI increased (hippocampus, 5 mg/kg; striatum, 5 mg/kg)
CII increased (hippocampus 5 mg/kg)
CII-CIII increased (striatum, 5 mg/kg)
CIV no effect measured

Chronic (14d) CI increased (prefrontal cortex, 20 mg/kg), 
CI decreased (hippocampus, 5, 10, 20 mg/kg; striatum, 10, 20 
mg/kg)
CII increased (prefrontal cortex, 10 mg/kg; striatum, 10 mg/kg)
CII-CIII increased (prefrontal cortex 20 mg/kg; hippocampus, 20 
mg/kg; striatum, 10 mg/kg)
CIV increased (prefrontal cortex 10 mg/kg; hippocampus, 5 mg/kg; 
striatum, 5 and 20 mg/kg)

Fagundes et al. 
(2007)

Male Wistar rats
25 days old

1, 2, 5, 10, 20 mg/kg
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (28d) CII increased (cerebellum, all concentrations; prefrontal cortex, 1 and 
5 mg/kg)
CIV increased (cerebellum, 10 and 20 mg/kg; cortex, 20 mg/kg; 
hippocampus, 2, 5, 10, and 20 mg/kg; striatum, 5, 10, and 20 mg/kg)

Fagundes et al. 
(2010)

Acute CI decreased (cerebellum and prefrontal cortex, all concentrations
CII no effect measured
CIII no effect measured
CIV no effect measured

Chronic (28d) CI no effect measured
CIII no effect measured

Methylphenidate

Male Wistar rats
25 days old

1, 2, 10 mg/kg
(ip injection)

Cerebellum
Cortex
Hippocampus
Prefrontal cortex
Striatum

Memantine
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Della et al. 
(2012)

Male Wistar rats
60 days old

5, 10, and 15 mg/kg 
(ip injection)

Amygdala
Hippocampus
Nucleus 
accumbens
Prefrontal cortex

Acute CS decreased (prefrontal cortex, 10 and 15 mg/kg)
CI increased (hippocampus, 5 mg/kg)
CII increased (amygdala, 10 and 15 mg/kg; nucleus accumbens, 15 
mg/kg)
CII-CIII increased (hippocampus, 5 mg/kg)
CIV no effect measured
MDH no effect measured

Chronic (14d) CS increased (hippocampus, 5, 10, and 15 mg/kg)
CI no effect measured
CII increased (hippocampus, 10 and 15 mg/kg)
CII-CIII increased (prefrontal cortex all concentrations; hippocampus, 
all concentrations; amygdala, all concentrations)
CIV increased (hippocampus, 10 and 15 mg/kg)
MDH increased (amygdala, 10 mg/kg)

Della et al. 
(2013)

Male Wistar rats
3 months old

15 mg/kg 
(ip injection)

Amygdala
Hippocampus
Nucleus 
accumbens
Prefrontal cortex

Chronic (14d) CS increased (hippocampus)
CI decreased (prefrontal cortex)
CII increased (hippocampus)
CII-CIII increased (hippocampus)
CIV increased (hippocampus)
MDH no effect measured

Bachmann et 
al. (2009)

Adult male Wistar Kyoto 
rats
200-250g

Orally, valproate 
containing food

Brian Chronic (21d) CIV no effect measured

Valvassori et 
al. (2010)

Chronic (7d) CI no effect measured
CII no effect measured
CIII no effect measured
CIV no effect measured

Chronic 14d CI no effect measured
CII no effect measured 
CIII no effect measured
CIV no effect measured

Male Wistar rats
3-4 months old
220-310g

47.5 mg/kg 
(ip injection, twice 
daily)

Hippocampus
Prefrontal cortex
Striatum

Valproate

Tianeptine
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Feier et al. 
(2013)

Male Wistar rats
250-300g

200 mg/kg 
(ip injection, twice 
daily)

Amygdala
Hippocampus
Prefrontal cortex
Striatum

Chronic (7d) CS activity no effect measured
CI no effect measured
CII no effect measured
CII-CIII no effect measured
CIV no effect measured
MDH no effect measured

Streck et al. 
(2015)

Male C57BL/6 mice
30-35g

200 mg/kg 
(ip injection, twice 
daily)

Cerebellum
Cerebral cortex
Hippocampus
Prefrontal cortex
Striatum

Chronic (7d) CS activity no effect measured
CI no effect measured
CII increased (cerebral cortex)
CII-CIII no effect measured
CIV no effect measured
MDH no effect measured

CI = mitochondrial complex I; CII = mitochondrial complex II; CIII = mitochondrial complex III; CIV = mitochondrial complex IV; CS = citrate synthase; ip = 
intraperitoneal; MDH = malate dehydrogenase.








