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Zusammenfassung
Die Untersuchung und Identifikation gemischt-symmetrischer Zustände steht im
Fokus dieser Arbeit. Sie werden aus kollektiven Vibrationen und Rotationen der
Valenzneutronen und -protonen geformt, wobei die zwei Nukleonengruppen zum
Teil außer Phase zueinander oszillieren. In vibrationellen Kernen ist der 2+1,ms-
Zustand das am niedrigsten gelegene gemischt-symmetrische Level.

Es wurde ein signifikanter Effekt des Unterschalenabschluss bei Z = 58 auf den
2+1,ms-Zustand für die N = 80 Isotone beobachtet. Während die Isotone bis Z = 56

einen isolierten 2+1,ms-Zustand aufweisen, ist dieser für 138Ce (Z = 58) stark frag-
mentiert. Das wird mit der Valenzschalen-Stabilisierung bergründet, die am Unter-
schalenabschluss bei Z = 58 fehlt. Um die 2+1,ms-Zustände derN = 80 Isotone beim
Überqueren des Protonen-Unterschalenabschlusses zu studieren, wurden Coulomb-
Anregungs-Experimente durchgeführt. Diese fanden mit den radioaktiven Strahlen
der N = 80 Isotone 140Nd und 142Sm an HIE-ISOLDE am CERN mit Nutzung
des γ-Spektrometers Miniball statt. Die erhöhte B(M1; 2+3 → 2+1 ) = 0.26+0.11

−0.10 µ
2
N

Stärke und das niedrige obere Limit B(M1; 2+4 → 2+1 ) < 0.04µ2
N von 140Nd

weist auf eine Wiederherstellung der Valenzschalen-Stabilisierung bei Z = 60
hin. Von dieser M1-Stärke-Verteilung wird die Qualität des F -Spins von 140Nd
anhand des F -Spin-Mischungs-Matrixelements VF−mix < 7+13

−7 keV bestimmt. Das
verringerte Mischungs-Matrixelement unterstützt die Annahme der wiederherge-
stellten Valenzschalen-Stabilisierung. Für 142Sm lieferte die Analyse der Coulomb-
Anregung das obere Limit B(M1; 2+3 → 2+1 ) < 0.14+0.37

−0.01 µ
2
N, welches nicht in

Konflikt mit den Schlussfolgerungen des 140Nd-Experiments steht. Eine komple-
mentäre γ-γ Korrelationsmessung nach einem β+/ϵ-Zerfall wurde entworfen um
das notwendige E2/M1 Multipol-Mischungsverhältnis δ des 2+3 → 2+1 -Übergangs
von 142Sm zu erhalten. Dieses Experiment wurde bereits vom PAC am Heavy Ion
Laboratory in Warschau akzeptiert.

Für 202Hg wurde ebenfalls ein Projektil-Coulomb-Anregungsexperiment am AT-
LAS Beschleuniger am ANL unter Verwendung des γ-Spektrometers Gammasphere
durchgeführt. Gleichzeitig wurden Winkelverteilungen der γ-Emissionen gemes-
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sen, mit dem Ziel δ zu bestimmen. Es wurde eine erhöhte B(M1; 2+7 → 2+1 ) =
0.18(8)µ2

N Stärke mit δ = 0.06(4) gefunden, während ein oberes Limit für den Zer-
fall des benachbarten 2+-Zustands erhalten wurde, B(M1; 2+8 → 2+1 ) < 0.027µ2

N.
Somit wurde das erste Mal in der Massenregion um den doppelt-magischen Kern
208Pb die F -Spin-Mischungsstärke für 202Hg und 204Hg bestimmt mit VF−mix =
9(2)+3

−3 keV bzw. 11(1)+4
−5 keV.

Die Ergebnisse zeigen die hohe Güte des F -Spins als Quantenzahl für die unter-
suchten Atomkerne bei N,Z = 80 nahe doppelt-magischen Isotopen.
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Abstract
The investigation and identification of mixed-symmetry states stand in the focus
of this work. They are formed from collective vibrations and rotations of valence
neutrons and protons, where the two nucleon groups oscillate partly out-of-phase
with respect to each other. In vibrational nuclei, the 2+1,ms state is the lowest-lying
mixed-symmetry level.
For the N = 80 isotones, the sub-shell closure at Z = 58 highly effects the

structure of the 2+1,ms state. Up to Z = 56, the isotones have isolated 2+1,ms states,
but for 138Ce (Z = 58), it is strongly fragmented. This behaviour is explained by the
valence-shell stabilization, which is lacking at the proton sub-shell closure Z = 58.
For addressing the question how the 2+1,ms state behaves while going beyond
the proton sub-shell closure, projectile Coulomb-excitation experiments were
performed. They took place at HIE-ISOLDE at CERN using the γ-ray spectrometer
Miniball with the radioactive ion beams of the N = 80 isotones 140Nd and 142Sm.
The enhanced B(M1; 2+3 → 2+1 ) = 0.26+0.11

−0.10 µ
2
N strength and the low upper limit

B(M1; 2+4 → 2+1 ) < 0.04µ2
N of 140Nd showed the restoration of the valence-shell

stabilization atZ = 60. From theM1 strength distribution, the quality of the F spin
of 140Nd was determined by the F -spin mixing matrix element VF−mix < 7+13

−7 keV.
The reduced mixing matrix element supports the proposed restoration of the
valence-shell stabilization. For 142Sm, the Coulomb-excitation analysis delivered
an upper limit B(M1; 2+3 → 2+1 ) < 0.14+0.37

−0.01 µ
2
N, which is not in conflict with

the conclusions from the 140Nd experiment. A complementary γ-γ correlation
measurement after β+/ϵ decay to determine the indispensable E2/M1 multipole-
mixing ratio δ of the 2+3 → 2+1 transition of 142Sm was designed for the Heavy Ion
Laboratory in Warsaw and accepted.

For the stable 202Hg, a projectile Coulomb-excitation experiment was conducted
at the ATLAS facility at the ANL using the γ-ray spectrometer Gammasphere.
Simultaneously, angular particle-γ correlations were measured with the aim of
deducing δ. In 202Hg a pronounced B(M1; 2+7 → 2+1 ) = 0.18(8)µ2

N with δ =
0.06(4)was found, while an upper limit for the neighboring transition was obtained,
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B(M1; 2+8 → 2+1 ) < 0.027µ2
N. For the first time in the mass region A ≈ 200, the

F -spin mixing quality was determined, for 202Hg and 204Hg, VF−mix = 9(2)+3
−3 keV

and 11(1)+4
−5 keV, respectively.

Consequently, F spin can be considered a sufficiently good approximate quantum
number in the investigated nuclei of N,Z = 80 near doubly-magic isotopes.
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1. Introduction

Figure 1.1.: The excitation energies of the first excited 2+ states of even-even
nuclei. The increased excitation energies at the marked nucleon
numbers 2, 8, 20, 28, 50, 82 and 126 show the existing nuclear-shell
closures. The energies were taken from Ref. [1].

A milestone of nuclear physics was set in 1949 by the development of the nuclear
shell model [2–4]. The nucleons have a spin quantum number of s = 1/2. They
are thus fermions and subject to the rules of the Pauli principle which is used to
describe the structure of the atomic nucleus. Here, the excited nuclear states are
depicted by the single-particle motions with the spin-particle interaction, which
leads to discrete quantum states characterized by their total (j) and orbital (l)
angular momenta. As a result, compositions with certain proton and neutron
numbers exist, which are predicted to be very unreactive, analogously to noble
gases in chemistry. These special nucleon numbers, 2, 8, 20, 28, 50, 82 and 126,
are considered to represent shell closures and are called magic numbers. The
nucleons outside these inert closed shells define the valence-space of an atomic
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nucleus. The valence nucleons are responsible for the low-lying excitations of a
nucleus. Besides single-nucleon excitations, there are also collective excitations
where many nucleons are involved. The relevance of these collective excitations
increases with a growing valence space. These collective motions can be interpreted
as a homogeneous system, which vibrates or rotates [5].
The properties of collective excitations reveal information about the nuclear

structure of an atomic nucleus. For even-even nuclei, their lowest-lying collective
quadrupole excitations are sensitive on their shape or deformation [6]. An increase
of the excitation energy and the lifetime of this state in respect to the neighboring
isotopes indicates a shell closure at this nucleus. These observations reproduce the
magic numbers, predicted from the shell model, see Figure 1.1. The doubly-magic
nucleus has most commonly a spherical shape. The enlarged valence spaces of
isotopes far away from shell closures lead to a serious axial deformation of the nu-
cleus’ shape. The enhanced collectivity is indicated by a lowered excitation energy
and lifetime of the lowest-lying quadrupole excitation. That kind of excitation is
interpreted as a collective motion of valence protons and valence neutrons, where
the two types of nucleons are oscillating in phase, hence, they are indistinguishable.
From that knowledge, the existence of further collective excitations where the
protons and neutrons are oscillating out of phase is the logical conclusion. This
class of collective excitations was firstly discussed in Refs. [7, 8].
The in-phase collective motions of even-even nuclei, the full-symmetry states,

are also emerging from the framework of the Interacting Boson Model (IBM) [9].
The basic principle of the IBM is the coupling of valence-nucleon (or valence-hole)
pairs to bosons, while the inert core is defined by the closest doubly-magic nucleus.
The advanced version, the IBM-2, additionally distinguishes between proton and
neutron bosons and, hence, is capable to describe also the out-of-phase collective
excitations, the mixed-symmetry states, see Figure 1.2.
This work focuses in the following on the investigation of the mixed-symmetry

states in heavy vibrational nuclei, where the collective quadrupole mixed-symmetry
excitation, the 2+1,ms state, is the lowest-lying one of its type. To aim for the sought-
for absoluteM1 transition strength of the 2+1,ms → 2+1 transition to identifiy the
2+1,ms states of the isotopes 140Nd, 142Sm and 202Hg, it was and will be necessary
to perform a combination of the Coulomb-excitation method and the angular
γ-γ or particle-γ correlation method. The type of Coulomb excitation, where the
excited states of the projectile nucleus is investigated, is especially qualified for the
search of the 2+1,ms state of rare or radioactive heavy ions. Here, it is not necessary
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Figure 1.2.: Collective quadrupole excitations of vibrational nuclei. The right
picture shows the motion of protons and neutrons in phase, while
the right side represents the out-of-phase movements of protons and
neutrons.

to produce a target of the desired isotope, which is simply not reasonable for
the short-lived isotopes 140Nd and 142Sm (T1/2 = 3.37d and T1/2 = 72.49min).
Furthermore, the Coulomb-excitation method suits the requirements to populate
the 2+1,ms state with a significant excitation probability due to its moderate E2
connection to the ground state. However, additional information about the nature
of the potential 2+1,ms → 2+1 transition is indispensable, hence, a complementary
measurement of the E2/M1 multipole-mixing ratio has to be performed. Here,
this was done via the mentioned angular correlation methods for 140Nd, 142Sm
and 202Hg.

The N = 80 isotonic chain northwest of the doubly-magic isotope 132Sn gained
general interest with the postulation of a sub-shell closure at Z = 58. In 138Ce, the
fully-filled proton g7/2 orbital is proposed as the reason for the fragmentation of
the 2+1,ms state [10], see Figure 1.3 a). For 136Ba with a partly filled g7/2 proton
orbital, theM1 strength is focused in the 2+1,ms → 2+1 transition. From this point
of view, a change of the characteristics of the low-lying collective excitations as
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sudden and pronounced as from 136Ba to 138Ce is also expected from 138Ce to
140Nd.

Figure 1.3.: a) shows the orbital structure of 140Nd with its ten valence protons
and two valence-neutron holes in respect to the doubly-magic 132Sn
(50 protons and 82 neutrons). b) represents the evolution of the E2
absolute transition strengths of the 2+1 → 0+1 transition of the N = 80
isotones from 130Sn to 142Sm. The experimental data are taken from
Refs. [11–16]. Graphic b) was reprinted with permission from Ref.
[15] and modified.

However, there were was a lack of data about absolute transition strengths of the
radioactive neutron-deficient N = 80 isotones 140Nd and 142Sm. In these nuclei,
the valence protons also occupy the higher-lying d5/2 orbital, see Figure 1.3 a). The
examination of the isoscalar quadrupole excitations, the 2+1 states, of these isotones
via projectile CE experiments at REX-ISOLDE [15, 16], showed also the effect of the
sub-shell closure on the collectivity of the isoscalar quadrupole excitation, see the
red diamonds in the Figure 1.3 b). The enhanced B(E2; 2+1 → 0+1 ) values of 140Nd
and 142Sm intensify the indication of a suppression of the collectivity at 138Ce. The
effects of sub-shell structures on the low-lying isoscalar quadrupole excitations is
clearly prominent in the N = 80 isotonic chain, i.e., the B(E2; 2+1 → 0+1 ) strength
at the Z = 58 sub-shell closure, 138Ce, is lowered, see Figure 1.3 b). So, the actual
collectivity can be described by a superposition of the residual proton-neutron
interaction (dashed line) and the influence of the seniority (curved line), while the
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contribution from the seniority is significantly smaller. The residual proton-neutron
interaction increases the collectivity proportional to the product of valence protons
and neutrons [17]. This is applicable here, because the P -factor is less or equal five,
P = 0.5× (NπNν)/(Nπ +Nν) ≤ 5, for all of the chosen isotones. This condition
indicates a spherical behaviour of the nucleus, while a greater P -factor suggest
characteristics of a deformed nucleus. The contribution from the seniority scheme
is proportional to the term

√︁
f(1− f), where f is the fractional filling of an orbital.

Hence, the contribution peaks at a half-filled orbital and vanishes at a fully-filled
orbital [17].
The effect of the sub-shell closure is even more pronounced regarding the low-

lying isovector quadrupole excitations of the N = 80 isotones. The evolution of the
2+1,ms states of the N = 80 isotones from 132Te up to 138Ce [10, 12, 18, 19] is an
example to show the effect of the sub-shell structure on the formation of collective
excitations. Therefore a proton sub-shell closure at Z = 58 is postulated for the
N = 80 isotones [10]. The question arose, how do the 2+1,ms states behave when
passing the Z = 58 sub-shell closure, see Figure 1.4 a). To address this question,
projectile Coulomb-excitation experiments were performed with the purpose of
the identification of the 2+1,ms states of 140Nd and 142Sm [20–22]. The experiments
were performed with a 140Nd and a 142Sm beam at 4.62A ·MeV on a 208Pb target
while using the Miniball detector array [23] for the γ-ray spectroscopy. The
mentioned complementary experiments were angular γ-γ-coincidence correlation
measurements after β+/ϵ decay, which were performed for 140Nd [24] and will be
performed for 142Sm at the Heavy Ion Laboratory in Warsaw.

The existence of 2+1,ms states in vibrational nuclei were experimentally established
more than two decades ago in the A = 50 [26–29] and A = 90 regions [30–38],
and in the vicinity of the doubly-magic nucleus 132Sn [10, 12, 18, 19, 39–45].
While in the vicinity of the doubly-magic atomic nucleus 208Pb the investigation
just recently started, for instance with the identifications of the 2+1,ms states in
the radioactive isotopes 208,212Po [46, 47] and the stable 204Hg [48]. For the Po
isotopes, the absoluteM1 transition strengths were obtained by conducting direct
lifetime measurements.

From the accumulated experimental information, the appearance of pronounced
2+1,ms states is suggested when the valence protons and neutrons occupy orbitals
with high angular momenta. In 204Hg, the valence nucleons are in orbitals with
lower angular momenta than in its mirror isotope 212Po, though, itsB(M1; 2+1,ms →
2+1 ) is more pronounced [48], see Figure 1.4 b). It is highly interesting whether this
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Figure 1.4.: The known B(M1; 2+i → 2+1 ) values of the N = 80 isotones from
132Te to 138Ce [10, 12, 18, 19] compared to theory [25] and the
corresponding F -spin mixing matrix elements are presented in a).
They show the sub-shell closure at Z = 58 and a potential evolution
towards 140Nd. b) presents the situation in the vicinity of 208Pb in
respect to theM1 strength of the 2+1,ms → 2+1 transitions. The value
of 208Po is a lower limit.

is the same for its neighboring isotope 202Hg, or the increased valence-space leads
to significant changes in the properties of the 2+1,ms state. A projectile Coulomb-
excitation experiment at the Argonne National Laboratory was performed with a
202Hg beam at 4.4A ·MeV on a 12C target using the γ-spectrometer Gammasphere
[49] to solve this puzzle [50]. Simultaneously, an angular particle-γ correlation
measurement was conducted to determine the nature of the 2+i → 2+1 transitions.
Furthermore, the F spin will be probed as a quantum number in these heavy

nuclei near doubly-magic isotopes. The F spin for bosons is analogous to the
isospin for nucleons and is introduced in the framework of the IBM-2. On the
basis of the F spin, fully- and mixed-symmetry states are distinguished. Hence, a
weak mixing between fully and mixed-symmetry states indicates the F spin as a
good approximate quantum number. The opposite was observed for the N = 80
isotones in 138Ce, where the 2+1,ms state is strongly fragmented and, consequently,
the F -spin mixing is extraordinarily high. The obtainedM1 transition strengths
distributions will be used to determine the F -spin mixing quantitatively.

6 1. Introduction



2. Nuclear Structure Theory
The symbiosis of experimental and theoretical nuclear physics improves steadily
the understanding of the universe we are living in.

There are various theoretical models describing the nuclear structure of excited
states of the isotopes all over the chart of nuclides. Here, the intention of the
reported experiments is the investigation of low-lying collective excitations of
heavy nuclei near doubly-magic isotopes. A small selection of different approaches
to describe low-lying excitations, i.e., single-particle or collective excitations, are
presented in the following sections. The focus is on nuclear structure models
to interpret the obtained results. Descriptions of the Geometrical Model [5],
the Nuclear-Shell-Model and the Interacting-Boson-Model (IBM) [9, 51] will be
presented.

2.1. Geometrical Model
The Geometrical Model [5] describes the nucleus as a homogeneous system of
many nucleons, comparable to a drop of a liquid (Liquid Drop Model). Excitations
of such a system are formed by collective motions of all nucleons, i.e., vibrations
and rotations. These surface excitations can be mathematically described by a set
of parameters αλµ and spherical harmonics Y ∗

λµ(θ, φ). The distance between the
origin of the nucleus and a certain spot of the surface is given by [5]

R(θ, φ) = R0

⎛⎝1 +
∞∑︂
λ=0

λ∑︂
µ=−λ

αλµY
∗
λµ(θ, φ)

⎞⎠ , (2.1)

where R0 is the radius of the system in the equilibrium. The type of the geo-
metrical excitations varies in dependence of the shape of the nucleus. Near closed
shells, the shape of the system is near-spherical and the nucleus can be excited to
perform oscillations around the equilibrium shape. Away from closed shells, the
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nucleus might take a deformed equilibrium shape [6]. The deformed shape of the
nucleus enables additionally the rotation as a form of excitation. The dynamics of
the system can be described described by the Bohr Hamiltonian [5, 6]

H = − h̄2

2D

[︃
1

β4

∂

∂β

[︃
β4 ∂

∂β
+

1

β2

1

sin (3γ)

∂

∂γ

[︃
sin (3γ)

∂

∂γ

]︃]︃]︃
+
h̄2

2I
R2 + V . (2.2)

Here, R is the rotational angular momentum, I denotes the moment of inertia,
D is the single mass parameter, and V denotes the nuclear potential.
The value λ = 0 in Eq. (2.1) describes the so-called breathing mode. The

nucleus expands or compresses while keeping its shape. This kind of excitation
happens at high energies and can be neglected for the description of low-lying
collective states. The form of motion of the nucleus for λ = 1 is a simple oscillation
around the origin and does not effect its internal structure. The quadrupole modes,
λ = 2, are the lowest orders contributing to the collective surface excitations of
the nucleus. This mode can be interpreted as an oscillation of the nucleus’ shape,
that means an oscillation of expansion and compression of the nuclear shape along
alternating symmetry axes by a transitional restoring the original spherical shape.
The third order, λ = 3, describes a pear-shaped octupole excitation, which is not
uncommon for heavy nuclei in the vicinity of shell-closures [52–56].
In the case of quadrupole excitations, the parameters α2µ of Eq. (2.1) can be

expressed via [5]

α20 =β cos (γ) , (2.3)

α22 = α2−2 =
1√
2
β sin (γ) . (2.4)

In this notation the deformation parameters β and γ describe the degrees of the
quadrupole deformation and of the axial symmetry, respectively. The extreme case
β = 0 corresponds to a spherical shaped nucleus. β > 0 and γ = 0° describes an
axially symmetric prolate deformed nucleus, while β > 0 and γ = 60° represents
an axially symmetric oblate deformed nucleus. For values of γ in-between these
limits, the nucleus is triaxially deformed.

8 2. Nuclear Structure Theory



2.1.1. Vibrational Nuclei
Most nuclei in the vicinity of shell closures have a near-spherical shape and vi-
brations around the spherical equilibrium form their collective excitations. The
surface of a vibrating nucleus is described by Eq. (2.1) with an additional small
modification. Now, the deformation parameters αλµ = αλµ(t) are time dependent.
Here, the discussion focuses on the quadrupole collectivity, hence, all terms

besides λ = 2 of Eq. (2.1) are neglected. Regarding the αλ=2,µ parameters, they
vanish for odd µ and are symmetrical, αλ=2,µ = αλ=2,−µ. The Hamiltonian [6]

H = T + V =
1

2
B
∑︂
µ

⃓⃓⃓⃓dα2µ

dt

⃓⃓⃓⃓2
+

1

2
C
∑︂
µ

|α2µ|2 (2.5)

describes the quadrupole vibration of the surface. It has the form of a harmonic
oscillator with the frequency of the term α2µ:

ω =

√︃
C

B
, (2.6)

with the vibrational energy h̄ω. Thus, the excitations of vibrational nuclei can be
visualized as phonons with angular momentum λ and parity (−1)λ, analogous
to excitations in solid state physics. In the present case of λ = 2 excitations, the
quadrupole phonons with positive parity, Jπ = 2+, are relevant.

The annihilation and creation of such phonons are equivalent to the excitation
and the decay of excited nuclear states. This can be described in the language of
second quantization with annihilation and creation operators

bbb|nb⟩ =
√
nb|nb − 1⟩ (2.7)

bbb†|nb⟩ =
√
nb + 1|nb + 1⟩ , (2.8)

respectively. Here, |nb⟩ is the multi-boson state where nb is the number of bosons.
The integer spins of the phonons lead to a boson-like treatment and, thus, they are
not affected by the Pauli principle. Using Eq. (2.8), the N -phonon state |Nph⟩ can
be constructed by applying the creation operator N times on the ground state |0⟩:

|Nph⟩ = (bbb†)N |0⟩ . (2.9)
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The angular momenta for the coupling of N phonons can be determined from
the m-scheme. This leads to an angular momentum triplet, 0+, 2+ and 4+, for
two-phonon excitations and an angular momentum quintuplet, 0+, 2+, 3+, 4+ and
6+, for three-phonon excitations, see Figure 2.1. In this simplified phonon picture,
the ratio of the level energies of the two-phonon 4+1 state and the one-phonon 2+1
state, R4/2, is expected to be 2. In reality, the states of multi-phonon excitation
are not exactly degenerate, which is caused by a residual interaction between the
phonons. Indeed, the accumulated data of nuclei near shell closures show a value
of R4/2 ≈ 2.2 due to these anharmonicities [6].

Figure 2.1.: Schematic level schemes of low-lying excitations of vibrational and
rotational nuclei. The energies for the rotational states are obtained
via Eq. (2.13).

2.1.2. Rotational Nuclei

As mentioned before, the mass distributions of some nuclei deviate from a near-
spherical behaviour. This deformation is small in the vicinity of shell closures and
increases while departing from shell closures. Hence, this non-spherical nucleus
now exhibits an intrinsic quadrupole momentQ0 due to a non-spherical distribution
of the charged particles. It is connected to the equilibrium radius R0, the proton
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number Z and the deformation parameter β by the relation

Q0 =
3√
5π
R2

0Zβ(1 + 0.16β) . (2.10)

Here, the intrinsic quadrupole moment is not equal, but connected to the exper-
imentally observable spectroscopic quadrupole moment Q by the relation

Q =
3K2 − J(J + 1)

(J + 1)(2J + 3)
Q0 . (2.11)

Here, the K-quantum number is the projection of the total angular momentum
J on the intrinsic symmetry axis of the nucleus. For nuclear ground states of
even-even nuclei, where J = 0, the measurable spectroscopic quadrupole moment
vanishes. The 2+1 state exhibits the quantum number K = 0, because the state is
part of the ground-state band. Thus, Eq. (2.11) evaluates to Q = −2/7Q0. In the
limit of the rigid rotor, there is a direct connection between the reduced transition
strength of the 0+1 → 2+1 transition and the intrinsic quadrupole moment of the 2+1
state by the relation

B(E2; 0+1 → 2+1 ) =
5

16π
e2Q2

0(2
+
1 ) . (2.12)

Furthermore, the rotational energy of the ground-state band (K = 0) of an
even-even nucleus with the angular momentum J and the ground state Jπ = 0+

is given by

Erot(J) =
h̄2

2I
J(J + 1) . (2.13)

Here, I is the nucleus’ moment of inertia. On top of the 0+ ground state only
even values of angular momenta J = 2, 4, 6 ... can be found for rotational bands
in even-even nuclei [6], see Figure 2.1. It is shown by Eq. (2.13), that a ratio
R4/2 = (20h̄2)/(6h̄2) = 3.33 is expected for the rigid rotor. A ratio of 2.91 <
R4/2 < 3.33 still indicates the rotational nature of the nucleus [6].
There is also the possibility of superpositions of rotational and vibrational ex-

ctitations. In this case, a rotational band is normally built upon a vibrational
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excitation, which can exhibit a non-vanishing angular momentum. Therefore, the
level energy of Eq. (2.13) has to be generalized relative to the “base” energy to

Erot(J,K) =
h̄2

2I
[J(J + 1)−K(K + 1)] . (2.14)

This results in rotational bands equivalent to the ground state band (K = 0),
but on top of K ̸= 0 excitations. The angular momenta of these states can take
values J = K,K + 1,K + 2..., except when the “base” is a K = 0 state, in which
case only even spins are allowed for J [6]. In deformed nuclei, two low-lying
bands are commonly observed, i.e., the β and γ bands on top of the 0+ and 2+

vibrational excitations.
The standard geometrical model [5] with its great capability to describe collective

motions of a homogeneous system lacks the ability to characterize single particle
excitations or motions of a two-fluid system. Therefore, the nuclear shell model
will be introduced in the following section.
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2.2. Nuclear Shell Model

The original nuclear shell model was independently developed by Goeppert-Mayer
[2, 3] and Haxel, Jensen and Suess [4]. It was able to theoretically justify the
experimental observed increased stability of nuclei with a certain number protons
or neutrons. These so-called magic numbers are 2, 8, 20, 50, 82, and 126.

The motion of a certain nucleon is determined by its initial momentum and the
interaction with other nucleons. The interaction between the nucleons is assumed
to be of two-body nature to simplify the Hamiltonian in a reasonable manner:

H = T + V =

A∑︂
i=1

#»p 2
i

2mi
+

A∑︂
i<k=1

Vik(
#»r i − #»r k) . (2.15)

Here, A is the number of nucleons, #»p i, #»r i,k and mi,k are the nucleon’s momenta,
coordinates, and masses, and Vik is the interaction between two nucleons. With a
rising number of nucleons A, this equation gets quickly hard to solve.

To overcome this obstacle, the interaction between the nucleons will be described
through a central potential. In atomic physics, the electrons are affected by an
external potential, while in the nucleus, the potential is generated by the A− 1
nucleons acting on the A-th nucleon. The Hamiltonian is modified by a one-body
potential Ui(

#»r i) and given by

H =

A∑︂
i=1

[︃
#»p 2

i

2mi
+ Ui(

#»r i)

]︃
⏞ ⏟⏟ ⏞

≡H0

+

A∑︂
i<k=1

Vik(
#»r i − #»r k)−

A∑︂
i=1

Ui(
#»r i)⏞ ⏟⏟ ⏞

≡Hresidual

. (2.16)

The potential Hresidual can be considered small in comparison to H0. Nevertheless,
it is of great importance when it comes to collective excitations. The strength
of the nucleon-nucleon interaction decreases rapidly with an increasing distance
and the interaction is attractive. Although the harmonic oscillator shows the
wrong asymptotic behaviour, it is a valid first approximation of the central nuclear
potential,

V ( #»r ) =
1

2
mω2 #»r 2. (2.17)
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From the three-dimensional harmonic oscillator follows the eigenvalues, which
are single-particle excitation energies of modes of the harmonic oscillator,

EN =

(︃
N +

3

2

)︃
h̄ω, (2.18)

where N is the oscillator shell number. The shells, which originate from the
three-dimensional harmonic oscillator, reproduce the experimental magic numbers
up to 20, see Figure 2.2. When a central potential is applied, the wave function
can be divided into a radial and an angular part. Then, n = 1, 2, 3, 4, .. and
l = 0, 1, 2, 3, 4, ...(s, p, d, f, g, ...) are introduced as the radial quantum number,
which is the number of nodes of the wave function, and as the angular momentum,
respectively. The connection of N , n and l is given by N = 2(n− 1) + l. Different
combinations of n and l lead to the same N and, consequently, to degenerate
energy levels. For higher energies, the approximation of the nuclear potential
with the harmonic oscillator fails. Hence, an attractive #»

l 2 term is included in the
potential, Vl2 = −Vl

#»

l 2, which splits the degeneracy and lowers the level energies
with higher angular momentum l, see Figure 2.2. Though, the introduction of the
#»

l 2 term does not improve the reproduction of the observed magic numbers. Hence,
an additional coupling of the nuclear spin s and the angular momentum l is taken
into consideration with the potential Vl·s = −Vls

#»

l · #»s . Consequently, the levels
are split into two levels with j = l + s and j = l − s. The good quantum numbers
after the #»

l · #»s coupling are the absolutes of s, l and the total angular momentum j
and its magnetic sub-state m. The energy splitting increases with higher values of
l. The final Hamiltonian with the complete potential for the independent particle
model

U( #»r ) =
1

2
mω2 #»r 2 − Vl

#»

l 2 − Vl·s
#»

l · #»s (2.19)

produces a shell scheme, see Figure 2.2 on the right side, which reproduces the
observed magic numbers up to 126 nucleons. The parity quantum number of
an orbital is determined by its angular momentum l: π = (−1)l. The levels of a
major shell generally inhabit the same parity, which is predetermined by the parity
of the lowest-lying level. An exception occurs, when a level from a higher-lying
shell intrudes the lower shell due to the #»

l · #»s coupling term. Such an intruder
orbit has the opposing parity in comparison to the levels of its new shell. Due to
the Pauli principle, 2j + 1 nucleons fill an orbit entirely and couple pairwise to
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J = 0. Therefore, the properties of the atomic nucleus are mostly determined by
the nucleons in partly-filled orbitals, so-called valence nucleons, and the residual
interaction, which they are subject to. Valence nucleons of the same kind in the
same orbital can couple to different total angular momenta J . The degeneracy,
which is still present in Eq. (2.19), is broken by the residual interaction. The
short-range attractive part of the nucleon-nucleon interaction can be modeled by
the δ interaction

Vres = −V0δ( #»r1 − #»r2). (2.20)
The δ interaction increases with a growing overlap of the wave functions of
two nucleons. The overlap maximizes with two anti-parallel aligned nucleons:
M = m1 + m2 = 0. The consequence is that the Jπ = 0+ is the energetically
most preferable configuration, followed by 2+,4+,... configurations. Generally,
configurations with the least number of pairs not coupled to Jπ = 0+ are favored
by Vres. The number of pairs not coupled to Jπ = 0+ is measured by the seniority
ν. Consequently, the ground-state total angular momentum is 0+ or determined
by the unpaired nucleons for even-even and other nuclei, respectively.
For the description of low-lying collective excitations of even-even nuclei, the

promotions of several nucleons in the model space have to be considered. Here,
the model space represents the involved orbitals of a performed shell-model calcu-
lation, e.g., the orbitals between two closed shells. In general, the most accurate
reproduction of spectroscopic quantities is achieved by using a valence space as
large as possible. However, the necessary computing power increases exponentially
with a growing model space and the empirical hamiltonians are easier determined
in a limited model space [57]. Hence, the balance between the quality of the
calculations and the computational feasibility has to be found.
In contemporary nuclear physics, there are several successful approaches to

solve the emerged many-body problem, e.g., coupled-cluster method [58], Greens
function Monte Carlo method [59], Monte Carlo shell model [60] and large-scale
shell model calculations using the m-scheme [61] and many others.
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Figure 2.2.: The level scheme of the harmonic oscillator is presented, while taken
into account the l2 (mid) and l · s (right) corrections. The modified
harmonic oscillator produces the experimental observed shell closures.
The figure is based on Ref. [6].
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2.3. Interacting Boson Model

The interacting boson model (IBM) [9] is an algebraic model with the purpose of
describing collective phenomena of medium and heavy even-even atomic nuclei,
i.e., energetically low-lying collective excitations. A fundamental idea of the IBM
is, that an atomic nucleus consists of a doubly-magic inert core and, thus, the
remaining valence nucleons form the collective excitations. Furthermore, the
valence nucleons couple pairwise to bosons, reducing the degrees of freedom
drastically. The total number of valence bosons N is given by N = 1/2(Np +Nn),
whereNp andNn are the numbers of valence protons (holes) and neutrons (holes),
respectively, with respect to the closest-lying doubly-magic nucleus. Valence-
nucleon holes are treated the same as real valence nucleons. In its original form, the
sd-IBM-1, there is no distinction between the valence bosons composed of protons
and neutrons. Furthermore, the bosons are meant to carry angular momenta of
L = 0 (s boson) and L = 2 (d boson). The IBM is using the language of second
quantization, so the bosons are given by the creation and annihilation operators

s†, s and d†µ, d̃µ, (2.21)

respectively. Here, µ = −2,−1, 0, 1, 2 corresponds to the magnetic sub-states
of the d boson. The operator d̃µ is defined as d̃µ = (−1)µd−µ in order to have
spherical tensors for the annihilation and the creation operator, d†µ and d̃µ. The
operators s†s, s†d̃µ, d†µs, and

[︂
d†µd̃µ

]︂
J
, where J = 0, 1, 2, 3, 4 and µ ≤ J , are

the generators of the Lie Algebra U(6). This set of generators spans a rich group
structure. This means, that a new subset of generators closes under communication,
i.e., the commutator of any two generators of the new subset is solely expressible
in terms of generators of the new subgroup. Under the constraint, that subgroups
of U(6) have to include the rotational algebra O(3), three different decompositions
are found [9]:

2.3. Interacting Boson Model 17



U(6)
N

⊃ U(5)
nd

⊃ O(5)
ν

⊃ O(3)
L

⊃ O(2)
M

, (2.22)

U(6)
N

⊃ SU(3)
(λ,µ)

⊃ O(3)
L

⊃ O(2)
M

, (2.23)

U(6)
N

⊃ O(6)
σ

⊃ O(5)
τ

⊃ O(3)
L

⊃ O(2)
M

. (2.24)

The quantum numbers below the subgroups are the irreducible representations,
where N is the total number of bosons, nd is the number of d bosons, ν is the se-
niority, τ is the boson seniority, L is the angular momentum andM is its projection.
The subgroups U(5), SU(3) and O(6) represent the vibrational, rotational and
γ-soft limits, respectively, and their eigenvalue relations are analytically solvable.
A simplified Hamiltonian of the sd-IBM-1 is given by [62]

H = ϵn̂d + κQχQχ, (2.25)

where n̂d = d†µd̃µ is the d boson number operator and Qχ is the quadrupole
operator with the structure parameter χ, Qχ = d†s+ sd̃+ χ[d†d̃]2.

