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Abstract 

Building performance design (BPD) is a crucial pathway to achieve high-performance buildings. 

Previous simulation-based BPD is being questioned due to the performance gaps between simulated 

and measured values. In recent years, accumulated on-site building performance data (OBPD) make it 

possible to analyze and design buildings with data-driven methods. This article makes a review of 

previous studies that conducted data-driven building performance analysis and design on a large 

amount of OBPD. The covered studies are summarized by the applied techniques, i.e., statistics, 

regression, classification, and clustering. The data used by these studies are compared and discussed 

emphasizing the data size and public availability. A comprehensive discussion is given about the 

achievements of existing studies, and challenges for boosting data-driven BPD from three aspects, i.e., 

developing data-driven models, the availability of building performance data, and stimulation of 

industrial practices. The review results indicate that data-driven methods were commonly applied to 

estimate energy consumptions, and explore energy trends, determinant features, and reference 

buildings. Identifying determinant features is one of the most successful applications. This study 

highlights the future research gaps for boosting data-driven building performance design. 
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Abbreviations 

Acronym Full Name 

ANN Artificial Neural Network 

ANOVA Analysis of variance 

BPD Building Performance Database 

BPNN Back propagation neural network 

CART Classification and Regression Tree 

CBECS Commercial Building Energy Consumption Survey 

CHAID Chi -Square Automatic Interaction Detection 

CVMSE Cross-validated Mean Square Error 

CV-RMSE Coefficient of Variation, Root Mean Square Deviation 

DD-BPD Data-driven Building Performance Design 

EUI Energy Usage Intensity 

GLR General Linear Regression 

GRNN General Regression Neural network 

HEED Homes Energy Efficiency Database 

HVAC heating, ventilation, and air conditioning 

ID3 Iterative Dichotomiser 3 

LEED Leadership in Energy and Environmental Design 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MLP Multi-layer Perceptron 

MLR Multiple Linear Regression 

NEED National Energy Efficiency Data-Framework 

OBPD On-site Building Performance Data 

OLS Ordinary Least Squares 

R
2
 Coefficient of Determination 

RBFNN Radial Basis Function Neural Network 

RECS Residential Energy Consumption Survey 

REPT Reduced Error Pruning Tree 

RF Random Forest 

RMSE Root Mean Square Error 

SHAP SHapley Additive exPlantions 

SVM Support Vector Machine 

XGBoost Extreme gradient boosting 
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1. Introduction 

Building energy has been marked as a key section of carbon emissions [1]. Buildings contribute to 

nearly 40% of society’s total energy consumption in developed countries [2]. Decision made in the 

design stage is crucial for reducing building energy consumption. Building performance design (BPD) 

aims at finding out the best design solution considering several criteria including energy, cost, and 

thermal comfort, etc. To design low-energy buildings, researchers have dedicated themselves to 

developing effective design methods. In the past two decades, simulation-based BPD has become a 

significant method for designing high-performance buildings [3, 4]. Detailed energy simulation tools, 

such as EnergyPlus, are used to evaluate the energy consumption of competing design solutions. 

Before making design decisions, engineers need to build and calibrate detailed energy models which 

may take several days’ work [5]. Besides, the reliability of this method is always being questioned due 

to the performance gap, which refers to the difference between simulated performance during the 

design stage and actual performance during the operation stage [6-8]. 

With the rapid development of green building certification and energy monitoring projects, 

large-scale data in terms of the actual performance of buildings have been accumulated. Due to the 

availability of several on-site building performance datasets, data-driven building performance design 

(DD-BPD) is becoming a hot research topic. Fig. 1 depicts the procedure of implementing the DD-BPD. 

There are two key parts to fulfill DD-BPD, i.e., the database and specially developed data-driven 

approaches. The database should contain a large amount of OBPD other than simulated or any other 

generated data. Data-driven methods usually refer to statistical [6, 9] or machine learning methods 

[10]. As for a specific design scenario, engineers need to adopt suitable algorithms to build models.  

 

Fig. 1 The general procedure of the DD-BPD 

It is not a new phenomenon that applying data-driven approaches to building energy prediction. 

However, due to the lack of big-OBPD, most previous studies were carried out on simulated data or 

the sensor data of a building. Those studies have been well-reviewed by Amasyali et al. [11], Wei et 

al.[12], Bourdeau et al.[13], and Miller et al. [14]. Until now, however, there is still no comprehensive 

review about data-driven building performance analysis and design on OBPD. So, it remains unclear 

what the status quo, trend, and future research directions are. This review article fills this gap by 
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answering the following questions: 

1. What kinds of data-driven approaches have been adopted in the DD-BPD and the accuracy of 

existing data-driven prediction models?  

2. What is the current status of existing building performance databases? 

3. What are the future research directions of the DD-BPD?  

2. Methodology 

First, related papers were screened out by keywords searching on widely known academic 

databases, including ScienceDirect and Google Scholar, using combined keywords from machine 

learning and building performance domains, for example, ‘SVM, building energy’, ‘data mining, 

building performance’, and ‘Machine learning building, retrofit’. Then, much more literature was 

found by examining the cited and citing papers of the preliminary works. After that, a thorough 

collection of core publications to the proposed topic has been filtered out using the following three 

criteria: 

1) The selected publications should address one or more matters relevant to building performance, 

including energy, thermal environment, visual environment, acoustic environment, and indoor air 

quality; 

2) The dataset used by the existing study should be collected from many buildings. Studies that 

were carried out on time-series, simulated, or other generated data are excluded; 

3) One of the data-driven methods, related to statistics, regression, clustering, and classification, 

was adopted in the study. 

Finally, a total of 91 core papers have been picked out. The following part of this paper will address 

the three questions proposed above in turn in Section 3 to 5, respectively. At the end of the paper, a 

conclusion is given to summarize the main findings.  

3. Data-driven applications for analysis and 

design 

3.1. With Statistical methods 

3.1.1. Simple statistical analysis 

A large amount of OBPD is a valuable resource to validate the effectiveness of energy policies, 

energy-efficient measures, and design methods. Many studies have compared the energy 
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consumption between different building groups to evaluate the effectiveness of the design methods. 

In recent years, LEED (Leadership in Energy and Environmental Design) has become a widespread 

green building certification system in North America. Newsham et al. [9] statistically analyzed the 

energy consumption of 100 LEED-certified buildings. They found out that LEED buildings averagely 

consumed 18-39% less energy, but 28-35% of LEED buildings used more energy than their traditional 

counterparts. Further analysis showed that LEED buildings did not live up to the expectation of 

performance set in the design stage. In 2013, Scofield [15] statistically analyzed the energy 

consumption of 953 office buildings in New York City. He concluded that LEED gold buildings 

outperformed non-LEED ones, but LEED silver and certified underperformed non-LEED buildings. 

Scofield and Doane [6] compared the energy consumption between LEED-certified school buildings 

and conventional school buildings in Chicago. The results indicate that LEED-certified buildings 

consumed 17% more source energy than other buildings. Household electricity use for heating and 

cooling was taken by Wang et al. [16] as the metric to evaluate the effectiveness of China Building 

Energy Efficiency Standards on residential buildings in Chongqing, China. It turned out that households 

that adopted the standards saved about 41% more energy than those who didn’t. 

The actual effectiveness of energy retrofit measures can be unveiled by comparing the energy of 

pre- and post-retrofitted buildings. Liang et al. [17] analyzed the pre-and post-renovation energy bills 

of 201 residential buildings and 636 commercial buildings. It turned out that those energy-efficient 

measures saved 30-50% less than the engineering models expected. With the energy efficiency data 

of nearly 30000 households in Michigan, Fowlie et al. [18] found that energy savings calculated by 

energy efficiency programs were more than three times the actual savings. Filippidou et al. [19] 

investigated the outcomes of various energy-efficient retrofit measures with the Dutch non-profit 

house data. The results showed that dwellings implemented with three or more measures achieved 

significant energy performance improvement. But, only less than 3% of dwellings were retrofitted 

with three or more measures. 

