
Shuffle–based verification of component
compatibility

W lodek M. Zuberek

Department of Computer Science, Memorial University,
St.John’s, NL, Canada A1B 3X5

email: wlodek@mun.ca

New Results in Dependability and Complex Sytems (Advances in Intelligent and Soft Computing 224);
8-th Int. Conf. on Dependability of Complex Systems; Brunow Palace, Poland; Sept. 8-13, 2013, pp.543-552.
Copyright c© 2013 Springer–Verlag. The original publication is available at www.springerlink.com.
DOI 10.1007/978-3-319-00945-2 50.

Abstract. Similarly as in earlier work on component compatibility, the
behavior of components is specified by component interface languages.
The shuffle operation is introduced to represent possible interleavings of
service requests that originate at several concurrent components. The
paper shows that the verification of component compatibility is pos-
sible without the exhaustive analysis of the state space of interacting
components. Exhaustive analysis of state spaces was the basis of earlier
approaches to compatibility verification.
Keywords: software components, component-based systems, compo-
nent composition, component compatibility, compatibility verification,
shuffle operation, labelled Petri nets.

1 Introduction

In component-based systems [8], two interacting components, one requesting
services and the other providing them, are considered compatible if all possi-
ble sequences of services requested by one component can be provided by the
other one. This concept of component compatibility can be extended to sets of
interacting components, however, in the case of several requester components,
as is typically the case of client–server applications, the requests from different
components can be interleaved and then verifying component compatibility must
take into account all possible interleavings of requests. Such interleaving of re-
quests can lead to unexpected behavior of the composed system, e.g. a deadlock
can occur [17], [18].

The behavior of components is usually described at component interfaces [14]
and the components are characterized as requester (active) and provider (reac-
tive) components. Although several approaches to checking component compos-
ability have been proposed [1], [2], [3], [9], [11], [15], further research is needed
to make these ideas practical [7].

The paper is an extension of previous work on component compatibility and
substitutability [6], [16], [17], [18]. Using the same formal specification of com-
ponent behavior in the form of interface languages defined by labeled Petri nets,
the paper extends the linguistic approach to the verification of component com-
patibility. A shuffle operation is proposed to represent the interleavings of re-
quests originating at concurrent components. This shuffle of requests is matched

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Memorial University Research Repository

https://core.ac.uk/display/429519384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


544 Symbolic analysis of timed Petri nets

with the (interface) language of the service provider. If the provider languages
matches the interleavings of the requester components, the components are con-
sidered compatible, otherwise some correcting procedure is required (in the form
of redesign of some components or additional constraints which preventing some
interleavings to happen).

Since interface languages are usually infinite, their compact finite specifi-
cation is needed for effective verification, comparisons and other operations.
Labeled Petri nets [16], [17] are used as such specification.

Petri nets [12], [13] are formal models of systems which exhibit concurrent
activities with constraints on frequency or orderings of these activities. In labeled
Petri nets, labels, which represent services, are associated with elements of nets in
order to identify interacting components. Well-developed mathematical theory
of Petri nets provides a convenient formal foundation for analysis of systems
modeled by Petri nets.

Section 2 introduces the shuffle operation applied to sequences of requests as
well as collections of such sequences. Interface languages as the description of
component’s behavior are recalled in Section 3, while Section 4 provides the lin-
guistic version of component compatibility. Section 5 illustrates the shuffle-based
verification of components compatibility and Section 6 concludes the paper.

2 Shuffle and swap

The shuffle operation, used in mathematical linguistics [10] to merge strings,
is used here to represent the interleaving of requests from several components.
So, if xi and xj are sequences of requests from components “i” and “j”, then
shuffle(xi, xj) denotes the set of sequences of merged requests in which all
elements of xi and xj occur in their original order, but the elements of xi can
be arbitrarily interleaved with the elements of xj . For example:

shuffle(ab, cd) = {abcd, acbd, acdb, cabd, cadb, cadb, cdab}.

The set of “shuffled” strings can also be created by successive applications
of a swap operation to the concatenated string xy, where each swap operation
“swaps” (changes the positions of) two adjacent symbols provided one of these
two symbols is an element of x and the other is an element of y, so a simple
swap (sswap):

sswap(abcd) = {acbd}

while the consecutive simple swap operation can be applied in three different
ways, so:

sswap(acbd) = {cabd, abcd, acdb}

Let a (general) swap operation be the reflexive, transitive closure of the simple
swap operation. Then:

shuffle(x, y) = swap(xy).