In the framework of the sd-IBM-1, proton and neutron bosons are indistinguish-
able. Therefore, it is not capable to describe collective phenomena of the atomic
nucleus, where protons and neutrons act differently. Thus,M1 transitions do not
occur in the framework of the sd-IBM-1.

2.3.1. Interacting Boson Model 2
In contrast to its predecessor, the sd-IBM-1, the sd-IBM-2 distinguishes between
neutron and proton bosons [7, 9, 51]. This innovation leads to the capability of
describing states of mixed proton-neutron symmetry. The main features of the
model and the properties of the so-called mixed-symmetry states will be introduced.
This model defines individual annihilation and creation operators for proton

and neutron bosons as

s†ρ, sρ and d†ρ,µ, d̃ρ,µ, (2.26)
with ρ = π, ν for protons and neutron bosons, respectively, and µ = −2, −1, 0, 1,
2. The resulting Hamiltonian contains specific proton and neutron terms, as well
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as additional proton-neutron boson interaction terms. The extented Hamiltonian
is given by [63]:

H = ϵπn̂dπ
+ ϵν n̂dν

+ κππQ
χπ
π Qχπ

π + 2κπνQ
χπ
π Qχν

ν

+κννQ
χν
ν Qχν

ν + M̂(ξ1, ξ2, ξ3).
(2.27)

ϵπ and ϵν are the single d-boson energies and Qχπ
π and Qχν

ν are the proton and
neutron quadrupole operators, respectively. The general three-parameter Majorana
interaction M̂ can be defined as

M̂(ξ1, ξ2, ξ3) =
1

2
ξ2
(︁
s†πd

†
ν − d†πs

†
ν

)︁
·
(︁
sπd̃ν − d̃πsν

)︁
−

∑︂
K=1,3

ξK

(︃[︂
d†πd

†
ν

]︂(K)

·
[︂
d̃πd̃ν

]︂(K)
)︃
.

(2.28)

The term of the Majorana interaction vanishes, if protons and neutrons are indis-
tinguishable, e.g., in the case of IBM-1 states. The proton-neutron symmetry of a
wave function of an IBM-2 state is quantified by the F -spin quantum number. The
F spin for bosons is introduced analogously to the isospin for nucleons with its
main properties shown in Table 2.1.

Table 2.1.: The F spin and its projection on the z-axis Fz of proton (π) and neutron
(ν) bosons.

π ν

F 1/2 1/2
Fz +1/2 −1/2

The total projection of a nucleus Fz = 1
2 (Nπ −Nν) follows from Table 2.1, with

the proton and neutron boson number Nπ and Nν , respectively. The maximum
F spin of a state is given by Fmax = 1

2 (Nπ +Nν). The F -spin quantum number
quantifies the symmetry of a wave function with respect to the pairwise exchange
of proton and neutron labels. The wave functions of states with maximum F
spin, F = Fmax, are symmetric under that exchange. These states are labeled
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fully-symmetric states (FSS) emerging from the framework of the IBM-1. States
with partly anti-symmetric wave functions are called mixed-symmetry states (MSS)
and exhibit a F spin less than the maximum, F < Fmax. However, only MSSs with
F = Fmax − 1 have been observed until now, e.g., the 1+ scissors mode [64] and
the first 2+ mixed-symmetry state in vibrational nuclei [63]. An exemplary level
scheme of low-lying FSSs and MSSs of a nucleus in the U(5) limit (vibrational) is
presented in Figure 2.3 using the Hamiltonian

H = ϵ (n̂dπ
+ n̂dν

) + λM̂, (2.29)
with boson numbers Nπ = Nν = 1 and energies ϵ = ϵπ = ϵν . Using these
simplifications, the Majorana term reduces to

M̂ =
[︂
Fmax(Fmax + 1)− F̂

2
]︂
/2 with (2.30)

F̂
2
ΨIBM−1 = Fmax(Fmax + 1)ΨIBM−1 (2.31)

for IBM-1 states. For states outside the framework of the IBM-1, the Majorana
term leads to a lowered excitation energy of the FSSs in comparison to the MSSs,
see Figure 2.3.

Besides the energies of excited states, the structure of the wave functions and the
corresponding decay behaviour are often of special interest. Here, the Q-phonon
scheme is helpful to understand the main structural design in the formation of
collectivity. It was introduced by Otsuka et al. [65] and developed by the Cologne-
Tokyo collaboration [65–69]. The level scheme of Figure 2.3 is also emerging from
the Q-phonon scheme. The states are formed by a combination of symmetric and
mixed-symmetric quadrupole excitations from the ground state |0+1 ⟩:

|2+1 ⟩ = Qs|0+1 ⟩, (2.32)
|0+2 ⟩ = [QsQs]

(0)|0+1 ⟩, (2.33)
|2+2 ⟩ = [QsQs]

(2)|0+1 ⟩, (2.34)
|4+1 ⟩ = [QsQs]

(4)|0+1 ⟩, (2.35)
|2+1,ms⟩ = Qm|0+1 ⟩, (2.36)
|1+1,ms⟩ = [QsQm](1)|0+1 ⟩, and (2.37)
|3+1,ms⟩ = [QsQm](3)|0+1 ⟩, (2.38)
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where Qs = Qπ + Qν and Qm = [QπN/Nπ −QνN/Nν ] denote the F -scalar
(∆F = 0) and the F -vector (∆F = 1) quadrupole operators, respectively.

Figure 2.3.: A schematic level scheme of a simplified IBM-2 Hamiltonian H =
ϵnd+λM̂ in the limit of the vibrational U(5) limit, withNπ = Nν = 1
and ϵ = ϵπ = ϵν . Reprinted figure with permission from Ref. [63].

Hence, the 2+1,ms states of vibrational nuclei exhibit experimental decay signa-
tures, which are considered for its identification [63]:

• the lowest-lying MSS,

• an enhanced B(M1; 2+1,ms → 2+1 ) ≈ 0.2µ2
N strength,

• a short life time, typically in the range of 100 fs,

• an increased B(E1; 3−1 → 2+1,ms) strength [37].

Especially, the observation of an enhancedM1 transition strength is an indispens-
able quantity for the reliable identification of the 2+1,ms state. The origin of the
strongM1 transition is the F -vector nature of theM1 transition operator [63]:
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T (M1) =

√︃
3

4π
[gπLπ + gνLν ]µN (2.39)

=

√︃
3

4π

[︃
Nπgπ +Nνgν

N
Ltot + (gπ − gν)

NπNν

N

(︃
Lπ

Nπ
− Lν

Nν

)︃]︃
µN,

(2.40)

where Lρ =
√
10

[︂
d†ρ × d̃ρ

]︂
1
, with ρ ∈ π, ν, is the angular momentum operator

for proton and neutron bosons and Ltot = Lπ + Lν denotes the total angular
momentum operator of the IBM-2 and gπ and gν are the effective boson g factors.
This transition operator yields a vanishing matrix element for transitions between
FSSs. Hence, in the framework of the IBM M1 transitions between FSSs are
forbidden. Since nuclear states are in reality not entirely represented through
theoretical IBM states, typically a smallM1 strength in the order of 0.01µ2

N or less
is observed between FFSs [10, 50, 63], when allowed by the selection rules. In the
limits of the U(5) symmetry, the followingM1 and transition strength is expected:

B(M1; 2+1,ms → 2+1 ) =
3

4π
(gπ − gν)

2 6

N2
NπNν . (2.41)

Furthermore, the E2 transition operator,

T (E2) = eπQ
χπ
π + eνQ

χπ
ν , (2.42)

with eπ and eν as the effective quadrupole-boson charges, is of F -scalar nature,
hence, it connects states with the same F spin (∆F = 0). Here, the ∆F = 1
connections are suppressed for E2 transitions in the framework of the IBM-2.
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2.4. Two-State Mixing

Regarding level schemes of real atomic nuclei, pure configrations as predicted in
theoretical models are rarely found. The introduction of a simple two-state mixing
takes account for the existing mixing between two states and enables a more
realistic description or prediction of the nuclear excitation scheme. The presented
discussion of this phenomenon is guided by Ref. [6].

2.4.1. General Formalism

Figure 2.4.: A simple two-state mixing scenario with the initial states marked
with 1, 2 and the final states marked with I, II.

The situation presented in Figure 2.4 is separated into two parts. The initial
unperturbed levels are marked with energies E1 and E2 and wave functions Φ1

and Φ2, and the final mixed levels with energies EI and EII and wave functions
ΨI and ΨII . The mixing matrix element ⟨Φ1|V |Φ2⟩ of an arbitrary interaction V
will be denoted in the following as V . The degree of mixing of the final states
depends on the inital energy difference ∆Eini and on the matrix element V . The
energies and wave functions of the final states are deduced by the diagonalization
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of the 2× 2 matrix (︃
E1 V
V E2

)︃
. (2.43)

The diagonalization leads to the following relations for the energies of the final
states:

EI,II =
E1 + E2

2
∓

√︁
(E1 + E2)2 − 4(E1E2 − V 2)

2

=
E1 + E2

2
∓

√︁
(E2 − E1)2 + 4V 2

2
.

(2.44)

The ratio of the energy difference of the unperturbed states to the mixing matrix
element R = (∆Eini)/V is introduced to increase the comprehensibility of Eq.
(2.44), resulting in

EI,II =
E1 + E2

2
∓ ∆Eini

2

√︃
1 +

4

R2
, (2.45)

where the − sign is meant for EI and the + sign for EII . These equations show,
that a large energy difference of the initial states ∆Eini reduces the effect of a
given matrix element V , but even a small matrix element may result in a large
mixing if the energy spacing of the initial states ∆Eini is small.

The wave functions of the mixed final states can be interpreted as superpositions
of the unperturbed wave functions:

ΨI = αΦ1 + βΦ2, (2.46)
ΨII =− βΦ1 + αΦ2 with α2 + β2 = 1. (2.47)

Here, the parameters α and β describe the contributions of the initial states Φ1,2

to the final states ΨI,II . These relations lead to the following system of linear
equations, which connects α and β to the matrix Element V and the energies of
the initial and final states E1, E2, EI , and EII :
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(︃
E1 V
V E2

)︃(︃
α
β

)︃
=EI

(︃
α
β

)︃
(2.48)(︃

E1 V
V E2

)︃(︃
−β
α

)︃
=EII

(︃
−β
α

)︃
. (2.49)

This is a generic mixing situation, which can be applied to any interaction.

2.4.2. F -Spin Mixing

Figure 2.5.: A two-state mixing scenario regarding the F spin. The width of the
arrows indicate the strength of the correspondingM1 transition. ∆Ef

is the energy difference of the mixed states.

Here, this simple two-state mixing scenario was used to determine the degree
of mixing between FSSs (F = Fmax) and MSSs (F = Fmax − 1). In this case,
the initial levels are the theoretical unperturbed mixed-symmetry 2+ms state and a
neighboring fully-symmetric 2+fs state. The fully-symmetric 2+1 state will remain
unmixed, but is necessary to resolve the mixing scenario. Then, the final states
are superpositions of the theoretical MSS and FSS, see Figure 2.5. The state
with mainly mixed-symmetry character is called the main fragment (2+mf) and
the mainly full-symmetric one is called the small fragment (2+sf) of the 2+ms state.
A characteristic of the transition between the 2+ms state and the 2+1 state is its
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strongM1 nature, which is forbidden for transitions between FSSs, see Section
2.3. These relations are getting useful, if the wave function of the 2+1 state and
theM1 transition operator are applied to Eqs. (2.46) and (2.47):

⟨2+1 ||M1||2+mf⟩ = α⟨2+1 ||M1||2+ms⟩+ β⟨2+1 ||M1||2+fs⟩, (2.50)
⟨2+1 ||M1||2+sf⟩ =− β⟨2+1 ||M1||2+ms⟩+ α⟨2+1 ||M1||2+fs⟩. (2.51)

TheM1 matrix elements of the transitions between realized states can be deter-
mined experimentally. In a sophisticated view, the unperturbed states should not
be considered idealized IBM states, because transitions between predominantly
FSSs carry in reality a small, but measurable,M1 transition strength. Hence, this
M1 strength has its origin outside the framework of the IBM-2. In this thesis, this
background M1 transition matrix element between FSSs ⟨2+1 ||M1||2+fs⟩ is deter-
mined by the transition between the 2+1 and the 2+2 states. The latter has in the
considered cases a sufficiently large energy difference to the main fragment of the
2+1,ms state to exclude mixing with it. The total strength from the unperturbed 2+ms

state is given by

B(M1; 2+ms → 2+1 ) = B(M1; 2+mf → 2+1 ) +B(M1; 2+sf → 2+1 )

−B(M1; 2+fs → 2+1 ).
(2.52)

Finally, α and β can be determined and, then, inserted in Eqs. (2.48) and (2.49)
to obtain the mixing matrix element for F spin, VF−mix.
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3. Experimental Techniques

The successful determination of the sought-for observables is seriously dependent
on the right choice of experimental method. In many cases, it is necessary to
combine highly complex measurements to obtain the desired quantities. In this
chapter, the theory of Coulomb excitation and its connection to nuclear observables,
and the origin of the angular dependence of particle-γ and γ-γ correlations and
their connection to the multipole-mixing ratio will be discussed briefly.

3.1. Coulomb Excitation

Since the 1950s, Coulomb excitation (CE) has been a well-established experimental
technique to study a wide variety of stable isotopes [70] and its mathematical
description has been documented in several review articles by Alder and Winther
[71–73]. The continuous progress in accelerator science, the development of
radioactive-ion beam facilities, and the constant evolution of instrumentation have
never let CE go out-of-fashion. Especially, the projectile CE with high-resolution γ-
ray detectors in combination with a high-efficiency particle detection is a powerful
tool to face the obstacles of in-flight measurements. Using such an experimental set-
up enables the deduction of information about the structure, e.g., the deformation,
of exotic nuclei, which is in some cases hardly to access otherwise.

The basic principle of CE is the excitation of the target nucleus by the intrusion
of the Coulomb field of a passing projectile and vice versa. The excitation process
can be considered as a transfer of one or more virtual photons. The probability
of CE increases with decreasing distance of both reaction partners. To prevent
nuclear reactions, e.g., transfer and fusion reactions, the velocity v of the projectile
has to be sufficiently low to hinder the penetration of the target nucleus by the
projectile.
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3.1.1. Semi-Classical Description

Figure 3.1.: The scattering process of a Coulomb excitation in a classical picture.
ZP,T and AP,T are the proton and mass numbers of the projectile
and target particles, respectively. 2a(θ) is the smallest approach of
both reaction partners depending on the scattering angle θ.

In the semi-classical approach of CE, the projectile is deflected by the electro-
magnetic force stemming from the interaction of the electric fields of the projectile
and target. The classical trajectory of an elastic scattering, see Figure 3.1, is a good
approximation of the semi-classical description when agreeing on two assumptions.
Here, the scattering cross section of the classical trajectory of a heavy ion collision
is described by the well-known Rutherford cross section(︃

dσ

dΩ

)︃
R

=
1

4

a2

sin4 (θ/2)
, (3.1)

with a being half of the smallest distance between the surfaces of the target and
the projectile particle

a =
ZPZT e

2

m0v
, (3.2)

where v is the velocity of the projectile, ZP and ZT are the proton numbers of the
projectile and the target, respectively, e is the elementary charge, and m0 is the
reduced mass.
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The first assumption is, that the interaction of the reaction partners is purely
electromagnetic and the nuclear force only contributes in a negligible way. This
is achieved by ensuring a sufficiently large distance between the surfaces of the
reaction partners, determined by the dimension-less Sommerfeld parameter η,

η =
2πa

λ
=
ZPZT e

2

h̄v
, (3.3)

where λ is the deBroglie wavelength. The second assumption is, that the energy
loss of the projectile is small in comparison to the bombarding energy. This is
measured through the adiabaticity parameter

ξ =
a

h̄v
∆E, (3.4)

where ∆E is the excitation energy. It has been proven that the semi-classical
approach is a legitimate approximation for CE at low bombarding energies, if the
conditions, η ≫ 1 and ξ → 0, are full-filled [73].

Furthermore, a good measure of restricting nuclear forces is the Coulomb barrier

VC =
1

4πϵ0

ZPZT e
2

d
, (3.5)

where d is the distance between the centers of both reaction partners. The distance
d is approximated by the sum of the radii of two spherical nuclei, while the radius
is estimated to be

r ≈ 1.2 fm×A1/3, (3.6)

where A is the nucleon number of the nucleus. A valid estimation for heavy ion
collisions is Cline’s “safe” CE criterion [74]. It says, if the distance between the
surfaces of both reaction partners is greater than 5 fm, it is legitimate to neglect
other forces besides CE. This leads to an upper limit for the kinetic energy of the
projectile in the laboratory frame, given in MeV,

EP [MeV] ≤ 1.44×
(︃
1 +

AP

AT

)︃
ZPZT

1.2× (A
1/3
P +A

1/3
T ) + 5

. (3.7)
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In this framework, the CE cross section of a state |n⟩ is determined by the Rutherford
cross section and the excitation probability Pn(︃

dσ

dΩ

)︃
n

=

(︃
dσ

dΩ

)︃
R

Pn. (3.8)

For the determination of the excitation probability Pn, a perturbation calculation
has to be carried out. A simplified Schrödinger equation describes the state of one
nucleus, either the projectile or the target, |ψ(t)⟩:

ih̄
∂

∂t
|ψ(t)⟩ = [H0 + V (t)]|ψ(t)⟩. (3.9)

H0 is the Hamiltonian of the free nucleus with its eigenstates |n⟩ and the eigen-
values En, and V (t) is the time-dependent external potential at the position of
the nucleus. The electromagnetic interaction V (t) can be written in terms of a
multipole expansion,

V (t) =
∑︂
λ,µ

4πZe

2λ+ 1
(−1)µSE/MλµME/M (λ, µ), (3.10)

with the orbital integrals for electric and magnetic excitations,

SEλµ = r(t)−λ−1Yλµ [θ(t), φ(t)] , (3.11)

SMλµ =
i

λ

1

r(t)λ+1

#»ṙ (t)L̂

c
Yλµ [θ(t), φ(t)] . (3.12)

θ(t), Φ(t) and r(t) are the coordinates and Z is the proton number of the nucleus,
and Yλµ [θ(t),Φ(t)] denotes the spherical harmonics. λ denotes the multipolarity
and µ its projection on the symmetry axis. ME/M (λ, µ) are the multipole operators
and are defined as

ME(λ, µ) =

∫︂
ρ( #»r )rλYλµ [θ(t), φ(t)]

(︃
#»r

r

)︃
d #»r , (3.13)

MM (λ, µ) =
−i

c(λ+ 1)

∫︂
#»
j ( #»r )rλL̂Yλµ [θ(t), φ(t)]

(︃
#»r

r

)︃
d #»r . (3.14)
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Here, L̂ is the angular momentum operator and ρ( #»r ) is the charge density. From
Eq. (3.9), the time-dependent excitation amplitude can be defined as

an(t) = ⟨n|ψ⟩eiEnt/h̄ . (3.15)

Using the boundary condition where the nucleus is in its ground state at t→ −∞,
meaning a(−∞) = δ0n, leads to the excitation probability of the state |n⟩ from the
initial state |i⟩ with spin Ji

Pn =
1

2Ji + 1

∑︂
mi,mn

|an|2, (3.16)

where mi and mn are the magnetic sub states of |i⟩ and |n⟩, respectively. The Eqs.
(3.15) and (3.9) lead to a set of coupled differential equations:

ih̄ȧn(t) =
∑︂
n

⟨n|V (t)|m⟩ei(En−Em)t/h̄am(t). (3.17)

The whole CE process is defined by this set of coupled differential equations. Hence,
solving these equations will deliver the cross sections of all Coulomb excited states
of a nucleus in a given reaction. Pure one-step excitations are often reasonable
estimations for, e.g., 2+ and 3− states. However, for a detailed examination, higher
order excitations, especially two-step excitations, can’t be neglected. For one-step
excitations, the CE cross sections of certain states are given by

σEλ =

(︃
Ze

h̄v

)︃2

a−2λ+2B(Eλ)fEλ(ξ), (3.18)

σMλ =

(︃
Ze

h̄c

)︃2

a−2λ+2B(Mλ)fMλ(ξ), (3.19)

where a is again half the distance of the closest approach and the functions
fE/Mλ(ξ) are listed in Ref. [71]. The B(E/Mλ) values are the reduced transition
probabilities for electric andmagnetic transitions. They are defined by themultipole
operators and the corresponding states
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B(E/Mλ; Ji → Jn) =
∑︂
µ,mn

⃓⃓
⟨Jnmn|ME/M (µ, λ)|Jimi⟩

⃓⃓2
=

1

2Ji + 1

⃓⃓
⟨Jn||ME/M (λ)||Ji⟩

⃓⃓2
.

(3.20)

The cross section decreases rapidly, approximately two orders of magnitude, with
an increasing multipolarity. A theoretical example is shown in Figure 3.2. From the
Eqs. (3.18) and (3.19), it is shown, that the magnetic excitations are suppressed
by a factor of β2, which is also visible in Figure 3.2. Hence, it is negligible for
low-energy CE which is subject of this thesis. Consequently, the excitation paths
are predominantly E2 transitions and, with a significantly smaller influence, E3
transitions. Thus, CE is the ideal method to investigate collective quadrupole
and octupole states. In despite of the plots of Figure 3.2, E1 transitions do not
play a role in CE. The E1 transition matrix elements are usually some orders of
magnitudes smaller on a single-particle scale than the E2 and E3 ones and, thus,
negligible. Although the cross section of a E1 excitation with a comparable matrix
element might be significantly enhanced in comparison to higher multipolarities.
A significant role in the excitation process is played by multi-step excitations,

especially two-step excitations. Two-phonon states, i.e., the 2+2 and especially the
4+1 states, are even predominantly populated in a two-step path. Furthermore,
multi-step excitation plays also a role for one step-excitations as the 2+1 state. Here,
the “reorientation effect” [73], where a transition between the different magnetic
sub states takes place, is present and is seen as a two-step excitation. This effect is
dependent on the static quadrupole moment of this state. Hence, the diagonal E2
matrix element, which is proportional to the static quadrupole moment, may be
crucial for the state’s excitation process.
All kind of multi-step excitations are taken into account by the here used CE

calculation codes, GOSIA and CLX. If a state is predominantly excited via a certain
excitation path, the sign of the matrix element ⟨Jn||ME/M (λ)||Ji⟩ does hardly
effect the state’s population yield. However, when two different excitation paths
contribute relevantly to the population of a state, the relative sign decides whether
the two excitation probabilities interfere constructively (+) or destructively (−).
In these cases, the relative sign highly affects the CE population yields.
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Figure 3.2.: Theoretical cross sections of CE of transitions with different multipo-
larities and a transition probability of 1 W.u.. The projectile, a proton,
impinged on a Sn target with bombarding energies from 1 to 3 MeV.
Reprinted figure with permission from Ref. [71].
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3.1.2. Connection to Nuclear Structure
The wave function of the excited state provides the desired information about its
structure, which is not directly measurable. However, the overlap of wave functions
of two states is given by the transition matrix element connecting these two states.
The transition matrix elements have a decisive influence on the CE process, which
was outlined in Section 3.1, as well as they dictate the de-excitation process via a
γ-ray decay.
Here, the access to nuclear structure variables is the decay of the Coulomb-

excited states via γ-ray emission. The energy difference of the initial and the final
state is equal to the γ-ray energy Eγ . The γ-ray energies and the intensities of
γ rays are recorded by γ-ray spectrometers, which are most commonly position
sensitive, hence, the emission angles of the γ rays are also measured. Finally,
the CE theory links the measurable γ-ray properties to the sought-for transition
matrix elements. The decay and the excitation of nuclear states via electromagnetic
transition underlie the electro-magnetical transition selection rules

⃓⃓⃓
Jπi
i − J

πf

f

⃓⃓⃓
≤ λ ≤ Jπi

i + J
πf

f (3.21)

πγ = πiπf =

{︃
(−1)λ for electric transitions

(−1)λ+1 for magnetic transitions, (3.22)

where Jπi
i , πi, and Jπf

f , πf are the spins and the parities of the initial and the
final state, respectively. λ and πγ are the transition’s multipolarity and parity,
respectively. The previous equations show, that the nature and multipolarity of a
transition is rarely restricted to one possible combination. Transitions, where states
with spin J = 0 are involved, are exceptions and exhibit an unmixed character.
Otherwise, the multipole-mixing ratio δ defines the multipole composition of a
transition,

δ2 =
Γi(λ+ 1)

Γi(λ)
, (3.23)

where Γi is the partial width of the transition i. The partial widths Γi are propor-
tional to the observed γ-ray intensities. The sum of the partial widths of transitions
from a state is the natural line width, which is directly connected to the lifetime τ
of the excited state
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Γ =
∑︂
i

Γi and (3.24)

Γ =
h̄

τ
. (3.25)

The partial widths, on the other hand, are defined by nuclear structure properties,
notably the sought-for reduced transition strengths:

Γi(σλ) = 8π
λ+ 1

λ [(2λ+ 1)!!]
2

(︃
Eγ

h̄c

)︃2λ+1

×B(σλ; Ji − Jf )↓ , (3.26)

the equation is in Gaussian units and its constant factor in front changes to 2/(ϵ0h̄),
if it is expressed in SI units [75]. It is useful to merge the parameter which are
only dependent on the multipolarity and whether it is an electric or magnetic
transition. This leads to the following equations [75]

Γ(Eλ) =5.498× 1022 × f(λ)

(︃
Eγ [MeV]
197.33

)︃2λ+1

×B(Eλ)↓[e
2fm2λ]

1

s , (3.27)

Γ(Mλ) =6.080× 1020 × f(λ)

(︃
Eγ [MeV]
197.33

)︃2λ+1

×B(Mλ)↓[(µN/c)2fm2λ−2]
1

s ,
(3.28)

f(λ) =
λ+ 1

λ [(2λ+ 1)!!]
2 . (3.29)

The relation h̄c = 197.33MeV fm was used for the simplification of the equations
for Γ(σλ). The absolute transition strength B(σλ) is given in e2fm2λ and (µN/c)2

for Eλ and M1 transitions, respectively. Here, Gaussian units are commonly
used, therefore the B(M1) strength is often given in µ2

N. A different way to
present reduced transition strengths, especially B(Eλ), is the single-particle unit,
Weisskopf unit (W.u.). One W.u. is an estimate for an excitation, where only
one nucleon is involved. The transition strength B(Eλ) ≫ 1W.u., thus, indicates
a participation of many nucleons in that particular excitation. Consequently,
the presentation of a reduced transition probability in W.u. is a measure of the
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collectivity of this excited state. The conversion into W.u. for electric transitions is
dependent on the mass number of the nucleus [75] and given by

BW (Eλ) =
1.22λ

4π
×
(︃

3

λ+ 3

)︃2

A2λ/3e2fm2λ . (3.30)
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3.2. Angular Correlations of γ Rays

The angular intensity distribution of the γ-ray emission of a certain transition
exhibits information about the angular momenta and the multipolarities of the
transition. The extraction of this information will be introduced on the basis of
Refs. [76, 77]. Two specific cases will be discussed. The angular distributions of a
particle-γ coincidence after CE and of a γ-γ coincidence after β+/ϵ decay.

Figure 3.3.: Two scenarios of measuring angular distributions of γ-γ (left) and of
particle-γ (right) coincidences. For more information, see text.

In the case of the projectile CE using Gammasphere for the detection of γ rays,
the angular distribution was determined by ring-wise measurements of the γ-ray
intensities. The detectors of a ring share the same polar angle with respect to the
beam axis. A schematic drawing of the situation describes the angles in laboratory
frame, see Figure 3.3. Due to the beam velocity of approximately 10 % of the
speed of light in the reported experiments, relativistic effects have to be taken into
account. So, it is necessary to transform the laboratory angle of the γ-ray emission
θγ,lab to the frame of the emitting nucleus θγ,nuc. This transformation is given by
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[78]

cos θγ,nuc =
cos θγ,lab − β

1− β cos θγ,lab
. (3.31)

The so-called Lorentz boost also effects the solid angle of the detectors. In the
frame of the nucleus, the detectors in forward angles appear to be bigger and
the ones in backwards angles to be smaller. This directly effects the intensities
measured in a detector, because the intensities are proportional to the solid angle
of the detector. The transformation is given by [78]

dΩnuc =
(1 + β cos θγ,nuc)

2

1− β2
dΩlab, (3.32)

where dΩnuc and dΩlab are the solid angles in the frame of the nucleus and of the
laboratory, respectively.

The statistical ensemble of oriented nuclear levels promoted via Coulomb excita-
tion is axially symmetric with respect to the beam axis, if the outgoing nucleus is
not detected [76]. These conditions lead to a population of the magnetic sub-states
of the initial states with the angular momentum Ji described by the statistical
tensor ρk(Ji). The statistical tensor is directly correlated to the statistical an-
gular distribution of the γ-ray emission of the Ji → Jf transition. The angular
distribution is given by [77]

W (θ) =
∑︂
k

AkPk(cos θ). (3.33)

For an aligned ensemble of states, e.g., axially symmetric oriented, where the
population of a magnetic sub state is equal to its negative counterpart, the equation
simplifies to

W (θ) = A0 [1 + a2P2(cos θ) + a4P4(cos θ)] , (3.34)

where P2,4 are Legendre polynomials, the coefficients ak = Ak/A0 cover the
angular momentum coupling, and A0 is a normalization factor. The coefficients
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ak are given by [77]

ak =ρk(Ji)αk(δ, JfLL
′Ji) with (3.35)

αk(δJfLL
′Ji) =

1

1 + δ2
[︁
Fk(JfLL

′Ji) + 2δFk(JfLL
′Ji)

+ δ2Fk(JfL
′L′Ji)

]︁ (3.36)

with
Fk(JfLL

′Ji) =(−1)Jf−Ji−1
√︁
(2L+ 1)(2L′ + 1)(2Ji + 1)×(︃

L L′ k
1 −1 0

)︃
⏞ ⏟⏟ ⏞
Clebsch−Gordan

W (JiJfLL
′; kJf )⏞ ⏟⏟ ⏞

Racah

. (3.37)

Here, L and L′ are the multipolarities of the mixed transition, i.e., L = 1 forM1
and L′ = 2 for E2, and δ is the multipole-mixing ratio given by

δ =
⟨Jf ||ME/M (L′)||Ji⟩
⟨Jf ||ME/M (L)||Ji⟩

, (3.38)

where ⟨Jf ||ME/M (L/L′)||Ji⟩ are the transition matrix elements from Eq. (3.20).
The multipole-mixing ratio δ measures the mixture of the transition Ji → Jf . It
is obvious from Eq. (3.36), that the coefficients ak simplify if Ji → Jf is a pure
transition (δ = 0):

ak = ρk(Ji)Fk(JfLLJi) (3.39)
This happens if a state J = 0 is involved in the investigated transition, e.g.,
a ground state for a even-even nucleus Jf = 0+. Then the statistical tensor
ρk(Ji) can be obtained from the angular distribution of the ground state transition
Ji → 0+1 . If the ground state transition is not observed, an iterative method can
be applied to determine the statistical tensor, this method was utilised in various
publications, e.g., Refs. [48, 50]. The coefficients ak can be determined by the
angular distribution of the intensity of the Ji → Jf transition. The combination of
the coefficients ak and the statistical tensor leads ultimately to the multipole-mixing
ratio δ.
In the case of the angular distribution of the γ-ray emission after a β/ϵ decay,

there are a few differences how to obtain the multipole-mixing ratio. For the
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unoriented β/ϵ decays, the ion beam axis can’t be used as the quantization axis.
However, the detection of a first γ ray serves as quantization axis. Then, the
detection of a second coincident γ ray can be used to determine the angular
distribution of this γ-γ coincidence. Therefore, θ is in the following not longer
meant to be the polar angle between the beam axis and the γ-ray emission, but
the angle between two γ-ray emissions of a coincidence event, see Figure 3.3. In
this case, Eq. (3.34) is also used to obtain the coefficients ak, but they are now
defined slightly different:

ak = αk(Jintδ1L1L
′
1Ji)Bk(δ2JfL2L

′
2Jint). (3.40)

The equation corresponds to the γ-γ cascade Ji
L1L

′
1−−−→

δ1
Jint

L2L
′
2−−−→

δ2
Jf . The coeffi-

cients αk are given by Eq. (3.36) and Bk is given by [76]

Bk(δJfLL
′Ji) =

1

1 + δ2
[︁
Fk(JfLL

′Ji) + (−1)L+L′
2δFk(JfLL

′Ji)

+ δ2Fk(JfL
′L′Ji)

]︁
,

(3.41)

where the coefficients Fk are determined by Eq. (3.37) and are also tabulated in
Ref. [77] for several combinations of angular momenta.
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4. Experiments

The four performed or planned experiments have different requirements on the
beam-producing facilities. The projectile CE of 202Hg was performed at the Ar-
gonne Tandem Linac Accelerator System (ATLAS) facility at the Argonne National
Laboratory (ANL), with the 4π high-purity germanium (HPGe) array Gammas-
phere [49]. The extreme-inverse kinematics experiment, where the mass of the
projectile is much greater than the one of the target particle, could be processed
without particle detection, which is often the limiting factor of the beam current.
The projectile CE experiments of the radioactive N = 80 isotones, 140Nd and

Figure 4.1.: Overview of the beam lines of CERN [79].
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142Sm, were challenging in terms of the isotope production and the necessary post
acceleration up to ≈ 4.5A ·MeV. After the upgrade from REX- to HIE-ISOLDE,
the radioactive-ion beam facility at CERN with the six-fold segmented HPGe array
Miniball [23] was capable to face these challenges. The γ-ray spectroscopy of 142Sm
after β+/ϵ decay was designed with a 32S beam with an energy of ≈ 4.7A ·MeV.
The Warsaw Cyclotron at the Heavy Ion Laboratory provides the requested beam
energy with the necessary high resolution HPGe array EAGLE (European Array
for Gamma Levels Evaluation) [80] belonging to the local experimental setup. An
overview of all experiments and their durations are shown in Table 4.1.