Another meaningful job is to identify potential energy retrofit opportunities for buildings within a 

specific region by comparing the energy differences for buildings with and without an energy-efficient 

measure. With data of approximately 90,000 dwellings in the Netherlands, Brom et al. [20] calculated 

the energy differences between dwellings retrofitted with a measure and buildings without any 

renovation. In this way, they explored whether building types and occupant behavior had influenced 

the energy savings for different renovation measures. By statistically analyzing the thermal 

performance data of about 10400 houses, Streicher et al. [21] pointed out that approximately three 

quarters had not reached the latest building thermal performance requirements. Besides, they 

identified the renovation requirements of opaque envelopes, windows, and oil-fired boilers. Shahrokni 

et al. [22] compared the energy-efficient potentials of buildings in different age ranges and drew a 

conclusion that if existing buildings were retrofitted to satisfy current codes, the heating energy would 

be reduced by one-third. Moreover, buildings constructed between 1946 and 1975 were verified to 

have the largest energy reduction potentials. Besides energy consumption, Calero et al. [23] 

statistically examined the CO2 emissions and energy costs of many multi-family residential buildings 

that adopted various energy-saving measures. The results indicated that solar/biomass energy stood 
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out for the most significant benefits. With OBPD obtained by walk-through surveys of energy 

end-uses, Lee et al. [24] built a set of design criteria as a substitute for the traditional design 

requirements, which were identified as an effective method to mitigate the impacts of oversized 

cooling. 

3.1.2. Advanced statistical analysis  

Identifying dominant factors of building performance is an essential job for better predictions, 

understanding of building performance, and policy-making. When determinant features are targeted, 

engineers can adjust these parameters to achieve high-performance design and operation. If 

operation patterns were identified, once be informed, occupants would be interested in and willing to 

change their behavior to pursue high-performance operations [25]. When identifying determinant 

factors, several studies, like [26], merely compared the performance difference between different 

groups, but the majority of existing studies adopted statistical and machine learning methods. 

Correlation coefficient 

The correlation coefficient is defined to measure the correlation between two variables. As a 

commonly used one, the Pearson correlation coefficient accesses the linear relationships between 

two variables. Eq. (1) shows the mathematical formula of the popular Pearson correlation coefficient. 

Some researchers applied this method to test the correlation between each feature and annual 

energy consumption [10, 27-32]. When testing the relationship between two variables, Spearman's 

rank correlation coefficient, adopted by [33], is equal to the Pearson correlation coefficient. As an 

exemplified study, with the data of 20,802 residential buildings in the city of Basel, Aksoezen et al. [27] 

identified that gas consumption is closely related to building volume, gross residential floor area, 

exposed surface area, number of people, and exposed elevation area using Pearson correlation 

coefficients. 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 Eq. (1) 

where: 

 cov(X,Y) is the covariance of two variable X, and Y; 

 𝜎𝑋 is the standard derivation of X; 

 𝜎𝑌 is the standard derivation of Y. 

Chi-square test 

The Chi-square test is a statistical test to evaluate the differences in the distribution of categorical 

data in different sets. Eq. (2) gives the chi-square statistic 𝜒2 calculation equation. P-value is used to 

quantify whether a null hypothesis is accepted or rejected in a chi-square test. Out of the reviewed 

literature, Kuo et al. [32] took advantage of the Pearson correlation coefficient and Chi-square test 

methods to identify determinant features of the energy consumption of convenience stores. 
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𝜒2 =∑
(𝑜𝑗 − 𝑒𝑗)

2

𝑒𝑗
𝑗

 Eq. (2) 

where: 

 𝑜𝑗  is the observed frequencies in the jth cell; 

 𝑒𝑗  is the expected frequencies in the jth cell. 

Analysis of variance 

Analysis of variance (ANOVA) is a group of statistical methods to test the significance of 

discrepancies among more than two groups, including t-test, F-test, and one-way ANOVA, etc. ANOVA 

models have been frequently adopted to analyze dominant factors in the reviewed literature [16, 20, 

34-40]. Bartusch et al. [35] have adopted t-tests and one-way ANOVA methods to examine the impact 

of household features on the electricity consumption of residential buildings. Heating system types, 

building area, family members, year of construction, and service water heater types were found to 

impose a significant influence on electricity consumption. On the other hand, in terms of the effect on 

different subgroups, insulation of external walls, ventilation heat exchanger, indoor temperature 

control system and supplementary heating installations did not show apparent variance. Despite so, it 

was pointed out that the operation behavior of these household appliances is worthy of careful 

consideration in the future. 

3.2. With machine learning methods 

DD-BPD refers to any procedure that allows rising high-performance design solutions for a 

proposed building with statistical or machine learning methods. The applied methods are traditionally 

classified into regression, classification, and clustering.  

3.2.1. Regression 

Regression encompasses a variety of processes of developing models to predict the 

target-dependent variables with one or more variables. In the building performance field, many 

machine learning algorithms have been applied to evaluate building energy consumption. Table 1 lists 

the main literature that utilized regression techniques to investigate building performance. Fig. 2 and 

3 demonstrate the distributions of regression studies by algorithms and target variables. Fig. 2 

demonstrates the distribution of algorithms adopted by those studies, where each type stands for a 

category of algorithms. For instance, decision tree includes the J48 decision tree, C4.5 decision tree, 

ID3, random forest, CART, CHAID, and MARS. With Fig. 3, it can be perceived that linear regression 

models are the most commonly used algorithms, followed by ANN, decision tree, and SVM models. Fig. 

3 shows that a majority of studies focused on the prediction of the EUI, heating energy, and electricity. 

Only 15% of studies [10, 41-47] probed into the renovation opportunities, HVAC selection, or 

energy-saving measures.  
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Fig. 2 Distribution of reviewed regression papers by algorithms 

 

Fig. 3 Distribution of reviewed regression papers by target variables 

High prediction accuracy is an essential requirement for BPD. Typical criteria of regression results 

include R
2
 (coefficient of determination), Adj. R

2
, MAPE, CVMSE, CV-RMSE, and Std. Error etc. referring 

[11] for their detailed, definitive equations. As for prediction accuracy, we found advanced machine 

learning, like ANN and Random Forest, achieved higher accuracy than Multiple Linear Regression 

(MLR) [33, 48-50]. In Table 1, if R
2
 or Adj. R

2
 is taken as the assessment criterion, the values of almost 

half of these studies could exceed 0.5 including [10, 32, 38, 51-54]. However, several prediction 

objectives are not traditional EUI, but energy consumption [10, 51] which is linear to building area, or 

logarithmic transformed EUI [52, 53] which makes the predictions more like classification than 

regression, or EUI changes after retrofitting [50]. Most puzzling of all, Pan and Zhang [54] predicted 

EUI with subentry energies as input variables. The study conducted by Martinez and Choi [38] lacks 

credibility as it remains open to doubt how it was possible to predict EUI merely with façade 

information achieving such high accuracy. 

Besides modeling building performance, regression algorithms have also been applied to predict 

decision-making processes. For example, Gamtessa [55] tried to model residential energy retrofit 

decisions from an economics perspective with pre- and post-retrofit audit data. The results showed 

the proposed model plays a part in proposing the most significant energy-saving measures for 

buildings with specific characteristics. 

Table 1  
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A summary of the representative regression studies 
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[10] MLR 74 School 7 0 Electricity, EUI Adj. R2: 0.948 for university 

[30] MLR, BPNN 30 Office 7 5 Electricity MAPE : 3.1% (BPNN) 

[32] Gaussian processes, MLR, SMOreg, 
M5P, M5Rules, Decision trees. 

