

Sketchable Interaction: Drawing User Interfaces with Interactive
Regions

Jürgen Hahn Raphael Wimmer
University of Regensburg University of Regensburg

Germany Germany
juergen.hahn@ur.de raphael.wimmer@ur.de

ABSTRACT
Sketchable Interaction (SI) describes a concept and environment
where end-users create regions by drawing on a canvas. These re-
gions apply efects to each other on collision. Attributes of regions,
e.g. position, can be linked to each other so that they change to-
gether once modifed, e.g. moved on the canvas. Within Sketchable
Interaction, all entities - mouse pointer, desktop icons, or windows
- are implemented as interactive regions. End-users customize this
environment by drawing new regions that apply certain actions
e.g. tagging fles, deleting other regions or automating processes.

CCS CONCEPTS
• Human-centered computing → Graphical user interfaces;
Interaction design theory, concepts and paradigms; User in-
terface programming; • Software and its engineering → In-
tegrated and visual development environments.

KEYWORDS

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8095-9/21/05.
https://doi.org/10.1145/3411763.3451567

Sketchable Interaction; End-User Customization; Desktop Environ-
ment;

ACM Reference Format:
Jürgen Hahn and Raphael Wimmer. 2021. Sketchable Interaction: Drawing
User Interfaces with Interactive Regions. In CHI Conference on Human Fac-
tors in Computing Systems Extended Abstracts (CHI ’21 Extended Abstracts),
May 8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3411763.3451567

1 INTRODUCTION
Over the past 75 years, computers have evolved from powerful
calculators to even more powerful generic tools, communication
media, and companions. From early on, researchers such as Sey-
mour Papert, Douglas Engelbart, or Alan Kay [7] saw computers
and applications running on them as malleable artifacts and tools
for human expression. It was assumed that people would build and
adapt their own digital tools in the future[3, 4]. However, such a
future has not yet become present. Most users are stuck with one-
size-fts-all, generic user interfaces for working on everyday tasks,
defning workfows, or completing repetitive tasks. With Sketchable

Interaction (SI), we propose a concept for a generic, customizable
digital environment based on sketchable interactive regions.

Sketchable Interaction is a signifcant extension of the basic
idea and interaction concept presented as Sketchable Workspaces
and Workfows [10] by Wimmer and Hahn. This initial concept in
turn was inspired by Isenberg et al.’s Bufer Framework [5, 6]. Also,
earlier work on information substrates [2] and the *strates series
by Klokmose, Rädle, et al. such as Webstrates [8], Codestrates [9],
or Vistrates [1] inspired the SI concept.

In this paper we present our reference implementation of this
concept, the Sketchable Interaction General Runtime (SIGRun).

Within SIGRun, we implemented a fexible computer desktop
that is an ecosystem of interactive regions. This ecosystem can be
extended and customized to support a variety of workfows. We
demonstrate its versatility via three diferent application examples
- tagging/sorting, image editing, and automation.

2 SKETCHABLE INTERACTION
Sketchable Interaction (SI) is a generic user-interface concept where
end-users create interactive sketches by drawing interactive regions
(short: regions) within a canvas (SI context). The regions apply
efects to other regions on collision, i.e. once they touch or overlap.
Additionally, properties of a region can be linked to properties of
other regions (Figure 1).

img1.jpg

Regions Collisions EffectsLinks

img1.jpg img1.jpgimg1.jpg

Figure 1: Sketchable Interaction encompasses four core con-
cepts - regions, links, collisions, and efects.