Figure 4.2.: Floorplan of the beam lines of the ATLAS facility [81] at the Argonne
National Laboratory (USA).
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Table 4.1.: An overview of the reported experiments with the utilized reaction
processes. CE, FE and II are abbreviations for Coulomb excitation,
fusion evaporation and investigated isotope, respectively.

Facility Beam Target Beam energy Reaction II Duration
HIE-ISOLDE 140Nd 208Pb 4.62A ·MeV CE 140Nd 1 day
HIE-ISOLDE 142Sm 208Pb 4.62A ·MeV CE 142Sm 5 days
ATLAS 202Hg 12C 4.4A ·MeV CE 202Hg 20 h
HIL 32S 114Cd 4.7A ·MeV FE 142Sm 10 daysa

aPlanned and accepted.

4.1. Coulomb Excitation of 140Nd and 142Sm at
HIE-ISOLDE Using Miniball

Two of the reported projectile-CE experiments were performed at the radioactive-
ion beam (RIB) facility ISOLDE [82, 83], which is part of CERN, see Figure 4.1.
The ISOLDE facility is provided with 1.4 GeV protons from the PS Booster. The
high-energy protons impinged on a thick tantalum production target, which was
embedded in a hot surface ion source. The proton-induced spallation, fusion and
fission in the target produced a large variety of neutrally charged isotopes. The
isotopes were subsequently ionized at the hot surface (up to 2400◦C) of the transfer
line of the ion source. The material of the transfer line had to be more likely to
absorb an electron than the newly-produced atoms were. The ionization properties
of the ion source could be varied by adjusting the temperature. The Resonance
Ionization Laser Ion Source (RILIS) [84] was additionally used to improve the
selectivity of the ionization process. RILIS ionizes atoms by exciting electrons of a
certain element in a multi-step process by using an element specific customized
laser scheme, see Figure 4.3. Consequently, the ratio of the desired element to all
other ions was increased. The extracted ions with a kinetic energy of 30 keV were
led to the General Purpose Separator (GPS), a one-dipole-magnet mass separator.
Afterwards, the beam is cooled, accumulated and bunched in REXTRAP [86].
The trapped bunch of ions was transferred to REXEBIS [87]. REXEBIS uses a
strongly focused electron beam to increase the charge state of the trapped ions
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Figure 4.3.: A schematic drawing of the functionality of RILIS in combination
with the hot surface ion source. The figure is adopted from Ref. [85]
and modified.

to a higher charge-state. The favoured charge-state was, then, selected by the
following mass-over-charge separator, see Figure 4.4.
Since the energy and resolution upgrade from REX- to HIE-ISOLDE, the ions

can be post-accelerated up to 10A ·MeV. The post-accelerated ions were led to
the Miniball experimental station [23]. At that time, Miniball consisted of 24
sixfold-segmented high-purity germanium (HPGe) detectors arranged to eight
triple clusters on a variable spherical detector frame. The positions of the clusters
during the experiments are listed in Table 4.2. The segmentation of the HPGe
crystals was used to improve the correction for the Doppler shift of the γ-ray
energies. The Miniball clusters are focused onto the target chamber, where a
target wheel and a particle detector were mounted. The following targets were
mounted on the wheel, a 2.5 mg/cm2-thick 208Pb foil, a 3 mg/cm2-thick 92Mo
foil, a stopper foil, a small and a big hole for the tuning of the ion beam, and a
1.5 mg/cm2-thick 208Pb foil. The latter one was used for both CE experiments.
The mentioned particle detector was a double-sided silicon strip detector (DSSD),
which was placed in forward direction in respect to the beam axis. The DSSD is
segmented in four quadrants, each quadrant is divided in 16 rings at the front
side and 24 stripes at the back side. Technical details are shown in Figure 4.5 and
a detailed description is found in Ref. [89].
After the post-acceleration in the REX- and HIE-cavities, the 140Nd and 142Sm
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Figure 4.4.: Left: the time structure from the proton bunches from the PS-Booster
(A) to the timing of the beam at the linear accelerator (F). Right: the
schematic layout of the charge breeding and bunching components
at REX-ISOLDE. The figures are adopted from [88] and modified.

ions impinged with an kinetic energy of 4.62A · MeV, meaning approximately
eight percent of the speed of light, on the 1.5 mg/cm2 208Pb target. The energy
was chosen sufficiently low, 76 % and 74 % of the Coulomb barrier of 208Pb with
140Nd and 142Sm, respectively, to ensure “safe” CE [74].

4.1.1. Data Preparation

The calibration and the data acquisition were conducted analogously for both
reported CE experiments at HIE-ISOLDE. The sorting code MiniballCoulexSort
[90] was used to build the particle-γ and particle-γ-γ events. For the energy and
the efficiency calibration of the HPGe detectors, radioactive sources of 133Ba, 152Eu
and 66Ga were used. The combination of these sources enables a calibration of
Miniball for γ-ray energies from 40 keV up to 5 MeV. The γ-ray energies and
intensities of the γ-ray transitions were taken from Ref. [91] and denoted in Table
A.1.

The energy calibration was done for every detector separately, by applying second
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Table 4.2.: The parameters of the Miniball clusters during the reported experi-
ments. The scattering angle θ describes the angle of the center of the
cluster in respect to the beam axis. φ is the azimuthal angle and α is a
intrinsic rotation of the cluster. r is the distance between the center of
the cluster’s surface and the target.

# θ φ α r

0 135.05◦ 125.75◦ 319.50◦ 102.62 mm
1 50.15◦ 56.85◦ 52.75◦ 105.70 mm
2 44.35◦ 132.87◦ 300.75◦ 104.25 mm
3 136.45◦ 55.79◦ 245.75◦ 104.20 mm
4 134.50◦ 236.50◦ 292.25◦ 99.99 mm
5 43.35◦ 233.35◦ 238.94◦ 107.04 mm
6 136.15◦ 312.01◦ 78.85◦ 109.15 mm
7 42.85◦ 315.44◦ 121.85◦ 113.94 mm

degree polynomials to the raw γ-ray energies. Although the Miniball detectors
are segmented, it is common to use the core signal of the crystal for the γ-ray
energy with addback, while the segment signal with the highest energy serves for
the position determination. Addback means here, that the deposited energy of a
neighboring crystal is added to the deposited energy of the initial crystal, if this
scenario happened in a short time gate. Consequently, the energy of a detected
photon could be reconstructed correctly even though it did not deposit its whole
energy in one crystal.

The photo-peak efficiency of a γ-ray detector is the ratio of the amount of γ-rays
of a certain energy which deposit their complete energy in the detector to the total
number of these γ-rays hitting the detector. The γ-rays of the used radioactive
sources, see Table A.1, are taken to determine the efficiency Iγ/Ieff , where Iγ
is the summarised intensity of the whole Miniball array of a certain transition
and Ieff is its known intensity relative to the activity of the source. The activities
of the three sources, 133Ba, 152Eu and 66Ga, were partly unknown, so it was
necessary to scale the experimental efficiencies of each source by a constant factor
to compensate the different activities and durations of the source measurements.
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Figure 4.5.: Left: a schematic drawing of the DSSD including the associated
distances and angles. Right: a photography of the DSSD mounted in
the target chamber. Both pictures are adopted from Ref. [89].

The phenomenological energy-dependent function,

ϵ(Eγ) = a× e−b ln(Eγ−c+deeEγ ) , (4.1)
was fitted to the combined data set. The resulting relative efficiency of Miniball
with its one-σ band is shown in Figure 4.6. The relative efficiency is sufficient
for the performed CE measurements, because the calculations are relative to the
2+1 → 0+1 transition of the investigated nucleus. The DSSD was used for the heavy
particle detection and was mounted 21.5 cm downstream from the target. This
placement led to a total coverage of the DSSD from 23.5◦ to 63◦ in the laboratory
frame in respect to the beam axis regarding the target. The scattered heavy
particles, beam and target like, hit the DSSD and deposited kinetic energy in the
silicon layers. This energy loss ∆E is proportional to the incoming kinetic energy
and was recorded by the DSSD. The energy and local resolution of the DSSD
enabled to differentiate between three types of particles by their deposited energy
in dependence of the scattering angles, see Figure 4.8 d). The energy of stripes
and rings of the DSSD were not calibrated with an external source, but with the
calculated energy of the scattered particles of the CE reaction. The time difference
of a DSSD hit and a hit of a γ ray in a Miniball detector shows a pronounced peak
due to the pulsed nature of the beam, see Figure 4.7. This time structure is used to
reduce the random-time background by setting a prompt and a random gate. The
events inside the prompt gate are good events coming from the beam, while the
events outside this time gate do not have any correlation to the beam and are seen
as random. The random, non-beam related γ rays have their source in activated
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Figure 4.6.: The relative efficiency of Miniball was determined by using three
different calibration sources 133Ba (green), 152Eu (blue) and 66Ga
(red). The best fit of the function (4.1) to the data set is shown in
red with its one-σ band. The absolute efficiency of Miniball in this
configuration is 7.8 % at 1.3 MeV [23].

material or are natural radioactivity. These are subtracted with a scaling factor,
which depends on the ratio of the width of the background gate to the width of
the prompt gate.

In Figure 4.8 a), the kinematic calculations of two possible scattering reactions
are presented, the planned CE of 140Nd(208Pb,208Pb*)140Nd* at 4.62A · MeV
on a 1.5 mg/cm2-thick lead target and the elastic scattering of the 140Nd ions at
4.62A ·MeV impinging on a 0.1 mg/cm2-thick oxygen layer are shown. The energy
losses in the targets were determined by using Atima [92] and are dependent on
the total kinetic energy E and the neutron and proton numbers of the beam and
target particles.
Comparing the experimental results with the kinematic calculations, one can

clearly identify the beam-like, mainly 140Nd, and the target-like, 208Pb, particles.
An appearance at lower energies was more challenging to identify. The energy
spread is significantly smaller, which points to a thin contamination of the target.
A thinner material means less energy loss of the beam particles in the target, which
results in a smaller energy spread of the outgoing beam and target particles. The
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Figure 4.7.: The time difference spectrum of γ-ray hits in Miniball in respect to
the corresponding particle hits on the DSSD. The origin of the x axis
was shifted to the peak of prompt particles.

assumption of a thin target contamination is supported by looking at the coinciding
γ rays of the associated excited beam particles, whose energy is rightly corrected
for the Doppler shift by assuming them as target-like particles. Furthermore, the
kinematic calculations of the reaction of 140Nd on a thin 16O layer, 0.1 mg/cm2,
showed a similar behaviour, see Figure 4.8. However, the decrease of the particle
energies at the inner rings was probably caused by difficulties of the energy calibra-
tion at low energies for the damaged ring segments. Nevertheless, another light
target contamination, like 12C, could not be excluded, because there are no γ rays
of the target particles visible, which is again an argument for 16O or 12C, whose
first excited states are at such high energies, that no population would be expected
with this beam energy. Also, no corresponding beam-like reaction partners of the
thin contamination are detected by the DSSD. That also suits the suspicion of 16O
or 12C, because they would be scattered in extreme forward direction (< 10◦) due
to inverse kinematics and, consequently, would not hit the DSSD. The received
information of the scattering process from the DSSD was used to set three sep-
arate gates, where the target- and beam-like particles are expected, see Figure
4.8 d). Two different types of events for the target detection had to be taken in
consideration, one- and two-particle hits. Regarding the two-particle hits, when
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Figure 4.8.: a) presents the calculations of the reaction kinematic of the 140Nd CE
experiment. b) shows an exemplary scattering process to introduce
the general setting. c) presents the co-dependency of the scattering
angles of both reaction partners, target- and beam-like particles (blue)
and the corresponding scattering angles of the particle gates (red
and black fields). d) shows the experimental particle energies in
dependence of the scattering angle measured by the DSSD. Three
different particle types can be separated. The used gates for the
particle-γ coincidences are marked. For more information, see text.

a particle is inside the beam gate and the reaction partner could be expected in
the target-two-hits gate, marked in purple in Figure 4.8 d). All of the two-particle
events, where both gates were hit, were solely added to the beam-gated events to
avoid double counting.

There are two scenarios, where one-hit events happen. The first case, when one
reaction partner is scattered outside the range of the DSSD and the second case,
where a potential two-hit event may end up as a one-hit. The latter case happens,
when only one of the reaction partners makes it properly to the DSSD, while the
other one is doubly scattered or hits a dead part of the DSSD, for instance the
separator between the ring segments of the DSSD.
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Regarding one-hit events, the beam gate remained the same, because there are
also two-hit events included. However, the target-gate had to be restricted, that
only real one-hit events are kinematically possible to avoid the corruption by one
hit-events which are potential two-hit events. The resulting target-one-hit gate is
marked in red in Figure 4.8 d).

In Figure 4.8 c), the vertical and horizontal black lines mark the scattering angles
for the beam and target particles, respectively, corresponding to the boundaries
of the DSSD. The dashed black line represents the changed boundary due to the
modified target-one-hit gate. The red vertical lines mark the scattering angles of
the beam particles, which correspond to the target-one-hit gate. There is not any
overlap between the scattering angles of the beam particles of the beam gate (black
field) and of the modified target one-hit gate (red field) due to the restrictions of
the target-one-hit gate, see Figure 4.8 c).
The in-flight emission of γ rays causes the Doppler-shift of the γ-ray energies,

Eγ =
1− cos θp,γ√︁

1− β2
ED,γ . (4.2)

The shift is dependent on the velocity of the emitting ion β and on the angle
between the ion and the γ ray, θp,γ . The emission angle is determined by the
distance between target and the DSSD, and the Miniball geometry (see Table 4.2)
in respect to the target position. The Miniball geometry is pre-calibrated, but
the fine adjustments are done by varying the parameters until the Doppler-shift
corrections are optimized for the 2+1 → 0+1 transition, meaning its width in the
preliminary γ-ray spectrum is minimized. The velocity, or energy, of the beam
particles hitting the target is well known, but the velocity at the moment of the
γ-ray emission can’t be measured. Hence, a velocity has to be assumed by taking
the energy loss in the target into account by using SRIM [93]. This leads to a
non-resolvable uncertainty of the beam-particle’s velocity at the emission which
increases with the thickness of the target material, and is dependent on the length
of the path the beam particles are taking through the target.

The data preparation for the 142Sm(208Pb,208Pb*)142Sm* experiment was done
analogously and the corresponding graphics are shown in Figure A.1.
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4.1.2. γ-Ray Spectroscopy of 140Nd

Figure 4.9.: The Eγ-Eγ matrix of the 140Nd CE experiment with the conditions of
the detection of at least one particle on the DSSD inside the beam
energy gate and of more than one γ ray in Miniball inside the prompt
time gate. The spectrum is mirrored at the Eγ-Eγ axis for visibility.

The 140Nd CE experiment was separated in two sub experiments, the beam-
particles and target-particles gated spectra. For both sub experiments a particle-γ
(p-γ) spectrum and p-γ-γ coincidences spectra were produced. Two p-γ-γ spectra
for each sub experiment were sorted by setting γ-energy gates on the 2+1 → 0+1
and 4+1 → 2+1 transitions in the Eγ-Eγ matrices (see Figure 4.9 for the beam-
gated and Figure A.2 for the target-gated data). The matrices were filled with
events, if a particle hit on the DSSD is coincident with two or more γ-ray hits on
Miniball inside the prompt gate (see Figure 4.7). The visible lines orthogonal to
the Eγ = Eγ axis are Compton-scattering events. The γ-ray spectra of both sub
experiments were Doppler-shift corrected for the scattered beam particles. The
following section concentrates on the beam-gated spectra. The procedure was
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performed analogously for the target-gated spectra.

Figure 4.10.: Three beam-particles gated spectra are presented. The γ-singles
spectrum in a) and b), c) show the coincidence spectra from gating
in the Eγ-Eγ matrix on the 2+1 → 0+1 and 4+1 → 2+1 transitions of
140Nd, respectively.

The p-γ-γ coincidences spectra are of special interest, when it comes to resolving
doublets of γ-ray peaks in the p-γ spectrum and one of the doublet’s transitions can
be excluded by setting smart γ-ray gates. It is also useful to get rid of transitions
of the isobaric beam contaminant 140Sm. The resulting intensities of the p-γ-γ
coincidence spectra had to be scaled to the p-γ intensities. This was done for the
2+1 → 0+1 coincidence spectra, beam and target gated, by the determination of the
ratio of the peak areas of the 4+1 → 2+1 transition in the p-γ and the corresponding
2+1 → 0+1 coincidence spectra. This is a legitimate method for transitions whose
final state completely decays via the gated transition. Otherwise the branching
ratio of different decay paths has to be considered which did not occur in the
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reported experiment. Here, the resulting scaling factors from the γ-ray gated to
γ-ray singles intensities, 14.1(7) and 16.1(16) for the beam- and target-gated
spectra, respectively, are equal to the inverse of the absolute efficiency for the
detection of the 2+1 → 0+1 transition. Here, the detection of this γ ray is the
only additional condition for the mentioned p-γ-γ coincidence. For the 4+1 → 2+1
coincidence spectrum, the ratio of the relative efficiencies at the energies of the
4+1 → 2+1 and 2+1 → 0+1 transitions was introduced as an additional factor to
the coincidences efficiency. After these conversions, the observed intensities in
the three different spectra (see Figure 4.10 for the beam- and Figure A.3 for the
target-gated spectra) were comparable.

Figure 4.11.: The partial level scheme of 140Nd shows the excited states of the
here observed transitions. The widths of the arrows indicate the
intensities of the transitions. The width of the 2+1 → 0+1 transition
is reduced by a factor of 5 for visibility. Decays of the 2+4 state
were not observed, though it is presented, because the state plays
an important role in the further analysis. Reprinted figure with
permission from Ref. [21].

From these spectra, 14 transitions of 140Nd were identified. The statistics of
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the target-gated spectra were much lower than the beam-gated spectra, therefore,
fewer transitions were observed in the target-gated spectra. Most of the identified
γ-ray peaks did not directly interfere with other transitions. However, there were
three doublets of transitions which hindered the determination of the peak areas
of the involved transitions.

The first doublet d1 at 717 keV was identified as a sum of the 2+2 → 2+1 transition
of 140Nd at 716 keV and the 4+1 → 2+1 transition of 140Sm at 717 keV. They
were detangled by using the 2+1 → 0+1 (140Nd) coincidence spectrum, where the
transition of 140Sm was not longer present. The second doublet, d2, at ≈ 1155
keV, (5, 6) → 4+1 at 1148 keV and 3−1 → 2+1 at 1162 keV, was also present in the
2+1 → 0+1 coincidence spectrum. However, the 3−1 → 2+1 transition vanished in the
4+1 → 2+1 coincidence spectrum and the intensity of the (5, 6) → 4+1 transition was
measured undoubtedly. Due to the energy difference of 14 keV, it was also feasible
to determine separated peak areas for both transitions of the doublet in the other
two spectra. The independently measured intensities of the three different spectra
were consistent. The third doublet d3 consisted of the 4+2 → 2+1 transition at 1491
keV, which was previously observed in Ref. [94], and the ground state transition
of the 2+2 state. The transitions were resolved by using the 2+1 → 0+1 coincidence
spectrum and the associated vanishing of the ground state transition. The origin
of the peak at 639 keV is ambiguous. The γ rays of the 0+2 → 2+1 transition and the
transition connecting the 2+ state at 1414 keV [95, 96] and the 2+1 state share the
same energy. However, the transition of 639 keV of 140Nd was identified in recent
studies [24, 94] as the 0+2 → 2+1 transition and no γ ray decays are assigned to the
2+ state at 1414 keV [95]. Consequently, in the later analysis this peak is assumed
to be the 0+2 → 2+1 transition.

The peak areas were corrected for the Miniball efficiency to determine the final
relative γ-ray intensities, see Table 4.3. The partial level scheme of the identified
γ-ray transitions of 140Nd was deduced, see Figure 4.11, by using the obtained
coincidence information.

This experiment was designed for the investigation of 2+i → 2+1 transitions and
their resulting absoluteB(M1; 2+i → 2+1 ) strengths. The multipole-mixing ratios of
2+2,3,4 → 2+1 transitions were already measured in a γ-γ-correlation measurement
after β+ decay [24]. It shows, that the 2+2 → 2+1 is predominantly a E2 transition
[δ = −1.22(14)], while the 2+3,4 → 2+1 transitions showed a strongM1 character
[δ = −0.08(8) and −0.19(9), respectively] [24], which is a strong indication for
being a fragment of the 2+1,ms state of 140Nd. A detailed list of signatures of the
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2+1,ms state in vibrational nuclei is presented in Section 2.3. In this experiment,
the depopulating transitions of the 2+3 state were observed in the beam-gated
spectra but not the decays of the 2+4 state. Consequently, only upper limits for the
intensities of the depopulating transitions of the 2+4 state were determined.
It was observed, that the different ranges of the scattering angles of the beam

particles (see Figure 4.8) without any overlap led to expected unequal relative
excitation yields of the same state for each experiment. The resulting γ-ray inten-
sities of transitions of 140Nd and were used to perform CE calculations with GOSIA
to investigate the total sought-for transition strengths.
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Table 4.3.: The measured counts with statistical uncertainties of the identified
transitions of 140Nd in the beam-particle gated spectra, see Figure
4.10. The transitions, which formed doublets, are marked with d1,2,3.
Iγ is the efficiency-corrected intensity relative to the intensity of the
2+1 → 0+1 transition.

Elevel Jπ Eγ Jπf Ap−γ Ap−γ−γ Ap−γ−γ Iγ
(keV) (keV) 2+1 → 0+1 4+1 → 2+1

774 2+1 774 0+1 86140(320) 489(23) 100(1)
1413 0+2 639 2+1 18(7) 0.26(10)
1490 2+2 [24] 1490 0+1 d3 2.1(1)

716 2+1 d1 101(12) 1.6(2)
1802 4+1 1028 2+1 6960(90) 495(23) 9.6(1)
1936 3−1 1936 0+1 42(11) 0.08(2)

1162 2+1 d2 d2 0.25(4)
2140 2+3 2140 0+1 33(8) 0.073(18)

1366 2+1 113(19) 12(4) 0.19(3)
2264 4+2 [94] 1491 2+1 d3 16(4) 0.4(1)
2400 4+3 1626 2+1 112(16) 9(3) 0.21(4)

910 2+2 240(16) 25(7) 0.31(5)
2950 (5,6)[94] 1148 4+1 d2 d2 16(5) 0.40(6)
3224 1422 4+1 101(17) 5(2) 0.17(3)

d1 8050(130)
d2 391(41) 42(7)
d3 1450(40)
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4.1.3. γ-Ray Spectroscopy of 142Sm

Figure 4.12.: Three spectra of beam-particle gated spectra, which were used to
produce a level scheme and to determine the transitions’ intensities
of 142Sm. a) shows the γ-singles spectrum and b), c) show the
coincidence spectra from gating in the Eγ-Eγ matrix on the 2+1 → 0+1
and 4+1 → 2+1 transitions of 142Sm, respectively.

The projectile-CE experiment of 142Smwas performed using the same experimen-
tal setup as the previous described 140Nd experiment and with the same purpose of
investigating 2+i → 2+1 transitions. The reaction kinematic of the scattering process
was also similar due to the small mass difference of the beam particle ≈ 2 u and
the usage of the same 208Pb target. No prominent contamination was identified.
The RILIS laser-ionization scheme for Sm was extraordinary effective, because it
consisted of one single wavelength to ionize the atom through a monochromatic
two-step excitation path. This enhanced the chance of ionization drastically. Hence,
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Figure 4.13.: The partial level scheme of 142Sm with arrows symbolizing the
observed transitions. The widths of the arrows are related to the
transitions’ intensities. The width of the 2+1 → 0+1 transition is
reduced by a factor of 5 for visibility. The 3−1 state was not observed,
because of the domination of the decays of the 4+1 state in the same
energy region, but included in the later analysis.

the rate of ionized Sm atoms was heavily increased due to the application of RILIS.
After performing the same calibrations as it was done for the 140Nd experiment,

γ-ray spectra of 142Sm were produced, see Figure 4.12. For the 142Sm experiment,
the first inner ring of the DSSD was malfunctional and therefore it was dismissed
in the later analysis. The same conditions as in the before mentioned experiment
were used for building of the γ-ray spectra, see Figure A.1. The resulting γ-ray
singles spectrum is presented in Figure 4.12 a). If the γ-ray multiplicity is higher
than one, the events are sorted in a symmetrical Eγ-Eγ matrix, see Figure A.4.
From this matrix, γ-ray coincidence spectra are obtained by setting gates on the
γ-ray energy areas of the 2+1 → 0+1 and 4+1 → 2+1 transitions of 142Sm, see Figure
4.12 b) and c). The same spectra were produced using the target-gated data, see
Figure A.6.
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From these spectra, 12 transitions of 142Sm were identified, however a few
puzzles of the spectra arose. At the energy of 1658 keV, the ground state transition
of the 2+2 state is expected and observed. However, there is a peak at a very
similar energy, 1655(2) keV, present in the 2+1 → 0+1 coincidence spectrum. Since
this peak is not coincident with any other transition, it is considered to be a
transition to the 2+1 state, although such a transition was previously unobserved.
This reassembles the situation in 140Nd, where a doublet of the 2+2 → 0+1 and the
4+2 → 2+1 transitions is present in the singles spectrum at 1490 keV. Consequently,
the origin of the transition will be linked to a state at 2423(2) keV, which was
unknown before. For the GOSIA calculations, it will be assumed as a 4+ state due
to the discussed similarities to the level scheme of 140Nd.
Furthermore, a possible population of the 3−1 state of 142Sm is investigated

in this CE due the experience from the 140Nd experiment. The energy of the
predominant γ-ray decay of the 3−1 state, the 3−1 → 2+1 transition (Eγ = 1016 keV),
is quite close to the energy of the dominant 4+1 → 2+1 transition (Eγ = 1023 keV).
Although the energy distance between both transitions is generally sufficiently
large to distinguish them, it is impossible to achieve that due to the expected great
imbalance of the two intensities of that doublet and due to the reduced energy-
resolution of the present experiment from Doppler-shift corrections. Nevertheless,
similar ratios as in 140Nd are assumed, 0.038(10) and 0.030(11) for the beam- and
target-gated spectra of 142Sm, respectively, for the later analysis, because the 3−1
state of 142Sm is probably populated although it is not resolvable.
The intensities of the γ-ray energy gated spectra are scaled to the niveau of

the singles spectra by the previously described coincidence factors, which are
here 13.0(3) and 13.4(5) for the beam and target-gated spectra of 142Sm. The
measured peak areas and the corresponding γ-ray energies for the beam-gated and
target-gated experiments are presented in Table 4.4 and Table A.3, respectively.
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Table 4.4.: The measured counts with statistical uncertainties of identified tran-
sitions of 142Sm in the beam-particle gated spectra, see Figure 4.12.
The transitions, which formed a doublet, are marked with d1. Iγ is the
efficiency-corrected intensity relative to the intensity of the 2+1 → 0+1
transition.

Elevel Jπ Eγ Jπf Ap−γ Ap−γ−γ Ap−γ−γ Iγ
(keV) (keV) 2+1 → 0+1 4+1 → 2+1

768 2+1 768 0+1 409100(700) 3170(60) 100.0(5)
1450 (0+2 ) 683 2+1 1380(60) 114(21) 0.32(3)
1658 (2)+2 1658 0+1 d1 1.64(4)

890 2+1 3380(90) 248(21) 0.94(4)
1791 4+1 1023 2+1 39310(210) 3020(60) 11.32(4)
2055 2+3 2055 0+1 73(21) 0.034(10)

1287 2+1 280(40) 28(6) 0.089(15)
2173 0+3 1405 2+1 313(34) 23(6) 0.14(1)
2354 (2+4 ) 2354 0+1 208(19) 0.099(9)
2420 6+1 629 4+1 650(150) 0.14(3)
2423 1655 2+1 d1 28(6) 0.14(3)
3003 (6+) 1212 4+1 1860(60) 148(13) 132(12) 0.61(3)

d1 4500(70)
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4.1.4. GOSIA Analysis of HIE-ISOLDE CE Experiments

GOSIA is a multi-step CE code and a very powerful tool to analyze CE experiments
in the ”safe“ CE regime [74]. It has the ability to fit a set of transitions matrix
elements (ME) on experimental transition yields, see Table 4.5. The MEs are varied
and the resulting calculated transition yields are compared to the experimental
yields. Besides the γ-ray yields, the electron conversion is also taken into account
by GOSIA using BRICC [97]. The fitting procedure is automatically repeated until
the convergence criteria are full-filled. The quality of the fit is determined by the
normalized χ2 value. It is obtained by the sum of all deviations from the data
points – transition yields, branching ratios, multipole-mixing ratios, etc. – in units
of their standard deviations and divided through the number of data points. GOSIA
needs diverse information as input to perform this kind of calculations, the most
crucial are

• list of levels,

• list of transitions,

• geometry of particle and γ-ray detectors,

• reaction partners (beam and target),

• beam energy,

• observation limits relative to a certain transition,

• and additional spectroscopic quantities, e.g., branching ratios or multipole-
mixing ratios.

It is necessary to normalize the CE yields to a known excitation. Here, the experi-
ments were self-normalized to the 2+1 states of 140Nd and 142Sm. The required E2
MEs of the 2+1 → 0+1 transitions and the diagonal MEs of the 2+1 states of 140Nd
and 142Sm were previously measured by Bauer et al. [16] and Stegmann et al.
[15]. For further general information and a more detailed description of the CE
experiment analysis using GOSIA, see Refs. [98, 99]. An example of the here used
GOSIA-input file is presented in the Appendix in Listing B.2.
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Figure 4.14.: The plots show the process in the GOSIA minimizations of the 140Nd
CE experiment. a) shows the evolution of the normalized χ2 and
c) of the total χ2 values of the target- and beam-gated yields. b)
and d) show the evolution of the deviation of the calculated and the
experimental yields of individual transitions in units of the standard
deviation.

GOSIA Analysis of 140Nd

The known E2/M1multipole-mixing ratios of 2+i → 2+1 transitions and the branch-
ing ratio of the γ-ray decays of the 2+4 state [24] are included in the GOSIA calcu-
lations as well as the transitional and diagonal E2 MEs of the 2+1 state [16]. The
diagonal ME was also applied to the higher lying 2+ states and the 4+1 state. The
quantities which were used as GOSIA input are also visible in Listing B.2.
After the initial minimization, each following minimization started with the

best fit parameters of the previous minimization process as start parameters. This
iterative procedure was stopped after 51 minimizations, because of the satisfying
convergence with a normalized χ2 value of 0.034 at 50 data points, see Figure 4.14
a), and total χ2 of ≈ 0.8 and ≈ 0.2 for the target-gated and beam-gated yields,
respectively, see Figure 4.14 c). The experimental yields of both experiments,
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beam and target gated, were reproduced in such a good way, that each deviation
was smaller than one σ, see Figures 4.14 b) and d). If a calculated yield of an
unobserved transition was higher than the chosen observation limits an additional
contribution to the total χ2 arose.

Figure 4.15.: The χ2 distributions for the variations of the MEs, ⟨2+4 ||E2||0+1 ⟩ and
⟨2+4 ||E2||2+4 ⟩, and ⟨2+3 ||E2||0+1 ⟩ and ⟨2+3 ||E2||2+3 ⟩. For the GOSIA
calculations of the transition from the 2+4 state, the intensities of its
γ-ray decays were assumed at the edge of the detection limit.