723 Convenience 
stores 

33 N.A. EUI Correlation coefficient: 0.85 (M5 
Rules) 

[38] Stepwise regression 92 Miscellaneous 29 6 EUI R2: 0.83 

[39] Robust regression 134K Residential 5 2 Heating demand Std. error: 0.027 

[41] MLP, Nonlinear principal component 
analysis 4767 Office 5 4 Energy retrofit index R2: 0.42(MLP) 

[43] MLR 926 Commercial 10 6 Retrofit savings R2: 0.40 

[48] 
Regularization, Hierarchical group 

lasso regularization 4748 
Residential and 

office 257 52 EUI 
MSE: 0.46 (Multifamily); 0.40 

(Office). 

[49] XGBooost, Decision tree, SHAP, 7487 Residential 15 0 Weather normalized 
source EUI R2: 0.31 (XGBoost) 

[50] MLR, ANN 56 Office 4 1 Retrofit EUI changes R2: 0.744 (ANN). 

[52] Transformed linear regression 12K Residential 13 10 Electricity Adj. R2: 0.86 

[56] Clusterwise regression, MLR, 3902 Residential 250 70+ EUI CVMSE: 0.30 

[57] Lasso regression 845 Households 20 2 Electricity Adj. R2:0.34 

[58] MLR 713 Miscellaneous 16 13 Energy intensity Adj. R2: 0.526 

[59] ANN 1872 School 11 1 Electricity and 
heating energy 

MAPE: 34.0% (Electricity); MAPE: 
25.1% (Heating energy). 

[60] RF, MLR and Lasso, SVM 3640 Residential 171 9 EUI MSE: 0.773(RF); RMSE: 0.879(RF). 

[61] SVM, BPNN, RBFNN, GRNN, 59 Residential 15 14 Electricity  RMSE: 2.40% (SVM); MRE: 1.90 
(SVM). 

[62] GLR 3446 Residential 14 4 Daily electricity 
MAPE: 3.9%; MAE: 0.81; MSE 

1.87; RMSE 1.37. 
[63] MLR 49K Residential 30 N.A. Gas use Adj. R2: 0.238. 

[64] MLR 72 Bank 6 2 EUI R2: 0.253; Adj. R2: 0.185. 

[65] ANN, REPT, RF, SVM 90K Residential 10 3 Heating energy MAPE: 16.4%; MAE: 22.2. 

N.A.: not available. The accuracy column describes the best accuracy of each study, Unit of MAE and RMSE: KWh/m2. 

3.2.2. Classification 

Classification aims at solving the problem of identifying to which of a set of categories 

(sub-populations) a new observation belongs, based on a training set of data containing observations 

(or instances) whose category memberships are known. Table 2 summarizes the main studies that 

applied classification methods to building performance analysis, all of which achieved quite high 

classification accuracies. Two of these papers focused on classifying energy consumption levels [32, 

66], while the remaining two aimed at identifying renovation strategies [67, 68].  

As for classification, a foremost work is to define the target categories based on building 

performance. In statistical and machine learning, classification categories are often two-fold. For 

example, data scientists categorize bank loan applications as safe or risky. Kuo et al. [32] binned data 

into 2, 3, and 5 subsets based on buildings’ EUI. Their results showed that the more categories the 

data has, the worse the classification accuracy will be. Gupta et al. [69] divided buildings into two 

groups: efficient and inefficient. Yu et al. [66] also classified residential buildings into two categories, 

i.e., high and low ones with their total energy consumption per area. EUI is the most commonly used 

feature to indicate buildings’ energy performance [27, 32, 45, 66, 70]. However, it fails to reflect the 

influence of building operation hours, types, and weather conditions, etc. [71]. NABERS, an Australian 

green building certification standard, regards operation hours as a critical variable except building area 
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when rating the star level of a building [72]. In other minority studies, energy was not taken as a 

criterion for the classification of buildings, but cost and schedule performance [73]. 

Table 2  

A summary of the representative classification studies 
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[32] 
To develop a new energy model for convenience stores 

other than traditional energy models. 
Gaussian processes, 

Decision trees 
723 

Convenienc
e stores 

33 87% 

[66] To estimate residential building EUI levels. Decision tree 67 Residential 10 92% 

[67] 
To utilize available data to target ECMs across a city’s 

entire building stock. 

User-facing falling rule 

list 
1100 

Miscellaneo

us 
23 

ROC AUC: 

0.72–0.86 

[68] 
To get understanding the decision-making processes of 

energy efficiency investments. 
Logistic regression 763 Office 7 

ROC AUC: 
0.85. 

3.2.3. Clustering 

Clustering refers to a general process of grouping a set of objects into different groups wherein 

objects are similar to each other. A straightforward application of clustering is to cluster buildings into 

several groups based on building attributes [74]. Petcharat et al. [34] conducted a clustering analysis 

of a set of actual lighting power density data extracted from an energy audit database. They found 

that the clustering analysis achieved much higher accurate results than that from general prediction 

methods. As a consequence, this method can be used to access different lighting systems. 

In the building performance field, clustering is commonly applied to identify reference buildings 

and performance patterns [64, 75-82]. Wong et al. [64] grouped 72 bank buildings into four types 

based on their shapes, sizes, geographical layouts, and construction ages. Their review of existing 

works that applied clustering techniques showed that buildings were always grouped by geometry, 

climate zone, age, thermal performance, usage, and HVAC. Gaitani et al. [76] applied the K-mean 

algorithm to cluster 5 main building classes of 1100 Greece schools. Then, principal components 

analysis was used to figure out typical school buildings and to access the energy-saving potentials of 

each building group. Gao and Malkawi [77] proposed to cluster reference buildings for benchmarking 

based on the multi-dimensional domain of building features other than just on building types. 

Clustering also commonly services as a pre-analysis of other data-driven analyses [64, 83]. As one 

kind of clustering, similarity analysis aims at sifting buildings similar to the design building. The 

data-driven design strategies are supposed to inspire buildings similar to the proposed buildings [45]. 

Fig. 4 shows the distribution of clustering algorithms in these reviewed papers, which shows that even 

as the most straightforward method, k-means was the most frequently used clustering method. 
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Fig. 4 Distribution of clustering algorithms in the reviewed papers 

3.3. A summary of data-driven methods 

Table 3 summarizes the key applications, strengths, and weaknesses of different data-driven 

methods. In DD-BPD practical terms, existing studies have concentrated too much on the prediction of 

energy other than the energy-efficient design which can be reflected by Fig. 3. More critical discussion 

would be given in Section 5. 

Table 3  

A summary of the applications, strengths, weaknesses of existing data-driven methods 

DD-BPD 

methods 
Key applications Strengths Weaknesses 

Simple 

statistical 

Feature distributions. Comparison of 

different building groups. 

Easy to understand, outstanding 

visualization. 

Too intuitive. Cannot 

quantify latent reasons. 
Advanced 
statistical 

Identification of determinant 
features. Pre-processing of DD-BPD.  

Easy to do. 
Hard to define the 
thresholds of significances. 

Regression 
Prediction of building energy 
consumption. 

Infer the relationships between 
building features and energy uses. 

Low prediction accuracy. 
Less resilience. 

Classification 
Classification of buildings by their 

energy performance. 

Prediction of categorical features. 

Relatively high prediction accuracy. 
 

Clustering Exploring reference buildings.  Easy to understand and build models. 
Hard to give the weight of 
different features. 

 

4. Building performance databases 

Building performance data are the foundation of data-driven analysis. In other words, without a 

versatile building performance database, it would be difficult to develop a successful model. Table 4 

summarizes the major building performance databases used in the core literature. As shown in Table 4, 

these databases were initially set up for energy benchmarking, performance certification, and energy 

statistics. Energy benchmarking relates to a comparison of energy consumption between one building 

and its similar buildings [84]. In practice, energy benchmarking programs only involve several building 

features. For example, the New York City benchmarking dataset has six building features, i.e. building 
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area, principle activity, year built, number of buildings, occupancy percentage, metered areas [85]. 

