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 Summary 
The aim of this study was to evaluate different types of volume and taper equations that 
can be used to predict single-tree stem volume and stem diameter at any given height along 
the tree stem for plantation grown Sitka spruce (Picea sitchensis (Bong.) Carr.), Norway 
spruce (Picea abies (L.) Karst) and White spruce (Picea glauca (Mounch) Voss) in 
Iceland. A number of published tree volume equations were tested and modified to predict 
the total stem volumes over bark but three logarithmic equations were taken for more in-
depth analysis. Three taper equations were tested. Two variable-exponent equations 
(Kozak 1997, Kozak 2004) and one exponential equation described by Biging (1984). Data 
from a total of 617 sample trees were used in this study, collected from stands in various parts 
of the country and present different types of stands growing in different soil types and 
cover most of the site conditions suitable for forestry in Iceland. To fit the regression 
model for the volume equations an ordinary least-squares (OLS) method was used. 
Because the construction of taper equations requires longitudinal data or multiple 
measurements on individual trees, and violates the assumption of independence between 
observations, a mixed effects approach was used to model the within tree autocorrelation. 
Volume equation [5] which has breast height diameter (D), tree height (H) and (H-1.3) as 
independent variables gave the best results based on fit and validation statistics and are 
most suitable for all three species. In diameter prediction a modified version of the Biging 
(1984) equation gave the best results based on fit and validation statistics and is most 
suitable for all three species. In volume prediction the Biging (1984) equation showed 
some bias in predicting volume of small trees and the same was noticed for the equation 
developed by Kozak (1997). The equation developed by Kozak (2004) seems to be more 
flexible in predicting the volume of small trees as well as bigger trees and should give the 
best results in volume prediction among the taper equations.  
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Sammanfattning 
Syftet med denna studie har varit att utvärdera olika typer av volym och avsmalnings 
funktioner som kan användas för att förutsäga stamvolym och stamdiameter vid en viss 
höjd längs trädet för planterad Sitka gran (Picea sitchensis (Bong.) Carr.), gran (Picea abies 
(L.) Karst) och Vit gran (Picea glauca (Mounch) Voss) på Island. Ett antal publicerade 
volym samband testades och modifierades för att prediktera den totala stamvolymen på 
bark. De tre avsmalningsmodeller som utvärderades i studien var två variablaexponent 
modeller ( Kozak 1997, Kozak 2004) och en exponentiell modell beskriven av Biging 
(1984). Data från totalt 617 provträd ligger till grund för denna studie. Materialet har 
samlats in från bestånd i olika delar av landet och representerar olika ståndorter och 
omfattar merparten av markförhållanden lämplig för skogsbruk på Island. Skattningarna av 
parametrarna i volymsfunktionerna har utförts med regressionsanalys enligt minsta-kvadrat 
metoden(OLS). Eftersom  avsmalningsfunktionerna baseras på  data med flera mätningar 
på ett enskilt träd längs stammen kan vi inte utan vidare  göra  antagandet om oberoende 
mellan observationer i datat. För avsmalningsfunktionerna användes därför en blandad 
regressionsmodell med fixa parametrar och där trädindividen specificerades som en 
slumpmässig effekt. Volym ekvation [5], som har brösthöjdsdiameter (D), trädhöjd (H) och 
(H – 1.3) som oberoende variabler gav det bästa resultatet baserat på valideringsstatistiken 
och residualstudier för alla tre arterna. För avsmalningsfunktionerna gav  Kozak 2004 det 
bästa resultatet för alla tre arterna. Skillnaderna mellan modellerna var dock små.   
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Introduction 

Iceland has a short forest history and legislation was first approved in 1907 to protect the 
remaining woodlands and to create new forests (Aradottir & Eysteinsson 2005). During the 
past 60 years, emphasis has been on afforestation through planting trees (Eysteinsson  
2009). The main task has been to find the right species and provenances that are adapted to 
Icelandic climate and growing conditions. As the forests have become older the need to 
introduce and evaluate equations for estimating tree growth, taper and stem volume for 
different tree species has become more evident. Studies on stem form have long been basic 
tasks in forest mensuration rescearch (c.f. Gray 1956, Larson 1963, Assmann 1970, 
Karlsson 2005). For forest mensuration, stem form is of interest in determining the volume 
and value of the whole stem or a part of it (Lappi 1986). As wood consumption from 
Icelandic forests continues to increase as they grow older and the growing stock becomes 
of commercial interest, determination of the extent, structure and increment of forest 
timber resources, as well as following changes in them, will be a major task in the future 
for Icelandic foresters. Stem content can be expressed in volume or weight terms or as an 
estimate of end product output from some manufacturing process (Clutter et al. 1983). 
Volume equations are used to estimate tree and stand volume, and have played a crucial 
role in forest inventories and management for more than a hundred years (c.f. Jonson 1928, 
Näslund 1940, Laasasenaho 1982, Brandel 1990). Taper equations were introduced much 
later, their advantage over volume equations being that they can describe changes in 
diameter along stem height, and therefore provide estimates of dimensions of logs that 
might be cut from stems.  Volume equations to estimate the total stem volume of the most 
common species used in Icelandic forestry have been published by Norrby (1990), 
Snorrason & Einarsson (2006), Bjarnadottir et al. (2007) and Juntunen (2010), but 
equations to predict tree taper have only been published for lodgepole pine (Pinus contorta 
Dougl.) and Siberian larch (Larix sibirica Lebed.)  by Heidarsson & Pukkala (2011). The 
tree species studied in the present study play different roles in Icelandic forestry. Sitka 
spruce is today one of the main tree species, growing well in various climate and soil 
conditions covering an area around 5000 hectares (Snorrason 2014). Norway spruce was 
among the most planted tree species in Iceland from 1950 to 1975 covering an area around 
750 hectares (Snorrason 2014). White spruce is a less important species but has been 
widely planted for some years. Both Norway spruce and white spruce are more sensitive to 
the variable winter climate in Iceland than Sitka spruce. For average growth, they cannot 
be planted near the coast and need both shelter and fertile soil. 

