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A B S T R A C T   

Classification of tree species or species classes is still a challenge for remote sensing-based forest inventory. 
Operational use of Airborne Laser Scanning (ALS) data for prediction of forest variables has this far been 
dominated by area-based methods where laser scanning data have been used for estimation of forest variables 
within raster cells. Classification of tree species has however not been achieved with sufficient accuracy with 
area-based methods using only ALS data. Furthermore, analysis of tree species at the level of raster cells with 
typical size of 15 m × 15 m is not ideal in the case of mixed species stands. Most ALS systems for terrestrial 
mapping use only one wavelength of light. New multispectral ALS systems for terrestrial mapping have recently 
become operational, such as the Optech Titan system with wavelengths 1550 nm, 1064 nm, and 532 nm. This 
study presents an alternative type of area-based method for classification of tree species classes where multi-
spectral ALS data are used in combination with small raster cells. In this “mini raster cell method” features for 
classification are derived from the intensity of the different wavelengths in small raster cells using a moving 
window average approach to allow for a heterogeneous tree species composition. The most common tree species 
in the Nordic countries are Pinus sylvestris and Picea abies, constituting about 80% of the growing stock volume. 
The remaining 20% consists of several deciduous species, mainly Betula pendula and Betula pubescens, and often 
grow in mixed forest stands. Classification was done for pine (Pinus sylvestris), spruce (Picea abies), deciduous 
species and mixed species in middle-aged and mature stands in a study area located in hemi-boreal forest in the 
southwest of Sweden (N 58◦27’, E 13◦39’). The results were validated at plot level with the tree species 
composition defined as proportion of basal area of the tree species classes. The mini raster cell classification 
method was slightly more accurate (75% overall accuracy) than classification with a plot level area-based 
method (68% overall accuracy). The explanation is most likely that the mini raster cell method is successful 
at classifying homogenous patches of tree species classes within a field plot, while classification based on plot 
level analysis requires one or several heterogeneous classes of mixed species forest. The mini raster cell method 
also results in a high-resolution tree species map. The small raster cells can be aggregated to estimate tree species 
composition for arbitrary areas, for example forest stands or area units corresponding to field plots.   

1. Introduction 

Accurate classification of tree species is still a challenge for remote 
sensing-based forest inventory. Estimates of forest variables related to 
height and density such as tree height and stem volume can be derived 
with high accuracy from Airborne Laser Scanning (ALS) (Næsset 2002, 
Persson et al. 2002, Maltamo et al. 2006, Wulder et al. 2012, Nilsson 
et al. 2015). Passive multispectral optical sensors provide additional 
information about tree species (Lillesand et al. 2007, Fassnacht et al. 
2016). The combination of ALS data and passive optical sensors is used 

operationally for forest inventory for example in Finland (Packalén and 
Maltamo 2006, Packalén and Maltamo 2007, Packalén and Maltamo 
2008, Packalen et al. 2009), but the tree species information in the 
current automated inventories should preferably be more accurate to 
fulfil the needs in operational forestry (Maltamo et al. 2014). 

Operational use of ALS data for prediction of forest variables has this 
far been dominated by area-based approaches (ABA). Area-based 
methods are based on correlations between statistical features from 
ALS data and forest inventory data over certain area units with typical 
size of 15 m × 15 m. Statistical features are derived from the ALS data 
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inside raster cells and used as independent variable in models for field- 
measured forest variable such as mean tree height and stem volume per 
hectare (Vauhkonen et al. 2014). Area-based methods require less dense 
ALS data than individual tree methods. To the best of our knowledge, 
area-based methods using only ALS data have not been shown to provide 
information to separate tree species, since species identification requires 
more complex methods than those used to estimate stem volume or basal 
area with area-based analysis (White et al. 2016). Since most ALS sys-
tems that have been used are not designed to provide information about 
radiant flux, the recorded intensity should not be interpreted physically 
and has rarely been used for tree species identification from ALS data. 
Additionally, a mix of tree species can complicate the species classifi-
cation since the features will be influenced by different tree species and 
several mixed species classes with different tree species compositions 
might be needed. 

Species classification of individual trees from ALS data has the 
advantage that features describing the 3D structure of the tree crown can 
be included (Brandtberg et al. 2003, Vauhkonen et al. 2009, Heinzel and 
Koch 2012, Dalponte et al. 2014) as well as features describing spectral 
properties of the tree crowns (Holmgren and Persson 2004, Budei et al. 
2017, Yu et al. 2017, Axelsson et al. 2018) and the full waveform if such 
information is available (Reitberger et al. 2008). Additionally, no mixed 
species classes are needed. However, individual tree approaches require 
high density ALS data (i.e., point density at least in the order of 5 per m2) 
and more advanced algorithms for processing the ALS data and delin-
eating individual tree crowns than area-based methods (Hyyppä et al. 
2006). Additionally, the parameters of the delineation method must be 

adapted to the local forest condition, which is a non-trivial task and 
often requires field data with positions of individual trees as training 
data (e.g., Holmgren and Lindberg 2013). 