2.1 Interactive Regions
Interactive regions are areas within an SI context with an arbitrary
shape and position. Regions are created either automatically by
SIGRun or by drawing an outline with the mouse or any other input
device. In an SI context, everything is represented as a region. This
includes e.g., the drawing surface (canvas), the mouse cursor, digital
fles, or windows of external applications. All interaction revolves
around creating, moving, colliding, and linking such regions.

https://doi.org/10.1145/3411763.3451567
https://doi.org/10.1145/3411763.3451567
mailto:raphael.wimmer@ur.de
mailto:juergen.hahn@ur.de

Figure 2: A screenshot of our prototype - a basic SI context that allows for previewing, tagging, sorting, and deleting fles.
All elements in the screenshot - including the mouse cursor - are interactive regions that apply efects to other regions on
collision. (1) The blue Open region opens folders and fles whose icon collides with them. (2) A folder named "Desktop" has
already been dragged onto it and is shown as a Folder region. For each fle in the folder, a new interactive region is spawned
representing the fle. (3) A Notifcation region displays arbitrary status information. (4) One of the image fles in the folder
has been dragged onto a Preview region which instructs the fle’s region to display the contents. (5) A Palete region contains
Selector regions which represent efects that are transferred to the mouse cursor when clicked. The user then can draw new
regions that have the selected efect. (6) Tag regions contain editable text labels. These labels and a visual indicator (here: blue
square) are applied to any fles (or other suitable regions) that collide with the Tag region. (7) A Delete region removes regions
that collide with it from the SI context. As with all other regions, a collision occurs if another region is dragged onto the Delete
region or if the Delete region is used like an eraser and dragged across other regions.

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Hahn and Wimmer

2.2 Collision and Efects
Regions interact with each other on collision by applying efects to
each other. These efects can modify properties of the other region
(e.g., its size, color, or associated metadata). Efects emit collision
events once two or more regions start overlapping (on_enter), con-
tinue to do so (on_continuous), or stop colliding for the frst time
(on_leave). Regions can register capabilities to accept only certain
types of events. For example, unlike most other regions, the canvas
and the mouse cursor should not accept Delete events. Efects are
implemented as plugins which enables developers or power-users
to extend the amount of available efects to draw as interactive
regions.

2.3 Linking
Each region has properties, such as position, outline, color, or label.
Regions of a certain type have further properties. For example, a
region showing an image might have properties such as the path
to the image fle or the raw data. Properties can be linked so that
e.g. a change in position of one region causes the same movement
of another region. The efects of the linked regions have to handle
translation between data types themselves, e.g., from a position
to a color. These links are typically established when an efect is
applied to a colliding region. Links use capabilities to determine
which property of a region is linked to which property of another
region. By creating and immediately removing a link, a region can
set a property of another region.

3 SKETCHABLE INTERACTION AS A
DESKTOP ENVIRONMENT

SI as a desktop environment (Figure 2) is a two-dimensional canvas
containing fle icons and other graphical objects that can be moved
around - similar to a traditional computer desktop. It is imple-
mented as an SI context within SIGRun and provides an ecosystem
of interactive regions for common tasks that allows end-user users
to customize the environment. Building on the SI concept ofers
three general advantages: (1) Sketching and direct manipulation are
accessible and easy-to-learn methods for creating and modifying
custom user interfaces. (2) As customization is embedded directly
in the user interface, users can quickly change the UI in order to
adapt to a changed workfow without having to switch to an IDE
or separate editor. (3) Linking and collision-triggered events make
it easy for intermediate developers to extend the ecosystem and
provide a framework that inherently facilitates interoperability be-
tween efects due to implementing efects as plugins. SI extends
the traditional desktop with new interaction techniques which we
show in the following.

3.1 Sketching
The most important extension is to allow Sketching of user inter-
face elements. This interaction technique is not part of SIGRun
but implemented via plugins. Each SI context contains a default
Canvas region which has the capability to receive sketch events
and a MouseCursor region which emits sketch events when the

Sketchable Interaction: Drawing User Interfaces with Interactive Regions

left
across the canvas triggers the on_continuous() handler of the
canvas which records the path that the cursor takes. When releas-
ing the mouse button, the cursor un-registers the sketch capability,
which activates the on_leave() handler of the canvas. The canvas
then creates a new region with the drawn shape.

mouse button is pressed. Therefore, dragging the mouse cursor

3.2 Drag and Drop
Users can drag regions around using the mouse. This behavior is
also implemented entirely using the core SI concepts described
above. The mouse cursor is just another region whose position
follows mouse 1 movement. Whenever the mouse cursor and an-
other region collide, the cursor region checks whether the right
mouse button is pressed, and then links the "position" attribute of
the mouse cursor to the "position" attribute of the other region -
provided 2 the other region accepts events. position This newly
established link then triggers on every movement of the cursor
region, which emits an update event containing absolute position
and relative movement. Releasing the mouse button removes the
link.