Symbolic analysis of timed Petri nets 545

The shuffle operation can be naturally extended to sets of sequences:

shuffle(A,B) = {shuffle(x, y) | x ∈ A ∧ y ∈ B}.

Moreover, it can be observed that:

shuffle(x, shuffle(y, z)) = shuffle(shuffle(x, y), z)

so the operation can be generalized as:

shuffle(x, y, z, · · ·)

as well as:

shuffle(A,B,C, · · ·).

3 Component behavior

The behavior of a component, at its interface, can be represented by a cyclic
labeled Petri net [5], [6], [17]:

Mi = (Pi, Ti, Ai, Si,mi, ℓi, Fi),

where Pi and Ti are disjoint sets of places and transitions, respectively, Ai is
the set of directed arcs, Ai ⊆ Pi × Ti ∪ Ti × Pi, Si is an alphabet representing
the set of services that are associated with transitions by the labeling function
ℓi : Ti → Si ∪ {ε} (ε is the “empty” service; it labels transitions which do not
represent services), mi is the initial marking function mi : Pi → {0, 1, ...}, and
Fi is the set of final markings (which are used to capture the cyclic nature of
sequences of firings).

Sometimes it is convenient to separate net structure N = (P, T,A) from the
initial marking function m.

In order to represent component interactions, the interfaces are divided into
provider interfaces (or p-interfaces) and requester interfaces (or r-interfaces). In
the context of a provider interface, a labeled transition can be thought of as a
service provided by that component; in the context of a requester interface, a
labeled transition is a request for a corresponding service. For example, the label
can represent a conventional procedure or method invocation. It is assumed that
if the p-interface requires parameters from the r-interface, then the appropriate
number and types of parameters are delivered by the r-interface. Similarly, it is
assumed that the p-interface provides an appropriate return value, if such a value
is required. The equality of symbols representing component services (provided
and requested) implies that all such requirements are satisfied.

For unambiguous interactions of requester and provider interfaces, it is re-
quired that in each p-interface there is exactly one labeled transition for each
provided service:



546 Symbolic analysis of timed Petri nets

∀ti, tj ∈ T : ℓ(ti) = ℓ(tj) 6= ε ⇒ ti = tj .

Moreover, to express the reactive nature of provider components, all provider
models are required to be ε–conflict–free, i.e.:

∀t ∈ T ∀p ∈ Inp(t) : Out(p) 6= {t} ⇒ ℓ(t) 6= ε

where Out(p) = {t ∈ T | (p, t) ∈ A}; the condition for ε–conflict–freeness could
be used in a more relaxed form but this is not discussed here for simplicity of
presentation.

Component behavior is determined by the set of all possible sequences of
services (required or provided by a component) at a particular interface. Such a
set of sequences is called the interface language.

Let F(M) denote the set of firing sequences in M such that the marking
created by each firing sequence belongs to the set of final markings F of M. The
interface language L(M), of a component represented by a labeled Petri net M,
is the set of all labeled firing sequences of M:

L(M) = {ℓ(σ) | σ ∈ F(M)},

where ℓ(ti1ti2 ...tik) = ℓ(ti1)ℓ(ti2)...ℓ(tik).
By using the concept of final markings, interface languages can easily capture

the cyclic behavior of (requester as well as provider) components.
Interface languages defined by Petri nets include regular languages, some

context–free and even context–sensitive languages [10]. Therefore, they are sig-
nificantly more general than languages defined by finite automata [4], but their
compatibility verification is also more difficult than in the case of regular lan-
guages.

4 Component compatibility

Interface languages of interacting components are used to define the compatibil-
ity of components. For a pair of interacting components, a requester component
“r” and a provider component “p” are compatible if and only if all sequences of
services requested by “r” can be provided by “p”, i.e., if and only if:

Lr ⊆ Lp.

In the case of several requester components, indicated by subscripts “i ∈ I”
where I is an index set, interacting with a single provider component “p”, the
component compatibility requires that all sequences of (interleaved) requests be
satisfied by the provider, so in a straightforward case:

shuffle(Li|i ∈ I) ⊆ Lp.



Symbolic analysis of timed Petri nets 547

Often however, some requests cannot be satisfied when they are requests and
are delayed because some other operations performed by the provider compo-
nent. In such cases the services can be provided in a sequence which is different
from the sequence of requests. Therefore, it is convenient to decompose the se-
quence of requests x in two parts y and z, x = yz, the initial part y which is
served in the order of requests, and the remaining part z where the services are
provided in an order different than requested. And then the component compat-
ibility condition is:

∀x ∈ shuffle(Li|i ∈ I)) : x ∈ Lp ∨ x = yz ∧ {y} ◦ swap(z) ∩ Lp 6= ∅

where ◦ denotes set concatenation, and ∅ is the empty set.