What’s more, most of the databases in Table 4 have less than 50 features. As for the data size, many 

databases contain millions of buildings, while some only have several thousand pieces of data.  

Databases developed in the U.S. and the U.K. are mostly public accessible due to disclosure laws, 

such as NYC Benchmarking Law [85] or the conscience of the avant-garde groups such as the 

energy-saving trust in the U.K. [86]. There are many other government-supported databases, for 

example, the Residential Energy Consumption Survey (RECS) dataset built by the U.S. Energy 

Information Administration [87].  
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Table 4  

A summary of main databases adopted in the core literature 
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CBECS[88] 
[33, 53, 
89] 

US 
To unveil the current energy consumption status 

of non-residential buildings in the United States. 
6,720 >502 Y 

 Contains a large number of features.  

 Lacks a detailed description of building components, for example, the U-value of 
opaque enclosures.  

BPD[90] [43, 91] US 
To build an open accessible benchmarking 
platform. 

>870,000 Unclear P 
 Comes from more than 30 sources.  

 Less 2% data include HVAC system information. 

SHAERE 
[19, 20, 
92] 

Netherlands 
To investigate energy efficiency evaluation of 
building stock in the Netherlands. 

>1.7M Unclear N 

 Contains the energy consumption data several years in a row.  

 Includes physical characteristics, heating and ventilation installations, theoretical 
energy consumption, the average energy intensity and more.  

 Monitors the progress of energy-saving measures in the social house sector. 

CECB [21] Switzerland 
To provide a clear state of certified buildings in 
terms of energy efficiency. 

20,919 Unclear N 
 Certified experts collect building characteristics, heating system information and some 
behaviour-related aspects. 

Danish EPC 
database 

[39] Denmark To issue an energy performance certification. 134,093 6 N 
 Contains information about the physical properties, e.g. U- values and areas of all 
external walls, heated floor areas, types of heat supply, ownership, and geographical 
location, and other related characteristics. 

NYC’s 
benchmarking 

[49, 56, 
60, 67, 
78] 

US To benchmark buildings in New York City.  7,500 6 Y  Mainly includes building energy consumption but lacks building characteristic features. 

HEED[86] [46] UK 
To record the energy efficiency installations in the 
domestic building stock. 

>168,998 42 Y 
 Contains information about energy performance and the installation of energy 
efficiency retrofits.  

NEED[93] [94] UK 
To examine the changes in domestic gas and total 
energy consumptions for the dwellings. 

>3.0M Unclear Y 
 Based on a rich, well-structured and reliable data of good quality, enabling a robust 
estimation of pro- and post-retrofit with different energy efficiency measures. 

2006 ABS census 
data 

[52] Australia 
To quantify the relationship between the energy 
consumption and the households and dwellings 
characteristics. 

11,967 19 N  There is a total of 249 fields to describe building characteristics. 

P: partial accessible. Y: open accessible. N: not available for public. 
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In addition, researchers have customized their datasets to fulfill specific studies. In Table 1 and 2, 

datasets with over 1000 buildings were derived from various government-supported energy projects. 

Except for these from government-supported projects, 67% of the remaining datasets have less than 

100 buildings. However, those studies also covered many interesting topics. For instance, in order to 

predict the energy savings of new air-conditioning systems, it is necessary to record energy 

consumption pre- and post-retrofitting [50]. 

5. Discussion 

5.1. Achievements 

5.1.1. Overview 

Statistical methods have been deployed to analyze building performance patterns, explore the 

effectiveness of performance policies and design methods, such as benchmarking and green building 

certification. To delve into determinant factors, several advanced statistical algorithms, like correlation 

coefficient, Chi-square test, and ANOVA were often adopted but did not take the interrelation 

between features into consideration. The results of correlation coefficient analyses show that highly 

correlated parameters did not coincide with other analysis results [10, 27], and imply that less 

correlated parameters may be crucial for building a regression or classification model. Existing studies 

have analyzed the relationship between energy consumption and various building characteristics, 

including building envelopes [70], HVAC systems [44], HVAC operation and maintenance [58], lighting 

[30], human behavior [95], capita income [96]. 

Several studies have tried to build models for BPD of building envelops [70], HVAC system selection 

[44], cooling capacities [30], cooling plant efficiency [50], air-conditioning operation and maintenance 

[58]. As for the prediction accuracy, Turner and Frankel [7] investigated the measured and predicted 

energy performance of 121 LEED new construction buildings. The R
2
, MSE, and RMSE of those 

predictions are 0.505, 19.1kBtu/ft
2
, and 23.8kBtu/ft

2
,
 
respectively. Using the CBECS database, Dong et 

al. [33] compared the performance of several statistical and machine learning algorithms in predicting 

building energy performance. The best prediction results for total EUI were achieved by SVM with 

MSE of 18.2kBtu/ft
2
, 18.1kBtu/ft

2
, and 25.7kBtu/ft

2
 for training, validation, and testing dataset, 

respectively. It is quite possible that energy prediction accuracy achieved by data-driven models will 

bypass the energy simulation method. 

5.1.2. Identifying determinant features 

Section 2.1.2 summarizes several studies that applied statistical algorithms to raise determinant 

features. Besides, many studies have adopted regression or classification learning algorithms to 
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identify determinant factors. These algorithms include linear regression models [32, 43, 47, 97], 

quantile regression [96, 98, 99], hierarchical group-lasso regularization models [56] , decision tree [38, 

58, 66, 100, 101], random forest [60, 102], step regression [38, 103], ANN [59], ordinary least squares 

(OLS) regression and lasso regression [57], and k-means [104].  

Identifying determinant features of building energy consumption is the most commonly and 

successfully applied strategy. Table 5 summarizes several representative studies on identifying 

determinant features. To identify determinant features of residential electricity consumption, 

Esmaeilimoakher et al. [105] surveyed many factors mainly related to building size, occupants, and 

their behavior in Western Australia. They adopted one-variable linear regression models to depict the 

linear correlation between each factor with electricity consumption. The results showed that floor 

area, household size, disposable household income, and Head of Household have a significant 

influence on electricity consumption, while the number of children and window-opening behavior 

show little effect. Zhang et al. [106] conducted three different feature engineering approaches, i.e., 

exploratory data analysis, random forest, and principal component analysis for feature visualization, 

feature selection, and feature extraction, respectively. The three feature engineering methods were 

found to share some common features vital to machine learning, however, which can be hardly 

explained by experts. 

In a conventional experiment, to test the influence of one parameter, it is a standard practice to 

keep all other settings the same in different test groups. In this sphere, similarity analysis is a 

preliminary work before analyzing the influence of one parameter upon the building performance. To 

qualify the impact of occupant behavior on energy performance, Ashouri et al. [42] proposed a 

two-level clustering framework wherein buildings were clustered into different groups using 

the k-means algorithm. Papadopoulos [49] used SHAP (SHapley Additive exPlanation) to evaluate 

the effects of single features on EUI. 

Table 5 

 A summary of the representative studies on identifying determinant factors 
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[35] Residential 
house 

595 8 t-tests and 
ANOVA 

Electricity for 
heating 

Electric boiler, heat pump, non-electric, electric, 
and combined boiler. 

[58] 
Miscellaneo

us 
713 16 

Decision 

tree 
Energy intensity 

Chiller condition, AC cleaning frequency, luxury 

housing, and commercial use. 