A crucial issue when analyzing CE experiments with GOSIA is the determination
of the uncertainties of the resulting MEs. GOSIA has in-built functions to determine
uncorrelated and correlated uncertainties. The uncorrelated uncertainties are
obtained by fixing every ME besides the investigated ME. This ME is then varied in
such a way that the total χ2 does not exceed the minimum plus one, meaning that
it remains inside a one-σ environment. In reality, MEs may be highly correlated.
These possible correlations can also be included in the uncertainty estimation in
GOSIA. For the visualization of these correlations a method is used, where a χ2

surface in dependence of these two correlating MEs is performed. All remaining
MEs are fixed during the minimization process while scanning step-by-step through
all possible pairs of the two investigated MEs. This is a reasonable method, if the
investigated ME is dominantly correlated to a certain other ME.
The focus of this experiment was on the MEs ⟨2+3,4||E2||0+1 ⟩. It was observed

that the strongest correlation of these MEs were given to their diagonal MEs
⟨2+3,4||E2||2+3,4⟩, like it was expected. Therefore, χ2-surface distributions of both
ME pairs were performed to obtain the absolute uncertainties of the corresponding
matrix elements. The diagonal matrix elements of the 2+ states have a strong
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Figure 4.16.: The signs of the MEs are fixed by the “best” fit and later only one
ME’s sign was switched, which is labeled on the x-axis. In a), the
total χ2 of the GOSIA calculation with the changed set of matrix
elements is presented. b) shows the distribution of the values for
the instance of the ME ⟨2+1 ||E2||4+1 ⟩ of 140Nd. For more information,
see text.

impact of the excitation yields. Consequently, leaving the diagonal ME as a free
parameter does here not lead to a defined minimum. Fortunately, the diagonal
ME of the 2+1 state was measured [16], ⟨2+1 ||E2||2+1 ⟩ = −0.64(48) eb, and was
estimated the same for the higher lying 2+ states. Especially for the potential 2+1,ms

state, this is an adequate assumption due to the similar one-quadrupole-phonon
structure of both states. The values were applied to the GOSIA calculations as data
points.
In Figure 4.15, the correlation between the diagonal and transitional MEs was

made clearly visible by using the previously described method. Nevertheless, a
clearly defined minimum is found for the ME ⟨2+3 ||E2||0+1 ⟩ for both potential signs
of this ME. For the determination of the ME ⟨2+4 ||E2||0+1 ⟩ fewer χ2 values were
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computed, because the distribution in Figure 4.15 a) is already sufficient to obtain
the upper limit. The resulting transition strengths and their uncertainties are
noted in Table 4.5. This well-established method was already utilised for the
determination of the B(E2; 2+1 → 0+1 ) strength of 140Nd [16] and for various other
CE experiments [99–102].

The ground state transition ME ⟨2+i ||E2||0+1 ⟩ is directly connected with the
sought-for M1 ME ⟨2+i ||M1||2+1 ⟩ via the Eqs. (3.28) and (3.27) for the partial
transition width and the measured branching ratio. The resulting B(M1) values
are discussed in detail in Chapter 5.
A further critical point in the GOSIA analysis is the determination of the signs

of the MEs. GOSIA does not tend to change the sign of a ME in the minimization
process unless the value of the ME is near zero. Although, the sign of the ME
does not effect the absolute transition strength in the first place, it influences the
excitation process. The switch of the relative sign between different excitation
paths of the same state leads to a significant change of its excitation yield. Hence,
the absolutes of the MEs have to change to fit the fixed experimental yield. So, in
the end, the relative sign indirectly effects the absolute MEs.
Therefore, the data may be sensitive to the signs of some MEs. Here, it was

probed by switching one ME’s sign and then fixing all remaining MEs’ signs for
the GOSIA minimization process. The procedure was performed for each ME,
besides the previously determined MEs ⟨2+1 ||E2||0+1 ⟩ and ⟨2+1 ||E2||2+1 ⟩ [16], and
the assumed diagonal MEs ⟨2+i ||E2||2+i ⟩. The result is shown in Figure 4.16 a),
where the horizontal and dashed blue lines represent the minimum χ2

min from the
“best” fit and χ2

min + 1, respectively. If the resulting χ2 is greater than χ2
min + 1,

the corresponding sign change is not a valid solution. Hence, the ME’s sign is
determined by the experimental data. This resulting set of MEs is in the further
analysis neglected and marked by a vertical red line in Figures 4.16 a) and b).
It was shown, that this is the case for MEs involved in the excitation pro-

cesses of the 4+3 and 3−1 states, namely ⟨2+1 ||E2||2+2 ⟩, ⟨2+1 ||E2||4+3 ⟩, ⟨2+2 ||E2||4+3 ⟩,
⟨3−1 ||E2||0+1 ⟩, and ⟨3−1 ||E2||2+2 ⟩. However, the signs of the remaining MEs are
indefinite and each combination of signs is a valid solution. In Figure 4.16 b), the
determination of an uncertainty is illustrated for ⟨4+1 ||E2||2+1 ⟩. The vertical red and
the dashed lines indicate the mean value and its corresponding one-σ deviation,
respectively, determined by this sign-switch analysis. The additional systematical
uncertainties of the MEs are included in the total uncertainties together with the
statistical ones.
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The checking of the signs of the matrix elements was the last step to finalize the
transition MEs with their uncertainties. Table 4.5 presents the observed transition
intensities and the corresponding absolute E2, E3 andM1 transition strengths.
The interpretation of the obtained absolute transition strengths in the context of
the N = 80 isotones is discussed in Chapter 5.
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Table 4.5.: Measured properties of the levels and γ-ray transitions of 140Nd. Level
energies and spin assignments are adopted from Ref. [95] unless
otherwise noted. The relative γ-ray intensities determined from the
beam-gated (exp. 1) and the target-gated (exp. 2) γ-ray spectra are
corrected for efficiency.

Elevel Jπ Eγ Jπf Iγ Iγ δ πλ B(πλ) ↓
(keV) (keV) exp. 1 exp. 2 from [24] a

774 2+1 774 0+1 100(1) 100(1) E2 33.6(27)b
1413 0+2 639 2+1 0.3(1) 1.4(4) E2 7.5(16)c
1490 2+2

d 1490 0+1 2.1(1) 5.5(6) E2 1.76(13)
716e 2+1 1.6(2) 2.7(8) -1.22(14) E2 33(3)

M1 0.033(8)
1802 4+1 1028e 2+1 9.6(1) 21.4(6) E2 40(1)
1936 3−1 1936 0+1 0.08(2) E3 6(2)

1162e 2+1 0.25(4) 0.9(4)
2140 2+3 2140 0+1 0.07(2) E2 1.9(6)

1366e 2+1 0.19(3) -0.08(8) E2 0.3+0.6
−0.3

M1 0.26+0.11
−0.10

2264 4+2
f 1491e 2+1 0.4(1) 1.2(5) E2 2.3(8)

2333 2+4 2333 0+1 <0.03 E2 <0.8
1560 2+1 <0.03 -0.19(9) E2 <0.4

M1 <0.04
2400 4+3 1626e 2+1 0.21(4) E2 1.6(3)

910e 2+2 0.31(5) E2 41(7)
2950g (5,6)f 1148hi 4+1 0.40(6) 1.6(5) E2 30(3)
3224g 1422hi 4+1 0.17(3) 1.0(2) E2 22(4)

aB(M1) values are given in µ2
N , B(E2) and B(E3) values are given in W.u. (E2: 1 W.u. =

4.32× 10−3 e2b2; E3: 1 W.u. = 1.16× 103 e2b3)
bTransition strength adopted from Ref. [16]
cThis value is extracted without considering E0 excitation. It has to be considered as an estimate only
dSpin adopted from Ref. [24]
eObserved in coincidence spectrum of the 2+1 → 0+1 transition
fSpin and parity adopted from Ref. [94]
gAssumed as a 6+ state in the GOSIA analysis
hObserved in coincidence spectra of the 4+1 → 2+1 and 2+1 → 0+1 transitions
iTransition energy adopted from Ref. [103]
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GOSIA Analysis of 142Sm

Figure 4.17.: The plots show the process in the GOSIA minimizations of the 142Sm
CE experiment. a) shows the evolution of the normalized χ2 and
c) of the total χ2 values of the target- and beam-gated yields. b)
and d) show the evolution of the deviation of the calculated and the
experimental yields of individual transitions in units of the standard
deviation.

The GOSIA analysis of the CE experiment with a 142Sm beam was basically
performed analogously to the analysis of 140Nd, but a few differences occur. Obvi-
ously, there is a lack of E2/M1 multipole-mixing ratios of the 2+i → 2+1 transitions.
Hence, at this point it is impossible to determine the M1 strengths of 2+i → 2+1
transitions on the base of the reported CE experiment. A further crucial difference
is the missing knowledge of the diagonal E2 ME of the 2+1 state. The previous
work on the isoscalar collectivity of 142Sm [15, 104] assumed the diagonal E2 ME
of the 2+1 state to be inside the rigid rotor limits and was not able to make a further
statement about it. Consequently, the quadrupole moments in this GOSIA-analysis
procedure were free parameters, while the one of the 2+3 state was coupled by
being equal to the one of the 2+1 state. As mentioned before, this a legitimate
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estimation due the one-phonon structure of both states. Fortunately, the branch-
ing ratio of the γ-ray decays of the 2+3 state of 142Sm is known and added to
the GOSIA-input file. The calculations are relative to the E2 transition strength
B(E2; 2+1 → 0+1 ) = 32(4)W.u., or as ME: ⟨2+1 ||E2||0+1 ⟩ = 0.837(54) eb. The used
level scheme and set of transition MEs are noted in the GOSIA-input file, see
Listing B.4 and the experimental yields or intensities of the target- and beam-gated
experiments are noted in Listing B.5.
The kinematics of the 208Pb(142Sm,142Sm)208Pb* reaction is similar to the one

of 208Pb(140Nd,140Nd*)208Pb* within the energy and angular resolution of the
DSSD. However, the angular ranges of the scattered particles change, because the
innermost ring of the DSSD was corrupted during that experiment and, hence,
excluded from the analysis. The general GOSIA minimization for the CE of 142Sm
was performed in the sameway as it was done for 140Nd and the agreement between
calculated and experimental yields is also quite accurate with a normalized χ2

equal to 0.14 after 51 minimizations. However, there are two out of in total
observed 25 transitions, whose differences between calculated and experimental
yields are slightly greater than one standard deviation, see Figure 4.17. Hence,
the CE calculation is a good reproduction of the experiment.
Although, it is not possible to determine the sought-for M1 strengths of the

2+i → 2+1 transitions, an estimation of the upper limit can be done. Four 2+ states
of 142Sm were excited in this experiment. The spin and parity assignments of two
of them are definite, while it was not for the two others. The (2)+ state at 1658
keV has the spin Jπ = 2+ with a high probability, because of the similarities of the
level scheme of 142Sm and 140Nd and the observed high population via CE. The
assumption of the spin and parity of the state at 2354 keV, (2+), is also strongly
supported by the strong population via the ground state transition, which points
to a E2 connection.

Regarding the accumulated data, the 2+3 state is expected to be the most promis-
ing candidate for the 2+1,ms state of 142Sm. Hence, a predominantM1 transition to
the 2+1 state is assumed by applying a near-zero multipole-mixing ratio δ = 0.01
to obtain an upper limit of the B(M1; 2+3 → 2+1 ) < 0.14+0.37

−0.01µ
2
N strength. Further-

more, upper and lower limits of the E2 transition strengths of the γ-ray decays of
the 2+3 state were obtained by assuming aM1 and E2 character of the 2+3 → 2+1
transition (δ = 0.01 and 1, respectively). To determine the δ of the 2+3 → 2+1
transition, a β+/ϵ-decay experiment was designed, which is described in Section
4.3.
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However, the set of the resulting transition strengths from the GOSIA calculations
are preliminary, because the importantE2/M1multipole-mixing ratios are missing,
see Table 4.6. This directly affects the MEs of the 2+i → 2+1 transitions and indirectly,
but not as intensive, all other MEs. Therefore, especially the E2 strengths of the
2+2,3 → 2+1 , 0

+
1 transitions may change tremendously when E2/M1 multipole

mixing ratios will be included in the CE calculations in the future. Later, the upper
limit of the B(M1) strength and the B(E2) values are discussed in context of the
N = 80 isotonic chain in Chapter 5.
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Table 4.6.: Measured properties of the levels and γ-ray transitions of 142Sm. Level
energies and spin assignments are adopted from Ref. [105] unless
otherwise noted. The relative γ-ray intensities determined from the
beam-gated (exp. 1) and the target-gated (exp. 2) γ-ray spectra are
corrected for efficiency.

Elevel Jπ Eγ Jπf Iγ Iγ δ πλ B(πλ) ↓
(keV) (keV) exp. 1 exp. 2 a

768 2+1 768b 0+1 100(1) 100(1) E2 32(4)c
1451 (0+) 683e 2+1 0.29(4) 1.2(1) E2 10(3)d
1658 (2)+ 1658 0+1 1.66(5) 2.8(3) E2 2.9(3)

890e 2+1 0.89(4) 1.4(2) E2 30(7)
1784 3−1 1784 0+1 E3 0.3+7.7

−0.3

1016 2+1 0.4(1) 0.7(2) f

1791 4+1 1023e 2+1 11.2(1) 23.2(3) E2 51(3)
2055 2+3 2055 0+1 0.03(1) E2 >0.33+0.05

−0.11
g

E2 <0.95+1.5
−0.02

h

1287e 2+1 0.10(2) 0.10(4) E2 <4.5+1.4
−0.9

g

M1 <0.14+0.37
−0.01

h

2174 0+2 1405e 2+1 0.11(2) 0.55(8) E2 21(6)d
2353 (2+) 2353 0+1 0.10(1) 0.13(4) E2 1.0(2)
2420 6+1 629bde 4+1 0.14(3) 0.5(1) E2 8(3)
2423 (4+)i 1655ej 2+1 0.16(3) 0.6(2) E2 2.2(12)
3003 (6+) 1212bde 4+1 0.64(3) 2.5(2) E2 56(5)

aB(M1) values are given in µ2
N , B(E2) and B(E3) values are given in W.u. (E2: 1 W.u. =

4.4× 10−3 e2b2; E3: 1 W.u. = 1.20× 103 e2b3)
bObserved in coincidence spectrum of the 4+1 → 2+1 transition
cTransition strength adopted from Ref. [15]
dThis value is extracted without considering E0 excitation. It has to be considered as an estimate only
eObserved in coincidence spectrum of the 2+1 → 0+1 transition
fIntensity assumption due to similarities in 140Nd
gM1 strength was estimated with predominant E2 character of the 2+3 → 2+1 transition (δ = 1)
hM1 strength was estimated with predominant M1 character of the 2+3 → 2+1 transition (δ = 0.01)
iSpin assignment due to similarities to 140Nd
jNewly observed
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4.2. Coulomb Excitation of 202Hg at ATLAS Using
Gammasphere

Figure 4.18.: Left: a schematic drawing of the Gammasphere detectors. The HPGe
detectors are surrounded by BGO scintillators for the purpose of
Compton suppression. Right: the effect of the Compton suppression
on the γ-ray energy spectra are shown. The pictures are adopted
from Ref. [106].

The reported projectile-CE experiment was performed at the Argonne Tandem
Linear Accelerator System (ATLAS) facility [107]. The heavy ion beam of the stable
isotope 202Hg was produced in an electron cyclotron resonance (ECR) ion source.
In general, ECR ion sources are made of a metallic box filled with a low-pressure
plasma, where a magnetic field is applied to create its minimum potential in the
center of the metallic box and its maximum near the wall. Between the center and
the walls of the box, a so-called ECR surface exists. There, the Larmor frequency
of the electrons is equal to the frequency of the injected microwaves. The electrons
are energized each time they pass the ECR surface and consequently the plasma
is heated [108] and the ions are ionized multiple times. Then, the ions can be
extracted by applying an electrical field.
The extracted continuous ion beam is delivered to the the radio-frequency

quadrupole (RFQ). Inside the RFQ, the ion beam is accelerated, focused, and
bunched, leading to a pulsed beam with a frequency of 12 MHz. The further
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Table 4.7.: The polar angles of the 17 rings of Gammasphere in respect to the
beam axis.

# θ # θ # θ # θ # θ

1 17.3◦ 5 58.3◦ 9 90.0◦ 13 121.7◦ 17 162.7◦
2 31.7◦ 6 69.8◦ 10 99.2◦ 14 129.9◦
3 37.4◦ 7 79.2◦ 11 100.8◦ 15 142.6◦
4 50.1◦ 8 80.7◦ 12 110.2◦ 16 148.3◦

acceleration of the ion bunches happens in the linear accelerators (linac), i.e., the
Positive Ion Injector (PII, 12 MV) linac, the Booster linac (20 MV), and the ATLAS
linac (20 MV). The 202Hg ions were accelerated up to 4.4A ·MeV before they were
delivered to a 1 mg/cm2-thick 12C target surrounded by Gammasphere. The beam
energy was chosen sufficiently low, approximately 85 % of the Coulomb barrier, to
ensure “safe" CE [74].

Gammasphere consists generally of 110 HPGe detectors, which are individually
equipped with a Bismuth Germanium Oxide (BGO) Compton-suppression shield.
The BGO detectors are used as a veto detector. That means, if γ-ray hits are
recognized in the HPGe detector and in the linked BGO detector at the same time,
it is assumed that the initial γ ray did not deposit its total energy inside the HPGe
detector, i.e., Compton scattering happens, and the event is dismissed. This method
leads to a tremendous reduction of the background from Compton-scattered γ
rays, which is prominent without Compton suppression, see Figure 4.18. The
detectors are arranged in 17 rings, where the detectors of each ring share the
same polar angles in respect to the beam line, see Table 4.7. The structure of an
individual Gammasphere detector is shown in detail in Figure 4.18. At the time
of the experiment, the ring at the most forward angles was dismounted due to
geometrical reasons. Five additional detectors of the whole array were not working
properly, thus, 100 detectors were in use in the present analysis.

The energy and efficiency calibrations of Gammasphere were done with sources
of 152Eu, 56Co and 182Ta. The Eq. (4.1) was utilized for the fit of the efficiency
curve on the relative intensities of the sources’ γ rays for the whole Gammasphere
array, see Figure C.1. For the efficiency calibration of each ring, a simplified
exponential decay curve, valid for Eγ > 200 keV, was utilized, see Figure C.2.
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4.2.1. γ-Ray Spectroscopy of 202Hg

Figure 4.19.: The prompt (black) and random (red) time differences to radio
frequency are produced by gating on the 2+1 → 0+1 transition of
202Hg (prompt) and the 1461-keV line of the β+-decay of 40K (red),
respectively.

The extreme mass difference between beam and target particles [︁m(202Hg) ≫
m(12C)

]︁ led to the opportunity of measuring in-flight emitted γ rays without
particle detection. This was feasible, because the beam particles were scattered
into extreme forward angles (> 3.5◦). Hence, an averaged Doppler shift of γ rays
emitted from 202Hg particles is assumed for 0 degree particle scattering, which is a
good approximation, see Figure 4.20 a). This enabled an event-by-event Doppler-
shift correction of the γ-ray energies by using Eq. (4.2). The angle between the
beam axis and the line from the target to the hit detector was consequently taken
as the emission angle of the γ ray. The method of projectile CE in extreme inverse
kinematics without particle detection was successfully utilized before several times
[10, 18, 36, 39, 40, 48, 109].

Without a particle detector, which is often a limiting factor, the beam current
could be increased up to the maximum performance of the accelerator or till the
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Figure 4.20.: The calculated angular correlation of the incoming beam and target
particles is presented in a). The maximum scattering angle of the
beam particles is less than 4◦. The determination of the ion-beam
velocity was done by minimizing the FWHM of the 2+1 → 0+1 peak
and is presented in b). A second order polynomial was fitted on the
data to obtain the right β.

maximum rate of HPGe detectors was reached. Hence, an average beam current
of approximately 1-2 pnA was achieved during the measurement with a duration
of ≈ 20 hours. The pulsed nature of the beam was used to minimize the time-
random background. The time structures of the random background and the beam
events relative to the RF are displayed in Figure 4.19. The time background is
produced by setting an energy gate on the 1461-keV line of 40K, while a gate on
the 2+1 → 0+1 transition of 202Hg was set for the beam-related γ-rays. The random
events were subtracted from the prompt events scaled with the ratio of the widths
of the random and prompt gates. The time spectrum of beam events showed the
pulsed shape of the beam. The “self” coincidences, see Figure 4.19, are associated
with a following beam pulse.

After the time-random background subtraction, 8.4× 108 events were counted
with a γ-ray fold greater than one. The 2+1 → 0+1 transition of 202Hg dominates the
γ-ray singles spectrum with the extraordinarily high statistics of≈ 2.5×108 counts,
see Figure 4.21. This transition was used to optimize the Doppler-shift correction.
The width of the peak is measured by a simultaneous variation of the velocity β
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Figure 4.21.: The random-time-subtracted medium-energy γ-ray spectra of the
12C(202Hg,202Hg*) CE experiment with Doppler-shift correction for
the beam particles. γ-ray events with multiplicity ≥1 are shown in
a), with multiplicity≥2 and a gate on the γ-ray transitions 2+1 → 0+1 ,
2+2 → 2+1 , and 4+1 → 2+1 are presented in b), c), and d), respectively.

= v/c, which is assumed for the Doppler-shift correction. The minimum width
is achieved with β = 0.0834(1), see Figure 4.20 b). About 2 % of the data were
events with γ-ray fold greater than or equal two, which were sorted in a Eγ-Eγ

matrix, see Figure 4.23. The γ-ray coincidence spectra, see Figure 4.21, which
were produced by gating on an energy of a transition in the Eγ-Eγ matrix, were
used to disentangle multiplets and prepare a level scheme, see Figure 4.25. The
relevant γ rays of 202Hg with a higher energy than 1200 keV are shown in Figure
4.22. This energy region was cut out in the spectra in Figure 4.21 to increase
the visibility. In total, 39 transitions were assigned to 24 excited states of 202Hg.
For more information about the measured counts of the identified transitions, see
Table C.1. The transition from and to the excited 2+ states of 202Hg are of special
interest in this analysis and will be investigated further.
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Figure 4.22.: The random-time-subtracted high-energy γ-ray spectra of the
12C(202Hg,202Hg*) CE reaction with Doppler-shift correction for
the beam particles. γ-ray events with multiplicity ≥1 are shown in
a), with multiplicity ≥2 and a gate on the γ-ray transition 2+1 → 0+1
are presented in b).

4.2.2. Angular Correlations

The quest of the determination of B(M1; 2+i → 2+1 ) values demands the knowl-
edge of the E2/M1 multipole-mixing ratios δ. Here, the ultra-high statistics of
this experiment gave the opportunity to perform a CE experiment to primarily
obtain E2 and E3 transition strength and, simultaneously, an angular correlation
measurement to determine the indispensable E2/M1 multipole-mixing ratios.
In the first place, angular intensity distributions have to be carried out by

analyzing the γ-ray spectra ring-wise. Relativistic effects on polar angles have to be
taken into account due to the ion-beam velocity of β ≈ 8%. The polar angles of the
detectors in the center-of-mass frame of the emitting nucleus θnuc are the essential
angles, when it comes to the angular distribution. The angles are determined from
the angles in the laboratory system by Eq. (3.31). They are related to the polar
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Figure 4.23.: The Eγ-Eγ matrix of the 202Hg CE experiment. The condition is the
detection of at least two γ rays in Gammasphere inside the prompt
time gate.

angles in the laboratory frame θlab and the ion velocity β. This transformation
consequently effects also the solid angles of the detectors for the center-of-mass
frame of the in-flight ions Ωnuc, which are, then, given by Eq. (3.32). It shows,
that the detectors in forward direction appear larger than the ones in backwards
direction for the accelerated ions.
Fortunately, the lifetime of the 2+1 state is relatively long (τ(2+1 ) = 39.3(3) ps),

hence, the spin de-orientation led to an isotropic γ-ray emission of the 2+1 → 0+1
transition. This statement was supported by its angular distribution, see Figure
4.24. As a consequence, a γ-ray coincidence condition to the 2+1 → 0+1 transition
was legitimately set for the purification of the ring-wise spectra.

In general, the statistical tensor of a certain state is determined by the angular
distribution of its ground-state transition, see Eq. (3.39). Here, the ground-state
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Figure 4.24.: The sub figures a), b), and c) show the ring-wise efficiency-corrected
relative intensities of the transitions 2+7 → 2+1 , 2+1 → 0+1 , and
3−2 → 2+1 , respectively. It is obvious from b), that the assumption
of an isotropic emission of the 2+1 → 0+1 transition is legitimate.
Reprinted figure with permission from Ref. [50].

transition of the most promising candidate for the 2+1,ms state was not observed,
hence, the statistical tensor was deduced in an iterative way using the Coulomb-
excitation code GOSIA. The technique is documented in Ref. [48] and is based on
the analysis of a subset of transition matrix elements and levels. Here, the γ-ray
transitions of the 2+ state of interest, the 2+1,2,3 states, the most populated 3− states
(3−1,2), the 4+1 state and the ground state are included in the GOSIA calculations,
see Code B.6. The statistical tensor ρk is newly determined by GOSIA in each
iteration. Then, the statistical tensor is used to obtain the multipole-mixing ratio
by Eq. (3.36). The obtained δ leads to E2 MEs of the 2+ → 2+1 and 2+ → 0+1
transitions, which serve in the next iteration again as GOSIA input. This iterative
procedure is repeated until the change of the resulting δ becomes decisively small.
In Figure 4.24, three different angular distributions together with the fitted
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Table 4.8.: The coefficients a2,4 from the fits on the angular distributions are
presented with the determined E2/M1 multipole-mixing ratios of
selected γ-ray transitions of 202Hg, if possible.
Transition a2 a4 δ

2+2 → 2+1 0.11(1) 0.012(16) 0.9(1)[110]
4+1 → 2+1 0.16(2) -0.010(28)
2+3 → 2+1 0.21(4) -0.039(54) (0.02(7)) & 2.1(4)
2+3 → 2+2 0.12(2) -0.007(22) -0.13(3)
2+7 → 2+1 0.23(2) -0.028(25) 0.06(4)
3−2 → 2+1 -0.17(2) 0.048(30)

function (3.34) and its uncertainties are presented. For the E2/M1 multipole-
mixing ratio analysis, the plots a) and d) are relevant. The parameters a2 and a4
from the fitting procedure in a) are inserted in Figure 4.24 d). The ellipse in Figure
4.24 d) shows the relation from Eq. (3.36) of the coefficients a2 and a4 to the
E2/M1 multipole-mixing ratio δ. This δ-determination procedure was performed
for the transitions 2+7 → 2+1 , 2+3 → 2+2 , and 2+3 → 2+1 , see Table 4.8 for the results,
Figures 4.24 and C.6 for the angular distributions and Figures C.5, C.7 and C.8 for
the corresponding ring-wise spectra.
The results revealed the pronounced M1 nature of the transitions 2+7 → 2+1

(δ = 0.06(4)) and 2+3 → 2+2 (δ = −0.13(3)). In the case of 2+3 → 2+1 , δ could not
be determined unambiguously, δ1 = 0.02(7) and δ2 = 2.1(4). For the identification
of the 2+1,ms state, theM1 nature of the transition to the 2+1 state is not sufficient,
the necessary deduction of the absolute B(M1; 2+i → 2+1 ) strengths will be figured
out by the CE calculations in the following section.

The relative long lifetimes of the states 4+1
[︁
τ(4+1 ) = 20(4) ps

]︁ and 2+2
[︁
τ(2+2 ) =

2.95(9) ps
]︁ also led to a de-orientation of the nuclear spins and, consequently, to

a smear-out effect of the angular distributions of their γ-ray transitions 4+1 → 2+1
and 2+2 → 2+1 , see Figure C.6 for the angular distributions and Figures C.3 and
C.10 for the corresponding spectra, respectively. The angular distribution of the
3−2 → 2+1 represents a typical electrical dipole distribution, see Figure 4.24 c). The
counted events for the ring-wise analysis for certain transitions is presented in
Table C.2. The statistics of the remaining transitions were insufficient for a proper
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angular distribution analysis.

4.2.3. CE Analysis of 202Hg
The directly-accessible observables of γ-ray spectroscopy are the intensities of the
γ-ray transitions. For the calculation of the transition matrix elements from that,
the multi-step CE code CLX [111] was utilized. CLX calculates the population
yields of the excited states relative to a normalization state from a given set of
transition matrix elements. It is important, especially for low γ-ray energies (Eγ ≈
100 keV), to consider electron conversion. The electron conversion coefficients were
determined by using the code BRICC [97]. In this experiment, the 2+1 state was
taken for the self-normalization, because it is the lowest-lying, most populated state
and its transition strength to the ground state is well known, B(E2; 2+1 → 0+1 ) =
17.35(14)W.u. [112, 113], as well as its diagonal matrix element ⟨2+1 ||E2||2+1 ⟩ =
−1.33(17) eb. Further previously measured γ-ray transition strengths of 202Hg, see
Table 4.9, are not used as fixed parameters in the following CE analysis, but for
testing the results.
The multi-step CE code CLX, as it is used in this work, needed some certain

input parameters:
• a list of involved nuclear levels with their energy, spin and parity,
• the nucleon numbers of target and beam particle,
• the average beam energy,
• the scattering range of the beam particles in the center-of-mass system,
• and a set of transition matrix elements.
The spin and parity of the excited states is mostly known, otherwise educated

assumptions were made. The ion-beam energy hitting the target is precisely
determined, Ebeam = 4.4A · MeV. However, it was necessary to determine the
energy loss of the beam particle in the target [92] to obtain the remaining beam
energy in the middle of the target, Eav,beam = 4.1A · MeV. That value was
taken as the average kinetic energy of the γ-ray emitting ions. The experiment
was performed without any heavy particle detection. Hence, all scattered 202Hg
particles were relevant regardless of their scattering angle. In reality, the range of
the scattered beam particles is quite narrow, see Figure 4.20.
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Table 4.9.: Previously measured absolute transition strengths of 202Hg. Solely, the
transition strength of the 2+1 → 0+1 transition was used as a fixed input
parameter for the CLX calculations.

Transition Eλ B(Eλ) ↓ (W.u.)a

2+1 → 0+1 E2 17.35(14)[112, 113]
2+2 → 0+1 E2 0.087(21)[112, 114]
2+2 → 2+1 E2 5.6(15)[112, 114]
4+1 → 2+1 E2 26.5(8)[112, 114]
6+1 → 4+1 E2 25[114]
3−2 → 0+1 E3 <25[115]

aB(E2) and B(E3) values are given in Weisskopf units [1W.u.(E2) = 70.4 e2fm4, 1W.u.(E3) =
2.42× 103 e2fm6 ].

Furthermore, the near-4π coverage of Gammasphere led to the assumption of a
γ-ray detection efficiency independent from the γ-ray emission angle. For a non-4π
detector array, the angular distribution of the γ-ray emission has to be taken into
account, because the efficiency of the array might be highly angle-dependent,
because the detectors may not be equally distributed in a spherical shape as it is
the case for Gammasphere.

The sought-for variables in this procedure were the transition MEs, which were
the essential input parameters for the CLX calculations. So, they were step-by-
step varied until the CLX-calculated CE yields were equal to the experimental
population yields. That procedure resulted in a final set of electric transition MEs.
For the final error estimation of the transition matrix elements, a python3

code using CLX was constructed, see Listing D.2. This code utilizes a set of
random numbers to produce a set of input parameters, e.g., beam energy, known
transition matrix elements, and experimental yields. These quantities are assumed
as Gaussian distributions. There are also dependent MEs, which are predetermined
by the corresponding ME, the branching ratio, the transition energies and the
multipole-mixing ratios by the relation (3.26).

For each set of random numbers several iterations were performed to minimize
the deviation from the calculated to the experimental yields. The final results after
many sets of random numbers were probability distributions for every transition
ME, see Figure 4.26. From those distributions, the mean values and the standard
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deviations of the involved transition MEs were obtained. The efficiency-corrected
γ-ray intensities are noted in Table 4.10 with the the absolute transitions strengths,
which were determined by the transition MEs from Figure 4.26.

It is obvious from the decreased MEs connecting the 2+2 state with the 0+1 and
2+1 states, that the population yield of the 2+2 state is less than expected from its
previously known E2 transition strengths. However, besides that, the known MEs
were nicely reproduced in the CLX calculations, especially, the B(E2) values of
the yrast transitions 6+1 → 4+1 and 4+1 → 2+1 , compare Tables 4.9 and 4.10. The
precise agreement shows the quality of this CE calculation using CLX.

Table 4.10.: Measured properties of the levels and γ-ray transitions in 202Hg.
Level energies and spin assignments are adopted from Ref. [116],
unless otherwise noted. The relative γ-ray intensities are corrected
for efficiency.

Elevel Jπ Eγ Jπ
f Iγ Eλ B(Eλ) ↓a B(M1) ↓

(keV) (keV) (W.u.) µ2
N

439 2+1 439 0+1 1.00(1)× 106 E2
960 2+2 960 0+1 620(13) E2 0.039(3)

520 2+1 4444(44) E2 2.7(3) 43(8)× 10−4

1120 4+1 680 2+1 4008(41) E2 26.6(5)
1182 2+3 1182 0+1 < 50b E2 < 0.015

743 2+1 183(4) E2 0.54+0.09
−0.47 33+5

−29 · 10−5

222 2+2 356(15) E2 9+5
−8 0.13+0.07

−0.12

1312 4+2 872 2+1 113(13) E2 0.74(6)
352 2+2 221(9) E2 137(17)
129 2+3 38(17) E2 3413(1216)

1348 (2+)c 908 2+1 73(7) E2 1.52(4)
1390 2+4 1390 0+1 15(6)b E2 0.013(1)

950 2+1 136(6) E2 < 1 < 6× 10−3

429 2+2 39(4) E2 12(4)
207 2+3 20(5) E2 234(96)

1564 0+3 1125 2+1 114(6) E2 5.8(2)
1575 2+5 1136 2+1 15(5)b E2 0.47(2)

615 2+2 26(3) E2 17(6)
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1643 0+4 1204 2+1 44(6) E2 2.6(1)
1794 2+7 1794 0+1 30(14)b E2 0.13(6)

1354 2+1 1086(17) E2 0.1(1) 0.18(8)
833d 2+2 33(7) E2 6(3)

1823 2+8 1823 0+1 18(7)b E2 0.052(3)
1384 2+1 221(13) E2 < 4 < 0.027
864 2+2 91(7) E2 11(4)
641 2+3 37(3) E2 19(7)

1966 5−1 654 4+2 78(5) E1
1966 2+10 1527 2+1 171(30) E2 10.0(3)

655 4+2 14(3) E2 55(22)
1989 6+1 868 4+1 21(2) E2 24.9(1)
2134 (2+)c 1014 4+1 94(6) E2
2293 (3, 4)e 1853 2+1 117(8) E2 3.40(5)
2357 3−1 2357 0+1 E3 2.5(1)

1917 2+1 328(13) E1
1396 2+2 247(16) E1
1174d 2+5 100(8) E1
1045d 4+2 100(9) E1

2456 (2+)c 1495d 2+2 42(15) E2
2516 (1, 2)c 2516 0+1 181(11) E2 0.11(1)
2681d (2+)c 2681d 0+1 226(14) E2 0.20(2)
2709 3−2 2709 0+1 E3 21(1)

2264d 2+1 611(23) E1
1747d 2+2 2431(51) E1
1524d 2+3 373(29) E1
914d 2+7 122(14) E1

3166 3−3 3166 0+1 E3 1.0(1)
1983d 2+3 74(36) E1
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aB(E2) and B(E3) values are given in Weisskopf units [1W.u.(E2) = 70.4 e2fm4, 1W.u.(E3) =
2.42× 103 e2fm6 ].

bCalculated via literature branching ratio [116].
cAssumed 2+ state in the analysis.
dNewly observed.
eAssumed 4+ state in the analysis.
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Figure 4.26.: The probability distributions of the transition matrix element using
the python3 code which uses CLX, see Listing D.2.
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4.3. γ-Ray Spectroscopy after β+/ϵ Decay at the
Heavy Ion Laboratory (HIL)

Figure 4.27.: The theoretical fusion evaporation cross sections of various reaction
channels of the bombarding of a 114Cd target with a 32S beam. The
reaction codes PACE4 and COMPA, a) and b), respectively, predict
different relative cross sections of the various channels. The dashed
vertical lines in a) represent the beam energy at the entrance of the
target, 140 MeV, and the corresponding exit energy, ≈ 110 MeV,
when using a 4 mg/cm2 thick 114Cd target.