Passive optical sensors have the disadvantage that the recorded 
spectral values depend on the sunlight conditions, atmosphere, and 
shadowing, which means that the spectral values for a given species are 
not comparable between different images and can even vary within an 
image (e.g., Korpela 2004). Classifying tree species based on spectral 
information alone gives different results depending on sensors and forest 
types (e.g., Olofsson et al. 2006). The variation caused by directional 
reflectance anisotropy in combination with varying view angles makes 
automatic classification challenging, in particular when using passive 
airborne sensors (Korpela et al. 2011). Research has been aimed at 
performing radiometric correction to remove the brightness variations 
(Pellikka et al., 2000). From imagery with high resolution (e.g., in the 
order of 1 m), information about tree species can be derived through 
texture features, in particular for deciduous trees (Franklin et al. 2000). 
For very high resolution multispectral stereo-imagery (VHRSI; less 
than1 m pixels), individual tree crowns can be delineated (Lindberg and 
Holmgren 2017) and their species classified (Fassnacht et al. 2017). 
Classification of individual tree crowns delineated from aerial images 
has been done based on spectral variables for pine, spruce, and decid-
uous trees (Haara et al., 2002) and geometrical properties for pine, 
spruce, birch and aspen (Brandtberg 2002). 

Active sensors such as ALS are more independent of light conditions 
since the sensor itself emits the light for which the reflection is 
measured. Another advantage of ALS data is that data from the tree 

Fig. 1. The study area with the laser-scanned area inside the red polygon. The laser-scanned area is a false color composite image of raster from range corrected laser 
intensities for returns from the tree canopies with the wavelength of the Optech Titan system 1550 nm displayed as red, 1064 nm as green, and 532 nm as blue. The 
background (i.e., areas with no ALS returns at least 2 m above the DTM) inside the red polygon is white. The line from south-west to north-east is a power line. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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canopy and the ground can be separated to avoid mixed signals, a 
common problem for passive optical sensors (Li and Strahler 1985). 

The ALS systems that have been commercially available for terres-
trial mapping since the mid 1990s use only one wavelength of light and 
most sensors are not designed to measure differences in radiant flux. 
Attempts to use intensity from ALS data for tree species classification 
have shown that the performance of intensity from different ALS systems 
varies. Even the intensity from the same ALS system varies due to dif-
ferences in reflectance of different scatterers (e.g. bark, needles, cones, 
flowers, epiphytes, and twigs) as well as differences in leaf size, orien-
tation, branch structure, and foliage density, depth and density of the 
foliage layer, and crown architecture (Korpela et al. 2010). In the case of 
multiple returns for one emitted pulse, parts of the energy of the emitted 
pulse is reflected in the first return and the intensity of the second return 
depends on the intensity of the first return (Wagner et al. 2008). Addi-
tionally, the incident angle of the pulse affects the intensity (Wagner 
2010). 

Since the reflectance for different wavelengths differ between tree 
species, ALS data with more than one wavelength have the potential to 
characterize tree species better (Lindberg et al. 2015). New multispec-
tral ALS systems have recently become operational, such as the Optech 
Titan system with wavelengths 1550 nm, 1064 nm, and 532 nm and the 
Riegl VQ-1560i-DW system with wavelengths 1064 nm and 532 nm. The 
wavelengths differ in the proportions of returns at ground level, vertical 
foliage distributions, and gap probability across wavelengths. These 
differences could be exploited in intensity-based land cover classifica-
tion (Hopkinson et al. 2016). The use of data from the Optech Titan 
system has been demonstrated for land cover classification with spectral 
and geometrical features (Teo and Wu 2017) and spectral, elevation and 
texture features (Bakuła et al. 2016) as well as for object-based classi-
fication (Matikainen et al. 2017). Multispectral ALS data have been 
shown to provide similar accuracy for classification of dominant tree 
species classes at plot level as a combination of ALS data with one 
wavelength and aerial images (Kukkonen et al. 2019). A few studies 
have used data from the Optech Titan system for tree species classifi-
cation based on structural and intensity features with promising results 
(Ahokas et al. 2016, Budei et al. 2017, Yu et al. 2017, Axelsson et al. 
2018). Ahokas et al. (2016) classified individual trees in a boreal forest 
into pine, spruce and birch with a maximum overall accuracy of 93.5%. 
Budei et al. (2017) classified individual trees of ten species of coniferous 
and deciduous trees in a temperate forest with an overall accuracy of 
76%. Yu et al. (2017) classified the species of individual trees of Pinus 
Sylvestris, Picea Abies, and Betula sp. in a hemi-boreal forest with an 
accuracy of 90.5% for isolated trees. Axelsson et al. (2018) classified the 
species of solitary individual trees of nine genera of coniferous and de-
ciduous trees in the hemi-boreal region with an accuracy of 76.5% for a 
combination of spectral ALS features and structural ALS features 
compared to 43.0% when using only structural features. The 

wavelengths of the multispectral ALS systems that are commercially 
available have not been selected specifically for tree species mapping, 
but have still proven to be useful for this. Even more accurate tree 
species characterization could potentially be obtained by selecting 
wavelengths based on their ability to separate tree species (Vauhkonen 
et al. 2013). 