[70] Household 3688 20 
Decision 
tree 

Heating energy 
Window heat-transmission coefficient, window 
and roof heat-transmission coefficient,  

[98] Household 
Uncl
ear 

18 
Quantile 
regression 

Electricity 
consumption 

Higher income, larger household size, and more 
elderly members consumed more electricity 

[10
2] 

School 41 10 

Random 

Forest Heating energy 

Thermal transmittance of the windows, external 

walls, ground floor, roof and capacity of the 
heating system.  
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5.2. Challenges 

Even though data-driven models attract much attention, many challenges are still existing. As Fig.5 

shows, the subsequent part of this section would discuss these obstacles from three aspects, i.e., 

practical data-driven models, availability of data, and DD-BPD industrial practices. 

 

Fig. 5 Main challenges of current DD-BPD technique 

5.2.1. How to develop practical data-driven models? 

Comparing with the building energy simulation techniques that have been applied to building 

energy predictions and energy-efficient design projects, seldom data-driven models were used in 

actual projects [12, 107]. For one reason, data-driven models can hardly cope with data outside the 

training data [108]. In other words, the wisdom excavated from some buildings cannot be applied to 

other projects [109]. For another reason, previous data-driven models emphasized energy prediction 

other than energy-efficient design [110].  

Embedded many calculation programs, energy simulation software can calculate the impacts of 

many features. In reverse, these features can be designed by energy simulation tools. However, a 

supervised learning model for energy prediction usually contains less than 10 features. Besides, these 

models mainly may be used to design important designable features that account for a small 

proportion of hundreds of energy-related features [110]. In Table 1, only 23.8% of features were 

designable. Many regression models, such as in [10, 49], did not contain any designable features. It is 

an urgent demand to develop practical data-driven models that can meet the needs of various 

building energy-efficient design tasks. For example, data-driven designs of building envelopes, 

shadings, insulation, and ventilation are still insufficient. Specific models should be developed for 
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particular design works. 

Data-driven studies about energy predictions demonstrated the reliability of this technique not 

only in rapid modeling but also in accuracy. However, along with the revealed problems of existing 

data-driven energy prediction in section 3.2.1, many more solid studies should be carried out to dispel 

the doubts in the future.   

5.2.2. How to promote the availability of building 

performance data? 

First, the disclosure laws of building performance data are still missing in many countries. In the 

U.S., the disclosure requirements have boosted the formulation of several public accessible building 

performance datasets including the CBECS survey data and New York City benchmarking data [111]. In 

contrast, in China, large-scale public buildings are required to install building energy monitoring 

systems, and a large amount of building energy data is being collected [112]. However, due to the lack 

of disclosure laws, researchers and engineers cannot acquire these data.  

Second, there is no standard building parameter system that hinders the merging of small datasets. 

At present, due to this reason, although several building performance datasets are available, they can 

hardly be merged into a large database [91]. 

Third, the integration of multi-source data is still weak especially between descriptive data and 

time-series data. A well-designed data model is a key factor to successfully promote engineering 

practices [113]. Considering the wide-available of the internet of things (IoTs), the data model also 

needs to consider the integration of time-series data in the future. For a long time, data-driven models 

for time-series prediction were always carried out on data from a sensor or a single building [114-116]. 

The weak integration of large time-series building data of many buildings hinders the exploring hidden 

information with big data. 

5.2.3. How to stimulate DD-BPD industrial practices? 

From the perspectives of engineers and designers, to fulfill industrial projects, DD-BPD tools are 

necessary foundations. Built by the U.S. Department of Energy, the Building Performance Database is 

not only a large building performance dataset but also an online platform that allows users to 

compare the energy consumption of different building groups [90]. The U.S. Department of Energy 

also sponsored the development of a data-driven monthly building energy prediction tool, named 

BETTER [117]. However, these tools can only conduct limited statistical analyses or predictions. In 

addition, pilot projects and data-driven building design competitions would stimulate DD-BPD 

industrial practices. DD-BPD projects can promote the accumulation of building data if the inputs can 

be saved with the permission of users. 
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6. Conclusion 

This paper focused on studies of applying data-driven approaches for building performance 

analysis and design on big on-site building performance data and analyzed existing building 

performance databases covering current statuses and challenges. A comprehensive discussion 

highlights the achievements and challenges which indicate future research directions.  

Several remarkable findings need to be depicted as follows. In the application fields, most studies 

concentrated on exploring energy trends, energy prediction, determinant features, and referring 

buildings. Few studies aimed at developing data-driven models for BPD. As for data-driven approaches, 

comparing with regression, classification approaches have received much less attention. Identification 

of determinant features is a common but successful application in existing studies. To thoroughly 

boost data-driven methods for BPD, several challenges should be tackled relating to practical 

data-driven models, availability of building performance data, and stimulation of DD-BPD industrial 

practices.  

Acknowledgements 

This research is supported by Shanghai Super Post-doctoral Program.   

Reference 

[1]. Ürge-Vorsatz, D. and A. Novikova, Potentials and costs of carbon dioxide mitigation in the world's 

buildings. Energy Policy, 2008. 36(2): 642-661. 

[2]. Perez-Lombard, L., J. Ortiz, and C. Pout, A review on buildings energy consumption information. 

Energy and Buildings, 2008. 40(3): 394-398. 

[3]. Shi, X., Design optimization of insulation usage and space conditioning load using energy 

simulation and genetic algorithm. Energy, 2011. 36(3): 1659-1667. 

[4]. Hensen, J.L. and R. Lamberts, Building performance simulation for design and operation. 2012: 

Routledge. 

[5]. Mustafaraj, G., D. Marini, A. Costa, and M. Keane, Model calibration for building energy efficiency 

simulation. Applied Energy, 2014. 130: 72-85. 

[6]. Scofield, J.H. and J. Doane, Energy performance of LEED-certified buildings from 2015 Chicago 

benchmarking data. Energy and Buildings, 2018. 174: 402-413. 

[7]. Turner, C. and M. Frankel, Energy performance of LEED for new construction buildings. New 

Buildings Institute, 2008. 4: 1-42. 

[8]. van den Brom, P., A. Meijer, and H. Visscher, Performance gaps in energy consumption: household 

groups and building characteristics. Building Research & Information, 2018. 46(1): 54-70. 

[9]. Newsham, G.R., S. Mancini, and B.J. Birt, Do LEED-certified buildings save energy? Yes, but ... 

Jo
urn

al 
Pre-

pro
of



19 
 

Energy and Buildings, 2009. 41(8): 897-905. 

[10]. Wang, J.C., A study on the energy performance of school buildings in Taiwan. Energy and 

Buildings, 2016. 133: 810-822. 

[11]. Amasyali, K. and N.M. El-Gohary, A review of data-driven building energy consumption prediction 

studies. Renewable & Sustainable Energy Reviews, 2018. 81: 1192-1205. 

[12]. Wei, Y.X., X.X. Zhang, Y. Shi, L. Xia, S. Pan, J.S. Wu, M.J. Han, and X.Y. Zhao, A review of data-driven 

approaches for prediction and classification of building energy consumption. Renewable & 

Sustainable Energy Reviews, 2018. 82: 1027-1047. 

[13]. Bourdeau, M., X. qiang Zhai, E. Nefzaoui, X. Guo, and P. Chatellier, Modeling and forecasting 

building energy consumption: A review of data-driven techniques. Sustainable Cities Society, 

2019. 48: 101533. 

[14]. Miller, C., Z. Nagy, and A. Schlueter, A review of unsupervised statistical learning and visual 

analytics techniques applied to performance analysis of non-residential buildings. Renewable and 

Sustainable Energy Reviews, 2018. 81: 1365-1377. 

[15]. Scofield, J.H., Efficacy of LEED-certification in reducing energy consumption and greenhouse gas 

emission for large New York City office buildings. Energy and Buildings, 2013. 67: 517-524. 