The experiment at the Heavy Ion Laboratory (HIL) at Warsaw was designed
to determine the E2/M1 multipole-mixing ratio δ of the 2+3 → 2+1 transition of
142Sm. This multipole-mixing ratio is the missing piece of the MSS puzzle of 142Sm.
The sought-for δ will be determined through the measurement of the γ-γ angular
correlation of the 2+3 → 2+1 and the 2+1 → 0+1 transitions of 142Sm. The method is
described in Section 3.2.
The primary goal is the population of the 2+3 state at 2055 keV of 142Sm. It is

directly populated by the β+/ϵ decay of the short-lived isomer (T1/2 = 2.34 s) of
142Eu [117, 118] with a probability of 1.6% per decay, but not at all from the
decay of the long-lived one (T1/2 = 1.223min) of 142Eu [118]. Regarding the
direct production of 142Eu via fusion-evaporation reactions, solely the population
of the long-lived isomer was measured so far [119–121]. However, the short-lived
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isomer was observed via the β+/ϵ decay of 142Gd (T1/2 = 70.2 s) [117], which
itself was produced in fusion-evaporation reactions.

Generally, the fusion of two nuclei may happen, if the kinetic energy of an incom-
ing beam particle is high enough to overcome the Coulomb barrier of the target
nucleus. The beam and target particles fuse to a new highly-excited compound
nucleus, which de-excites via an emission of particles. In this way, a large variety
of isotopes are produced. For an estimation of the cross sections of the different
isotopes, fusion-evaporation codes are utilized, e.g., PACE4 [122, 123] and COMPA
[124, 125].

Figure 4.28.: The sub figure a) presents the evolution of the activities of isotopes
in a beam-on and beam-off mode, 60 seconds periods, and an ac-
tivation time of 60 seconds at the start. These isotopes are the
most prominent ones in the presented fusion-evaporation reaction.
b) shows the dependence of the activity of the short-lived isomer
of 142Eu on the period length, while the beam-on time equals the
beam-off time.

The designed experiment aims for the 4n channel, meaning the evaporation of
four neutrons after the fusion, 146Gd → 142Gd+4n, and, hence, for the compound
nucleus 146Gd. Finally, for the production of the neutron-deficient 146Gd, the
combination of a 32S beam on a 114Cd target at the HIL was chosen.
The resulting cross sections of the various reaction channels in dependence of

the beam energy are monitored by using PACE4. The PACE4 calculations show a
maximum of the 4n reaction at a beam energy of ≈ 140MeV near the Coulomb
barrier (VC ≈ 141MeV), see Figure 4.27 a). At this energy region and below, the
3n+ p and 2n+2p channels to 142Eu and 142Sm, respectively, are the predominant
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reactions together with the desired 4n channel. For higher energies than 140 MeV,
the cross section of the 4n channel decreases and the ones of the 4n+p and 3n+2p
channels to 141Eu and 141Sm, respectively, increase rapidly. Hence, the PACE4
calculations lead to the conclusion of a beam energy of 140 MeV to suppress the
production of 141Eu and 141Sm.

Calculations of our polish collaborators from the group of Julian Srebrny (HIL,
University of Warsaw) using the nuclear reaction code COMPA [124, 125] indicate
even a much higher relative production of our desired isotope 142Gd, see Figure
4.27 b). Furthermore, they would allow higher beam energies up to 190 MeV
before other reaction products’ intensities would overcome the one of 142Gd. The
final conclusion of regarding both calculations and the energy loss in the target,
see Figure 4.27 a), is the demand of a 32S beam with an energy between 140 MeV
and the maximum 150 MeV of the HIL cyclotron [126] to maximize the production
of 142Gd.

For the determination of the populations and activities of the various produced
isotopes, it is important to know their population paths. While some are only
directly produced by a fusion-evaporation reaction, i.e., 142Gd, others are produced
by the followed β+/ϵ decay, i.e., the short-lived isomer of 142Eu, and there are even
some, which are populated through more than one channel, i.e., 142Sm. For more
information on how the activities were determined in detail, see the used python
code in Listing E.1. Here, the ansatz A(t) = d

dtN(t) was chosen, where A is the
activity and N is the number of nuclei, and solved analytically for the different
population paths. A second part of the code performs simulations with only the
ansatz of the probability of the decay as an exponential distribution. Fortunately,
the activities were reproduced with this computationally intensive method.
The experiment aims for the detection of the delayed γ-rays from the β+/ϵ

decay of 142Eu. Hence, a method is needed to suppress the prompt γ-ray emission
from especially CE. So, a beam-on-off mode of the accelerator has been designed
specifically for our experimental request. Here, the beam is automatically blocked
and released by an in-and-out driving Faraday cup. The period of this process is
chosen to be ≈ 1min. It is a compromise of the maximization of the activity of the
mother nucleus 142Eu (T1/2 = 2.40 s) and the sparing of the mechanics of the beam-
chopping process, see Figure 4.28 b). The resulting activities for the main products
are shown in Figure 4.28 a) assuming a maximum beam current of 2.7× 1010 pps
[126], the cross sections from Figure 4.27 a) and 60 s of beam-on-target and
beam-off-target time, each.
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Table 4.11.: Left: the amount of detector pairs of each angle group for a certain
configuration of the 15 HPGe detectors of EAGLE and the corre-
sponding estimated count rates per day, rγγ [(see Eq. (4.3)], of the
2+3 → 2+1 → 0+1 γ-γ coincidence. Right: the parameters used for the
rate estimation in Eq. (4.3).

angle # pairs rγγ parameter
180◦ 5 51 As(

142Eu) 7564 1
s

138◦ 15 153 Toff 60 s
110◦ 31 316 Toff 60 s
70◦ 35 357 R(2+3 ) 1.6%[118]
42◦ 19 194 Irel(2

+
3 → 2+1 ) 72%[118]

ϵγ1,γ2 1.5 & 1.9 %[127]
total 105 1073

The γ-ray emission of the produced radioactive isotopes will be detected by the
EAGLE array, which consists at the moment of 15 HPGe detectors with a total
efficiency of 1.9 % and 1.5 % at the energies of the 2+3 → 2+1 and 2+1 → 0+1
transitions, 1.3 and 0.8 MeV, respectively [127]. For more information, see Ref.
[80]. For the measurement of angular distributions of γ-γ coincidences, it is
necessary to categorize the detector pairs in groups with similar angles. The angles
are determined by the triangle set up by the first detector, the target and the
second detector. In this way, it is possible to use 105 detector pairs representing
the angles 42◦, 70◦, 110◦, 138◦, and 180◦ [127]. In any case, it is not possible to
get more than five detector pairs with an angle of 180◦ with 15 usable detectors.
The resulting distribution of the detector pairs to angle groups is shown in Table
4.11.

For the planning of a successful γ-spectroscopic experiment, it is inevitable to
estimate the rates of the sought-for γ-ray transitions. Here, the rate of the γ-γ
coincidence 2+3 → 2+1 → 0+1 of 142Sm is given by
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rγγ = As(
142Eu)× Toff

Toff + Ton
×R(2+3 )× Irel(2

+
3 → 2+1 )× ϵγ1ϵγ2

= 0.012
1

s
.

(4.3)

As(
142Eu) is the activity of the short-lived isomer in the equilibrium and deter-

mined via Figure 4.28, Toff and Ton are the periods with beam off and on the target,
respectively, and R(2+3 ) is the relative population of the 2+3 state of 142Sm from the
β+/ϵ decay of the short-lived isomer of 142Eu. Furthermore, Irel(2+3 → 2+1 ) is the
relative intensity of the 2+3 → 2+1 transition with respect to all γ-ray decays of the
2+3 state and ϵγ1,γ2 are the total γ-ray efficiencies at the γ-ray energies 1287 keV
and 768 keV. The chosen values of these parameters are presented in Table 4.11.

This conservative estimation leads to ≈ 500 events for the lowest-statistics angle
group (180◦) for the full ten days of measurement, which ends up in a relative
uncertainty of≈ 5% and a general good feasibility of such an experiment. However,
the rates will increase by at least the factor three when the cross sections from J.
Srebrny, see Figure 4.27 b), are adopted.
A successful execution of this experiment enables the determination of the

multipole-mixing ratio of the 2+3 → 2+1 transition of 142Sm. This additional spec-
troscopic observable will cause a distinct B(M1; 2+3 → 2+1 ) from the GOSIA calcu-
lations of the 142Sm CE experiment at HIE-ISOLDE.
Besides that, a panoply of radioactive isotopes will be produced in this ex-

periment. This γ-γ coincidences data may create an access to diverse unknown
spectroscopic observables of the neutron deficient isotopes northwest of the doubly-
magic nucleus 132Sn.
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5. Discussion
The obtained results will be discussed in context with previous measurements of
neighboring isotopes and theoretical predictions. Additionally, the determinedM1-
strength distributions will be used to identify the low-lying isovector quadrupole
excitation, the 2+1,ms state, and to calculate the F -spin mixing matrix element of
the corresponding isotopes.

5.1. N = 80 Isotones 140Nd and 142Sm
The visible effects of the sub-shell structure of theN = 80 isotones on the collective
one-quadrupole-phonon excitations were introduced in Chapter 1. This effect is
extraordinarily pronounced for the isovector quadrupole excitation causing an iso-
lated 2+1,ms state for the isotones 132Te, 134Xe and 136Ba [12, 18, 19], but a sudden
fragmentation of this excitation for 138Ce. At Z = 58, the total B(M1; 2+i → 2+1 )
strength is almost equally distributed to the 2+3 → 2+1 and 2+4 → 2+1 transitions at
1354 and 1448 keV. This fragmentation of the 2+1,ms state was the first experimental
evidence of a direct influence of the sub-shell structure on the characteristics of
MSSs [10]. This effect is called valence-shell stabilization of the quadrupole isovec-
tor excitations and is not present at the Z = 58 sub-shell closure. The presence and
the lacking of the valence-shell stabilization effects besides the B(M1; 2+i → 2+1 )
distributions of the N = 80 isotones primarily the corresponding F -spin mixing
matrix element VF−mix. Hence, the investigation of the 2+1,ms states of the N = 80

isotones 140Nd and 142Sm is of exceptional importance to probe the effect of the
valence-shell stabilization when exceeding the proton sub-shell closure at Z = 58.

For 140Nd, the obtained B(M1; 2+i → 2+1 ) distribution leads to the identification
of the 2+3 state as the main fragment of the 2+1,ms state with B(M1; 2+3 → 2+1 ) =

0.26+0.11
−0.10 µ

2
N, see Figure 5.1 a). Furthermore, the weakly collective transition

from the ground state, B(E2; 2+3 → 0+1 ) = 1.9(6)W.u., is in agreement with the
mixed-symmetry one-phonon character of the 2+1,ms state (≈ 1W.u. [63]). For
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Figure 5.1.: The values for B(M1; 2+i → 2+1 ), B(E2; 2+i → 2+1 ) and B(E2; 2+i →
0+1 ) strengths of 140Nd and 142Sm deduced in the reported CE ex-
periments are displayed in a)-c) and d)-f), respectively. For 142Sm,
the E2/M1 multipole mixing ratios are unknown, hence, for the 2+3
state at 2055 keV, a pureM1 decay to the 2+1 state was assumed to
estimate an upper limit for the B(M1; 2+3 → 2+1 ) strength.

the determination of the F -spin mixing matrix element VF−mix, it is necessary to
measure the absolute M1 transition strength of the decay of a potential minor
fragment. Here, the 2+4 state is assumed to be the small fragment of the 2+1,ms state,
because it is the closest-lying 2+ state to the 2+3 state and shares also the decay
properties with the 2+1,ms state: it exhibits a predominantM1 transition to the 2+1
state, δ = −0.19(9) [24]. Unfortunately, the known γ-ray transitions from the 2+4
state to the 2+1 and 0+1 states [95] were not observed in the reported CE experiment.
Nevertheless, an upper limit of the value of B(M1; 2+4 → 2+1 ) < 0.04µ2

N was
determined by using experimental yields of the γ-ray decays of the 2+4 state at the
edge of the detection limit for the GOSIA analysis.

Calculations of a two-state mixing scenario whereM1 transitions are forbidden
between FSSs yielded the upper limit of VF−mix < 79 keV for 140Nd. Regarding the
obvious domination of the B(M1; 2+3 → 2+1 ) strength in the B(M1) distribution
of 140Nd, see Figure 5.1 a), the deduced upper limit is not quite meaningful.
Especially with respect to the mixing VF−mix = 44(3)+3

−14 keV of 138Ce, where the
2+1,ms state is obviously highly fragmented. The ratio of the B(M1; 2+i → 2+1 )

values of the main and small fragments of 140Nd is greater or equal four, while it
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is only approximately two for 138Ce. Hence, the origin of this seemingly enhanced
VF−mix of 140Nd is the increased energy difference of ∆E = 193 keV between
the potential two fragments of the 2+1,ms state, if any remnantM1 strength from
outside of the model range may exist.

In reality, nuclear states are neither ideal FSSs nor MSSs. Even if a state comes
very close to this theoretical construct, i.e., the 2+1 state, it is more complex than
that. Consequently, there is a small part of experimental FSSs which may allow for
M1 transitions between them, which are originated outside the framework of the
IBM. In the following, thisM1 strength between FSSs is called backgroundM1
strength. In 140Nd, it is determined by the value ofB(M1; 2+2 → 2+1 ) = 0.033(8)µ2

N,
because the 2+2 state is considered as the fully-symmetric two-quadrupole-phonon
2+ state. This is a legitimate assumption, because the 2+3 state as the main fragment
of the 2+1,ms state is far away (∆E = 650 keV) and the decay to the 2+1 state is
predominantly of E2 nature, δ = −1.22(14) [24]. The calculations of this specific
scenario are described in Section 2.4 and result in a renewed upper limit for the F -
spin mixing matrix element of 140Nd, VF−mix < 7+13

−7 keV. This value is significantly
smaller than the upper limit of the first scenario and the VF−mix = 94(12) keV from
Ref. [24], where the F -spin mixing matrix element was deduced only on the base
of E2/M1 multipole-mixing ratios. The near-zero values of δ of both transitions
lead to the conclusion of a mixing near the maximum (VF−mix = ∆E/2 = 96 keV),
which could only be corrected by the measurement of the absoluteM1 transition
strengths.
The VF−mix and the B(M1; 2+i → 2+1 ) strength distribution of 140Nd in the

context of the N = 80 isotonic chain, see Figure 5.2, are showing a restoration of
the valence-shell stabilization at Z = 60. The observed enhanced B(M1; 2+3 → 2+1 )
strength and the decrease of VF−mix from 138Ce to 140Nd are caused by the partly
filled d5/2 proton orbital. Hence, the collective excitations are now formed by the
valence nucleons without breaking the filled orbital structure as it the case for
138Ce.

The interpretation of the reported 142Sm CE experiment in terms of the low-
lying isovector quadrupole excitation is ambiguous because of the lackingM1/E2
multipole-mixing ratios of the 2+i → 2+1 transitions. The structure of the excited
levels of 140Nd is quite similarly observed for 142Sm. Therefore, the 2+3 state is
also assumed to be the main fragment of the 2+1,ms state of 142Sm. The preliminary
results of the CE experiment and the prior evolution of the 2+1,ms states of the
N = 80 isotones lead to that conclusion.
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Figure 5.2.: The M1 transition strengths B(M1; 2+i → 2+1 ) of the main and the
small fragment of the 2+1,ms state of theN = 80 isotones are compared
to a theoretical B(M1; 2+1,ms → 2+1 ) systematic [red, Ref. [25]) in
a)]. For 142Sm, a multipole-mixing ratio of δ = 0.01 for the 2+3 → 2+1
transition was assumed. The resulting F -spin mixing matrix elements
(◦) and upper limits (▽) are shown in b). VFmix of 136Ba and 138Ce
are taken from Ref. [10].

The remaining possible candidates, the (2)+ state at 1658 keV, introduced as 2+2
state, and the (2+) states at 2353 and 2374 keV [105], exhibit decay characteristics,
which are unlikely for the 2+1,ms state.

The 2+2 state decays predominantly to the ground state and the similarities of
the level structure to 140Nd lead rather to the assumption that the 2+2 state is the
two-phonon 2+ state. However, due to its strong population, the 2+2 state remains
a possible candidate for the 2+1,ms state unless rejected by the determination of
E2/M1 multipole-mixing ratios.

The ground state decay of the (2+) state at 2353 keV is prominent in the γ-ray
spectra, while γ rays of the transition to the 2+1 state are not. Hence, this state can
not have a sufficiently strongM1 connection to the 2+1 state for being the major
fragment of the 2+1,ms state.
In a scenario, where the (2+) state at 2374 keV is the main fragment of the

2+1,ms, a similar B(E2; (2+) → 0+1 ) would be expected as the (2+) at 2354 keV
(≈ 1W.u). Since it is not excited while having a similar energy, it has consequently
an even smaller excitation probability and, hence, the chances of being the 2+1,ms

state are heavily decreased. This experiment is not sensitive on significantly higher-
lying 2+1,ms states. Furthermore, this would also be very uncommon, regarding the
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energies of the known 2+1,ms states of the lighter N = 80 isotones.

Table 5.1.: DeterminedM1 transition strengths of the unperturbed 2+MS states and
the E2 ratios B4/2 and B2/2 of the N = 80 isotones 140Nd and 142Sm.

140Nd 142Sm
B(M1; 2+MS → 2+1 )[µ2

N] 0.27(11) <0.15+0.37
−0.04

a

B4/2 1.2(1) 1.6(3)
B2/2 0.98(12) 0.97(23)

aThe M1 strengths between FSSs and of the transition from the minor fragment from 140Nd are
applied to the calculations for 142Sm.

TheM1 strength’s upper limit of the most promising candidate for the 2+1,ms state,
B(M1; 2+3 → 2+1 ) < 0.14+0.37

−0.01 µ
2
N, was estimated by applying a realistic almost pure

M1 2+3 → 2+1 transition (δ = 0.01) to the GOSIA calculations. The uncertainties
were determined by the built-in error estimation of GOSIA. The obtained upper
limit does not stand in conflict with the conclusion of the restoration of the valence-
shell stabilization at Z = 60 from the 140Nd CE experiment. However, on the basis
of an upper limit of the B(M1; 2+3 → 2+1 ) with the 2+3 state as the potential main
fragment, it is not feasible to determine a meaningful limit for VF−mix of 142Sm.
Furthermore, the big energy difference of more than 300 keV between the

2+3 state and the nearest-lying 2+ state makes it very challenging to determine
a significant F -spin mixing matrix element. The calculations will result in an
enhanced VF−mix due to the large energy difference unless the B(M1; 2+i → 2+1 )
strength of the minor fragment is small with very high precision. Unfortunately, the
accuracy of the transition strength of a radioactive isotope measured in CE is often
suffering due to low statistics. Although, for the identification of the 2+1,ms state of
142Sm, the determination of the E2/M1 multipole-mixing ratios are indispensable.
Therefore an angular correlation measurement of γ-γ coincidences after β+/ϵ
decay is planned and was described in Section 4.3 in detail.
The evolution of the B(M1; 2+i → 2+1 ) strengths for the N = 80 isotonic chain

was subject of several theoretical publications using the quasi-particle phonon
model (QPM) [103, 128] and the shell model [25, 129]. Solely the large-scale
shell model calculations of Ref. [25] using the shell model codes NATHAN and
ANTOINE [61, 130] were able to reproduce a re-rise of the B(M1; 2+1,ms → 2+1 )
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value passing the Z = 58 sub-shell closure, see Figure 5.2. The other mentioned
calculations predicted a similar fragmentation of the 2+1,ms state of 140Nd as for
138Ce. In Ref. [25], the gdsh shell was used as model space and the utilized
interaction (GCN5082) was obtained by a fit of the Hamiltonian on many low-lying
states of a large variety of isotopes within the 50−82 valence space for protons and
neutrons. This phenomenological corrected interaction enabled the reproduction
of experimental excitation energies of ≈ 400 states in 80 nuclei within a root-mean-
square deviation of 110 keV [25, 131]. However, calculations of theM1 strengths
distribution of low-lying 2+ states for 142Sm are lacking.

Figure 5.3.: a) presents the level energies of the 2+1 [95, 105, 132–136] and 2+1,ms

[10, 12, 18, 19, 21] states of the N = 80 isotones, when available,
and the ones of the 2+1 states of the semi-magical N = 82 isotonic
chain [95, 105, 133–137] for comparison. The blue and black lines
are determined by Eq. (5.2). b) shows theB(M1; 2+ms → 2+1 ) strength
evolution of the N = 80 isotones compared with the systematic [Eq.
(2.41)] from the U(5) symmetry for ∆g = |gπ − gπ| = 0.880(1)µ2

N .
The 2+ms state is the theoretical unperturbed mixed-symmetry 2+ms

state.

The low-lying collective quadrupole excitations, namely the 2+1 and 2+1,ms states,
can be interpreted as superpositions of two unperturbed valence-proton and
valence-neutron 2+ configurations. The proton-neutron quadrupole interaction
increases with the valence space or more precisely, the product of the valence
protons and neutrons NπNν . The resulting mixing interaction is given by [138]

Vνπ = βνπ
√︁
NπNν , (5.1)
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where βνπ is a scaling parameter for the mixing interaction. For the application
of this model for the N = 80 isotonic chain, the energies of the unperturbed
proton and neutron 2+ excitations, ϵπ and ϵν , respectively, have to be determined
analogously to the successful calculations for a shorter area of the N = 80 isotones
[18] and the Xe isotopic chain [139]. The energy of the 2+1 state of semi-magic
130Sn, which should be a pure neutron excitation (ϵν = 1221 keV) due to its closed
proton shell (Z = 50), determines the parameter ϵν . Since the neutron number is
the same for the nuclei of the N = 80 isotonic chain, ϵν is applied to all of them as
a constant. However, ϵπ changes over the isotonic chain and is determined via a fit
of the empirical function ϵπ = ϵ0 + ϵ1(Nπ − 1)+ ϵ2(Nπ − 1)2 to the energies of the
2+1 states of the semi-magic N = 82 isotones from 134Te up to 146Gd, see Figure
5.3 a). The 2+1 excitations of this isotonic chain should be pure proton excitations
due to the closed neutron shell (N = 82). The parameter ϵ0 = 1279 keV is given
by the 2+1 energy of semi-magic 134Te, which has one valence-proton boson, and
ϵ1,2 = 117,−10 keV are determined via the fit process. The uncertainties are
negligibly small. The resulting level energies of the 2+1 and 2+1,ms states of this
two-state mixing scenario, see Eq. (2.44) in Section 2.4, are then given by

E(2+1 , 2
+
1,ms) =

ϵπ + ϵν
2

∓
√︃

(ϵπ − ϵν)2

4
+ β2

νπNπNν , (5.2)

where the - (+) sign corresponds to the energy of the 2+1 (2+1,ms) state. The
data from 130Sn up to 144Gd were used to fit the energies of the 2+1 states and
βνπ = 0.27MeV was obtained and applied for predicting the energies of the 2+1,ms

states from Eq. (5.2), see Figure 5.3 a).
The 2+1,ms levels are strongly affected by the sub-shell closure [10], but Eq. (5.2)

is not sensitive to any sub-shell structures. Hence, Eq. (5.2) with βνπ from the
fit of the 2+1 states’ energies can not describe the evolution of the energies of the
isovector 2+ states properly all along the isotonic chain. The trend of an increasing
energy of the 2+1,ms level is in reality inverse from the sub-shell closure on.

The 2+1 levels are barely affected by the sub-shell closure and their energies are
reproduced by Eq. (5.2). The energies of the low-lying one-quadrupole-phonon
excitations show a similar behaviour as the transition probabilities. While the effect
of the sub-shell closure is rather small on the isoscalar excitations, it is significant
regarding isovector excitations.
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Figure 5.4.: a) presents the comparison of the ratios of the level energies of the two-
phonon states 4+1 and 2+2 to the one-phonon state 2+1 , R4/2 and R2/2

[95, 105, 132–136], respectively, and the theoretical predictions from
the U(5) symmetry, R4/2 ≈ R2/2 ≈ 2.2 [6]. For 132Te, the 2+3 state
was assumed as the fully-symmetric two-phonon state, because the
2+2 state was identified as the 2+1,ms state [12]. b) shows the evolution
of the ratios of the E2 transition strengths of the two- to one-phonon
states transitions 4+1 → 2+1 and 2+2 → 2+1 and the B(E2; 2+1 → 0+1 )
strength [21, 132–136], B4/2 and B2/2. They are also compared to
predictions from the U(5) symmetry [Eq. (5.2) [140]].

Besides theM1 information giving an insight into the low-lying isovector valence-
shell excitations of the N = 80 isotones, theM1 strength of the unperturbed 2+ms

states can be used to probe the U(5) symmetry of the N = 80 isotones. The
B(M1; 2+ms → 2+1 ) strength of the unperturbed mixed-symmetry 2+ms state is
described in Section 2.4. The resulting values are noted in Table 5.1. The fit of
the B(M1) strengths originating from the U(5) symmetry, see Eq. (2.41), on the
available data of the N = 80 isotones is presented in Figure 5.3 b). M1 transition
strength from Eq. (2.41) is only dependent on the number of valence bosons, Nν

and Nπ, and the difference of the effective boson g-factors, gπ and gν . Figure
5.3 b) shows that the assumption of a U(5) symmetry in the N = 80 is not in
conflict with the obtained B(M1; 2+i → 2+1 ) values. The upper and lower limit of
the B(M1) values of 132Te and 142Sm were used for the fit shown in Figure 5.3 b).
The fit parameter ∆g = |gπ − gπ| = 0.880(1)µ2

N does not change significantly by
excluding them from the fit. This is in good agreement with the general assumption
of gπ ≈ 1 and gν ≈ 0 [141].

The obtained CE data reveal also several B(E2) values which are used to probe
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the U(5) symmetry for the N = 80 isotones. Here, transitions will be investigated
which connect the two-quadrupole-phonon states (0+2 , 2+2 and 4+1 ) and the one-
quadrupole-phonon state (2+1 ). In the simplified picture of the quadrupole-phonon
model, these transitions are destructions of the symmetric quadrupole phonon
as it is for the 2+1 → 0+1 transition. However, the two-phonon state has twice as
many decay possibilities than the one-phonon state, because there a two phonons
which can potentially be destroyed. Hence, the decay probability is doubled:
B(E2; 0+2 , 2

+
2 , 4

+
1 → 2+1 )/B(E2; 2+1 → 0+1 ) = 2 [6].

In the phonon model, the transition rate is solely related to the number of
involved quadrupole phonons, but in the sd-IBM a destruction (or creation) of a
d boson must involve a creation (or destruction) of an s boson. So, an increase
of the number of d bosons leads to less available s bosons and, hence, a reduced
probability to create (or destruct) one. Therefore, the ratio of transition strengths
between full-symmetry two- and one-phonon states in U(5) is given by [140]

B(E2; 0+2 , 2
+
2 , 4

+
1 → 2+1 )

B(E2; 2+1 → 0+1 )
= 2

N − 1

N
, (5.3)

where N is the number of valence bosons or holes. The ratios are smaller than
two for a finite number of valence bosons and the spin of the fully-symmetric
two-phonon state does generally not affect the transition strength. In Figure 5.4 b),
the evolution of the ratios of the E2 strengths of the transitions between the two-
and the one-phonon states are shown. The comparison of the predictions from the
U(5) symmetry, Eq. (5.3), which are related to the valence-boson number, shows
conformity with the deduced transition strengths. The two ratios B4/2 and B2/2,
which would be equal in a perfect U(5) nucleus, are also in quite good agreement
to each other.
A further indicator for the assignment of an isotope to a nuclear shape or

symmetry is the ratio of the level energies of multi-phonon states to the ones of
one-phonon states. In the rotational model and the harmonic vibrator phonon-
model, the ratio of these level energies is two for vibrational nuclei, R4/2 =

E(4+1 )/E(2+1 ) = R2/2 = E(2+2 )/E(2+1 ) = R0/2 = E(0+2 )/E(2+1 ) = 2 [6]. However,
the assumptions of additional two-body residual interactions may lead to a small
increase and breaking of the degeneracy in the two-phonon energy levels. These
energy additions are called anharmonicities and lead typically to an energy ratio
of the two-phonon states to the one-phonon state slightly above two (≈ 2.2) [6].
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The two energy ratios R4/2 and R2/2 of the N = 80 isotones fit in the predictions
of the U(5) symmetry and are far below the rotational limit (R4/2 ≈ 3.33), which
support the assumption of a vibrational shape of the nuclei along this isotonic
chain, see Figure 5.4 a). For the R2/2 of 132Te, the 2+3 state was taken as the
fully-symmetric two-phonon 2+ state, because it was shown, that the 2+2 state was
identified as the mixed-symmetry one-phonon 2+ state. Summarized, the shapes
of the N = 80 isotones from 132Te up to 142Sm can legitimately assumed to be
vibrational and no significant effect of the sub-shell structure on the deformation
was observed. It seems that the increase and decrease of the valence space have
logically a significantly bigger influence on the shape of the nucleus than the
sub-shell structure, when studying the energy ratios. The R4/2 and the R2/2 ratios
are distant from the predicted value for 132Te and 144Gd, respectively. Additionally,
the R4/2 ratio is smaller than the R2/2 ratio only for the two extreme isotones with
the lowest and highest number of valence protons of the here regarded nuclei.
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5.2. Z = 80 Isotopes 202Hg and 204Hg

Figure 5.5.: M1 strength distributions B(M1; 2+i → 2+1 ) of 202Hg determined in
the reported CE experiment a) and of 204Hg b)[48]. Upper limits are
illustrated by the errorbars extending to the bottom.

The identification of the low-lying isovector quadrupole excitation of 202Hg
was challenging due to the variety of excited 2+ states and missing information
about E2/M1 multipole-mixing ratios except for the 2+2 → 2+1 transition, which
shows a balanced M1 and E2 nature [δ = 0.9(1) [110]]. In total eight states
with a definitive and three states with a tentative 2+ spin and parity assignment
were excited in the 202Hg CE experiment. Besides the 2+1 and 2+2 states, the most-
populated 2+ states were the third, seventh, eighth and tenth at 1182, 1794, 1823
and 1966 keV, respectively. For the 2+3 and 2+7 states, it was feasible to deduce the
E2/M1multipole-mixing ratios of their γ-ray decays to the 2+1 state, δ = 2.1(4) and
δ = 0.06(4), respectively. In any other case, upper limits of the B(M1; 2+i → 2+1 )
strengths were estimated by assuming a pureM1 transition. The highest of them,
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B(M1; 2+8 → 2+1 ) < 0.027µ2
N, was significantly smaller than the M1 strength of

the designated main fragment of the 2+1,ms state, B(M1; 2+7 → 2+1 ) = 0.18(8)µ2
N.

Besides the strongM1 transition to the 2+1 state and the weakly collective excitation
from the ground state, B(E2; 2+7 → 0+1 ) = 0.13(6)W.u., the 2+7 state exhibits a
further signature of the 2+1,ms state.

From the sdf -IBM-2 [142], where additional octupole (f) bosons are introduced,
an enhanced E1 strength between the fully-symmetric octupole 3− state and the
2+1,ms state relative to the E1 transition to the 2+1 state is expected.

Due to the seemingly enhanced collectivity of the second 3− state, B(E3; 3−2 →
0+1 ) = 21(1)W.u., in comparison to the first and third 3− states, B(E3; 3−1,3 →
0+1 ) = 2.5(1), 1.0(1)W.u., the 3−2 state was assigned as the dominant fragment of
the fully-symmetric octupole vibration. The two neighboring 3−1,3 states may be
minor fragments of this octupole vibration and, thus, may indicate its fragmen-
tation. The phenomenon of an enhanced collectivity of an off-yrast 3− state was
already observed previously, e.g., in even-A Pt isotopes [143, 144].
Unfortunately, this experiment was not sensitive of B(E1) strengths, because

E1 transitions do not contribute significantly to the CE process and the multipole-
mixing of these transitions was unknown. However, the measured γ-ray intensities
allowed to determine the E1 ratio RE1 = B(E1; 3−2 → 2+7 )/B(E1; 3−2 → 2+1 ) ≈ 3.
Such an enhanced E1 transition of the octupole vibration to the mixed-symmetry
2+ state was also observed in the A ≈ 90 [31, 33, 37], 130 [37, 41] regions and in
the A ≈ 208 mass region in 204Hg [48]. These accumulated indications lead to the
conclusion that the 2+7 state is the mixed-symmetry one-quadrupole-phonon 2+1,ms

state of 202Hg.