5 Example

A simple system of two requesters and a single provider is shown in Fig.1 [18].
The interface language of the provider is described by a regular expression:

Lp = ((ab+ ba)c)
∗

and the language of the (interleaved) requests from two requesters is:

Lr = (shuffle(abc, bac))∗.

1

2 3

4

a

b

b

a

c

PROVIDER

1

2 3

a b c

REQUESTER−1

ab

2

1

3

c

REQUESTER−2

Fig.1. Two requesters and a single provider.

Because of cyclicity of interface languages, the length of analyzed sequences
can be restricted to 6, and than:

L(6)
p = {abcabc, abcbac, bacabc, bacbac}



548 Symbolic analysis of timed Petri nets

and there are 10 different strings in L
(6)
r ):

L
(6)
r = {ababcc, abacbc, abbacc, abbcac, abcbac,

babacc, babcac, baabcc, baacbc, bacabc}.
Verification of the component consistency checks the sequences of requests in

L
(6)
r (in the following table, symbol subscripts indicate the original component

requesting the service) looking for a matching sequence in L
(6)
p :

x ∈ L6
r matching in L

(6)
p

a1b2a2b1c1c2 {ab} ◦ swap(a2b1c1c2) ∩ L
(6)
p = ∅

a1b2a2b1c2c1 {ab} ◦ swap(a2b1c2c1) ∩ L
(6)
p = ∅

a1b1b2a2c1c2 cbac ∈ swap(b2a2c1c2) and ab ◦ cbac ∈ L
(6)
p

a1b1b2a2c2c1 cbac ∈ swap(b2a2c2c1) and ab ◦ cbac ∈ L
(6)
p

a1b2b1a2c1c2 {ab} ◦ swap(a2b1c1c2) ∩ L
(6)
p = ∅

a1b2b1a2c2c1 {ab} ◦ swap(a2b1c2c1) ∩ L
(6)
p = ∅

a1b1b2c1a2c2 cbac ∈ swap(b2c1a2c2) and ab ◦ cbac ∈ L
(6)
p

a1b2b1c1a2c2 {ab} ◦ swap(a2b1c1c2) ∩ L
(6)
p = ∅

a1b1c1b2a2c2 abcbac ∈ L
(6)
p

b2a1b1a2c1c2 {ba} ◦ swap(b1a2c1c2) ∩ L
(6)
p = ∅

b2a1b1a2c2c1 {ba} ◦ swap(b1a2c2c1) ∩ L
(6)
p = ∅

b2a2a1b1c1c2 cabc ∈ swap(a1b1c1c2) and ba ◦ cabc ∈ L
(6)
p

b2a2a1b1c2c1 cabc ∈ swap(a1b1c2c1) and ba ◦ cabc ∈ L
(6)
p

b2a1b1c1a1c2 {ba} ◦ swap(b1c1a1c2) ∩ L
(6)
p = ∅

b2a1b1c2a1c1 {ba} ◦ swap(b1c2a1c1) ∩ L
(6)
p = ∅

b2a2a1c2b1c1 cabc ∈ swap(a1c2b1c1) and ba ◦ cabc ∈ L
(6)
p

b2a1a2c2b1c1 {ba} ◦ swap(a2c2b1c1) ∩ L
(6)
p = ∅

b2a2c2a1b1c1 bacabc ∈ L
(6)
p

All rows which do not have a matching sequence indicate component incom-
patibilities.

For example, for the first sequence of requests, x = a1b2a2b1c1c2, x is de-
composed into ab (which can be matched by the provider) and the remaining
sequence a2b1c1c2, for which the swap operation creates the set:

{a2b1c1c2, a2b1c2c1, a2c2b1c1, b1a2c1c2, b1a2c2c1, b1c1a2c2}

or, removing the subscripts:

{abcc, acbc, bacc, bcac}

and then the intersection:

{ab} ◦ {abcc, acba, baccbcac} ∩ L(6)
p

is empty indicating the incompatibility.
The second sequence is basically identical, and so on.