The aim of this study is to present and evaluate an alternative type of 
area-based method using small raster cells for classification of tree 
species classes, in this case Scots pine, Norway spruce, and deciduous 
species from multispectral ALS data. The method is from hereon called 
the mini raster cell method. In the mini raster cell method, statistical 
features are derived from the ALS data inside raster cells and used as 
independent variable in models to estimate forest variables, but the 
raster cells are smaller than what has previously been used to allow for 
more spatial heterogeneity (i.e., mixed species classes). The features 
used for the classification are derived from the intensity of the different 
wavelengths inside small raster cells using a moving window average 
approach to allow for a heterogeneous tree species composition. The 
mini raster cell method results in a high-resolution (i.e., raster cell size 
0.5 m) tree species raster map. The results are validated at plot level with 
the tree species composition defined as the proportion of basal area of 
the tree species classes. 

2. Material and methods 

2.1. Study area 

The study area is located in hemi-boreal forest in the southwest of 
Sweden (N 58◦27′, E 13◦39′) in the Remningstorp forest estate with an 
area of 1602 ha (Fig. 1). The western part of the area consists of 
managed, mostly planted coniferous-dominated forest in homogenous 
forest stands. A forest management plan created from manual inter-
pretation of aerial images is available for this part of the area including a 
map created by manual interpretation of aerial images in a photo-
grammetric work station. The map shows forest stand boundaries and 
tree species proportions in each stand. The eastern part of the area 
consists of mostly naturally generated deciduous and mixed species 
forest and pasture land. The main tree species are Norway spruce [Picea 
abies (L.)], Scots pine [Pinus sylvestris (L.)], and birch [Betula pendula (L.) 
and Betula pubescens (L.)]. Other tree species are oak [Quercus robur 
(L.)], black alder [Alnus glutinosa (L.)], maple [Acer platanoides (L.)], 
aspen [Populus tremula (L.)], rowan [Sorbus aucuparia (L.)], as well as 
other broadleaved trees and shrubs, primarily hazelnut [Corylus avellana 
(L.)]. 

2.2. Field data 

Two hundred and fifty-one circular field plots with 10 m radius were 

Table 1 
Summary of all field plots and subsets of field plots.   

Number of field 
plots 

Number of trees per hectare (mean / 
standard deviation) 

Mean DBH (cm, mean / standard 
deviation) 

Basal area (m2/ha, mean / standard 
deviation) 

All field plots 251 745 / 605 22.5 / 11.6 20.2 / 13.8 
Field plots with mature forest 186 892 / 516 26.0 / 8.1 26.1 / 10.7 
Field plots dominated by pine 22 606 / 280 30.2 / 4.7 26.1 / 6.5 
Field plots dominated by spruce 89 757 / 342 25.8 / 7.0 29.0 / 11.9 
Field plots dominated by 

deciduous trees 
23 920 / 543 27.0 / 12.5 20.7 / 7.8 

Field plots with mixed forest 52 1232 / 646 24.1 / 8.1 23.4 / 9.5  
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allocated during August-October 2016 and March 2017. The positions of 
the field plot centers were measured using a Trimble GeoXR 6000 dif-
ferential GPS (Trimble 2013) with accuracy below 1 m under canopy 
cover. Within the field plots, the diameter at breast height (DBH) of all 
trees and shrubs with DBH ≥ 4 cm was measured using a caliper and the 
species was recorded (The Heureka project). The positions of the trees 
and shrubs were measured relative to the plot center using a PosTex 
ultrasound instrument (Lämås 2010). A summary of the field plots is 
given in Table 1. 

Only field plots with at least seven trees, basal area at least 7 m2/ha, 
and mean DBH ≥ 10 cm were included in the analysis, in total 186 plots 
(Table 1). The selection was done to make sure that all plots had closed 
forest and that young forest was excluded. Young forest differs spectrally 
from older forest and tree species classification from remotely sensed 
data is usually limited to middle-aged and mature forest (Peterson 
1993). The field plots were divided into four groups: Scots pine- 
dominated forest, Norway spruce-dominated forest, deciduous- 
dominated forest (i.e. at least 80% of the basal area was Scots pine, 
Norway spruce or deciduous trees, respectively), and mixed species 
(Table 1). The threshold is a trade-off between having a pure species 
composition and having enough plots for training and validation. 

2.3. ALS data acquisition and preprocessing 

Multispectral ALS data were acquired on July 21, 2016 using the 
Optech Titan X system. The system uses three wavelengths: 1550 nm 
(C1; SWIR), 1064 nm (C2; NIR), and 532 nm (C3; green). The flying 
altitude was 400 m above ground and the return density was 30–40 per 
m2 per channel. The flying altitude was chosen to obtain a sufficiently 
strong signal in the green channel. 