[16]. Wang, X., W. Feng, W. Cai, H. Ren, C. Ding, and N. Zhou, Do residential building energy efficiency 

standards reduce energy consumption in China?–A data-driven method to validate the actual 

performance of building energy efficiency standards. Energy Policy, 2019. 131: 82-98. 

[17]. Liang, J., Y.M. Qiu, T. James, B.L. Ruddell, M. Dalrymple, S. Earl, and A. Castelazo, Do energy 

retrofits work? Evidence from commercial and residential buildings in Phoenix. Journal of 

Environmental Economics and Management, 2018. 92: 726-743. 

[18]. Fowlie, M., M. Greenstone, and C. Wolfram, Do energy efficiency investments deliver? Evidence 

from the weatherization assistance program. The Quarterly Journal of Economics, 2018. 133(3): 

1597-1644. 

[19]. Filippidou, F., N. Nieboer, and H. Visscher, Are we moving fast enough? The energy renovation 

rate of the Dutch nonprofit housing using the national energy labelling database. Energy Policy, 

2017. 109: 488-498. 

[20]. van den Brom, P., A. Meijer, and H. Visscher, Actual energy saving effects of thermal renovations 

in dwellings-longitudinal data analysis including building and occupant characteristics. Energy 

and Buildings, 2019. 182: 251-263. 

[21]. Streicher, K.N., P. Padey, D. Parra, M.C. Burer, and M.K. Patel, Assessment of the current thermal 

performance level of the Swiss residential building stock: Statistical analysis of energy 

performance certificates. Energy and Buildings, 2018. 178: 360-378. 

[22]. Shahrokni, H., F. Levihn, and N. Brandt, Big meter data analysis of the energy efficiency potential 

in Stockholm's building stock. Energy and Buildings, 2014. 78: 153-164. 

[23]. Calero, M., E. Alameda-Hernandez, M. Fernandez-Serrano, A. Ronda, and M.A. Martin-Lara, 

Energy consumption reduction proposals for thermal systems in residential buildings. Energy and 

Buildings, 2018. 175: 121-130. 

[24]. Lee, W.L., F.W.H. Yik, P. Jones, and J. Burnett, Energy saving by realistic design data for 

commercial buildings in Hong Kong. Applied Energy, 2001. 70(1): 59-75. 

[25]. Mansouri, I., M. Newborough, and D. Probert, Energy consumption in UK households: Impact of 

domestic electrical appliances. Applied Energy, 1996. 54(3): 211-285. 

[26]. Melois, A.B., B. Moujalled, G. Guyot, and V. Leprince, Improving building envelope knowledge 

Jo
urn

al 
Pre-

pro
of



20 
 

from analysis of 219,000 certified on-site air leakage measurements in France. Building and 

Environment, 2019. 159: 106145. 

[27]. Aksoezen, M., M. Daniel, U. Hassler, and N. Kohler, Building age as an indicator for energy 

consumption. Energy and Buildings, 2015. 87: 74-86. 

[28]. Baker, K.J. and R.M. Rylatt, Improving the prediction of UK domestic energy-demand using annual 

consumption-data. Applied Energy, 2008. 85(6): 475-482. 

[29]. Theodoridou, I., A.M. Papadopoulos, and M. Hegger, Statistical analysis of the Greek residential 

building stock. Energy and Buildings, 2011. 43(9): 2422-2428. 

[30]. Jing, R., M. Wang, R.X. Zhang, N. Li, and Y.R. Zhao, A study on energy performance of 30 

commercial office buildings in Hong Kong. Energy and Buildings, 2017. 144: 117-128. 

[31]. Yuan, L., Y.J. Ruan, G. Yang, F. Feng, and Z.W. Li, Analysis of Factors Influencing the Energy 

Consumption of Government Office Buildings in Qingdao. Clean Energy for Clean City: Cue 2016 - 

Applied Energy Symposium and Forum: Low-Carbon Cities and Urban Energy Systems, 2016. 104: 

263-268. 

[32]. Kuo, C.F.J., C.H. Lin, and M.H. Lee, Analyze the the energy consumption characteristics and 

affecting factors of Taiwan's convenience stores-using the big data mining approach. Energy and 

Buildings, 2018. 168: 120-136. 

[33]. Deng, H.F., D. Fannon, and M.J. Eckelman, Predictive modeling for US commercial building energy 

use: A comparison of existing statistical and machine learning algorithms using CBECS microdata. 

Energy and Buildings, 2018. 163: 34-43. 

[34]. Petcharat, S., S. Chungpaibulpatana, and P. Rakkwamsuk, Assessment of potential energy saving 

using cluster analysis: A case study of lighting systems in buildings. Energy and Buildings, 2012. 

52: 145-152. 

[35]. Bartusch, C., M. Odlare, F. Wallin, and L. Wester, Exploring variance in residential electricity 

consumption: Household features and building properties. Applied Energy, 2012. 92: 637-643. 

[36]. Filippin, C., F. Ricard, and S.F. Larsen, Evaluation of heating energy consumption patterns in the 

residential building sector using stepwise selection and multivariate analysis. Energy and 

Buildings, 2013. 66: 571-581. 

[37]. Hong, S.H., T. Oreszczyn, I. Ridley, and W.F.S. Grp, The impact of energy efficient refurbishment on 

the space heating fuel consumption in English dwellings. Energy and Buildings, 2006. 38(10): 

1171-1181. 

[38]. Martinez, A. and J.H. Choi, Exploring the potential use of building facade information to estimate 

energy performance. Sustainable Cities and Society, 2017. 35: 511-521. 

[39]. Brogger, M., P. Bacher, H. Madsen, and K.B. Wittchen, Estimating the influence of rebound effects 

on the energy-saving potential in building stocks. Energy and Buildings, 2018. 181: 62-74. 

[40]. Fournier, E.D., F. Federico, E. Porse, and S. Pincetl, Effects of building size growth on residential 

energy efficiency and conservation in California. Applied Energy, 2019. 240: 446-452. 

[41]. Khayatian, F., L. Sarto, and G. Dall'O, Building energy retrofit index for policy making and decision 

support at regional and national scales. Applied Energy, 2017. 206: 1062-1075. 

[42]. Ashouri, M., F. Haghighat, B.C.M. Fung, and H. Yoshino, Development of a ranking procedure for 

energy performance evaluation of buildings based on occupant behavior. Energy and Buildings, 

2019. 183: 659-671. 

[43]. Walter, T. and M.D. Sohn, A regression-based approach to estimating retrofit savings using the 

Building Performance Database. Applied Energy, 2016. 179: 996-1005. 

Jo
urn

al 
Pre-

pro
of



21 
 

[44]. Yamaguchi, Y., Y. Miyachi, and Y. Shimoda, Stock modelling of HVAC systems in Japanese 

commercial building sector using logistic regression. Energy and Buildings, 2017. 152: 458-471. 

[45]. Tian, Z., B. Si, X. Shi, and Z.J.J.o.B.E. Fang, An application of Bayesian Network approach for 

selecting energy efficient HVAC systems. 2019. 25: 100796. 

[46]. Hamilton, I.G., A.J. Summerfield, D. Shipworth, J.P. Steadman, T. Oreszczyn, and R.J. Lowe, Energy 

efficiency uptake and energy savings in English houses: A cohort study. Energy and Buildings, 

2016. 118: 259-276. 

[47]. Ruan, H.Q., X. Gao, and C.X. Mao, Empirical Study on Annual Energy-Saving Performance of 

Energy Performance Contracting in China. Sustainability, 2018. 10(1666): 1-25. 

[48]. Hsu, D., Identifying key variables and interactions in statistical models of building energy 

consumption using regularization. Energy, 2015. 83: 144-155. 

[49]. Papadopoulos, S. and C.E. Kontokosta, Grading buildings on energy performance using city 

benchmarking data. Applied Energy, 2019. 233: 244-253. 