4 APPLICATION EXAMPLES

4.1 Sorting and Tagging
One of the most basic use cases for a desktop is organizing fles. In
order to support this use case within SI, we implemented three basic
tools (i.e. SI efects) to support sorting of documents: Tag, Delete,
and Preview (Figure 3) . Dragging a text fle icon onto a Preview
region instructs the text region to display a larger preview of its
contents. Tag regions apply a custom text label and add a visual
marker to a fle. Delete regions remove objects on collision, except
for the canvas, the mouse cursor, and fles. An important property of
all regions is that they can be dragged onto other regions and other
regions can be dragged onto them. Therefore, users can choose the
more efcient approach for a certain task or combine both.

Figure 3: Example of an SI context designed for sorting digi-
tal fles. This SI context incorporates Tagging regions which
category can be typed in by users freely. Additionally, Tag
regions outft colliding TextFile regions with a small blue
rectangle in the top left corner to visualize that tag.

1This behavior is provided by SIGRun
2For example, the canvas can not be dragged around, and therefore does not register
the capability "receive position".

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

4.2 Automation
In order to automate recurring workfows, users may add special
conveyor belt regions (Figure 4) which can transport documents
through multiple regions in succession. These conveyor belts also
make manual sorting of documents easier as the user does not have
to drag the document all the way to a tagging region but just to
a conveyor belt leading to that region. Along the conveyor belt
region’s course, other regions can be placed so that transported
documents receive and apply efects when passing 3 through them .
In this way, end-users can visually build automated processing
pipelines and observe the results of this automation in real-time
which enables them to interfere at any point by dragging documents
of the conveyor belt.

(a) A text fle region (marked red) in transit on the conveyor belt
region.

(b) A text fle region (marked red) which is transported through
a tagging region which applies its tag to the text fle.

Figure 4: Simple example for automation with a text fle be-
ing tagged along the conveyor belt’s path.

Conveyor belts can can be combined with regions serving as
splitters and mergers. This feature allows implementing complex
sorting tasks and adding simple processing logic according to the
condition for splitting.

4.3 Extension: an Image Editor
In order to demonstrate that SI can be used for more than simple
desktop environments, we implemented an extensible image editor
(Figure 5). Image documents can be dragged onto an Image Editor

3Only document regions accept transport events. Tools, such as the Delete region, are
not transported by conveyor belts by default.

 CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

region which in turn displays this image as an array of individ-
ual Pixel regions. These pixels can then be painted with diferent
brushes and colors. To this end, a brush region is attached to the
mouse cursor which emits color events to all pixels it touches. A
Blur tool is implemented via two linked regions: a larger region
that samples the colors of all pixels it touches at the same time,
and a smaller region which transfers the average color value to the
pixel right under the mouse cursor. Dragging the original image
fle of the Image Editor region saves all modifcations on disk and
removes the individual pixel regions from the SI context.

(a) When dragging the image onto the editor region, its content
gets displayed as individual Pixel regions.

(b) Various brushes - also implemented as regions - can be used
to draw or apply flters to the image.

Figure 5: An image editor implemented with SI concepts.

5 SUMMARY AND RELEVANCE STATEMENT
With Sketchable Interaction (SI), we ofer a new perspective on cus-
tomizable digital desktop environments where the lines between
desktop, fle manager, and applications start to blur. This concept
allows end-users to build, modify, and extend their user interfaces
on-the-fy as they see ft. Our reference implementation ofers a
playground for exploring the concept and a workbench for apply-
ing the concept to concrete use cases. Our three example use cases
illustrate how SI might be used for iteratively implementing ad-hoc
workspaces, building processing pipelines, or developing graphical
applications. In all cases, interactive regions act as data representa-
tions, GUI elements, tools, and algorithmic building blocks. There-
fore, SI is not only a generic toolkit for implementing existing and

Hahn and Wimmer

novel use cases but also an artifact that may foster new perspectives
on the architecture of interactive systems.