A range-corrected intensity was calculated by multiplying with the 
squared distance from the reflecting surface to the scanner for each 

return (Kukkonen et al., 2019). The height above the ground of each 
return was calculated by subtracting the height of a digital terrain model 
(DTM) from Lantmäteriet (the Swedish Land Survey), which was derived 
from sparse ALS data with country-wide coverage. A normalized digital 
surface model (nDSM) with raster cell size 0.5 m was derived from the 
maximum height above the ground in each raster cell. 

2.4. Data processing for mini raster cell method 

The mini raster cell method was implemented as follows (Fig. 2): 
Raster images of the mean values of the intensity in 0.5 m raster cells 
were calculated separately for each channel of the multispectral ALS 
data. The raster cell size was selected to be large enough to always have 
data from each channel in each raster cell. Only first returns at least 2 m 
above the ground and less than 2 m from the top of the nDSM (i.e., in a 2 
m thick layer at the top of the canopy) were included. From the resulting 
raster images, the mean and standard deviation were calculated in cir-
cles with 5 m radius centered on the field plots for each wavelength. All 
raster calculations were done using the raster package in R (Hijmans 
2019). 

The feature selection was done by comparing the overall accuracy (i. 
e., the share of correctly classified field plots) resulting from classifica-
tion from each feature separately. The highest overall accuracy was 
achieved for classification from the mean values of the intensities of the 
three different wavelengths. Due to this, the mean intensities were 
selected for further analysis. 

The field plots with forest dominated by one species class (i.e., Scots 
pine, Norway spruce, or deciduous species with basal area at least 80% 
of the total; Table 1) were used as training data for classification with 
linear discriminant analysis (LDA). As a comparison, we did the same 
analysis with Quadratic Discriminant Analysis (QDA). The response 
variable was Speciesclassminiwith values Scots pine, Norway spruce or 

Fig. 2. Flowchart of the mini-raster method.  
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deciduous species and the explanatory variables were Ik,mini which was 
the mean value of the raster cells in the original intensity raster in a 
circle with 5 m radius for the wavelengths k = 1,2, and 3. As a com-
parison, the same analysis was also done for circles with 3 m radius. 

Based on the original intensity raster images, new raster images with 
0.5 m raster cells were derived using a moving window average with a 
radius of 5 m (i.e., the mean value of the original intensity raster image 
within 5 m radius; Fig. 1) and 3 m. The idea was that the area of the 
moving window should contain only a few trees to make it likely that all 
were of the same species class. The circular moving window gave rise to 
circular patches in areas with very few ALS returns (Fig. 3). 

The LDA model was applied to the raster images derived with 
moving window average. The result was a raster showing the tree spe-
cies classes (i.e., Scots pine, Norway spruce or deciduous species) in each 
0.5 m raster cell. 

2.5. Data processing for plot level analysis 

As a comparison, classification of the field plots was done with LDA 
from the mean intensity in three wavelengths of all raster cells in the 
original intensity raster images within each field plot (i.e., plot-level 
analysis). For this analysis, the training data were all field plots in 
four classes: Scots pine, Norway spruce, and deciduous-dominated plots 
(i.e., plots where the basal area of one tree species class made up at least 
80% of the total) and mixed species, where no tree species class fulfilled 
the basal area condition (Table 1). The response variable was 
SpeciesclassABAwith values Scots pine, Norway spruce, deciduous species 
or mixed species and the explanatory variables were Ik,mean which was 
the mean value of ALS returns at least 2 m above the DTM in a circle with 
10 m radius (i.e., corresponding to the field plot radius) of the intensity 
for k = 1,2, and 3. 

Fig. 3. Example of the image in Fig. 1 in higher resolution. The lines are borders of forest stands from the forest management plan with mean age at least 20 years 
and one dominant tree species (i.e., at least 80% of the stem volume). Areas outside those forest stands don’t fulfill the criteria. 
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Fig. 5. The study area with the classified raster from the mini raster cell method inside the red polygon. The background (i.e., areas with no ALS returns at least 2 m 
above the DTM) inside the red polygon is light yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 4. Scatter plot for different tree species of the mean intensity of the 1550 nm channel versus the 1064 nm channel (left) and the 1550 nm channel versus the 532 
nm channel (right). 
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2.6. Validation 

For the mini raster cell method, the raster cells with their centers 
inside a radius of 10 m around each field plot center were summarized to 
calculate the tree species composition. The proportion of each tree 
species class in a field plot was calculated as the number of raster cells 
assigned to the tree species class divided by the total number of raster 
cells in the field plot. All 186 field plots with closed middle-aged and 
mature forest were used for validation of the resulting tree species raster 
image. Each field plot was assigned the class given by at least 80% of the 
raster cells within the field plot. If none of the tree species classes ful-
filled that criterion, the plot was classified as mixed species. In other 
words, field plots where the raster cells were classified as different tree 
species classes and with no tree species class making up at least 80% of 
the total number of raster cells were considered as mixed species. 