Table 5.2.: Orbital structures of 202,204Hg and 208,212Po with respect to the doubly-
magic 208Pb were derived from Ref. [48] and the corresponding
B(M1; 2+1,ms → 2+1 ) values are taken from Refs. [46–48, 50]

isotope π ν B(M1; 2+1,ms → 2+1 )

202Hg (d3/2)
−2 (f5/2)

−4 0.18(8)µ2
N

204Hg (d3/2)
−2 (f5/2)

−2 0.20(2)µ2
N

208Po (h9/2)
2 (f5/2)

−2 > 0.112(13)µ2
N

212Po (h9/2)
2 (g9/2)

2 0.126(16)µ2
N
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Figure 5.6.: a) shows the known M1 strengths of 2+1,ms → 2+1 transitions in the
vicinity of the doubly-magic 208Pb. The value of 208Po is a lower limit.
b) presents the determined F -spin mixing matrix elements VF−mix of
the Z = 80 isotopes 202,204Hg [50] and of the N = 80 isotones 140Nd
[21] and 138Ce [10] in dependence of the P factor.

The resulting B(M1; 2+i → 2+1 ) strengths distributions of 202Hg and 204Hg [48,
50], see Figure 5.5, are used to determine the F -spin mixing VF−mix of the Hg
isotopes. This is the first measurement of the F -spin mixing in the A = 208 mass
region. The closest-lying 2+ states with respect to the main fragments of the 2+1,ms

states of 202Hg and 204Hg are the 2+8 and the 2+3 states, respectively. They are
assumed to be the minor fragments in the two-state mixing calculations. The
B(M1; 2+2 → 2+1 ) = 43(8)×10−4µ2

N value of 202Hg is taken as the backgroundM1
transition strength connecting FSSs of 202Hg. It is also applied to the calculations
of 204Hg, because the second 2+ state of 204Hg is identified as the 2+1,ms state.
The B(M1) values of 204Hg of the main and minor fragments’ γ-ray decays are
0.200(23)µ2

N and < 0.018µ2
N [48, 50], respectively. The analogous procedure as it

was used for the N = 80 isotones will be applied. The resulting upper limits of the
F -spin mixing matrix elements of 202,204Hg, VF−mix < 9(2)+3

−3 keV, 11(1)
+4
−4 keV,

show the suppressed mixing of FSSs with MSSs in these isotopes. The values are
quite comparable to the ones of the N = 80 isotones, except for the sub-shell
closure at Z = 58, see Figure 5.6 b). Consequently, the F spin qualifies as an
approximately good quantum number, also, near doubly-magic nuclei, like 132Sn
and 208Pb.
The identifications of the 2+1,ms states of 202Hg [50] and recently of 208Po [47],
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expand the knowledge of the MSSs in the vicinity of 208Pb, see Figure 5.6 a).
There is not any significant evidence visible, that one-phonon MSSs are more
pronounced, when both protons and neutrons occupy orbitals with high angular
momenta. The Hg isotopes exhibit slightly enhanced B(M1; 2+1,ms → 2+1 ) values
than the Po isotopes, although the valence nucleons of Po occupy orbitals with
higher angular momenta, see Table 5.2. Here, the trend seems to be inverted.
However, the prominent existence of the 2+1,ms state is clearly proven in vibrational
nuclei in the nearest vicinity of the doubly-magic 208Pb.

Although pronounced B(M1; 2+1,ms → 2+1 ) values are found in the A = 200mass
region, it seems that nuclei near the heaviest stable doubly-magic isotope exhibit
the least enhanced B(M1; 2+1,ms → 2+1 ) strengths in comparison to nuclei in other
regions near double shell closures, e.g., A ≈ 132, A ≈ 100 and A ≈ 56, see Figure
5.7. However, solely the N = 52 isotones, 94Mo and 96Ru, show extraordinarily
outstandingM1 strengths of the 2+1,ms → 2+1 transitions.

Figure 5.7.: The B(M1; 2+1,ms → 2+1 ) strengths of nuclei in the mass regions near
doubly-magic nuclei A ≈ 56, 56Fe [27, 28] and 66Zn [29], A ≈ 100,
92Zr [38], 94Mo [31] and 96Ru [33, 36], A ≈ 132, 134Xe [18], 136Ba
[19], 138Ce [10] and 140Nd [21], and A ≈ 208, 202Hg [50], 204Hg
[48] and 212Po [46].

Comparing the previously known transition strengths from Ref. [116], see Table
4.9, with the here obtained values, the deviations of the B(E2; 2+2 → 2+1 , 0

+
1 )

strengths of about 50 % attract attention. These values from Ref. [116] are
averaged results from two CE experiments [112, 114] using Hg as target material.
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The later experiment [114] seems to obtain lower B(E2) strengths than the
previous one [112], see Table 5.3. Especially, the B(E2; 2+2 → 2+1 ) value shows a
large decrease of 36% , while the corresponding transition strength to the ground
state, B(E2; 2+2 → 0+1 ), was not newly determined in the CE analysis of Ref. [114].
Hence, the results from this analysis in combination with the already reduced
value from Ref. [114] may indicate, that the 2+2 state of 202Hg is significantly less
collective than expected from Ref. [112].

Table 5.3.: Comparison of previously measured E2 absolute transition strengths
of 202Hg from Refs. [112, 114] and this work. The B(E2) values are
given in Weisskopf units [1W.u.(E2) = 70.4 e2fm4].

Transition this work Ref. [112] Ref. [114]
B(E2; 2+2 → 0+1 ) 0.039(3) 0.10(3)
B(E2; 2+2 → 2+1 ) 2.7(3) 7.5(2.6) 4.8(1.0)
B(E2; 4+1 → 2+1 ) 26.6(5) 27.1(10) 25.8(23)
B(E2; 6+1 → 4+1 ) 24.9(1) 25(2)
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6. Summary

The presented work concentrates on the low-lying collective isovector quadrupole
excitations of heavy vibrational nuclei near doubly-magic isotopes. Furthermore,
the obtained E2 transition strengths ratios were used to probe the U(5) symmetry
for the N = 80 isotones 140Nd and 142Sm. These observables were deduced by
conducting projectile CE experiments at the HIE-ISOLDE facility at CERN and at
the ATLAS facility at the ANL for the radioactive 140Nd and 142Sm, and the stable
202Hg isotope, respectively. The high-resolution HPGe-detector arrays Miniball
and Gammasphere were used for the γ-ray detection.
The main fragment of the 2+1,ms state of 140Nd was identified by measuring a

pronounced absolute M1 transition strength, B(M1; 2+3 → 2+1 ) = 0.26+0.11
−0.10 µ

2
N,

while an upper limit, B(M1; 2+4 → 2+1 ) < 0.04µ2
N, was obtained for the potential

minor fragment. This re-enhancement of theM1 strength after the fragmentation
of the 2+1,ms state of 138Ce at the Z = 58 sub-shell closure leads to the conclusion
of the restoration of the valence-shell stabilization for 140Nd. This special position
for 138Ce with its highly fragmented 2+1,ms state in the N = 80 is also supported by
the decreased F -spin mixing matrix element of 140Nd, VF−mix < 7+13

−7 keV.
The preliminary upper limit of the B(M1; 2+3 → 2+1 ) < 0.14+0.37

−0.01 µ
2
N strength

of 142Sm is not in conflict with the conclusion made from the 140Nd experiment.
However, it is not reasonable to make a further statement until the designed β+/ϵ-
decay experiment will be performed with its purpose of measuring the angular
γ-γ correlation of the 2+3 → 2+1 → 0+1 γ-γ cascade of 142Sm. The desired result of
this measurement will be the E2/M1 multipole-mixing ratio and it will finalize
the investigation of the low-lying isovector one-quadrupole-phonon excitation in
142Sm.

Furthermore, the obtained decay characteristics of the fully-symmetric two-
phonon states of 140Nd and 142Sm showed qualities of IBM’s U(5) limit. The
ratios B2/2 = B(E2; 2+2 → 2+1 )/B(E2; 2+1 → 0+1 ) = 0.98(12), 0.97(23) and B4/2 =

B(E2; 4+1 → 2+1 )/B(E2; 2+1 → 0+1 ) = 1.2(1), 1.6(3) indicate tendency towards
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vibrational shapes of 140Nd and 142Sm, respectively. Furthermore, the measured
B(M1; 2+1,ms → 21) values of the N = 80 isotones also fulfill the predictions of the
U(5) limit. Summarized, the N = 80 isotones from 132Te to 142Sm show qualities
of the U(5) limit of the IBM.

Regarding the vicinity of the doubly-magic 208Pb, the ultra-high statistics particle-
detection-free experiment with a 202Hg beam at ATLAS enabled the measurement
of the B(M1; 2+i → 2+1 ) strengths of several transitions. The 2+7,8 states at 1794
keV and 1823 keV were identified as the main and the potential minor fragment
of the 2+1,ms state with the corresponding M1 strengths B(M1; 2+7 → 2+1 ) =

0.18(8)µ2
N and B(M1; 2+8 → 2+1 ) < 0.027µ2

N. Additionally, the enhanced E1
ratio RE1 = B(E1; 3−2 → 2+7 )/B(E1; 3−2 → 2+1 ) ≈ 3 was measured, which is a
further indication for the 2+7 state being the main fragment of the 2+1,ms state
[63, 142]. The resulting B(M1; 2+i → 2+1 ) strengths of 202,204Hg from Refs. [48,
50] were used to deduce the F -spin mixing matrix elements for the isotopes
202,204Hg, VF−mix = 9(2)+3

−3 keV and 11(1)+4
−5 keV, respectively. This was the first

measurement of the F -spin mixing in the A ≈ 200 mass region.
The obtained results of the F -spin mixing of the N = 80 isotones and Z = 80

isotopes showed theF -spin as an approximately good quantum number in 202,204Hg
and 140Nd. All determined VF−mix values in the N = 80 isotonic and Z = 80
isotopic chains, two nucleons apart from a shell closure, showed a similar behaviour,
except 138Ce at the Z = 58 sub-shell closure.
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A. HIE-ISOLDE CE Experiments

Table A.1.: The γ-ray transitions used for the energy and efficiency calibration for
the HIE-ISOLDE experiments. Iγ is the measured peak area, Ieff is the
intensity relative to the activity of the source.
Eγ (keV) Iγ ∆Iγ Ieff (%) ∆Ieff source
53.2 50394 534 2.200 0.020 133Ba
81.0 1186900 1300 34.060 0.270 133Ba
302.9 433508 783 18.330 0.060 133Ba
356.0 1349700 1200 62.050 0.190 133Ba
383.8 187445 538 8.940 0.030 133Ba
276.4 176647 616 7.164 0.022 133Ba
40.1 1695800 1400 59.400 1.100 152Eu
121.8 3789400 1100 28.580 0.060 152Eu
244.7 734829 995 7.583 0.019 152Eu
444.0 215231 550 3.100 0.100 152Eu
488.7 26752 38 0.419 0.003 152Eu
688.7 45043 342 0.857 0.008 152Eu
779.0 646903 853 12.940 0.020 152Eu
810.5 15864 278 0.320 0.003 152Eu
867.4 199441 518 4.250 0.002 152Eu
919.3 19739 264 0.427 0.006 152Eu
964.1 654493 839 14.610 0.020 152Eu
1085.8 425206 728 10.210 0.020 152Eu
1112.1 562752 778 13.640 0.020 152Eu
1212.9 54166 289 1.420 0.060 152Eu
1408.0 748372 871 21.010 0.200 152Eu
511.0 11928400 3700 1.1400 0.0800 66Ga
833.5 483874 880 0.0590 0.0030 66Ga
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1039.2 2797900 1700 0.3700 0.0200 66Ga
1333.1 68677 362 0.0117 0.0006 66Ga
1918.3 102359 2592 0.0199 0.0011 66Ga
2189.6 239528 540 0.0530 0.0030 66Ga
2422.5 75361 375 0.0188 0.0010 66Ga
2751.8 844262 936 0.2270 0.0012 66Ga
3228.8 49111 253 0.0151 0.0008 66Ga
3380.9 45023 244 0.0147 0.0008 66Ga
4085.9 33469 218 0.0127 0.0007 66Ga
4295.2 119587 358 0.0404 0.0021 66Ga
4806.0 41680 206 0.0186 0.0010 66Ga
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Figure A.1.: a) presents the calculations of the reaction kinematic of the 142Sm CE
experiment. b) shows an exemplary scattering process to introduce
the general setting. c) presents the co-dependency of the scattering
angles of both reaction partners, target- and beam-like particles
(blue). d) shows the experimental particle energies in dependence of
the scattering angle measured by the DSSD. Three different particle
types can be separated. The used gates for the particle-γ coincidences
are marked. For more information, see text in Chapter 4.
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Figure A.2.: The Eγ-Eγ matrix of the 140Nd CE experiment with the conditions of
the detection of one particle on the DSSD inside the target (one hit)
energy gate and of more than one γ ray in Miniball inside the prompt
time gate. The spectrum is mirrored at the Eγ-Eγ axis for visibility.
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Figure A.3.: Three target-particles gated spectra are presented. The γ-singles
spectrum in a) and b), c) show the coincidence spectra from gating in
the Eγ-Eγ matrix on the 2+1 → 0+1 and 4+1 → 2+1 transitions of 140Nd,
respectively.
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Figure A.4.: The Eγ-Eγ matrix of the 142Sm CE experiment with the conditions
of the detection of one particle on the DSSD inside the beam energy
gate and of more than one γ ray in Miniball inside the prompt time
gate. The spectrum is mirrored at the Eγ-Eγ axis for visibility.
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Figure A.5.: The Eγ-Eγ matrix of the 142Sm CE experiment with the conditions of
the detection of one particle on the DSSD inside the target (one hit)
energy gate and of more than one γ ray in Miniball inside the prompt
time gate. The spectrum is mirrored at the Eγ-Eγ axis for visibility.
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Figure A.6.: Three target-particles gated spectra of the 142Sm CE experiment. a)
shows the γ-singles spectrum and b), c) show the coincidence spectra
from gating in the Eγ-Eγ matrix on the 2+1 → 0+1 and 4+1 → 2+1
transitions of 142Sm, respectively.
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Table A.2.: The measured counts with statistical uncertainties of the identified
transitions of 140Nd in the target-particle gated spectra, see Figure
A.3. The transitions, which formed doublets, are marked with d1,2,3.
Iγ is the efficiency-corrected intensity relative to the intensity of the
2+1 → 0+1 transition.

Elevel Jπ Eγ Jπf Ap−γ Ap−γ−γ Ap−γ−γ Iγ
(keV) (keV) 2+1 → 0+1 4+1 → 2+1

774 2+1 774 0+1 10220(120) 119(11) 100(1)
1413 0+2 639 2+1 160(40) 1.4(3)
1490 2+2 [24] 1490 0+1 d3 5.5(6)

716 2+1 d1 18(5) 2.7(8)
1802 4+1 1028 2+1 1840(50) 114(11) 21.4(6)
1936 3−1 1936 0+1

1162 2+1 d2 d2 0.9(4)
2264 4+2 [94] 1491 2+1 d3 5(2) 1.2(5)
2950 (5,6)[94] 1148 4+1 d2 d2 3(1.7) 1.6(4)
3224 1422 4+1 70(13) 5.8(2.4) 1.0(2)

d1 145(60)
d2 193(51) 10(3)
d3 451(24)
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Table A.3.: The measured counts with statistical uncertainties of the identified
transitions of 142Sm in the target-particle gated spectra, see Figure
A.6. The transitions, which formed a doublet, are marked with d1.
Iγ is the efficiency-corrected intensity relative to the intensity of the
2+1 → 0+1 transition.

Elevel Jπ Eγ Jπf Ap−γ Ap−γ−γ Ap−γ−γ Iγ
(keV) (keV) 2+1 → 0+1 4+1 → 2+1

768 2+1 768 0+1 53220(250) 918(31) 100.0(7)
1450 (0+2 ) 683 2+1 700(70) 73(12) 1.2(1)
1658 (2)+2 1658 0+1 d1 2.8(3)

890 2+1 710(50) 47(10) 1.4(2)
1791 4+1 1023 2+1 10630(110) 792(29) 23.2(3)
2055 2+3 1287 2+1 74(26) 0.096(38)
2173 0+3 1405 2+1 197(24) 15(4) 0.55(8)
2354 (2+4 ) 2354 0+1 36(11) 0.13(4)
2420 6+1 629 4+1 270(60) 26(8) 15(7) 0.45(9)
2423 1655 2+1 d1 14(6) 0.57(20)
3003 (6+) 1212 4+1 1020(40) 75(9) 74(9) 2.5(2)

d1 1100(40)
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Figure A.7.: The signs of the MEs are fixed by the “best” fit and later only one
ME’s sign was switched, which is labeled on the x-axis. In a) the total
χ2 of the GOSIA calculation with the changed set of matrix elements
is presented. b) shows the distribution of the values for the instance
of the ME ⟨2+1 ||E2||4+1 ⟩ of 142Sm. For more information, see text in
Section 4.1.4.
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B. GOSIA Files
GOSIA, a semi-classical coupled-channel CE code, has been developed to simulate
experiments or analyze experimental CE data to determine electromagnetic tran-
sition MEs. The normalization is performed onto a selected transition ME of the
investigated isotope itself. The presented GOSIA-input files were used to analyze
the data of the CE experiments investigating theN = 80 isotones and to determine
the statistical tensor of the 2+7 state of 202Hg from the CE data. The large variety
of options of GOSIA are described in detail in the GOSIA user manual [98].

Listing B.1: GOSIA-input file to define the HPGe detectors of Miniball.
1 OP, TITLE
2 MINIBALL ARRAY
3 OP,GDET
4 −24
5 0 .1 ,5 .0 ,7 .8 ,12 .3
6 0.2 ,0 ,0 ,0 ,0 ,0 ,0
7 0 .1 ,5 .0 ,7 .8 ,12 .3
8 0.2 ,0 ,0 ,0 ,0 ,0 ,0
9 0 .1 ,5 .0 ,7 .8 ,12 .3

10 0.2 ,0 ,0 ,0 ,0 ,0 ,0
11 0 .1 ,5 .0 ,7 .8 ,11 .2
12 0.2 ,0 ,0 ,0 ,0 ,0 ,0
13 0 .1 ,5 .0 ,7 .8 ,11 .2
14 0.2 ,0 ,0 ,0 ,0 ,0 ,0
15 0 .1 ,5 .0 ,7 .8 ,11 .2
16 0.2 ,0 ,0 ,0 ,0 ,0 ,0
17 0 .1 ,5 .0 ,7 .8 ,11 .7
18 0.2 ,0 ,0 ,0 ,0 ,0 ,0
19 0 .1 ,5 .0 ,7 .8 ,11 .7
20 0.2 ,0 ,0 ,0 ,0 ,0 ,0
21 0 .1 ,5 .0 ,7 .8 ,11 .7
22 0.2 ,0 ,0 ,0 ,0 ,0 ,0
23 0 .1 ,5 .0 ,7 .8 ,11 .2
24 0.2 ,0 ,0 ,0 ,0 ,0 ,0
25 0 .1 ,5 .0 ,7 .8 ,11 .2
26 0.2 ,0 ,0 ,0 ,0 ,0 ,0
27 0 .1 ,5 .0 ,7 .8 ,11 .2
28 0.2 ,0 ,0 ,0 ,0 ,0 ,0
29 0 .1 ,5 .0 ,7 .8 ,12 .4
30 0.2 ,0 ,0 ,0 ,0 ,0 ,0
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31 0 .1 ,5 .0 ,7 .8 ,12 .4
32 0.2 ,0 ,0 ,0 ,0 ,0 ,0
33 0 .1 ,5 .0 ,7 .8 ,12 .4
34 0.2 ,0 ,0 ,0 ,0 ,0 ,0
35 0 .1 ,5 .0 ,7 .8 ,11 .1
36 0.2 ,0 ,0 ,0 ,0 ,0 ,0
37 0 .1 ,5 .0 ,7 .8 ,11 .1
38 0.2 ,0 ,0 ,0 ,0 ,0 ,0
39 0 .1 ,5 .0 ,7 .8 ,11 .1
40 0.2 ,0 ,0 ,0 ,0 ,0 ,0
41 0 .1 ,5 .0 ,7 .8 ,11 .6
42 0.2 ,0 ,0 ,0 ,0 ,0 ,0
43 0 .1 ,5 .0 ,7 .8 ,11 .6
44 0.2 ,0 ,0 ,0 ,0 ,0 ,0
45 0 .1 ,5 .0 ,7 .8 ,11 .6
46 0.2 ,0 ,0 ,0 ,0 ,0 ,0
47 0 .1 ,5 .0 ,7 .8 ,12 .0
48 0.2 ,0 ,0 ,0 ,0 ,0 ,0
49 0 .1 ,5 .0 ,7 .8 ,12 .0
50 0.2 ,0 ,0 ,0 ,0 ,0 ,0
51 0 .1 ,5 .0 ,7 .8 ,12 .0
52 0.2 ,0 ,0 ,0 ,0 ,0 ,0
53 OP, EXIT

Listing B.2: GOSIA-input file for the 208Pb(140Nd,140Nd*)208Pb* CE experiment.
1 OP, FILE
2 22 ,3 ,1
3 140nd_208pb . out
4 25 ,3 ,1
5 140nd_208pb . inp
6 3 ,3 ,1
7 140nd_208pb . y ld
8 4 ,3 ,1
9 140nd_208pb . cor

10 7 ,3 ,1
11 140nd_208pb .map
12 12 ,3 ,1
13 140nd_208pb . b s t
14 15 ,3 ,1
15 140nd_208pb . e r r
16 17 ,3 ,1
17 140nd_208pb . sev
18 99 ,13 ,1
19 140nd_208pb .amp
20 0 ,0 ,0
21 OP, TITLE
22 140ND_208PB
23 OP, GOSI
24 LEVE
25 1 ,1 ,0 ,0
26 2 ,1 ,2 ,0.774
27 3 ,1 ,0 ,1.413
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28 4 ,1 ,2 ,1.490
29 5 ,1 ,4 ,1.802
30 6 ,−1 ,3 ,1.935
31 7 ,1 ,2 ,2.140
32 8 ,1 ,4 ,2.264
33 9 ,−1 ,5 ,2.276
34 10 ,1 ,2 ,2.332
35 11 ,1 ,4 ,2.400
36 12 ,1 ,6 ,2.950
37 13 ,1 ,6 ,3.224
38 14 ,1 ,8 ,3.685
39 15 ,−1 ,5 ,2.480
40 16 ,1 ,2 ,3.036
41 0 ,0 ,0 ,0
42 ME
43 1 ,0 ,0 ,0 ,0
44 2 ,6 ,−0.00020 ,−0.0100 ,0.0100
45 4 ,6 ,0.00048 ,−0.0100 ,0.0100
46 6 ,7 ,0.00048 ,−0.0100 ,0.0100
47 2 ,0 ,0 ,0 ,0
48 1 ,2 ,0 .850 ,0 .82 ,0 .88
49 1 ,4 ,−0.195 ,−0.450 ,0.450
50 1 ,7 ,−0.20257 ,−0.40 ,0.400
51 1 ,10 ,−0.018 ,−0.40 ,0.500
52 2 ,2 ,−0.62 ,−1.2 ,−0.04
53 2 ,3 ,0.1803 ,−0.500 ,0.500
54 2 ,4 ,0.8227 ,−4.1000 ,4.000
55 2 ,5 ,−1.2549 ,−3.000 ,3.000
56 2 ,7 ,0.0825 ,−0.150 ,0.150
57 2 ,8 ,0.3029 ,−1.500 ,1.500
58 2 ,10 ,−0.0065 ,−0.500 ,0.500
59 2 ,11 ,−0.2489 ,−0.500 ,0.500
60 3 ,16 ,0.680 ,−10.0 ,10.0
61 4 ,4 ,− .62 ,−1.0 ,1.0
62 4 ,11 ,−1.27 ,−3.500 ,3.500
63 5 ,5 ,−.62157 ,−1.0 ,1.0
64 5 ,12 ,1.311 ,−5.500 ,5.500
65 5 ,8 ,−0.548 ,−5.000 ,5.000
66 5 ,13 ,1.1288 ,−5.000 ,5.000
67 6 ,9 ,0.1880 ,−5.000 ,5.000
68 7 ,7 ,− .62 ,−1.0 ,1.0
69 7 ,16 ,0.2990 ,−5.000 ,5.000
70 12 ,−14 ,1.5 ,5 ,12
71 3 ,0 ,0 ,0 ,0
72 1 ,6 ,0.23335 ,−2.600 ,2.600
73 2 ,6 ,0.5660 ,−3.000 ,3.000
74 4 ,6 ,−0.960 ,−4.000 ,4.000
75 5 ,9 ,1.845 , −3.0 ,3.0
76 5 ,15 ,1.65 ,−2.000 ,2.000
77 7 ,0 ,0 ,0 ,0
78 2 ,4 ,−0.40 ,−1.000 ,1.000
79 2 ,7 ,−1.16 ,−2.000 ,2.000
80 2 ,10 ,0.05 ,−2.000 ,2.000
81 0 ,0 ,0 ,0 ,0
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82 EXPT
83 2 ,60 ,140
84 −82 ,208 ,623 ,45.5 ,3 ,1 ,0 ,0 ,360 ,0 ,1
85 −82 ,208 ,623 ,−75.5 ,3 ,1 ,0 ,0 ,360 ,0 ,2
86 CONT
87 1 ,3
88 2 ,3
89 INT ,4
90 1 ,1000
91 2 ,1000
92 SPL , 1 .
93 CRF ,
94 SEL ,
95 PRT ,
96 1 ,1
97 2 ,1
98 5 ,1
99 11 ,0

100 12 ,0
101 13 ,1
102 14 ,0
103 15 ,1
104 16 ,0
105 0 ,0
106 END,
107
108 OP, BRIC
109 /home/ r a l l i / Phys ik / h i e i s o l d e / go s i a _ i s o l d e /BrIccFOV22 . idx
110 /home/ r a l l i / Phys ik / h i e i s o l d e / go s i a _ i s o l d e /BrIccFOV22 . i c c
111 OP, YIELD
112 1
113 −1,0
114 0.010
115 24 ,24
116 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24
117 135.5 ,147.0 ,152.9 ,44 .1 ,59 .6 ,67 .8 ,42 .8 ,56 .2 ,65 .3 ,126.3 ,138.8 ,149.6 ,141.9 ,

148.6 ,149.8 ,59 .7 ,59 .4 ,55 .4 ,124.3 ,135.2 ,147.1 ,42 .9 ,32 .0 ,27 .5
118 127.2 ,117.7 ,109.2 ,56 .6 ,47 .9 ,52 .4 ,104.3 ,111.5 ,121.2 ,78 .4 ,85 .0 ,82 .8 ,261.9 ,

257.5 ,252.2 ,235.3 ,242.6 ,252 ,310.8 ,307.9 ,297.2 ,309.2 ,298.3 ,290.8
119 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24
120 135.5 ,147.0 ,152.9 ,44 .1 ,59 .6 ,67 .8 ,42 .8 ,56 .2 ,65 .3 ,126.3 ,138.8 ,149.6 ,141.9 ,

148.6 ,149.8 ,59 .7 ,59 .4 ,55 .4 ,124.3 ,135.2 ,147.1 ,42 .9 ,32 .0 ,27 .5
121 127.2 ,117.7 ,109.2 ,56 .6 ,47 .9 ,52 .4 ,104.3 ,111.5 ,121.2 ,78 .4 ,85 .0 ,82 .8 ,261.9 ,

257.5 ,252.2 ,235.3 ,242.6 ,252 ,310.8 ,307.9 ,297.2 ,309.2 ,298.3 ,290.8
122 2 ,1
123 1
124 9e−4
125 1.0
126 1
127 1e−2
128 1.0
129 3 ! ntap = 4 fo r minimizat ion
130 1 ,1.0
131 10 ,2 ,10 ,1 ,0 .54 ,0.18
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132 0 ,1.0
133 3 ,1.0
134 4 ,2 ,−1.22 ,0.14
135 7 ,2 ,−0.08 ,0.08
136 10 ,2 ,−0.19 ,0.09
137 5 ,1.0
138 2 ,1 ,2 ,0 .85 ,0 .03
139 2 ,2 ,2 ,−0.64 ,0.41
140 2 ,4 ,4 ,−0.64 ,0.41
141 2 ,5 ,5 ,−0.64 ,0.41
142 2 ,7 ,7 ,−0.64 ,0.41
143 OP,RAW
144 1
145 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
146 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
147 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
148 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
149 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
150 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
151 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
152 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
153 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
154 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
155 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
156 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
157 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
158 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
159 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
160 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
161 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
162 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
163 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
164 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
165 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
166 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
167 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
168 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
169 1
170 24
171 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24
172 2
173 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
174 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
175 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
176 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
177 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
178 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
179 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
180 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
181 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
182 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
183 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
184 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
185 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
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186 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
187 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
188 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
189 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
190 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
191 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
192 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
193 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
194 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
195 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
196 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
197 1
198 24
199 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24
200 0
201 OP, INTI
202 10 ,10 ,599 ,647 ,27.9 ,63
203 599 ,604 ,609 ,615 ,622 ,627 ,632 ,637 ,642 ,647
204 27.9 ,30 ,32 ,35 ,39 ,43 ,48 ,53 ,58 ,63
205 10 ,10 ,599 ,647 ,27.9 ,35.9
206 599 ,604 ,609 ,615 ,622 ,627 ,632 ,637 ,642 ,647
207 27.9 ,28.5 ,29.5 ,30 ,31 ,32 ,33 ,34 ,35 ,35.9
208 10
209 599 ,604 ,609 ,615 ,622 ,627 ,632 ,637 ,642 ,647
210 32.19 ,32.22 ,32.25 ,32.27 ,32.29 ,32.31 ,32.34 ,32.36 ,32.38 ,32.42
211 50 ,50
212 10
213 599 ,604 ,609 ,615 ,622 ,627 ,632 ,637 ,642 ,647
214 32.19 ,32.22 ,32.25 ,32.27 ,32.29 ,32.31 ,32.34 ,32.36 ,32.38 ,32.42
215 50 ,50
216 OP,CORR
217 OP, EXIT
218
219 OP,MAP
220 OP, EXIT
221
222 OP,MINI
223 2100 ,40 ,1e−05,1e−04 ,1.1 ,1 ,1 ,0 ,0 ,1e−04
224 OP, EXIT
225 ! A f t e r the f i r s t minimizat ion process OP, REST i s i n s e r t ed before OP, INTI to load

cor rec ted y i e l d s
226 OP,REST
227 0 ,0
228
229 !OP, SELE i s neccessary f o r the e r ro r e s t imat ion
230 OP, SELE
231
232 ! d iagonal e r r o r s need d i f f e r e n t f l a g s in CONT
233 CONT
234 1 ,3
235 2 ,3
236 INT ,4
237 1 ,1000
238 2 ,1000
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239 SPL , 1 .
240 CRF ,
241 1 ,1
242 2 ,1
243 4 ,0
244 5 ,1
245 11 ,0
246 12 ,0
247 13 ,1
248 14 ,0
249 15 ,1
250 16 ,0
251 18 ,1
252 0 ,0
253 END,
254
255 OP,REST
256 0 ,0
257 OP,RE , F
258 OP,ERRO
259 1 ,0 ,0 ,1 ,0 ,1 e+308
260 OP, EXIT
261
262 ! unco re l l a t ed e r r o r s need d i f f e r e n t f l a g s in CONT
263 INT ,4
264 1 ,1000
265 2 ,1000
266 SPL , 1 .
267 CRF ,
268 SMR,
269 1 ,1
270 2 ,1
271 4 ,0
272 5 ,1
273 11 ,0
274 12 ,0
275 13 ,1
276 14 ,0
277 15 ,1
278 16 ,0
279 18 ,1
280 0 ,0
281 END,
282
283 OP,REST
284 0 ,0
285 OP,RE , F
286 OP,ERRO
287 1 ,0 ,0 ,1 ,0 ,1 e+308
288 OP, EXIT

Listing B.3: Experimental yields of the excited nuclear states of 140Nd.
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1 1 ,1 ,60 ,140 ,647 ,14 ,1.0
2 2 ,1 ,1694 ,10 !774
3 3 ,2 ,4 .4 ,1 .7 !639
4 4 ,1 ,36 ,2 !1490
5 4 ,2 ,26 .6 ,3 .4 !716
6 5 ,2 ,163.1 ,2 .2 !1028
7 6 ,1 ,1 .4 ,0 .4 !1935
8 6 ,2 ,4 .2 ,0 .7 !1161
9 7 ,1 ,1 .24 ,0 .3 !2140

10 7 ,2 ,3 .2 ,0 .5 !1366
11 8 ,2 ,6 .7 ,1 .7 !1491
12 11 ,2 ,3 .6 ,0 .6 !1626
13 11 ,4 ,5 .2 ,0 .8 !910
14 12 ,5 ,6 .7 ,1 .0 !1148
15 13 ,5 ,2 .9 ,0 .5 !1422
16 2 ,1 ,60 ,140 ,647 ,8 ,1.0
17 2 ,1 ,201 ,2.5 !774
18 3 ,2 ,2 .8 ,0 .7 !639
19 4 ,1 ,11 ,1.2 !1490
20 4 ,2 ,5 .4 ,1 .6 !716
21 5 ,2 ,43 ,1.2 !1028
22 6 ,2 ,1 .8 ,0 .8 !1161
23 8 ,2 ,2 .4 ,1 !1491
24 12 ,5 ,3 .3 ,0 .9 !1148
25 13 ,5 ,2 ,0.4 !1422

Listing B.4: GOSIA-input file for the 208Pb(142Sm,142Sm*)208Pb* CE experiment.
1 OP, FILE
2 22 ,3 ,1
3 142sm_208pb . out
4 25 ,3 ,1
5 142sm_208pb . inp
6 3 ,3 ,1
7 142sm_208pb . y ld
8 4 ,3 ,1
9 142sm_208pb . cor