ACKNOWLEDGMENTS
This project is funded by the Bavarian State Ministry of Science
and the Arts and coordinated by the Bavarian Research Institute for
Digital Transformation (bidt). From 2017 to 2020, the project was
funded in the context of the Centre Digitisation.Bavaria (ZD.B).

REFERENCES
[1] Sriram Karthik Badam, Andreas Mathisen, Roman Radle, Clemens N. Klokmose,

and Niklas Elmqvist. 2019. Vistrates: A Component Model for Ubiquitous Ana-
lytics. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019),
586–596. https://doi.org/10.1109/TVCG.2018.2865144

[2] Michel Beaudouin-Lafon. 2017. Towards Unifed Principles of Interaction. In
Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter (CHItaly
’17). ACM, New York, NY, USA, 1:1–1:2. https://doi.org/10.1145/3125571.3125602

[3] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[4] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the future: the story of Squeak, a practical Smalltalk written in itself. In
Proceedings of the 12th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications - OOPSLA ’97. ACM Press, Atlanta, Georgia,
United States, 318–326. https://doi.org/10.1145/263698.263754

[5] Tobias Isenberg, André Miede, and Sheelagh Carpendale. 2006. A bufer frame-
work for supporting responsive interaction in information visualization interfaces.
In Creating, Connecting and Collaborating through Computing, 2006. C5’06. The
Fourth International Conference on. IEEE, 262–269.

[6] Tobias Isenberg, Simon Nix, Martin Schwarz, Andre Miede, Stacey D. Scott, and
Sheelagh Carpendale. 2007. Mobile Spatial Tools for Fluid Interaction. (July 2007).
https://doi.org/10.11575/PRISM/30508

[7] Alan C. Kay. 1972. A Personal Computer for Children of All Ages. In Proceedings
of the ACM Annual Conference - Volume 1 (ACM ’72). ACM, New York, NY, USA.
https://doi.org/10.1145/800193.1971922 event-place: Boston, Massachusetts, USA.

[8] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology - UIST ’15. ACM Press, Daegu, Kyungpook, Republic of Korea, 280–290.
https://doi.org/10.1145/2807442.2807446

[9] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and
Clemens N. Klokmose. 2017. Codestrates: Literate Computing with Webstrates.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology - UIST ’17. ACM Press, Québec City, QC, Canada, 715–725.
https://doi.org/10.1145/3126594.3126642

[10] Raphael Wimmer and Jürgen Hahn. 2018. A Concept for Sketchable Workspaces
and Workfows. In "Workshop Rrethinking Interaction” in conjunction with CHI
2018. Montreal, Canada. https://epub.uni-regensburg.de/36818/

https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1145/3125571.3125602
https://doi.org/10.1145/263698.263754
https://doi.org/10.11575/PRISM/30508
https://doi.org/10.1145/800193.1971922
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/3126594.3126642
https://epub.uni-regensburg.de/36818/
https://epub.uni-regensburg.de/36818
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/800193.1971922
https://doi.org/10.11575/PRISM/30508
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/3125571.3125602
https://doi.org/10.1109/TVCG.2018.2865144

	Abstract
	1 Introduction
	2 Sketchable Interaction
	2.1 Interactive Regions
	2.2 Collision and Effects
	2.3 Linking

	3 Sketchable Interaction as a Desktop Environment
	3.1 Sketching
	3.2 Drag and Drop

	4 Application Examples
	4.1 Sorting and Tagging
	4.2 Automation
	4.3 Extension: an Image Editor

	5 Summary and Relevance Statement
	Acknowledgments
	References