The validation was done using leave-one-out cross-validation for one 

field plot at a time, meaning that the classification was done for one field 
plot at a time while the field plot was excluded from the training data. 
This was done both for the classification results from the mini raster cell 
method and for the plot level analysis. A confusion matrix was calcu-
lated by comparing the classification result with the dominant tree 
species class derived from the field data, where a dominant tree species 
class was defined as the tree species class with at least 80% of the basal 
area in one field plot. 

3. Results 

The mean intensity of 1064 nm and 1550 nm were highly correlated 
while the intensities of 1550 nm and 532 nm were less correlated 
(Fig. 4). 

The mini raster cell method resulted in a tree species map over the 
laser-scanned area (Fig. 5). Thanks to the small pixels used in the mini 

Fig. 6. Examples of the raster in Fig. 5 in higher resolution. The lines are borders of forest stands with mean age at least 20 years and one dominant tree species (i.e., 
at least 80% of the stem volume) from the forest management plan. Areas outside those forest stands don’t fulfill the criteria. 
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raster method, the tree species map could be visually compared with 
stand boundaries from the forest management plan (Fig. 6). 

The confusion matrix showed high accuracy for Norway spruce and 
Scots pine and slightly lower accuracy for deciduous species and mixed 
species both for the classification based on plot level analysis (Table 2) 
and based on the mini raster cell method (Table 3). The results from the 
mini raster cell method were slightly more accurate with overall accu-
racy 75% with Cohen’s kappa coefficient 0.62 compared to overall ac-
curacy 68% with Cohen’s kappa coefficient 0.50 for the plot level 
analysis. The difference in accuracy between the methods was tested 
with McNemar’s Chi-squared test (Dietterich 1998), resulting in a p- 
value of 0.008829. The higher accuracy of the mini raster cell method 
was mainly due to higher accuracy for the mixed species class, both 
producer’s and user’s accuracy. The results from a 3 m radius (Table A1 
and Fig. A1) and QDA (Table A2 and Fig. A2), respectively, resulted in 
similar accuracy for the classification (please see appendix). 

For the mini raster cell method, a comparison of the proportion of 
tree species classes in the tree species map with the proportion from the 
field data showed that the difference was mostly close to zero for Scots 
pine and deciduous species, but slightly larger for Norway spruce 
(Fig. 7). The proportion of field plots where the difference was less than 
20% was 87% for Scots pine, 75% for Norway spruce and 80% for de-
ciduous species. 

4. Discussion 

4.1. Comparison between mini raster method and plot level analysis 

The classification based on the mini raster cell method was slightly 
more accurate than classification based on plot level analysis with 
similar intensity metrics, in particular for the mixed species class. The 
explanation is probably that the mini raster cell method is successful at 

Fig. 7. Histograms of the errors of the proportion of different tree species in the field plots from the classified raster from the mini raster cell method relative to the 
proportions from the field data. 

Table 2 
Confusion matrix from classification based on average laser data intensities for field plots (i.e., plot-level analysis).    

Classified    Producer’s accuracy   

Pine Spruce Deciduous Mixed  
Field Pine 19 2 0 1 86%  

Spruce 0 84 0 5 94%  
Deciduous 0 2 13 8 57%  
Mixed 5 25 11 11 21% 

User’s accuracy  79% 74% 54% 44% 68%  

Table 3 
Confusion matrix from classification based on raster cells corresponding to the field plot (i.e., mini raster cell method).    

Classified    Producer’s accuracy   

Pine Spruce Deciduous Mixed  
Field Pine 17 2 0 3 77%  

Spruce 0 86 0 3 97%  
Deciduous 0 2 15 6 65%  
Mixed 3 16 11 22 42% 

User’s accuracy  85% 81% 58% 65% 75%  
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classifying patches of trees with the same tree species class. On the other 
hand, classification based on plot level analysis used metrics derived 
from the whole field plots, which increased the likelihood that the 
analyzed area contained a mix of tree species classes with a mixed signal 
as the result. If the classification is done based on plot level analysis, one 
or several classes of mixed species are needed, but those classes will be 
heterogeneous, making it difficult to separate them from other classes. 
To the best of our knowledge, the approach to classify tree species 
classes in small area units in a two-step processes and without delinea-
tion of individual tree crowns has not been used before. The closest 
previous study was by Packalen et al. (2009), who classified laser returns 
into tree species classes based on spectral data from aerial images and 
training data from forest stands with homogenous tree species. The laser 
returns were then used for area-based analysis of species-specific forest 
variables. This utilized information about the proportion of different 
tree species classes that can be derived from the laser returns, but the 
forest variables were still estimated for larger raster cells without the 
option of deriving a high-resolution tree species map or aggregating the 
result to arbitrary area units. 