10 7 ,3 ,1
11 142sm_208pb .map
12 12 ,3 ,1
13 142sm_208pb . b s t
14 15 ,3 ,1
15 142sm_208pb . e r r
16 17 ,3 ,1
17 142sm_208pb . sev
18 99 ,13 ,1
19 142sm_208pb .amp
20 0 ,0 ,0
21 OP, TITLE
22 142sm_208pb
23 OP, GOSI
24 LEVE
25 1 ,1 ,0 ,0
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26 2 ,1 ,2 ,0.768
27 3 ,1 ,0 ,1.450
28 4 ,1 ,2 ,1.658
29 5 ,1 ,4 ,1.791
30 6 ,−1 ,3 ,1.784
31 7 ,1 ,2 ,2.055
32 8 ,1 ,0 ,2.173
33 9 ,1 ,2 ,2.354
34 10 ,1 ,6 ,2.420
35 11 ,1 ,4 ,2.423
36 12 ,1 ,2 ,2.374
37 13 ,1 ,6 ,3.003
38 14 ,1 ,8 ,3.227
39 0 ,0 ,0 ,0
40 ME
41 1 ,0 ,0 ,0 ,0
42 2 ,6 ,0.00020 ,0.000011 ,0.01
43 4 ,6 ,0.00048 ,0.000011 ,0.0100
44 6 ,7 ,0.00048 ,0.000011 ,0.0100
45 2 ,0 ,0 ,0 ,0
46 1 ,2 ,0.826267 ,0.82 ,0.88
47 1 ,4 ,0.247255 ,0.000011 ,0.450
48 1,7 ,−0.14943 ,−0.4 ,−0.00001
49 1,9 ,−0.14321,−0.50 ,−0.00001
50 2,2 ,−1.03107 ,−1.2 ,−0.00001
51 2 ,3 ,0.206909 ,0.000011 ,0.500
52 2,4 ,−0.805185,−1.10 ,−0.00001
53 2 ,5 ,1.4283 ,0.000011 ,3.000
54 2 ,7 ,0.00795607 ,0.000011 ,0.50
55 2 ,8 ,0.3004090 ,0.000011 ,1.500
56 2,9 ,−0.153296 ,−.5 ,−0.00001
57 2 ,11 ,0.293028 ,0.000011 ,5.0
58 4,4 ,−0.6903094,−1.0 ,−0.00001
59 5,5 ,−0.6867484,−1.2 ,−0.00001
60 5 ,10 ,0.635091 ,0.000011 ,5.500
61 5 ,13 ,1.843757 ,0.000011 ,5.500
62 7,−7,−1.03107,2 ,2
63 7 ,12 ,0.336634 ,0.000011 ,1.5
64 10,10 ,−1.81902,−3.5 ,−0.00001
65 10,14 ,−3.49929,−5.5 ,−0.00001
66 13 ,13 ,0.0029 ,0.000011 ,4.2
67 13 ,14 ,1.1473478 ,0.000011 ,2.5
68 3 ,0 ,0 ,0 ,0
69 1 ,6 ,0.03601616 ,0.000011 ,1.600
70 2,6 ,−0.845681,−3.000,−0.00001
71 4,6 ,−0.6338648,−4.000,−0.00001
72 6,7 ,−0.5761796,−1.5 ,−0.00001
73 7 ,0 ,0 ,0 ,0
74 2 ,4 ,−0.243666 ,−1.000 ,1.000
75 2 ,7 ,0.84421499 ,−2.000 ,2.000
76 0 ,0 ,0 ,0 ,0
77 EXPT
78 2 ,62 ,142
79 −82 ,208 ,632 ,45.5 ,3 ,1 ,0 ,0 ,360 ,0 ,1
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80 −82 ,208 ,632 ,−75.5 ,3 ,1 ,0 ,0 ,360 ,0 ,2
81 CONT
82 1 ,3
83 2 ,3
84 INT ,4
85 1 ,1000
86 2 ,1000
87 SPL , 1 .
88 CRF ,
89 SEL ,
90 PRT ,
91 1 ,1
92 2 ,1
93 5 ,1
94 11 ,0
95 12 ,0
96 13 ,1
97 14 ,0
98 15 ,1
99 16 ,0

100 0 ,0
101 END,
102
103 OP, BRIC
104 /home/ r a l l i / Phys ik / h i e i s o l d e / go s i a _ i s o l d e /BrIccFOV22 . idx
105 /home/ r a l l i / Phys ik / h i e i s o l d e / go s i a _ i s o l d e /BrIccFOV22 . i c c
106 OP, YIELD
107 1
108 −1,0
109 0.010
110 24 ,24
111 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24
112 135.5 ,147.0 ,152.9 ,44 .1 ,59 .6 ,67 .8 ,42 .8 ,56 .2 ,65 .3 ,126.3 ,138.8 ,149.6 ,141.9 ,

148.6 ,149.8 ,59 .7 ,59 .4 ,55 .4 ,124.3 ,135.2 ,147.1 ,42 .9 ,32 .0 ,27 .5
113 127.2 ,117.7 ,109.2 ,56 .6 ,47 .9 ,52 .4 ,104.3 ,111.5 ,121.2 ,78 .4 ,85 .0 ,82 .8 ,261.9 ,

257.5 ,252.2 ,235.3 ,242.6 ,252 ,310.8 ,307.9 ,297.2 ,309.2 ,298.3 ,290.8
114 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24
115 135.5 ,147.0 ,152.9 ,44 .1 ,59 .6 ,67 .8 ,42 .8 ,56 .2 ,65 .3 ,126.3 ,138.8 ,149.6 ,141.9 ,

148.6 ,149.8 ,59 .7 ,59 .4 ,55 .4 ,124.3 ,135.2 ,147.1 ,42 .9 ,32 .0 ,27 .5
116 127.2 ,117.7 ,109.2 ,56 .6 ,47 .9 ,52 .4 ,104.3 ,111.5 ,121.2 ,78 .4 ,85 .0 ,82 .8 ,261.9 ,

257.5 ,252.2 ,235.3 ,242.6 ,252 ,310.8 ,307.9 ,297.2 ,309.2 ,298.3 ,290.8
117 2 ,1
118 1
119 8e−4
120 1.0
121 1
122 1.25e−3
123 1.0
124 4 ! ntap
125 1 ,1.0
126 7 ,1 ,7 ,2 ,0 .37 ,0 .06
127 0 ,1.0
128 1 ,1.0
129 7 ,2 ,0 .01 ,0 .01
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130 1 ,1.0
131 2 ,1 ,2 ,0.837 ,0.054
132 OP,RAW
133 1
134 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
135 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
136 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
137 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
138 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
139 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
140 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
141 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
142 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
143 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
144 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
145 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
146 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
147 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
148 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
149 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
150 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
151 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
152 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
153 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
154 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
155 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
156 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
157 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
158 1
159 24
160 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24
161 2
162 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
163 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
164 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
165 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
166 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
167 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
168 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
169 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
170 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
171 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
172 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
173 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
174 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
175 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
176 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
177 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
178 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
179 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
180 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
181 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
182 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
183 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
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184 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
185 0 ,0 ,0 ,0 ,0 ,0 ,−50 ,0
186 1
187 24
188 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24
189 0
190 OP,REST
191 0 ,0
192 OP, INTI
193 10 ,10 ,608 ,656 ,27.9 ,63
194 608 ,613 ,618 ,623 ,628 ,632 ,638 ,644 ,650 ,656
195 27.9 ,30 ,32 ,35 ,39 ,43 ,48 ,53 ,58 ,63
196 10 ,10 ,608 ,656 ,27.9 ,35.9
197 608 ,613 ,618 ,623 ,628 ,632 ,638 ,644 ,650 ,656
198 27.9 ,28.5 ,29.5 ,30 ,31 ,32 ,33 ,34 ,35 ,35.9
199 10
200 608 ,613 ,618 ,623 ,628 ,632 ,638 ,644 ,650 ,656
201 33.33 ,33.36 ,33.39 ,33.42 ,33.45 ,33.47 ,33.50 ,33.53 ,33.56 ,33.58
202 50 ,50
203 10
204 608 ,613 ,618 ,623 ,628 ,632 ,638 ,644 ,650 ,656
205 33.33 ,33.36 ,33.39 ,33.42 ,33.45 ,33.47 ,33.50 ,33.53 ,33.56 ,33.58
206 50 ,50
207 OP,CORR
208 OP, EXIT
209
210 OP,MAP
211 OP, EXIT
212
213 OP,MINI
214 2100 ,40 ,1e−05,1e−04 ,1.1 ,1 ,1 ,0 ,0 ,1e−04
215 OP, EXIT
216 ! A f t e r the f i r s t minimizat ion process OP, REST i s i n s e r t ed before OP, INTI to load

cor rec ted y i e l d s
217 OP,REST
218 0 ,0
219
220 !OP, SELE i s neccessary f o r the e r ro r e s t imat ion
221 OP, SELE
222
223 ! d iagonal e r r o r s need d i f f e r e n t f l a g s in CONT
224 CONT
225 1 ,3
226 2 ,3
227 INT ,4
228 1 ,1000
229 2 ,1000
230 SPL , 1 .
231 CRF ,
232 1 ,1
233 2 ,1
234 4 ,0
235 5 ,1
236 11 ,0
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237 12 ,0
238 13 ,1
239 14 ,0
240 15 ,1
241 16 ,0
242 18 ,1
243 0 ,0
244 END,
245
246 OP,REST
247 0 ,0
248 OP,RE , F
249 OP,ERRO
250 1 ,0 ,0 ,1 ,0 ,1 e+308
251 OP, EXIT
252
253 ! unco re l l a t ed e r r o r s need d i f f e r e n t f l a g s in CONT
254 INT ,4
255 1 ,1000
256 2 ,1000
257 SPL , 1 .
258 CRF ,
259 SMR,
260 1 ,1
261 2 ,1
262 4 ,0
263 5 ,1
264 11 ,0
265 12 ,0
266 13 ,1
267 14 ,0
268 15 ,1
269 16 ,0
270 18 ,1
271 0 ,0
272 END,
273
274 OP,REST
275 0 ,0
276 OP,RE , F
277 OP,ERRO
278 1 ,0 ,0 ,1 ,0 ,1 e+308
279 OP, EXIT

Listing B.5: Experimental yields of the excited nuclear states of 142Sm.
1 1 ,1 ,62 ,142 ,656 ,13 ,1.0
2 2 ,1 ,7937 ,40 !768
3 4 ,1 ,132 ,4 !1658
4 7 ,1 ,2 .7 ,0 .8 !2055
5 9 ,1 ,8 .3 , .8 !2354
6 3 ,2 ,23 ,3 !683
7 4 ,2 ,71 ,3.2 !890
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8 5 ,2 ,885 ,6.5 !1023
9 6 ,2 ,33 ,10 !1016

10 7 ,2 ,8 .1 ,1 .2 !1287
11 8 ,2 ,8 .8 ,1 .2 !1405
12 10 ,5 ,11.3 ,2 .3 !629
13 11 ,2 ,12.4 ,2 .5 !1655
14 13 ,5 ,51 ,2.4 !1212
15 2 ,1 ,62 ,142 ,656 ,12 ,1.0
16 2 ,1 ,1041 ,7 !768
17 4 ,1 ,29 ,3 !1658
18 9 ,1 ,1 .4 , .44 !2354
19 3 ,2 ,12 .8 ,1 .3 !683
20 4 ,2 ,14 .4 ,1 .6 !890
21 5 ,2 ,241 ,3 !1023
22 6 ,2 ,7 .2 ,2 .6 !1016
23 7 ,2 ,1 .0 ,0 .4 !1287
24 8 ,2 ,5 .7 ,0 .8 !1405
25 10 ,5 ,4 .7 ,1 .0 !629
26 11 ,2 ,5 .9 ,2 .1 !1655
27 13 ,5 ,26.4 ,2 !1212

Listing B.6: GOSIA-input file used for the iterative procedure to determine the
statistical tensor of the 2+7 state and δ of the 2+7 → 2+1 transition of
202Hg.

1 OP, FILE
2 22 ,3 ,1
3 202Hg_subse t_Trans i t ion . out ! De f i n i t i o n of output f i l e s
4 17 ,3 ,1
5 202Hg_subse t_Trans i t ion . s t a tTensor
6 0 ,0 ,0
7 OP, TITL
8 CE 202H on 12C
9 OP, GOSI

10 LEVE ! Dec la ra t ion of a subse t of the l e v e l scheme
11 1 1 0.0 0.0
12 2 1 2.0 0.439
13 3 1 2.0 0.960
14 4 1 4.0 1.120
15 5 1 2.0 1.182
16 6 1 2.0 1.793 ! Leve l of i n t e r e s t
17 7 −1 3.0 2.356
18 8 −1 3.0 2.709
19 0 0 0 0
20 ME ! Dec la ra t ion of invo lved t r a n s i t i o n s
21 2 0 0 0 0
22 1 2 0.7815 0.78 0.79
23 1 3 0.03618 −5.0 5.0
24 1 5 0.0001 −5.0 5.0
25 1 6 0.0659 −5.0 5.0
26 2 2 −1.33 −5.0 5.0
27 2 3 0.300 −5.0 5.0

138 B. GOSIA Files



28 2 4 1.228 −5.0 5.0
29 2 5 0.160 −5.0 5.0
30 2 6 0.0498 −5.0 5.0 ! T ran s i t i on of i n t e r e s t
31 3 5 0.66 −5.0 5.0
32 3 0 0 0 0
33 1 7 0.1927 −5.0 5.0
34 1 8 0.5428 −5.0 5.0
35 0 0 0 0 0
36 EXPT ! De f i n i t i on of the r eac t i on par tne r s
37 1 80 202
38 −6, 12 , 829. , −1.8, 6 , 1 , 0 , 0 .0 , 360.0 , 0 , 1
39 CONT ! Switches and f l a g s
40 INT , 1 .
41 1 ,1000
42 SPL , 1 .
43 PRT ,
44 1 ,1
45 2 ,1
46 3 ,1
47 4,−2
48 5 ,1
49 6 ,1
50 7 ,1
51 8 ,1
52 10 ,1
53 11 ,1
54 12 ,1
55 13 ,1
56 14 ,1
57 15 ,1
58 16 ,1
59 17 ,3
60 18 ,1
61 19 ,1
62 20 ,1
63 0 ,0
64 TEN,
65 END,
66
67 OP, STAR
68 OP, EXIT
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C. ATLAS CE Experiment

Figure C.1.: The relative intensities of the γ rays of the calibration sources 152Eu,
182Ta and 56Co measured by Gammasphere are presented. The func-
tion (4.1) was used to fit the calibration data for the efficiency cor-
rection of the 12C(202Hg,202Hg*)12C experiment.
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Table C.1.: The measured counts with statistical uncertainties of identified transi-
tions of the 202Hg CE experiment determined in four γ-ray spectra.

Elevel Jπ Eγ Jπf A(Singles) A(γ-gate) A(γ-gate) A(γ-gate)
(keV) (keV) 2+1 → 0+1 2+2 → 2+1 4+1 → 2+1

×103 ×103 ×103

439 2+1 439 0+1 253.22×103(2) 272.9(6) 223.3×103(5)
960 2+2 960 0+1 86.7(6)

2+2 520 2+1 1037(1) 270.9(5)
1120 4+1 680 2+1 810(1) 225.3(5)
1182 2+3 743 2+1 45.8(6) 7.6(1)

2+3 222 2+2 97.1(16) 27.3(2) 242.6(17)
1312 4+2 872 2+1 34.7(6) 5.4(2)

4+2 352 2+2 56.8(18) 14.8(2) 133.7(14)
4+2 129 2+3 10.9(5)

1348 (2+) 908 2+1 d1 d1
1390 2+4 950 2+1 38.3(6) 6.1(1)

2+4 429 2+2 24.8(9)
2+4 207 2+3 9.5(7)

1564 0+3 1125 2+1 17.0(4) 5.1(1)
1575 2+5 615 2+2 13.5(7)
1643 0+4 1204 2+1 1.7(1)
1794 2+7 1354 2+1 143.7(6) 36.2(2)

2+7 833 2+2 12.8(7)
1823 2+8 1384 2+1 28.8(5) 7.7(2)

2+8 864 2+2 10.6(6) 4.6(2) 34.9
2+8 641 2+3 11.5(5)

1966 5−1 654 4+2 15.8(6)
1966 2+10 1527 2+1 d2 d2 d2

2+10 654 4+2 15.8(6)
1989 6+1 868 4+1 1335(64)
2134 (2+) 1014 4+1 2.6(1) 784(55)
2293 (3, 4) 1853 2+1 3.4(1)
2357 3−1 1917 2+1 34.2(5) 7.5(1)

3−1 1396 2+3 29.8(5) 7.2(3) 69.3(10)
3−1 1174 2+5 2.8(1) 24.3(10)
3−1 1045 2+3 24.4(5) 4.0(1) 21.6(8)

2456 (2+) 1495 2+2 11.2(11)
2516 (1, 2) 2516 0+1 15.5(4)
2681 (2+) 2681 0+1 18.4(4)
2357 3−2 2264 2+1 56.5(5) 16.0(1)

3−2 1747 2+2 270.0(7) 64.4(3) 567.3(25)
3−2 1524 2+3 d2 d2 d2
3−2 914 2+7 d1 d1

3166 3−3 1983 2+3 10.8(6)
d1 33.2(4) 6.4(1)
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d2 66.4(6) 16.3(2) 65.4(15)

Table C.2.: Peak areas of selected transitions of 202Hg determined in ring spectra
in coincidence with the 2+1 → 0+1 transition unless otherwise noted.

ring 2+1 → 0+1
a 2+2 → 2+1 4+1 → 2+1 2+7 → 2+1 3−2 → 2+2 2+3 → 2+1 2+3 → 2+2

×103

2 9997(3) 5911(79) 4741(71) 910(34) 1148(37) 205(24) 743(48)
3 12178(4) 6935(86) 5616(78) 990(36) 1348(40) 216(22) 908(43)
4 25433(5) 13844(122) 11473(112) 1887(54) 3201(62) 434(55) 1791(63)
5 11949(4) 6515(83) 5178(75) 861(34) 1580(44) 181(22) 803(41)
6 27371(5) 14856(127) 11802(113) 1972(54) 4174(69) 415(31) 1707(63)
7 10924(3) 5743(70) 4477(70) 734(33) 1566(42) 160(28) 699(44)
8 13884(4) 7267(88) 5777(80) 923(38) 2014(48) 176(22) 929(48)
9 19773(5) 10848(108) 8326(94) 1392(44) 2891(56) 299(27) 1368(56)
10 12814(4) 6879(88) 5623(78) 940(38) 1785(46) 223(22) 803(47)
11 13677(4) 7290(90) 5920(79) 941(38) 1920(47) 224(23) 890(45)
12 26183(5) 14440(127) 11615(112) 1880(54) 3599(65) 423(33) 1723(66)
13 10375(3) 5893(79) 4978(73) 830(33) 1335(39) 178(19) 695(38)
14 23619(5) 13316(119) 11147(109) 1909(51) 2941(59) 418(32) 1728(63)
15 13191(4) 7795(90) 6553(83) 1100(37) 1532(41) 234(20) 925(49)
16 12446(4) 7296(88) 6309(81) 1120(37) 1574(43) 216(21) 861(43)
17 12306(4) 7573(89) 6424(82) 1965(36) 1364(39) 248(22) 899(45)

aMeasured in γ singles
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Figure C.2.: The ringwise efficiency calibration measurements of Gammasphere.
A simple exponential decay funtion was used for the fit on the data
from the 152Eu source (Eγ > 200 keV).
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Figure C.3.: Ringwise γ-ray singles spectra zoomed to the 2+1 → 0+1 transition
at 439 keV are shown. The determined peak areas are presented in
Table C.2.
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Figure C.4.: Ringwise γ-ray spectra gated on the 2+1 → 0+1 transition and zoomed
to the 3−2 → 2+1 transition at 1747 keV are shown. The determined
peak areas are presented in Table C.2.
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Figure C.5.: Ringwise γ-ray spectra gated on the 2+1 → 0+1 transition and zoomed
to the 2+7 → 2+1 transition at 1354 keV are shown. The determined
peak areas are presented in Table C.2.
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a) b)

c) d)

Figure C.6.: The angular distributions of the transitions 2+3 → 2+2 , 2+3 → 2+1 ,
2+2 → 2+1 and 4+1 → 2+1 in coincidence with the 2+1 → 2+1 transition
are shown in a), b), c) and d), respectively. The intensities are
determined with the spectra from Figures C.7, C.8, C.9 and C.10.
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Figure C.7.: Ringwise γ-ray spectra gated on the 2+1 → 0+1 transition and zoomed
to the 2+3 → 2+2 transition at 222 keV are shown. The determined
peak areas are presented in Table C.2.
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Figure C.8.: Ringwise γ-ray spectra gated on the 2+1 → 0+1 transition and zoomed
to the 2+3 → 2+1 transition at 742 keV are shown. The determined
peak areas are presented in Table C.2.
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Figure C.9.: Ringwise γ-ray spectra gated on the 2+1 → 0+1 transition and zoomed
to the 4+1 → 2+1 transition at 680 keV are shown. The determined
peak areas are presented in Table C.2.
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Figure C.10.: Ringwise γ-ray spectra gated on the 2+1 → 0+1 transition and zoomed
to the 2+2 → 2+1 transition at 520 keV are shown. The determined
peak areas are presented in Table C.2.
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D. CLX Files
The CE code CLX was used to calculate the cross sections of excited states of 202Hg
in the 12C(202Hg,202Hg*)12C CE reaction. The input file consists of three parts.
The header to define the experiment, the involved nuclear states and the transition
matrix elements between the nuclear states.

Listing D.1: CLX-input file for the 12C(202Hg,202Hg*)12C CE experiment.
1 202Hg on 12C @890MeV Gammasphere ! T i t l e
2 11101111
3 24 0 6. !Max s t a t e s inv−0−Max Value of Magnetic N
4 0. 0 . 0 . ! Accuracy parameters
5 6 202 ! Target Z p r o j e c t i l e A
6 80 12 ! P r o j e c t i l e Z t a r g e t A
7 829 ! Average beam energy ( t a r g e t th i c kne s s )
8 0.1 180 10 ! S t a r t i n g anlge−stopping , s tep in cm sys
9 1 0 0.0 1 0 ! Levels−Spin−energy (mev)−P a r i t i y

10 2 2 0.439 1 0
11 3 2 0.960 1 0
12 4 4 1.120 1 0
13 5 2 1.182 1 0
14 6 4 1.311 1 0
15 7 2 1.348 1 0
16 8 2 1.389 1 0
17 9 0 1.564 1 0
18 10 2 1.575 1 0
19 11 0 1.643 1 0
20 12 2 1.793 1 0
21 13 2 1.823 1 0
22 14 5 1.965 −1 0
23 15 2 1.966 1 0
24 16 6 1.988 1 0
25 17 2 2.133 1 0
26 18 4 2.293 1 0
27 19 3 2.356 −1 0
28 20 2 2.456 1 0
29 21 2 2.516 1 0
30 22 2 2.681 1 0
31 23 3 2.709 −1 0
32 24 3 3.166 −1 0
33
34 1 2 0.7815 2 !439keV B(E2) nndc
35 1 3 0.0366 2 !960 keV smal le r than value from nndc
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36 1 4 0.0001 4 !E4 e x c i t a t i o n of 4+1 s t a t e =0
37 1 5 0.0001 2
38 1 6 0.0001 4 !E4 e x c i t a t i o n of 4+2 s t a t e =0
39 1 7 0.0001 2
40 1 8 0.02158 2
41 1 10 0.0001 2
42 1 12 0.0691 2
43 1 13 0.0429 2
44 1 15 0.0001 2
45 1 17 0.02961 2
46 1 18 0.0001 4 !E4 e x c i t a t i o n of 4+3 s t a t e =0
47 1 19 0.204 3
48 1 20 0.02783 2
49 1 21 0.0618 2
50 1 22 0.0831 2
51 1 23 0.5915 3
52 1 24 0.1316 3
53
54 2 2 −1.33 2 ! quadrupole moment from nndc
55 2 3 0.303 2 !520 keV smal le r than value from nndc
56 2 4 1.297 2 !680 keV
57 2 5 0.2139 2 ! predetermined from br and de l t a
58 2 6 0.2166 2 !
59 2 7 0.23145 2 !908 keV
60 2 8 0.168 2 !950 keV predetermined from br
61 2 9 0.203 2
62 2 10 0.1295 2 !1135 keV predetermined from br
63 2 11 0.1349 2
64 2 12 0.0499 2 ! predetermined from br and de l t a
65 2 13 0.302 2 !1384 keV predetermined from br
66 2 14 0.4955 3 ! e x c i t a t i o n of the 5− s t a t e
67 2 15 0.592 2 !1527 keV
68 2 16 0.528 4
69 2 18 0.467 2 !
70 2 20 0.0001 2 ! gs e x c i t a t i o n
71
72 3 3 0 2
73 3 5 0.882 2 !222 keV predetermined from br and de l t a
74 3 6 2.951 2 !351 keV predetermined from br
75 3 8 0.661 2 !429 keV predetermined from br
76 3 10 0.784 2 !616
77 3 12 0.470 2 !833 keV predetermined from br
78 3 13 0.630 2 !863 kev predetermined from br
79
80 4 4 0 2
81 4 16 1.52 2 !B(E2) nndc
82
83 5 5 0 2
84 5 6 3.82 2 !129 keV predetermined from br
85 5 8 2.94 2 !207 keV predetermined from br
86 5 13 0.853 2 !615 keV predetermined from br
87
88 6 6 0 2
89 6 15 1.39 2 !654 keV predetermined from br
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Listing D.2: Python3 code using CLX to determine the uncertainties of the MEs.
This code was designed for the 12C(202Hg,202Hg*)12C CE experiment.

1 import numpy as np
2 import math as mt
3 import random
4 import os
5
6
7 ###customized codes func t i on s . py and yield_norm . py###
8 import func t i on s as fn
9 import yield_norm as yn

10
11
12 max_iter = 100 ##number of i t e r a t i o n s##
13
14 ###s t a r t of determinat ion of the s e t of matr ix elements###
15 f o r k in range (0 , max_iter ) :
16
17 maxtrans = in t (40) #number of t r a n s i t i o n s
18 maxlvl = i n t (23) #number of l e v e l s
19
20 ###product ion of the l i s t of t r a n s i t i o n s , y i e l d s and the beam energy var ied

i n s i d e the un c e r t a i n t i e s of known quan t i t i e s###
21 c l xhg t rans = yn . c l x _ t r an s_ rn ()
22 hgy ie ld s = yn . c l x _ y i e l d s _ r n ()
23 beam_energy = yn . beam_energy_rn ()
24
25 smal l_range = [0 ,13] #de f i n i t i o n of the 2 f i x ed ME <0+1||E2||2+1> and <2+1||E2

||2+1>
26 t r a n s _ f i n a l = np . zeros (( maxtrans ,4 ) ) # d e f i n i t i o n of l i s t f o r the f i n a l MEs
27 big_range = [ j f o r j in range (0 , maxtrans ) i f j not in yn . branching_rn () [0 ] . nums

] #de f i n i t i o n of MEs , which w i l l be var ied exc luding ME which are predetermine
by other MEs

28 b i g _ i t e r = 0 #s t a r t value fo r b i g _ i t e r
29
30 while b i g _ i t e r < 25:
31 ###FILE and PATH de f i n i t i o n s###
32 PATH_TO_CLX = " /home/ r a l l i / Phys ik / c l x _ t e s t / c lx_source_code / c l x "
33 NAME_OF_TEMP_CLX = " blubber . c l x "
34 INPUT_HEADER = " input / re s t_py . dat "
35 INPUT_LEVELS = " input / l v l _py . dat "
36 RANDOM_BEAM_E = " random/beamenergy_hg_rn . dat "
37 RANDOM_TRANSITIONS = " random/ trans_hg_rn . dat "
38 PATH_TO_XSECS = " random/ x_sect ion_hg . dat "
39 PATH_TO_TAB3 = " . . / . . / tab3 . awk "
40
41 os . system ( " rm "+NAME_OF_TEMP_CLX) #remove old CLX input
42 os . system ( " ca t "+INPUT_HEADER+" "+RANDOM_BEAM_E+" "+INPUT_LEVELS+" "+

RANDOM_TRANSITIONS+" >> "+ NAME_OF_TEMP_CLX) # produce new CLX input
43 os . system (PATH_TO_CLX+" <"+NAME_OF_TEMP_CLX+" | "+PATH_TO_TAB3+" > "+

PATH_TO_XSECS) #execute new CLX f i l e and save xsecs in PATH_TO_XSECS
44
45 c lxhgx = np . l oad t x t (PATH_TO_XSECS , dtype={ ’ names ’ : ( ’ l v l ’ , ’ xsec ’ , ’ r e l ’ ) , ’
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formats ’ : (np . in t , np . f l o a t , np . f l o a t ) } , skiprows=3) #load CLX x se c t i on s
46
47 d i f f _ y i e l d _ x s e c t i o n = [[ clxhgx [ i ] [0 ] , ( c lxhgx [ i ][2] − hgy ie ld s [ i ] [1]) /

hgy i e ld s [ i ] [1 ] , ( c lxhgx [ i ][2] − hgy i e ld s [ i ] [1]) / hgy i e ld s [ i ] [2]] f o r i in range (
maxlvl ) ] #determine dev ia t i on of CLX and exper imental r e l a t i v e x s e c t i on s

48
49 error_sum1 = np . sum([ abs ( d i f f _ y i e l d _ x s e c t i o n [ i ] [1]) f o r i in range (maxlvl )

]) /maxlvl #normalized e r ro r sum
50
51 p r i n t ( error_sum1 , b i g _ i t e r )
52 #### s t a r t of the product ion of new se t of matr ix elements###
53 f o r i in big_range :
54 z = in t ( c l xhg t rans [ i ][1]−2)
55 i f i in smal l_range :
56 c lxhgt ran1 = c lxhg t rans [ i ][2] #the two known ME are f i x ed
57 e l i f i == 2:
58 c lxhgt ran1 = 0.0 # tha t ME <2+3||E2||0+1> i s def ined to be 0 , f o r

an upper l im i t tha t may change
59 e l s e :
60 di f f_ temp = abs ( d i f f _ y i e l d _ x s e c t i o n [ z ][1]) #dev ia t i on of CLX and

EXP
61 s i g n _ d i f f = np . s ign ( d i f f _ y i e l d _ x s e c t i o n [ z ][1]) #inc rea se or

decrease ?
62 sign_me = np . s ign ( c l xhg t rans [ i ] [2])
63 ####c r u c i a l par t####
64 #the change of the ME i s def ined by the dev ia t i on of CLX
65 #and EXP y i e l d s and whether the CLX y i e l d s have to inc r ea se or

decrease .
66 #Furthermore , the change i s randomized to prevent loop ings and the

change decrease with r i s i n g i t e r a t i o n s .
67 ####################
68 clx_add = sign_me* s i g n _ d i f f *np . random . normal ( di f f_temp , d i f f_ temp

/100 ,1) [0]* c l xhg t rans [ i ] [2]/( b i g _ i t e r+10)
69 c lxhgt ran1 = c lxhg t rans [ i ][2] − clx_add
70 t r a n s _ f i n a l [ i ] = c lxhg t rans [ i ] [0] , c l xhg t rans [ i ] [1] , c lxhgtran1 ,

c l xhg t rans [ i ][3] #d e f i n i t i o n of new matr ix element
71
72 ####The predetermined MEs are added to the l i s t of MEs####
73 ###They are determined v ia branching r a t i o s , de l ta s , energ ie s . . . . and

another ME, e . g . of a ground s t a t e t r a n s i t i o n####
74 ###The quan t i t i e s are saved in yields_norm . py and w i l l be var ied i n s i d e

t h e i r un c e r t a i n t i e s#####
75 f o r obj in yn . branching_rn () :
76 length_dec = len ( obj . decay )
77 f o r i in range ( length_dec ) :
78 i t = obj . decay [ i ][3]
79 t e s t = fn . mul t i_ func ( obj . decay [ i ] [0] , obj . de l ta , ob j . decay [ i ] [1] ,

t r a n s _ f i n a l [ obj .num][2] , obj . en , obj . decay [ i ] [2] , obj . br , ob j . decay [ i ] [4] , obj . nL ,
obj . decay [ i ] [5])

80 t r a n s _ f i n a l [ i t ] = c lxhg t rans [ i t ] [0] , c l xhg t rans [ i t ] [1] , t e s t ,
c l xhg t rans [ i t ][3]

81
82
83 c l xhg t rans = t r a n s _ f i n a l
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84 np . s ave t x t (RANDOM_TRANSITIONS, t r an s _ f i n a l , fmt=( ’%−4d ’ , ’%−4d ’ , ’%1.8 f ’ , ’%−4d ’
) )#save s e t of MEs

85 b i g _ i t e r += 1 #inc rea se b i g _ i t e r
86 i f error_sum1 < 0.05: #convergence c r i t e r i um
87 p r i n t ( ’ converged ’ )
88 PATH_TO_MES = "mxe"
89 os . system ( " cp "+RANDOM_TRANSITIONS+" "+PATH_TO_MES+" / s e t "+s t r (k ) ) #copy

f i n a l s e t of MEs to a f o l d e r where a l l s e t s of s u c c e s s f u l l minimizat ion are
s to red

90 break
91 e l i f error_sum1 > 1.25 or b i g _ i t e r > 24: #f a i l e d to converge −> s t a r t new
92 p r i n t ( ’ f a i l e d to converge ’ )
93 b i g _ i t e r = 0
94 c l xhg t rans = yn . c l x _ t r an s_ rn ()
95 hgy ie ld s = yn . c l x _ y i e l d s _ r n ()
96 eam_energy = yn . beam_energy_rn ()
97 smal l_range = [0 ,13]

Listing D.3: Variation of known quantities inside their uncertainties in lists which
are used in Listing D.2.