Symbolic analysis of timed Petri nets 549

To eliminate incompatibilities existing in this example, service renaming was
proposed in [18], for example, the provider language can be (formally) changed
from:

((ab+ ba)c)∗

to:

((aB+ bA)c)∗

by introducing services A and B as renamed services a and b, respectively, and
changing the languages of the requesters n a similar way, to (aBc)* and (bAc)*,
respectively. After such renaming the interleavings of the two requesters are:

shuffle(aBc, bAc) = {abABcc, abAcBc, abBAcc, abBcAn, aBbAcc, aBbcAc,

aBcbAc, baBacc, baBcAc, baABcc, baAcBc, bAaBcc, bAacBc, bAcaBc}

and the verification of the component compatibility follows the same steps as in
the previous case. For example, the first sequence abABcc can be decomposed
into the leading a and the remaining bABcc with the following set of swapped
sequences:

swap(b2A2B1c1c2) = {b2B1A2c1c2, b2B1c1A2c2,

B1b2A2c1c2, B1b2c1A2c2, B1c1b2A2c2}

Since, in this case::

L(6)
p = {aBcaBc, aBcbAc, bAcaBc, bAcbAc}

the compatibility is verified as:

a ◦ swap(b2A2B1c1c2) ∩ L(6)
p = {a1B1c1b2A2c2} 6= ∅,

so the incompatibility has been removed.

It should be observed that the initial decomposition of the analyzed sequence
is not necessary; its purpose is to simplify the verification process by reducing
the length of the analyzed sequence.

The remaining sequences are verified similarly, as shown in the following
table.



550 Symbolic analysis of timed Petri nets

x ∈ L6
r matching in L

(6)
p

a1b2A2B1c1c2 BcbAc ∈ swap(b2A2B1c1c2) and a ◦BcbAc ∈ L
(6)
p

a1b2A2B1c2c1 BcbAc ∈ swap(b2A2B1c2c1) and a ◦BcbAc ∈ L
(6)
p

a1b2A2c2B1c1 BcbAc ∈ swap(b2A2c2B1c1) and a ◦BcbAc ∈ L
(6)
p

a1b2B1A2c1c2 BcbAc ∈ swap(b2B1A2c1c2) and a ◦BcbAc ∈ L
(6)
p

a1b2B1A2c2c1 BcbAc ∈ swap(b2B1A2c2c1) and a ◦BcbAc ∈ L
(6)
p

a1b2B1c1A2c2 BcbAc ∈ swap(b2B1c1A2c2) and a ◦BcbAc ∈ L
(6)
p

a1B1b2A2c1c2 cbAc ∈ swap(b2A2c1c2) and aB ◦ cbAc ∈ L
(6)
p

a1B1b2A2c2c1 cbAc ∈ swap(b2A2c2c1) and aB ◦ cbAc ∈ L
(6)
p

a1B1b2c1A2c2 cbAc ∈ swap(b2c1A2c2) and aB ◦ cbAc ∈ L
(6)
p

a1B1c1b2A2c2 aBcbAc ∈ L
(6)
p

b2a1A2B1c1c2 AcaBc ∈ swap(a1A2B1c1c2) and b ◦AcaBc ∈ L
(6)
p

b2a1A2B1c2c1 AcaBc ∈ swap(a1A2B1c2c1) and b ◦AcaBc ∈ L
(6)
p

b2a1A2c2B1c1 AcaBc ∈ swap(a1A2c2B1c1) and b ◦AcaBc ∈ L
(6)
p

b2a1B1A2c1c2 AcaBc ∈ swap(a1B1A2c1c2) and b ◦AcaBc ∈ L
(6)
p

b2a1B1A2c2c1 AcaBc ∈ swap(a1B1A2c2c1) and b ◦AcaBc ∈ L
(6)
p

b2a1B1c1A2c2 AcaBc ∈ swap(a1B1c1A2c2) and b ◦AcaBc ∈ L
(6)
p

b2A2a1B1c1c2 caBc ∈ swap(a1B1c1c2) and bA ◦AcaBc ∈ L
(6)
p

b2A2a1B1c2c1 caBc ∈ swap(a1B1c2c1) and bA ◦AcaBc ∈ L
(6)
p

b2A2a1c2B1c1 caBc ∈ swap(a1c2B1c1) and bA ◦AcaBc ∈ L
(6)
p

b2A2c2a1B1c1 bAcaBc ∈ L
(6)
p

In this case, all sequences of requests are matched by the provider component,
so the components are compatible.

6 Concluding remarks

The paper shows that the verification of component compatibility based on the
exhaustive analysis of the “state space”, as discussed in [16] and [17], can be
replaced by a simple analysis of languages that describe the sets of request
sequences that can be generated by interacting compoments. In fact, once the
interface languages are known, the behavioral models of components are not
needed at all.