4.2. Properties of the tree species maps 

The mini raster cell method used a subset of field plots with one 
dominant tree species class as training data to enable classification of 
homogenous patches of tree species classes from the ALS data. A po-
tential source of error is that the intensity of some parts of the tree 
crowns differ from the major part of the tree crowns of that species class, 
which leads to small patches being classified as a different species class. 
This could be solved by applying morphological operators on the tree 
species map to remove patches smaller than a certain size. The aggre-
gation to field plots defined the class of each field plot, which means that 
some field plots were classified as mixed species. The aggregation also 
resulted in a tree species composition in each field plot, which meant 
more information than for classification based on plot level analysis. The 
tree species composition can be combined with estimates of stem vol-
ume from ALS data to derive species-specific estimates of stem volume. 
Additionally, the mini raster cell method has the potential to provide a 
more detailed tree species maps showing the location of different tree 
species classes, which can be used to delineate micro-stands or treatment 
units without predefined stand borders (Hyvönen et al., 2005). 

4.3. Classification results for different tree species classes and compared 
to other studies 

The most common tree species classes were Norway spruce and Scots 
pine where the classification accuracy was the highest. Earlier studies 
using spectral data for tree species classification have shown slightly 
lower accuracy for separation between Scots pine and Norway spruce. 
Ørka et al. (2013) classified the dominant species classes pine, spruce, 
and deciduous species from ALS data and hyperspectral images with an 
average overall classification accuracy of 89.1%. Puliti et al. (2017) 
classified the same dominant species classes from ALS data and photo-
grammetric models with an overall accuracy of 79%. In this study, the 
overall accuracy for those three classes was 97% (i.e., excluding the 
mixed species class; Table 3). The same data as in this study have pre-
viously been used for classification of pine, spruce, birch, oak, and larch 
(i.e., splitting the deciduous class into several classes and excluding the 
mixed class; Persson et al., 2018) from four Sentinel-2 images with an 
overall classification accuracy of 88.2%. Comparisons between results at 

plot level and individual tree level are difficult, but some examples serve 
to illustrate the accuracy that can be achieved. Holmgren and Persson 
(2004) classified pine, spruce, and deciduous species trees for individual 
trees from structural features of ALS data with an overall accuracy of 
95%. Yu et al. (2017) classified pine, spruce, and birch for individual 
trees from Optech Titan multispectral ALS data with an overall accuracy 
of 85.9% for the best combination of features. It has been suggested that 
texture metrics from high-resolution aerial images are more useful for 
discrimination of Scots pine and Norway spruce (Packalén and Maltamo 
2006, Packalén and Maltamo 2007). The lowest accuracy in this study 
was achieved for the mixed species class where many field plots were 
classified as Norway spruce or deciduous species. The field plots with 
deciduous species also included a number of different tree species with 
slightly different spectral properties. The mix of deciduous tree species 
in that class is also likely an error source. Unfortunately none of the 
deciduous tree species was found in large enough abundance to be 
defined as a separate class. 

4.4. Choice of metrics for classification 

The classification was based only on mean intensity of the three 
available laser wavelengths, both for the mini raster cell method and the 
plot level analysis. The classification could potentially be improved by 
including more metrics derived from the intensity. Nevertheless, both 
methods in this study used the same kind of metrics. Regarding height 
and density metrics from ALS data that are commonly used for area- 
based estimation of forest variables, to the best of our knowledge no 
previous study has succeeded in using them for tree species classification 
since they are not distinctly different for different tree species when 
averaged over area units. 

4.5. Choice of radius of local surrounding and raster cells size 

The mini raster cell method provides classified tree species classes in 
small raster cells, 0.5 m. Each raster cell represents a circular sur-
rounding with 5 m radius. The results were similar when using a 3 m 
radius. The reason for using small raster cells and surroundings rather 
than raster cells corresponding to the size of field plots is that the small 
raster cells are more likely to contain only one tree species class, which 
means that it is more likely that the intensity values from the ALS data 
are derived from only one tree species class. The size of a tree crown 
depends on the diameter and height of the tree, but since we selected 
field plots based on a minimum mean DBH, the variation was reduced, 
which makes it reasonable to use only one radius. The mini raster cells 
should be large enough to contain a few laser returns from each wave-
length at the top of the canopy, but not larger since that would mean a 
lower resolution. With 30–40 returns per channel and m2, each mini 
raster cell contained 7–10 returns per channel in total. Of these, 1–2 can 
be expected to be from the top 2 m of the canopy, considering that the 
80th height percentile of the returns is around 2 m lower than the 
maximum height (e.g., Table 3 in Vastaranta et al. 2014). 

4.6. Aggregation to area units of the mini raster cells 

The small raster cells can be aggregated to arbitrary areas, for 
example forest stands or area units corresponding to field plots. In this 
study, the validation was done for raster cells aggregated within circular 
field plots. The validation was done by computing the proportion of area 
covered by raster cells classified as the different species classes in each 
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field plot. This was based on the observation that the crown area of a tree 
is approximately proportional to its basal area, which is consistent with 
an approximately linear relationship between crown radius and DBH, at 
least for mean DBH ≥ 10 cm (Widlowski et al. 2003). The relationship 
differs slightly between tree species, but since it also depends on site 
conditions and stand history that are unknown, we assumed a simple 
linear relationship. 