1 ’ ’ ’
2 Python s c r i p t to vary the known quan t i t i e s i n s i d e t h e i r un c e r t a i n t i e s us ing normal

d i s t r i b u t i o n s
3 ’ ’ ’
4 import numpy as np
5 import math as mt
6 import random
7 import func t i on s as fn
8
9 maxlvl = i n t (23)#number of l e v e l s

10 maxtrans = in t (40)#number of t r a n s i t i o n s
11 def c l x _ y i e l d s _ r n () :#va r i a t i o n of the exper imental y i e l d s i n s i d e t h e i r

un c e r t a i n t i e s
12 f i l ename_y ie ld =" input / y ie ld s_hg . dat "
13 hgy ie ld s = np . l oad t x t ( f i l ename_y ie ld , dtype={ ’ names ’ : ( ’ l v l _ en ’ , ’ r e l ’ , ’ d e l t a r e l ’ ) ,

’ formats ’ : (np . in t , np . f l o a t , np . f l o a t ) } , skiprows=1)
14
15 re turn [[ hgy i e ld s [ i ] [0] , np . random . normal ( hgy i e ld s [ i ] [1] , hgy i e ld s [ i ] [2] ,1) ,

hgy i e ld s [ i ] [2]] f o r i in range (maxlvl ) ]
16
17 def c l x _ t r an s_ rn () :#va r i a t i o n of the known MEs in s i d e t h e i r un c e r t a i n t i e s
18 f i l ename_t rans =" input / trans_hg_py . dat "
19 c l xhg_ t rans = np . l oad t x t ( f i l ename_trans , dtype={ ’ names ’ : ( ’ l v l d ’ , ’ l v l up ’ , ’mx ’ , ’ L ’ )

, ’ formats ’ : (np . in t , np . in t , np . f l o a t , np . i n t ) })
20 hgtrans_rn = []
21 f o r i in range (0 , maxtrans ) :
22 i f i == 0:#ME <2+1||E2||0+1>
23 hg t r an s _ i t e r = ( c l xhg_ t rans [ i ] [0] , c l xhg_ t rans [ i ] [1] , np . random . normal (

c l xhg_ t rans [ i ][2] ,0 .0032 ,1) [0] , c l xhg_ t rans [ i ] [3])
24 e l i f i == 13: :#ME <2+1||E2||2+1>
25 hg t r an s _ i t e r = ( c l xhg_ t rans [ i ] [0] , c l xhg_ t rans [ i ] [1] , np . random . normal (

c l xhg_ t rans [ i ] [2] ,0 .17 ,1) [0] , c l xhg_ t rans [ i ] [3])
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26 e l s e :#a l l other MEs
27 hg t r an s _ i t e r = ( c l xhg_ t rans [ i ] [0] , c l xhg_ t rans [ i ] [1] , c l xhg_ t rans [ i ] [2] ,

c l xhg_ t rans [ i ] [3])
28 hgtrans_rn . append( hg t r an s _ i t e r )
29 RANDOM_TRANSITIONS = " random/ trans_hg_rn . dat "
30 np . s ave t x t (RANDOM_TRANSITIONS, hgtrans_rn , fmt=( ’%−4d ’ , ’%−4d ’ , ’%1.8 f ’ , ’%−4d ’ ) )#

save MEs
31 re turn hgtrans_rn
32
33 def beam_energy_rn () :#va r i a t i o n of the beam_energy , bc of the energy l o s s in the

t a r g e t
34 beam_energy_rn = np . random . normal (829 ,6.5 ,1)
35 RANDOM_BEAM_E = " random/beamenergy_hg_rn . dat "
36 np . s ave t x t (RANDOM_BEAM_E, beam_energy_rn , fmt=( ’%−4d ’ ) )
37
38 def branching_rn () :#va r i a t i o n of the branching r a t i o s
39 #520 960 keV
40 l960 = fn . l e v e l (960 ,1 ,np . random . normal (14 , .2 ,1) ,2 ,0)
41 l960 . add_decay (520 ,14 ,np . random . normal (100 , .2 ,1) ,0 ,2 , np . random . normal ( . 9 , 0 . 1 , 1 ) )
42
43 #1182keV
44 l1182 = fn . l e v e l (742 ,16 ,np . random . normal (51 ,2 ,1) ,2 , np . random . normal (2 .1 ,0 .4 ,1 ) )
45 l1182 . add_decay (222 ,29 ,np . random . normal (100 ,4 ,1) ,2 ,2 , np . random . normal

(− .13 ,0.03 ,1) )
46
47
48 #1311keV
49 l1311 = fn . l e v e l (872 ,17 ,np . random . normal (51 ,4 ,1) ,2 ,0)
50 l1311 . add_decay (351 ,30 ,np . random . normal (100 ,3 ,1) ,1 ,2 ,0)
51 l1311 . add_decay (129 ,36 ,np . random . normal (17 ,5 ,1) ,1 ,2 ,0)
52
53 #1389keV
54
55 l1389 = fn . l e v e l (1389 ,3 ,np . random . normal (11 ,4 ,1) ,2 ,0)
56 l1389 . add_decay (950 ,19 ,np . random . normal (100 ,4 ,1) ,1 ,2 ,0)
57 l1389 . add_decay (430 ,31 ,np . random . normal (29 ,3 ,1) ,1 ,2 ,0)
58 l1389 . add_decay (207 ,37 ,np . random . normal (15 ,4 ,1) ,1 ,2 ,0)
59
60 #1575keV
61 l1575 = fn . l e v e l (1135 ,21 ,np . random . normal (58 ,19 ,1) ,2 ,0)
62 l1575 . add_decay (616 ,32 ,np . random . normal (100 ,16 ,1) ,1 ,2 ,0)
63
64 #1793
65 l1794 = fn . l e v e l (1794 ,4 ,np . random . normal (2 .8 ,1 .3 ,1 ) ,2 ,0)
66 l1794 . add_decay (1354 ,23 ,np . random . normal (100 ,1 ,1) ,0 ,2 , np . random . normal

(0 .06 ,0 .04 ,1) )
67 l1794 . add_decay (833 ,33 ,np . random . normal (3 . 0 , . 6 , 1 ) ,1 ,2 ,0)
68
69 #1823
70 l1823 = fn . l e v e l (1823 ,5 ,np . random . normal (8 ,3 ,1) ,2 ,0)
71 l1823 . add_decay (1384 ,24 ,np . random . normal (100 ,6 ,1) ,0 ,2 , np . random . normal (0 .1 ,0 .1 ,1 )

)
72 l1823 . add_decay (863 ,34 ,np . random . normal (41 ,4 ,1) ,1 ,2 ,0)
73 l1823 . add_decay (641 ,38 ,np . random . normal (17 ,2 ,1) ,1 ,2 ,0)
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74
75 #1966keV
76 l1966 = fn . l e v e l (1527 ,26 ,np . random . normal (100 ,8 ,1) ,2 ,0)
77 l1966 . add_decay (654 ,39 ,np . random . normal (8 ,3 ,1) ,1 ,2 ,0)
78
79 re turn [ l960 , l1182 , l1311 , l1389 , l1575 , l1794 , l1823 , l1966 ]

Listing D.4: Conversions and relations used in Listing D.2.
1 import numpy as np
2 import weakref
3
4
5 c l a s s l e v e l ( ob j e c t ) :
6
7 nums = []
8 _ in s t ance s = se t ()
9 #def in ing norm qu a l i t i e s of a l eve l , i . e . of the dominant t r a n s i t i o n

10 def _ _ i n i t _ _ ( s e l f , norm_energy , norm_number , norm_branching , norm_L , norm_delta ) :
11 s e l f . en = norm_energy
12 s e l f .num = norm_number
13 s e l f . br = np . abs ( norm_branching )#must be p o s i t i v e
14 s e l f . nL = norm_L
15 s e l f . de l t a = norm_delta
16 s e l f . decay = []
17 s e l f . _ i n s t ance s . add(weakref . r e f ( s e l f ) )
18 #add a second decay
19 def add_decay ( s e l f , energy , tnum , branching , decay_mode , L2 , de l ta2 ) :
20 s e l f . decay . append ([ decay_mode , del ta2 , energy , tnum , np . abs ( branching ) , L2 ])
21 s e l f . nums . append(tnum)
22
23 @classmethod
24 def ge t i n s t an ce s ( c l s ) :
25 dead = se t ()
26 f o r r e f in c l s . _ in s t ance s :
27 obj = r e f ()
28 i f ob j i s not None :
29 y i e l d obj
30 e l s e :
31 dead . add( r e f )
32 c l s . _ in s t ance s −= dead
33
34 #cons tan t s of t h i s experiment
35 Aint = 202 #mass number of 202hg
36 wuconv = [.06446* Aint **(2/3) ,.05940* Aint **(4/3) ,.05940* Aint **2] #convers ion to W. u .
37 ce = [1.59*10**15 , 1.22*10**9 , 5.67**2] #convers ion cons tant
38 cm = 1.76*10**13 #convers ion cons tant
39
40 #convers ion from eb to W. u .
41 def WuE(L ,A) :
42 re turn 1/(4*np . p i ) *(3/(L+3)) **2*1.2**(2*L)*A**(2*L/3)*10**(−2*L)
43
44 #ca l c u l a t i o n of B(EL) in W. u . from the ME
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45 def BE(mxe , I i , L ) :
46 re turn mxe**2/(2* I i +1)/WuE(L , Aint )
47
48 #ca l c u l a t i o n of the p a r t i a l na tu ra l l inewidth from B(EL)
49 def gammaE(L , E , B) :
50 re turn ce [L−1]*(E) **(2*L+1)*B*WuE(L , Aint ) *10**4
51
52 #ca l c u l a t i o n of the p a r t i a l na tu ra l l inewidth from B(ML)
53 def gammaM(L , E , B) :
54 re turn cm*(E) **(2*L+1)*B
55
56 #determinat ion of the r a t i o of 2 ME by the branching ra t i o , the mu l t i p o l a r i t i e s and

the energ ie s ( pure t r a n s i t i o n or no de l t a known)
57 def meratio1 ( br1 , br2 , L1 , L2 , E1 , E2) :
58 re turn np . s q r t (( br1*ce [L2−1]*E2**(2*L2 + 1)*wuconv[L2−1])/( br2*ce [L1−1]*E1**(2*L1

+1)*wuconv[L1−1]))
59
60 #the corresponding ME from the r a t i o meratio1
61 def melement (me1, br1 , br2 , L1 , L2 , E1 , E2) :
62 re turn me1/meratio1 ( br1 , br2 , L1 , L2 , E1 , E2)
63
64 #The same when mixed t r a n s i t i o n s are involved , the e l e c t r i c a l ME are returned
65 def convers ionE ( Delta ,me, E1 , E2 , br ) :
66 re turn np . s q r t ( ( ( Del ta **2*gammaM(1 ,E2 ,gammaE(2 ,E1 , BE(me,2 ,2) ) /( br*(1+Delta **2)*cm

*E2**3) ) ) /( ce [1]*E2**5*WuE(2 , Aint ) *10**4) ) *5*WuE(2 , Aint ) )
67
68 #The same fo r L=2
69 def conversionE2 ( Delta1 , Delta2 ,me, E1 , E2 , br ) :
70 re turn np . s q r t ( ( ( E1/E2) **5) / br * ((1/ Delta1 ) **2 + 1) / ((1 / Delta2 ) **2 + 1)*me

**2)
71
72 #Assignment of d i f f e r e n t cases to the three d i f f e r e n t p o s s i b i l i t i e s
73 def mul t i_ func (FLAG , Delta1 , Delta2 ,me, E1 , E2 , br1 , br2 , L1 , L2) :
74 t r y :
75 i f FLAG == 0:
76 re turn convers ionE ( Delta2 ,me, E1/1000 ,E2/1000 , br1/br2 )
77 e l i f FLAG == 1:
78 re turn melement (me, br1 , br2 , L1 , L2 , E1 , E2)
79 e l i f FLAG == 2:
80 re turn conversionE2 ( Delta1 , Delta2 ,me, E1/1000 ,E2/1000 , br1/br2 )
81 except :
82 p r i n t ([FLAG , Delta1 , Delta2 ,me, E1 , E2 , br1 , br2 , L1 , L2 ])
83 re turn None
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Listing D.5: The header for the CLX-input file used in Listing D.2.
1 202Hg on 12C @890MeV Gammasphere ! T i t l e
2 11101111
3 24 0 6. !Max s t a t e s inv−0−Max Value of Magnetic N
4 0. 0 . 0 . ! Accuracy parameters
5 6 202 ! Target Z p r o j e c t i l e A
6 80 12 ! P r o j e c t i l e Z t a r g e t A

Listing D.6: The list of levels for the CLX-input file used in Listing D.2.
1 0.1 180 10 ! S t a r t i n g anlge−stopping , s tep in cm sys
2 1 0 0.0 1 0 ! Levels−Spin−energy (mev)−P a r i t i y
3 2 2 0.439 1 0
4 3 2 0.960 1 0
5 4 4 1.120 1 0
6 5 2 1.182 1 0
7 6 4 1.311 1 0
8 7 2 1.348 1 0
9 8 2 1.389 1 0

10 9 0 1.564 1 0
11 10 2 1.575 1 0
12 11 0 1.643 1 0
13 12 2 1.793 1 0
14 13 2 1.823 1 0
15 14 5 1.965 −1 0
16 15 2 1.966 1 0
17 16 6 1.988 1 0
18 17 2 2.133 1 0
19 18 4 2.293 1 0
20 19 3 2.356 −1 0
21 20 2 2.456 1 0
22 21 2 2.516 1 0
23 22 2 2.681 1 0
24 23 3 2.709 −1 0
25 24 3 3.166 −1 0
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Listing D.7: The list of transitions and MEs for the CLX-input file used in Listing
D.2.

1 1 2 0.7815 2
2 1 3 0.0366 2
3 1 5 0.00 2
4 1 8 0.02158 2
5 1 12 0.0691 2
6 1 13 0.0429 2
7 1 17 0.02961 2
8 1 19 0.204 3
9 1 20 0.02783 2

10 1 21 0.0618 2
11 1 22 0.0831 2
12 1 23 0.5915 3
13 1 24 0.1316 3
14 2 2 −1.33 2
15 2 3 0.303 2
16 2 4 1.297 2
17 2 5 0.14 2
18 2 6 0.22 2
19 2 7 0.23145 2
20 2 8 0.168 2
21 2 9 0.203 2
22 2 10 0.1295 2
23 2 11 0.1349 2
24 2 12 0.0499 2
25 2 13 0.302 2
26 2 14 0.4955 3
27 2 15 0.592 2
28 2 16 0.528 4
29 2 18 0.467 2
30 3 5 4.882 2
31 3 6 2.951 2
32 3 8 0.661 2
33 3 10 0.784 2
34 3 12 0.470 2
35 3 13 0.630 2
36 4 16 1.52 2
37 5 6 3.82 2
38 5 8 2.94 2
39 5 13 0.853 2
40 6 15 1.39 2
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E. HIL β+/ϵ Decay Experiment

Listing E.1: Python code for the calculation of the activities of the β+/ϵ-decay
experiment at the HIL.

1 import numpy as np
2 import pandas as pd
3 import random
4 import time
5
6 ### Time ###
7 a c t i v i t y _ t o t a l = []
8 t imesca l e = 1 #1/ t imesca l e second : 1−>s , 1000−>ms , e t c . . .
9 maximum = in t (50000) #length of s imula t ion in un i t s of the t imesca l e

10 xdata = np . l i n spa ce (0 ,maximum,maximum+1)
11 dx = xdata[1]−xdata [0] #needed fo r bu i ld ing g rad i en t s
12
13 ### L i f e t ime s ###
14 #A = 142
15 Tgd = 70* t imesca l e #142Gd in un i t s of t imesca l e
16 Teu1 = 2.4* t imesca l e #142Eu ( short−l i v ed isomer ) in un i t s of t imesca l e
17 Teu2 = 1.223*60* t imesca l e #142Eu ( long−l i v ed isomer ) in un i t s of t imesca l e
18 Tsm = 70*60* t imesca l e #142Sm in un i t s of t imesca l e
19 #A = 141
20 Teu141 = 2.7* t imesca l e #141Eu
21 Tsm141 = 22.6*60* t imesca l e #141Sm
22
23 #############
24 #cro s s s e c t i on in t eg ra t ed over the i n t e r a c t i o n depth (mb * mg/cm^2)
25 #############
26
27 x_secs = pd . read_csv ( ’ . / x_sec_140MeV . csv ’ ) #read−out of PACE4 output f i l e
28 x_secs = x_secs . va lues # l i s t manipulat ion
29 t o t _x se c = x_secs [10][0] #va lues in mb
30
31 #############
32 #ra t i o of i s o tope s as r ea c t i on product
33 #at 140MeV 114Cd(32S)
34 #############
35
36 #mass 142
37 gd0 = x_secs [0][0]/ to t _x se c #.121 142Gd
38 eu10 = 0 #0 142Eu s−l isomer
39 eu20 = x_secs [1][0]/ to t _x s e c #.232 142Eu l−l isomer
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40 sm0 = x_secs [2][0]/ to t _x se c #.139 142Sm
41 #mass 141
42 eu141 = x_secs [4][0]/ to t _x se c #.137 141Eu
43 sm141 = x_secs [5][0]/ to t _x se c #.112 141Sm
44 #mass139
45 sm139 = x_secs [7][0]/ to t _x se c #.062 139Sm
46 pm139 = x_secs [8][0]/ to t _x s e c #.058 139Pm
47
48 #############
49 #beam and t a r g e t s p e c i f i c a t i o n s
50 #############
51
52 d_tar = 1 # 3.5 # in mg/cm^2, i f the x_sec i s a l ready in t eg ra t ed over

the depth d_tar ==1 wo a un i t
53 dens_tar = 8.65*10**3 #Cd in mg/cm̂ 3
54 d_ta rge t = d_tar /(100* dens_tar ) #th i ckne s s of t a r g e t in [m]
55 Avo = 6.022*10**23 #Avogadro cons tant
56 mol_vol = 13*10**−6 #Sn : 16*10**−6 #molare volume m̂ 3/mol
57 N_target = Avo * d_ ta rge t / mol_vol #t a r g e t p a r t i c l e s per m̂ 2
58
59 ### ac t i v a t i o n and measuring time ###
60 t ime_impl = 60 #time of implanta t ion in un i t s of the time s c a l e
61 meas_time = 60 #time of stopped beam in un i t s of the time s c a l e
62
63 ### curren t in p a r t i c l e s per second ( pps ) ###
64 pp_time = .5*27 * 10**9 * N_target * ( t o t _x s e c *10**−31) / t imesca l e #10**−31 i s

used fo r the convers ion von mb−>m̂ 2
65
66 ### Ac t i v a t i on time at the s t a r t of the experiment ###
67 ac t i _ t ime = 60* t imesca l e
68
69 ###############
70 #De f i n i t i on of the func t i on s f o r the a c t i v i t y and atom number
71 ###############
72
73 ###
74 #atom number of d i r e c t l y produced i so tope s
75 #N10 = number of produced i so tope s per beam bunch
76 #T = ha l f l i f e
77 #t = time
78 ###
79 def N1(N10=1,T=2, t=3) :
80 re turn N10*np . exp(−np . log (2) * t /T)
81
82 ###
83 #atom number of i s o tope s which are produced d i r e c t l y and through beta decay
84 #N20 = number of produced i so tope s per beam bunch
85 #N10 = number of produced mother i s o tope s per beam bunch
86 #T2 = ha l f l i f e
87 #T2 = ha l f l i f e of mother nucleus
88 #t = time
89 ###
90 def N2(N20 , T2 ,N10 , T1 , t ) :
91 re turn (N20+N10*(1−np . exp(−np . log (2) * t /T1) ) ) *np . exp(−np . log (2) * t /T2)
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92
93 ###
94 #atom number of i s o tope s which are produced d i r e c t l y and through beta decay of

mother and grand mother
95 #N30 = number of produced i so tope s per beam bunch
96 #N20 = number of produced mother i s o tope s per beam bunch
97 #N10 = number of produced grand mother i s o tope s per beam bunch
98 #T3 = ha l f l i f e
99 #T2 = ha l f l i f e of mother nucleus

100 #T1 = ha l f l i f e of grandmother nucleus
101 #t = time
102 ###
103 def N3(N30 , T3 ,N20 , T2 ,N10 , T1 , t ) :
104 N2temp = N20*(1−np . exp(−np . log (2) * t /T2) )
105 N1temp = N10*(1−np . exp(−np . log (2) * t /T1)−np . exp(−np . log (2) * t /T2)+np . exp(−np . log

(2) * t *(1/T1+1/T2) ) )
106 N3temp = (N30+N2temp+N1temp)*np . exp(−np . log (2) * t /T3)
107 re turn N3temp
108
109
110 ###
111 #corresponding a c t i v i t i e s
112 ###
113 def A1(N10 , T1 , t ) :
114 A = np . log (2) /T1*N10*2**(− t /T1)
115 re turn A
116
117 def A2(N20 , T2 ,N10 , T1 , t ) :
118 A2temp = −np . g rad ien t (N2(N20 , T2 ,N10 , T1 , t ) , dx ) + A1(N10 , T1 , t )
119 re turn A2temp
120
121 def A3(N30 , T3 ,N20 , T2 ,N10 , T1 , t ) :
122 A3temp = −np . g rad ien t (N3(N30 , T3 ,N20 , T2 ,N10 , T1 , t ) , dx ) + A2(N20 , T2 ,N10 , T1 , t )
123 re turn A3temp
124
125 ###
126 #Sum of mul t ip l e beam implan ta t ions
127 ###
128 def sum_A_mult (N) :
129
130 y l i s t _ t o t = np . zeros (maximum+1) #length of s imula t ion
131 cyc = (meas_time+time_impl ) #cyc l e of measuring and implanta t ion
132
133 f o r i in range ( ac t i _ t ime ) : #implanta t ion during a c t i v a t i o n time
134 y l i s t _ t o t += np . append(np . zeros ( i ) ,N[0 :maximum+1−i ] )
135
136 f o r i in range ( ac t i _ t ime ,maximum+1−cyc , cyc ) : #i t e r a t i o n from a c t i v a t i o n time

t i l l the end
137 f o r j in range ( time_impl ) : #implanta t ion during implanta t ion time
138 y l i s t _ t o t += np . append(np . zeros ( i+j ) ,N[0 :maximum+1−i−j ] )
139
140 re turn y l i s t _ t o t
141
142 #########
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143 #reac t i on products
144 #########
145 ### A = 142 ###
146 #Gd
147 gdN = N1(gd0*pp_time , Tgd , xdata )
148 gd = A1(gd0*pp_time , Tgd , xdata )
149 #142Gd−>142Eu , short−l i v ed isomer
150 eu1N = N2(eu10*pp_time , Teu1 , gd0*pp_time , Tgd , xdata )
151 eu1 = A2(eu10*pp_time , Teu1 , gd0*pp_time , Tgd , xdata )
152 #142Eu , long−l i v ed isomer
153 eu2N = N1(eu20*pp_time , Teu2 , xdata )
154 eu2 = A1(eu20*pp_time , Teu2 , xdata )
155 #142Sm, product ion channel v ia beta decay of the long−l i v ed 142eu isomer
156 sm2N = N2(sm0*pp_time , Tsm , eu20*pp_time , Teu2 , xdata )
157 sm2 = A2(sm0*pp_time , Tsm , eu20*pp_time , Teu2 , xdata )
158 #142Sm, product ion channel v ia beta decays from 142Gd−>142Eu
159 sm1N = N3(sm0*pp_time , Tsm , eu10*pp_time , Teu1 , gd0*pp_time , Tgd , xdata )
160 sm1 = A3(sm0*pp_time , Tsm , eu10*pp_time , Teu1 , gd0*pp_time , Tgd , xdata )
161 #Subt rac t ion of the d i r e c t populat ion to prevent double counting
162 smN = sm2N + sm1N − N1(sm0*pp_time , Tsm , xdata )
163 sm = sm1 + sm2 − A1(sm0*pp_time , Tsm , xdata )
164
165 ### A = 141 ###
166 #Eu
167 eu141N = N1(eu141*pp_time , Teu141 , xdata )
168 eu141A = A1(eu141*pp_time , Teu141 , xdata )
169 #Sm
170 sm141N = N2(sm141*pp_time , Tsm141 , eu141*pp_time , Teu141 , xdata )
171 sm141A = A2(sm141*pp_time , Tsm141 , eu141*pp_time , Teu141 , xdata )
172
173 ############
174 #Pulsed implanta t ion over the maximum time (maximum * t imesca l e ) (1 implanta t ion

per time un i t )
175 #Resu l t i s the a c t i v i t y a f t e r s e ve r a l imp lan ta t ions and the equ i l i b r ium a c t i v i t y

can be determined
176 ###########
177 ### A = 142 ###
178 #Gd
179 sumgdc = sA1_func (gd0 , Tgd , xdata )
180 sum_gdA = sum_A_mult (gd)
181 sumgd = sN1_func (gd0 , Tgd , xdata )
182 #Eu
183 sumeu2c = sA1_func (eu20 , Teu2 , xdata )
184 sum_eu2A = sum_A_mult ( eu2)
185 sumeu1 = sN2_func (eu10 , Teu1 , gd0 , Tgd , xdata )
186 sumeu1c = sA2_func (eu10 , Teu1 , gd0 , Tgd , xdata )
187 sum_eu1A = sum_A_mult ( eu1)
188 sumeu2 = sN1_func (eu20 , Teu2 , xdata )
189 #Sm
190 sumsmc = sA3_func (sm0 ,Tsm , eu10 , Teu1 , gd0 , Tgd , xdata )+sA2_func (sm0 ,Tsm , eu20 , Teu2 , xdata

)
191 sum_smA = sum_A_mult (sm)
192 sumsm = sN3_func (sm0 ,Tsm , eu10 , Teu1 , gd0 , Tgd , xdata )+sN2_func (sm0 ,Tsm , eu20 , Teu2 , xdata )
193 ### A = 141 ###
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194 #Eu
195 sumeu141 = sN1_func (eu141 , Teu141 , xdata )
196 sumeu141c = sA1_func (eu141 , Teu141 , xdata )
197 sum_eu141A = sum_A_mult (eu141A)
198 #Sm
199 sumsm141 = sN2_func (sm141 , Tsm141 , eu141 , Teu141 , xdata )
200 sumsm141c = sA2_func (sm141 , Tsm141 , eu141 , Teu141 , xdata )
201 sum_sm141A = sum_A_mult (sm141A)
202
203 ###########
204 ###########
205 #D i f f e r en t method , same r e s u l t :
206 #Simulat ion of the implanta t ion and decay process and the fo l lowing a c t i v i t y
207 ###########
208 ###########
209
210 s c a l e = 1 #time s c a l e : 1−>s , 1000−>ms , e t c . . .
211 l o gg i = np . log (2) #ln (2)
212
213 ### Simulat ion of an exponent ia l decay ###
214 #N0 = Number of atoms
215 #T = ha l f l i f e
216 def decay (N0, T) :
217 re turn np . random . exponent ia l (T/ logg i ,N0)
218
219 #Funct ion to count the decayed and undecayed atoms [ decayed (=A) , not decayed (=N) ]
220 def decayN(N0, T , t ) :
221 dc = 0
222 ndc = 0
223 t e s t = decay (N0, T)
224 t e s t l e n = len ( t e s t )
225 f o r i in range ( t e s t l e n ) :
226 i f t e s t [ i ] <= t :
227 dc += 1
228 e l s e :
229 ndc += 1
230 re turn np . ar ray ([ dc , ndc ])
231
232 #De f i n i t i on of l i s t s f o r numbers (*NS) and a c t i v i t i e s (*AS) fo r i s o tope s
233 gdAS , gdNS , euAS , euNS , eu2AS , eu2NS , sm1AS , sm1NS , sm2AS , sm2NS , smAS_sub , smNS_sub = np .

zeros ((12 ,maximum+1))
234
235 ########
236 #Simulat ions of the numbers of i s o tope s a f t e r one beam implanta t ion
237 ########
238 ### A = 142 ###
239 #Gd
240 f o r i in range (maximum+1) :
241 gdAS[ i ] , gdNS[ i ] = decayN( i n t (gd0* s c a l e *pp_time ) ,Tgd , i )
242 #Eu short−l i v ed
243 f o r i in range (maximum+1) :
244 euAS[ i ] , euNS[ i ] = decayN(decayN( i n t (gd0* s c a l e *pp_time ) ,Tgd , i ) [0] , Teu1 , i )
245 #Eu long−l i v ed
246 f o r i in range (maximum+1) :
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247 eu2AS[ i ] , eu2NS[ i ] = decayN( i n t ( eu20* s c a l e *pp_time ) ,Teu2 , i )
248 #Sm from 2 d i f f e r e n t paths
249 f o r i in range (maximum+1) :
250 sm1AS[ i ] , sm1NS[ i ] = decayN( i n t (sm0* s c a l e *pp_time )+decayN(decayN( i n t (gd0* s c a l e *

pp_time ) ,Tgd , i ) [0] , Teu1 , i ) [0] ,Tsm , i )
251 f o r i in range (maximum+1) :
252 sm2AS[ i ] , sm2NS[ i ] = decayN( i n t (sm0* s c a l e *pp_time )+decayN( i n t ( eu20* s c a l e *pp_time

) ,Teu2 , i ) [0] ,Tsm , i )
253 #to prevent double counting
254 f o r i in range (maximum+1) :
255 smAS_sub[ i ] , smNS_sub[ i ] = decayN( i n t (sm0* s c a l e *pp_time ) ,Tsm , i )
256 smNS = np . add(sm1NS , sm2NS−smNS_sub)
257 smAS = np . add(sm1AS , sm2AS−smAS_sub)
258
259 #################
260 #The a c t i v i t y i s determined by the grad ien t of the decaying atoms
261 #################
262
263 #parameters of the determinat ion of the grad ien t
264 s t e p _ s i z e = 10
265 grad_s i ze = 10
266 #re s u l t i n g a c t i v i t y
267 gdASg = np . grad ien t ([np . median (gdAS[ i : i+s t ep_ s i z e ]) f o r i in range (maximum−

s t e p _ s i z e ) ] , g rad_s i ze *dx) # in Sekunden
268 euASg = np . grad ien t ([np . median (euAS[ i : i+s t ep_ s i z e ]) f o r i in range (maximum−

s t e p _ s i z e ) ] , g rad_s i ze *dx) # in Sekunden
269 eu2ASg = np . grad ien t ([np . median (eu2AS[ i : i+s t ep_ s i z e ]) f o r i in range (maximum−

s t e p _ s i z e ) ] , g rad_s i ze *dx) # in Sekunden
270 smASg = np . grad ien t ([np . median (smAS[ i : i+s t ep_ s i z e ]) f o r i in range (maximum−

s t e p _ s i z e ) ] , g rad_s i ze *dx) # in Sekunden
271
272 #shaping / reb in des gradienten
273 gd_rebin = [ s c a l e / grad_s i ze *np . median (gd[ i : i+s t ep_ s i z e ]) f o r i in range (maximum−

s t e p _ s i z e ) ]
274 eu_rebin = [ s c a l e / grad_s i ze *np . median (eu1[ i : i+s t ep_ s i z e ]) f o r i in range (maximum−

s t e p _ s i z e ) ]
275 eu2_rebin = [ s c a l e / grad_s i ze *np . median (eu2[ i : i+s t ep_ s i z e ]) f o r i in range (maximum−

s t e p _ s i z e ) ]
276 sm_rebin = [ s c a l e / grad_s i ze *np . median (sm[ i : i+s t ep_ s i z e ]) f o r i in range (maximum−

s t e p _ s i z e ) ]
277
278 ############
279 #Pulsed implanta t ion over the maximum time (maximum * t imesca l e ) (1 implanta t ion

per time un i t )
280 ###########
281
282 #length of s imula t ion
283 sum_len = 1500
284
285 #sum of the a c t i v i t y of during on implanta t ion i n t e r v a l
286 def sumASg(N) :
287 sum_a = np . zeros ( sum_len )
288 f o r i in range ( time_impl ) :
289 sum_a[0+ i : sum_len ] += N[0+ i : sum_len ]
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290 re turn sum_a
291
292 #app l i c a t i on to A = 142 i so tope s
293 sumgdASg = sumASg(gdASg)
294 sumsmASg = sumASg(smASg)
295 sumeuASg = sumASg(euASg)
296 sumeu2ASg = sumASg(eu2ASg)
297 #reshaped a c t i v i t i e s
298 sumgdrebin = sumASg( gd_rebin )
299 sumeurebin = sumASg( eu_rebin )
300 sumeu2rebin = sumASg( eu2_rebin )
301 sumsmrebin = sumASg( sm_rebin )
302
303 #sum during s eve r a l a c t i v a t i o n and measurement per iods
304 def sum_sum(sum_a) :
305 sum_sum_a = np . zeros (maximum)
306 f o r i in np . arange (0 ,maximum, time_impl+meas_time ) :
307 i f maximum−i<sum_len :
308 sum_sum_a[ i :maximum] += sum_a [ :maximum−i ]
309 e l s e :
310 sum_sum_a[ i : i+sum_len ] += sum_a
311
312 re turn sum_sum_a
313
314 ### app l i c a t i on to A = 142 i so tope s ###
315 ### f i n a l a c t i v i t i e s over a time of many implementation and measurement c y c l e s
316 sumsumgdASg = sum_sum(sumgdASg)
317 sumsumsmASg = sum_sum(sumsmASg)
318 sumsumeuASg = sum_sum(sumeuASg)
319 sumsumeu2ASg = sum_sum(sumeu2ASg)
320 #reshaped a c t i v i t i e s
321 sum_gd_rebin = sum_sum( sumgdrebin )
322 sum_sm_rebin = sum_sum( sumsmrebin )
323 sum_eu_rebin = sum_sum( sumeurebin )
324 sum_eu2_rebin = sum_sum( sumeu2rebin )

Listing E.2: Calculated integrated cross sections (mb) of the FE reaction of a 114Cd
target with a thickness of 4 mg/cm2 and a 32S beam with an energy
of 140 MeV using PACE4. This file, is used as input in Listing E.1.

1 I n t eg ra t ed X sec t ion , I so tope
2 108.17815011743144 , 142Gd
3 239.23057871606372 , 142Eu
4 144.21788908287587 , 142Sm
5 3.5756834157016515 , 142Pm
6 45.693363639137885 , 141Eu
7 34.00818056775048 , 141Sm
8 6.443840112594604 , 141Pm
9 40.229396829222814 , 139Sm

10 39.503289696925115 , 139Pm
11 5.450480232018972 , 139Nd
12 748.5170866248407 , TOTAL
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