It is believed that the proposed verification of component compatibility can
be quite efficient since many symmetries and partial orders can be taken into
account. All these properties are not addressed in this paper.

It should be noticed that the discussion was restricted to a single provider
component. In the case of several providers, each provider can be considered
independently of other, so a single provider case is not really a restriction.

Also, an important aspect of component compatibility is its incremental veri-
fication. The approach described in this paper is not incremental but may provide
a foundation for an incremental approach.



Symbolic analysis of timed Petri nets 551

The paper did not address the question of deriving behavioral models of
components (which is common to all component-based studies). Such models,
at least theoretically, could be derived from formal component specifications, or
perhaps could be obtained through analyzing component implementations. Since
the component compatibility verification proposed in this paper does not require
the use of the underlying component models (they are used only to define the
interface languages), these interface languages could also be determined experi-
mentally, by executing the components and collecting the information about the
sequences of service requests.

Acknowledgement

The Natural Sciences and Engineering Research Council of Canada partially
supported this research through grant RGPIN-8222.

References

1. Attiogbe C, Andre P, Ardourel G (2006) Checking component composability. Proc.
5-th Int. Symp. on Software Composition (LNCS 4089), pp.18-33

2. Baier C, Klein J, Klueppenholz S (2011) Modeling and verification of components
and connectors. In: ”Formal Methods for Eternal Networked Software Systems”
(LNCS 6659), pp.114-147

3. Broy M (2006) A theory of system interaction: components, interfaces, and services.
In: ”Interactive Computations: The New Paradigm”, Springer-Verlag, pp.41-96

4. Chaki S, Clarke S M, Groce A, Jha S, Veith H (2004) Modular verification of
software components in C. IEEE Trans. on Software Engineering, vol.30, no.6,
pp.388-402

5. Craig D C, Zuberek W M (2006) Compatibility of software components – modeling
and verification. Proc. Int. Conf. on Dependability of Computer Systems, Szklarska
Poreba, Poland, pp.11-18

6. Craig D C, Zuberek W M (2007) Petri nets in modeling component behavior
and verifying component compatibility”. Proc. Int. Workshop on Petri Nets and
Software Engineering, Siedlce, Poland, pp.160-174

7. Crnkovic I, Schmidt H W, Stafford J, Wallnau K (2005) Automated component-
based software engineering. The Journal of Systems and Software, vol.74, no.1,
pp.1-3

8. Garlan D (2003) Formal modeling and analysis of software architecture: compo-
nents, connectors and events. Proc. Third Int. School on Formal Methods for the
Design of Computer, Communication and Software Systems: Software Architec-
tures (SFM 2003) (LNCS 2804), pp.1-24

9. Henrio L, Kammueller F, Khan M U (2009) A framework for reasoning on compo-
nent composition. Proc. 8-th Int. Symp. on Formal Methods for Components and
Objects (LNCS 6286), pp.41-69

10. Hopcroft J E, Motwani R, Ullman J D (2001) Introduction to automata theory,
languages, and computations (2 ed.). Addison–Wesley

11. Leicher A, Busse S, Suess J G (2005) Analysis of compositional conflicts in
component-based systems. Proc. 4-th Int. Workshop on Software Composition;
Edinburgh, UK (LNCS 3628), pp.67-82



552 Symbolic analysis of timed Petri nets

12. Murata T (1989) Petri nets: properties, analysis, and applications. Proceedings of
the IEEE, vol.77, no.4, pp.541-580

13. Reisig W (1985) Petri nets – an introduction (EATCS Monographs on Theoretical
Computer Science 4). Springer-Verlag

14. Szyperski C (2002) Component software: beyond object-oriented programming (2
ed.). Addison–Wesley Professional

15. Zaremski A M, Wang J M (1997) Specification matching of software components.
ACM Trans. on Software Engineering and Methodology, vol.6, no.4, pp.333-369

16. Zuberek W M (2010) Checking compatibility and substitutability of software
components. In: Models and Methodology of System Dependability, Oficyna
Wydawnicza Politechniki Wroclawskiej, ch.14, pp.175-186

17. Zuberek W M (2011) Incremental composition of software components. In: De-
pendable Computer Systems (Advances in Intelligent and Soft Computing 97),
Springer-Verlag, pp.301-311

18. Zuberek W M (2012) Service renaming in component. In: Complex Systems and
Dependability (Advances in Intelligent and Soft Computing 170); ed. W. Zamojski,
J. Kacprzyk, J. Mazurkiewicz, J. Sugier, T. Walkowiak, Springer-Verlag, pp.319-
330