4.7. Choice of classification method 

We choose LDA as the classification methods since it is a straight- 
forward method. Quadratic Discriminant Analysis (QDA) is another 
classification method which differs from LDA in that LDA assumes that 
the variance is equal for all classes while QDA allows different variance 
for different classes. However, the dataset had a large proportion of 
Norway spruce-dominated field plots and much fewer observations for 
Scots pine and deciduous species. This would make it difficult to esti-
mate the variance of each class separately. We still repeated the classi-
fication procedure with QDA instead of LDA and the results were similar. 
We chose to use a parametric method rather than a non-parametric 
method such as random forests since the number of observations in 
each class was smaller than what is usually used for non-parametric 
models. 

4.8. Comparison to individual tree methods 

Tree species classification using only ALS data has formerly been 
done using individual tree methods (e.g., Brandtberg et al., 2003, 
Holmgren and Persson 2004, Reitberger et al. 2008, Vauhkonen et al. 
2009). Since the validation of the mini raster cell method was done at 
plot level, it is difficult to compare the accuracy to results published for 
individual tree methods. Delineation of individual trees requires more 
advanced algorithms than area-based methods. Additionally, adapting 
the parameters for the tree crown delineation to local forest conditions 
often requires information about the position of individual trees from 
the field data (e.g., Holmgren and Lindberg 2013), which can make the 
field inventories more complicated. The method presented here does not 
require tree positions. To collect training data in a cost-efficient way, 
one alternative would be to place field plots in homogenous forest stands 
with one dominant species. In that case the DBH of the trees would not 
be needed, only the position of the field plot center. 

4.9. Practical applicability of multispectral ALS data 

The ALS data in this study were collected from a flying altitude of 
400 m, which is too low for operational use due to the comparatively 
high cost per area unit. Previous studies on tree species classification 
from Optech Titan data have used flying altitudes of 360 m and 800 m 
(Budei et al. 2017) and 400 m (Yu et al. 2017, Axelsson et al. 2018). One 
reason for using comparatively low flying altitudes is to get sufficient 
signal strength for all wavelengths. From our previous experience with 
data from Optech Titan (not published), a flying altitude of 1000 m 
resulted in a weak signal for the 532 nm channel, which had the 
consequence that in many cases no returns were registered from the tree 
canopy for the 532 nm channel although returns were registered for the 
other two channels. Additionally, the beam divergence of the 532 nm 
channel is approximately twice as large as for the two other channels 
(Optech 2015). For the data acquired from 1000 m altitude, the larger 
divergence caused averaging in the canopy for the 532 nm channel, 
providing less details than for the two other channels. A new dual-wave 

ALS system is currently available, RIEGL VQ-1560i-DW with wave-
lengths 1064 nm and 532 nm (RIEGL 2019). According to specifications, 
the maximum measuring range is equal for the two channels and the 
beam divergence of the 532 nm wavelength is smaller than for Optech 
Titan. The new system could potentially be operated at a higher flying 
altitude and still provide multispectral ALS data for tree species classi-
fication. If that is possible, operational use of the method presented here 
could be feasible. This could make it possible to derive maps of tree 
species composition automatically for large areas. 

5. Conclusions 

This study has presented a mini raster cell method for classification 
of tree species classes from multispectral ALS data. The method is an 
area-based approach where statistics are derived from ALS data in raster 
cells, but the raster cells are much smaller than the field sample plots 
commonly used for area-based methods. Hence, the resulting tree spe-
cies map has a higher resolution. 

The classification results from the mini raster cell method were more 
accurate than the results from a plot level area-based method. The most 
likely explanation is that the high resolution of the mini raster cell 
method enables classification of homogenous patches of tree species 
classes within a field plot. This is particularly useful in forest stands with 
mixed species. 

The tree species map can be aggregated for arbitrary areas such as 
field sample plots or forest stands to estimate the proportion of the 
different tree species classes from the proportion of raster cells in 
different classes. This is another advantage compared to conventional 
area-based methods. 

The mini raster method is a simple rasterization algorithm and re-
quires less advanced algorithms than individual tree based-methods, 
another approach for forest estimations from ALS data. Individual tree 
delineation algorithms must be adapted or trained to local forest con-
ditions while the mini raster method has few parameters: the size of the 
raster cells, the radius of the moving window, and the height limits 
above the ground and below the canopy for including laser returns. This 
means that the mini raster cell method could be more feasible for 
operational mapping of tree species. 
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Appendix  

Table A2 
Confusion matrix from classification based on raster cells corresponding to the field plot (i.e., mini raster cell method) with 5 m radius and QDA classification.    