[50]. Deb, C., S.E. Lee, and M. Santamouris, Using artificial neural networks to assess HVAC related 

energy saving in retrofitted office buildings. Solar Energy, 2018. 163: 32-44. 

[51]. Capozzoli, A., D. Grassi, and F. Causone, Estimation models of heating energy consumption in 

schools for local authorities planning. Energy and Buildings, 2015. 105: 302-313. 

[52]. Boulaire, F., A. Higgins, G. Foliente, and C. McNamara, Statistical modelling of district-level 

residential electricity use in NSW, Australia. Sustainability Science, 2014. 9(1): 77-88. 

[53]. Robinson, C., B. Dilkina, J. Hubbs, W.W. Zhang, S. Guhathakurta, M.A. Brown, and R.M. Pendyala, 

Machine learning approaches for estimating commercial building energy consumption. Applied 

Energy, 2017. 208: 889-904. 

[54]. Pan, Y. and L. Zhang, Data-driven estimation of building energy consumption with multi-source 

heterogeneous data. Applied Energy, 2020. 268: 114965. 

[55]. Gamtessa, S.F., An explanation of residential energy-efficiency retrofit behavior in Canada. Energy 

and Buildings, 2013. 57: 155-164. 

[56]. Hsu, D., Comparison of integrated clustering methods for accurate and stable prediction of 

building energy consumption data. Applied Energy, 2015. 160: 153-163. 

[57]. Huebner, G., D. Shipworth, I. Hamilton, Z. Chalabi, and T. Oreszczyn, Understanding electricity 

consumption: A comparative contribution of building factors, socio-demographics, appliances, 

behaviours and attitudes. Applied Energy, 2016. 177: 692-702. 

[58]. Lin, M., A. Afshari, and E. Azar, A data-driven analysis of building energy use with emphasis on 

operation and maintenance: A case study from the UAE. Journal of Cleaner Production, 2018. 

192: 169-178. 

[59]. Hawkins, D., S. Hong, R. Raslan, D. Mumovic, and S. Hanna, Determinants of energy use in UK 

higher education buildings using statistical and artificial neural network methods. International 

Journal of Sustainable Built Environment, 2012. 1(1): 50-63. 

[60]. Ma, J. and J.C.P. Cheng, Identifying the influential features on the regional energy use intensity of 

residential buildings based on Random Forests. Applied Energy, 2016. 183: 193-201. 

[61]. Li, Q., P. Ren, and Q. Meng. Prediction model of annual energy consumption of residential 

buildings. in 2010 international conference on advances in energy engineering. 2010. IEEE. 

[62]. Fan, H., I.F. MacGill, and A.B. Sproul, Statistical analysis of driving factors of residential energy 

demand in the greater Sydney region, Australia. Energy and Buildings, 2015. 105: 9-25. 

[63]. Majcen, D.A., L. Itard, and H. Visscher, Statistical model of the heating prediction gap in Dutch 

Jo
urn

al 
Pre-

pro
of



22 
 

dwellings: Relative importance of building, household and behavioural characteristics. Energy 

and Buildings, 2015. 105: 43-59. 

[64]. Wong, I.L., E. Kruger, A.C.M. Loper, and F.K. Mori, Classification and energy analysis of bank 

building stock: A case study in Curitiba, Brazil. Journal of Building Engineering, 2019. 23: 

259-269. 

[65]. Attanasio, A., M.S. Piscitelli, S. Chiusano, A. Capozzoli, and T. Cerquitelli, Towards an Automated, 

Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach 

Exploiting Building Energy Certificates. Energies, 2019. 12(7): 1273. 

[66]. Yu, Z., F. Haghighat, B.C.M. Fung, and H. Yoshino, A decision tree method for building energy 

demand modeling. Energy and Buildings, 2010. 42(10): 1637-1646. 

[67]. Marasco, D.E. and C.E. Kontokosta, Applications of machine learning methods to identifying and 

predicting building retrofit opportunities. Energy and Buildings, 2016. 128: 431-441. 

[68]. Kontokosta, C.E., Modeling the energy retrofit decision in commercial office buildings. Energy and 

Buildings, 2016. 131: 1-20. 

[69]. Gupta, A., M. Kohli, and N. Malhotra, Classification based on Data Envelopment Analysis and 

supervised learning: A case study on energy performance of residential buildings, in 2016 IEEE 1st 

International Conference on Power Electronics, Intelligent Control and Energy Systems. 2016, IEEE: 

Delhi, India. 

[70]. Zhou, H., B.R. Lin, J.Q. Qi, L.H. Zheng, and Z.C. Zhang, Analysis of correlation between actual 

heating energy consumption and building physics, heating system, and room position using data 

mining approach. Energy and Buildings, 2018. 166: 73-82. 

[71]. Sharp, T.R. Benchmarking energy use in schools. in Proceedings of the ACEEE 1998 Summer Study 

on Energy Efficiency in Buildings. 1998. Citeseer. 

[72]. NABERS, NABERS Energy and Water for Offices -The Rules. 2018. 

[73]. Son, H. and C. Kim, Early prediction of the performance of green building projects using 

pre-project planning variables: data mining approaches. Journal of Cleaner Production, 2015. 

109: 144-151. 

[74]. Chang, C., N. Zhu, K. Yang, and F. Yang, Data and analytics for heating energy consumption of 

residential buildings: The case of a severe cold climate region of China. Energy and Buildings, 

2018. 172: 104-115. 

[75]. Santamouris, M., G. Mihalakakou, P. Patargias, N. Gaitani, K. Sfakianaki, M. Papaglastra, C. Paviou, 

P. Doukas, E. Primikiri, V. Geros, M.N. Assimakopoulos, R. Mitoula, and S. Zerefos, Using 

intelligent clustering techniques to classify the energy performance of school buildings. Energy 

and Buildings, 2007. 39(1): 45-51. 

[76]. Gaitani, N., C. Lehmann, M. Santamouris, G. Mihalakakou, and P. Patargias, Using principal 

component and cluster analysis in the heating evaluation of the school building sector. Applied 

Energy, 2010. 87(6): 2079-2086. 

[77]. Gao, X.F. and A. Malkawi, A new methodology for building energy performance benchmarking: An 

approach based on intelligent clustering algorithm. Energy and Buildings, 2014. 84: 607-616. 

[78]. Papadopoulos, S., B. Bonczak, and C.E. Kontokosta, Pattern recognition in building energy 

performance over time using energy benchmarking data. Applied Energy, 2018. 221: 576-586. 

[79]. Almeida, R.M.S.F., N.M.M. Ramos, M.L. Simoes, and V.P. de Freitas, Energy and Water 

Consumption Variability in School Buildings: Review and Application of Clustering Techniques. 

Journal of Performance of Constructed Facilities, 2015. 29(6). 

Jo
urn

al 
Pre-

pro
of



23 
 

[80]. Salvalai, G., L.E. Malighetti, L. Luchini, and S. Girola, Analysis of different energy conservation 

strategies on existing school buildings in a Pre-Alpine Region. Energy and Buildings, 2017. 145: 

92-106. 

[81]. Lara, R.A., G. Pernigotto, F. Cappelletti, P. Romagnoni, and A. Gasparella, Energy audit of schools 

by means of cluster analysis. Energy and Buildings, 2015. 95: 160-171. 

[82]. Famuyibo, A.A., A. Duffy, and P. Strachan, Developing archetypes for domestic dwellings—An Irish 

case study. Energy and Buildings, 2012. 50: 150-157. 

[83]. Ashouri, M., F. Haghighat, B.C.M. Fung, A. Lazrak, and H. Yoshino, Development of building 

energy saving advisory: A data mining approach. Energy and Buildings, 2018. 172: 139-151. 

[84]. Perez-Lombard, L., J. Ortiz, R. Gonzalez, and I.R. Maestre, A review of benchmarking, rating and 

labelling concepts within the framework of building energy certification schemes. Energy and 

Buildings, 2009. 41(3): 272-278. 

[85]. Sustainability, N.M.s.O.o. About LL84. 2019  [cited 2019 23-Apr.]; Available from: 

https://www1.nyc.gov/html/gbee/html/plan/ll84_about.shtml. 

[86]. trust, E.s. Introduction to HEED. 2019  [cited 2019 21-Apr]; Available from: 

https://www.energysavingtrust.org.uk/scotland/businesses-organisations/data-services/heed. 

[87]. Administration, E.I. Residential Energy Consumption Survey. 2019 July 31 2019 [cited 2019 

October 7]; Available from: https://www.eia.gov/consumption/residential/index.php. 

[88]. EIA. COMMERCIAL BUILDINGS ENERGY CONSUMPTION SURVEY (CBECS). 2019  [cited 2019 

21-Apr.]; Available from: 

https://www.eia.gov/consumption/commercial/data/2012/index.php?view=microdata. 

[89]. Azar, E. and C.C. Menassa, A comprehensive framework to quantify energy savings potential from 

improved operations of commercial building stocks. Energy Policy, 2014. 67: 459-472. 

[90]. Bergmann, H. Building Performance Database. 2019  [cited 2019 21-Apr.]; Available from: 

https://www.energy.gov/eere/buildings/building-performance-database-bpd. 

[91]. Mathew, P.A., L.N. Dunn, M.D. Sohn, A. Mercado, C. Custudio, and T. Walter, Big-data for building 

energy performance: Lessons from assembling a very large national database of building energy 

use. Applied Energy, 2015. 140: 85-93. 

[92]. Filippidou, F., N. Nieboer, and H. Visscher, Energy efficiency measures implemented in the Dutch 

non-profit housing sector. Energy and Buildings, 2016. 132: 107-116. 

[93]. Department for business, E.I.S.o.U. National Energy Efficiency Data-Framework (NEED). 2019  

[cited 2019 21-Apr]; Available from: 

https://data.gov.uk/dataset/473afefd-9028-48d1-a959-c865c1387a9d/national-energy-efficiency

-data-framework-need. 

[94]. Adan, H. and F. Fuerst, Do energy efficiency measures really reduce household energy 

consumption? A difference-in-difference analysis. Energy Efficiency, 2016. 9(5): 1207-1219. 

[95]. Yu, Z., B.C.M. Fung, F. Haghighat, H. Yoshino, and E. Morofsky, A systematic procedure to study 

the influence of occupant behavior on building energy consumption. Energy and Buildings, 2011. 

43(6): 1409-1417. 

[96]. Niu, S.W., Y.Q. Jia, L.Q. Ye, R.Q. Dai, and N. Li, Does electricity consumption improve residential 

living status in less developed regions? An empirical analysis using the quantile regression 

approach. Energy, 2016. 95: 550-560. 

[97]. Laicāne, I., A. Blumberga, M. Rošā, and D. Blumberga, Determinants of household electricity 

consumption savings: A Latvian case study. Agronomy Research, 2014. 12(2): 527-542. 

Jo
urn

al 
Pre-

pro
of



24 
 

[98]. Huang, W.H., The determinants of household electricity consumption in Taiwan: Evidence from 

quantile regression. Energy, 2015. 87: 120-133. 

[99]. Roth, J. and R. Rajagopal, Benchmarking building energy efficiency using quantile regression. 

Energy, 2018. 152: 866-876. 

[100]. Yoon, Y.R. and H.J. Moon, Energy consumption model with energy use factors of tenants in 

commercial buildings using Gaussian process regression. Energy and Buildings, 2018. 168: 

215-224. 

[101]. Zhou, X., D. Yan, T.Z. Hong, and X.X. Ren, Data analysis and stochastic modeling of lighting 

energy use in large office buildings in China. Energy and Buildings, 2015. 86: 275-287. 

[102]. Pistore, L., G. Pernigotto, F. Cappelletti, A. Gasparella, and P. Romagnoni, A stepwise approach 

integrating feature selection, regression techniques and cluster analysis to identify primary 

retrofit interventions on large stocks of buildings. Sustainable Cities and Society, 2019. 

47(101438). 

[103]. He, Y., Y. Zheng, and Q. Xu, Forecasting energy consumption in Anhui province of China through 

two Box-Cox transformation quantile regression probability density methods. Measurement, 

2019. 136: 579-593. 

[104]. Deb, C. and S.E. Lee, Determining key variables influencing energy consumption in office 

buildings through cluster analysis of pre-and post-retrofit building data. Energy and Buildings, 

2018. 159: 228-245. 

[105]. Esmaeilimoakher, P., T. Urmee, T. Pryor, and G. Baverstock, Identifying the determinants of 

residential electricity consumption for social housing in Perth, Western Australia. Energy and 

Buildings, 2016. 133: 403-413. 

[106]. Zhang, C., L.W. Cao, and A. Romagnoli, On the feature engineering of building energy data 

mining. Sustainable Cities and Society, 2018. 39: 508-518. 

[107]. Wang, Z. and R.S. Srinivasan, A review of artificial intelligence based building energy use 

prediction: Contrasting the capabilities of single and ensemble prediction models. Renewable and 

Sustainable Energy Reviews, 2017. 75: 796-808. 

[108]. Li, X. and J. Wen, Review of building energy modeling for control and operation. Renewable & 

Sustainable Energy Reviews, 2014. 37: 517-537. 

[109]. Mirnaghi, M.S., F. Haghighat, and Buildings, Fault detection and diagnosis of large-scale HVAC 

systems in buildings using data-driven methods: A comprehensive review. Energy and Buildings, 

2020. 229: 110492. 

[110]. Tian, Z., S. Wei, and X. Shi, Developing data-driven models for energy-efficient heating design in 

office buildings. Journal of Building Engineering, 2020. 32: 101778. 

[111]. Palmer, K. and M. Walls, Using information to close the energy efficiency gap: a review of 

benchmarking and disclosure ordinances. Energy Efficiency, 2017. 10(3): 673-691. 

[112]. Wei, N., W. Yong, S. Yan, and D. Zhongcheng, Government management and implementation of 

national real-time energy monitoring system for China large-scale public building. Energy Policy, 

2009. 37(6): 2087-2091. 

[113]. Fischer, P.M., M. Deshmukh, V. Maiwald, D. Quantius, A.M. Gomez, and A. Gerndt, Conceptual 

data model: A foundation for successful concurrent engineering. Concurrent Engineering, 2018. 

26(1): 55-76. 

[114]. Bünning, F., P. Heer, R.S. Smith, and J. Lygeros. Sensitivity analysis of data-driven building energy 

demand forecasts. in Journal of Physics: Conference Series. 2019. IOP Publishing. 

Jo
urn

al 
Pre-

pro
of



25 
 

[115]. Edwards, R.E., J. New, and L.E. Parker, Predicting future hourly residential electrical consumption: 

A machine learning case study. Energy and Buildings, 2012. 49: 591-603. 

[116]. Dong, B., Z. Li, S.M. Rahman, and R. Vega, A hybrid model approach for forecasting future 

residential electricity consumption. Energy and Buildings, 2016. 117: 341-351. 

[117]. EERE. BETTER - Building Efficiency Targeting Tool for Energy Retrofits. 2020  [cited 2020 Dec. 

18]; Available from: https://better.lbl.gov/. 

 

Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Highlights: 

 

 This study focused on data-driven studies that fulfilled exclusively on on-site building data.  

 Data-driven studies were classified by statistics, regression, classification, clustering.  

 Major on-site building performance databases were summarized. 

 Challenges were discussed on data-driven models, availability of data, industrial practices. 

 Exploring determinant features and prediction of energy consumption are usual 

applications. 
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