Classified    Producer’s accuracy   

Pine Spruce Deciduous Mixed  
Field Pine 18 2 0 2 82%  

Spruce 0 86 0 3 97%  
Deciduous 0 1 18 4 78%  
Mixed 5 19 13 15 29% 

User’s accuracy  78% 80% 58% 62% 74%  

Fig. A1. Examples of the raster with 3 m radius in the same area as Fig. 6. The lines are borders of forest stands with mean age at least 20 years and one dominant 
tree species (i.e., at least 80% of the stem volume) from the forest management plan. 

Table A1 
Confusion matrix from classification based on raster cells corresponding to the field plot (i.e., mini raster cell method) with 3 m radius.    

Classified    Producer’s accuracy   

Pine Spruce Deciduous Mixed  
Field Pine 16 2 0 4 73%  

Spruce 0 86 0 3 97%  
Deciduous 0 3 14 6 61%  
Mixed 3 27 8 14 27% 

User’s accuracy  84% 73% 64% 52% 70%  
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Persson, Å., Holmgren, J., Söderman, U., 2002. Detecting and measuring individual trees 
using an airborne laser scanner. Photogramm. Eng. Remote Sens. 68 (9), 925–932. 

Peterson, U., 1993. Successional reflectance trajectories in northern temperate forests. 
Int. J. Remote Sens. 14 (3), 609–613. 

Puliti, S., Gobakken, T., Orka, H.O., Naesset, E., 2017. Assessing 3D point clouds from 
aerial photographs for species-specific forest inventories. Scand. J. For. Res. 32 (1), 
68–79. 

Reitberger, J., Krzystek, P., Stilla, U., 2008. Analysis of full waveform LiDAR data for the 
classification of deciduous and coniferous trees. Int. J. Remote Sens. 29 (5), 
1407–1431. 

RIEGL. 2019. RIEGL VQ-1560i-DW. RIEGL Laser Measurement Systems GmbH, from 
http://www.riegl.com/uploads/tx_pxpriegldownloads/RIEGL_VQ-1560i-DW_ 
Datasheet_2017-11-27_Preliminary.pdf. 

Teo, T.-A., Wu, H.-M., 2017. Analysis of Land Cover Classification Using Multi- 
Wavelength LiDAR System. Appl. Sci. 7 (7), 663. 

Trimble, 2013. Trimble Geoexplorer 6000 Serie. Sunnyvale, California, US. 
Wagner, W., 2010. Radiometric calibration of small-footprint full-waveform airborne 

laser scanner measurements: Basic physical concepts. ISPRS J. Photogramm. Remote 
Sens. 65 (6), 505–513. 

Wagner, W., Hollaus, M., Briese, C., Ducic, V., 2008. 3D vegetation mapping using small- 
footprint full-waveform airborne laser scanners. Int. J. Remote Sens. 29 (5), 
1433–1452. 

Vastaranta, M., Saarinen, N., Kankare, V., Holopainen, M., Kaartinen, H., Hyyppa, J., 
Hyyppa, H., 2014. Multisource Single-Tree Inventory in the Prediction of Tree 
Quality Variables and Logging Recoveries. Remote Sens. 6 (4), 3475–3491. 

Vauhkonen, J., Hakala, T., Suomalainen, J., Kaasalainen, S., Nevalainen, O., 
Vastaranta, M., Holopainen, M., Hyyppa, J., 2013. Classification of Spruce and Pine 
Trees Using Active Hyperspectral LiDAR. IEEE Geosci. Remote Sens. Lett. 10 (5), 
1138–1141. 

Vauhkonen, J., Maltamo, M., Mcroberts, R.E., Næsset, E., 2014. Introduction to Forestry 
Applications of Airborne Laser Scanning. Forestry Applications of Airborne Laser 
Scanning: Concepts and Case Studies. M. Maltamo, E. Næsset and J. Vauhkonen. 
Dordrecht, Springer: 1–16. 

Vauhkonen, J., Tokola, T., Packalén, P., Maltamo, M., 2009. Identification of 
Scandinavian commercial species of individual trees from airborne laser scanning 
data using alpha shape metrics. For. Sci. 55 (1), 37–47. 

White, J.C., Coops, N.C., Wulder, M.A., Vastaranta, M., Hilker, T., Tompalski, P., 2016. 
Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. 
Remote Sens. 42 (5), 619–641. 

Widlowski, J.-L., Verstraete, M., Pinty, B., Gobron, N., 2003. Allometric relationships of 
selected European tree species. Parametrizations of tree architecture for the purpose 
of 3-D canopy reflectance models used in the interpretation of remote sensing data: 
Betula pubescens, Fagus sylvatica, Larix decidua, Picea abies, Pinus sylvestris. I. f. E. 
a. Sustainability. Ispra, Italy, Office for Official Publications of the European 
Communities: 61. 

Wulder, M.A., White, J.C., Nelson, R.F., Næsset, E., Orka, H.O., Coops, N.C., Hilker, T., 
Bater, C.W., Gobakken, T., 2012. LiDAR sampling for large-area forest 
characterization: a review. Remote Sens. Environ. 121, 196–209. 
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