Volume equations 
Volume equations are used to estimate tree and stand volume and have played an important 
role in forest research. A multitude of equations has been published in forest literature (c.f. 
Schumacher & Hall 1933, Spurr 1952, Clutter et al. 1983, Avery & Burkhart 2002, Hjelm 
2011). Because of inherent morphological differences among tree species, it is generally 
necessary to develop separate standard volume equations for each species or closely related 
species group (Burkhart & Gregoire 1994). Usually diameter at breast height (D at 1.3 
meters height) and total tree height (H) are the most important independent variables that 
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are commonly used to determine the value of the individual tree volume (Hush 1982) and 
tend to account for the greatest proportion of the variability in the volume of a tree. 
According to Laar and Akça (2007) volume equations can be classified based on the 
number of predictor variables of the volume equation: 
 
• Single-entry volume equation (one-way table) 
• Multiple-entry volume equation (two-way table and three-way table) 
 
Single entry volume equations were first developed towards the end of 19th century for all 
aged forests in France and adapted for management of mixed uneven aged forests in 
Switzerland (Laar and Akça 2007). Normally, diameter at breast height (D) or basal area 
(G) is required for constructing a single entry volume equation. Such equations are 
generally restricted to a local area because trees in a given diameter class can vary in there 
heights and forms, especially those from different sites. According to Philip (1994) volume 
equations of this type have to be restricted to a small range of diameters in a specific stand 
at a specific age. Multiple entry volume equations include both double entry and triple 
entry volume equations. Double entry volume equations often referred to as „standard 
volume equations“ use both D and H as independent variables. Triple entry volume 
equations have a third variable, such as diameter at a specified upper height, crown height 
above ground or some other indicator of the form or shape of the tree. Some papers 
reported that the addition of a third predictor variable reduced the amount of unexplained 
variation and improved the accuracy of volume estimates, while other studies found that 
the addition of a third predictor variable did not significantly improve the quality of 
prediction (Laar and Akça 2007). Double entry volume equations are probably the most 
common form of volume equations (Philip 1994). Equations to estimate the total stem 
volume of the most common species used in Icelandic forestry have been published by 
Norrby 1990, Snorrason & Einarsson 2006, Bjarnadottir et al. 2007 and Juntunen 2010. All 
the equations are multiplicative type, double entry equations based on the natural logarithm 
of the dependent variable, using D and H as independent variables and volume over bark as 
the dependent variable. 
 
Norrby (1990) presented local equations for Siberian larch in Hallormsstadur, located in 
eastern Iceland. The relationships were based on 100 felled sample trees and the equations 
should not be used outside the Hallormsstadur area or outside a diameter interval of 4 – 20 
cm. 
 
Later, Snorrason and Einarsson (2006) developed volume equations for eleven tree species 
in Iceland. These species are downy birch (Betula pubescens), rowan (Sorbus aucuparia), 
feltleaf willow (Salix alaxensis), dark-leafed willow (Salix myrsinifolia), black cottonwood 
(Populus trichocarpa), Sitka spruce (Picea sitchensis), Engelmann spruce (Picea 
engelmannii), white spruce (Picea glauca), Norway spruce (Picea abies), lodgepole pine 
(Pinus contorta), and Siberian larch (Larix sibirica). The equations for Norway spruce 
were constructed using data from 16 sample trees and a joint equation was developed for 
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Sitka spruce and white spruce using data from 56 observations. From that research 13 
Norway spruce sample tree and all the Sitka and White spruce data are included in the 
development of the new equations here and separate equations were made for Sitka and 
White spruce. 
 
Volume and biomass equations for young larch plantations were developed by Bjarnadottir 
et al. (2007). The data were from a twelve year old plantation and the independent 
variables for volume calculation are total tree height and diameter at 0.5 meters height. 
 
Juntunen (2010) developed volume equations for lodgepole pine using data from 87 trees 
collected from sample plots all around the country. 
 
Sweden has a long history of research regarding form and volume of tree stems. In 1932 
Petterson introduced correlation analysis in forest research in Sweden. This had a 
tremendous effect on the possibilities of constructing volume equations by using the least 
square method (Brandel 1990). Näslund (1940, 1947) presented two kinds (simple and 
advanced) of additive stem volume equations for Scots pine, Norway spruce and Birch in 
Sweden. The equations used the form factor as a dependent variable. The equations were 
transformed into volume equations by multiplication of the tree height and basal area at 
breast height (Brandel 1990). The simpler equation use D and H as independent variables 
and the advanced equations use also crown height and bark thickness as additional 
variables. The equations have been frequently used in Sweden (Hjelm 2011). 
 
Eriksson (1973) presented volume equations for ash (Fraxinus excelsior L.), European 
aspen (Populus tremula L.), common alder (Alnus glutinosa (L). Gaertn.) and lodgepole 
pine (Pinus contorta, Douglas). The equations are of a multiplicative type using D and H 
as independent variables. In some of the equations, Eriksson used crown height above 
ground and crown length defined as percent of tree height. 
 
Brandel (1990) published multiplicative volume equations for Scots pine, Norway spruce 
and Birch in Sweden. The equations used volume as the dependent variable and D and H 
as independent variables. Upper height diameter at 6 meter height, crown height above 
ground and bark thickness at breast height are additional variables that can be added to the 
base equation.  
 
Different types of volume equations for common alder and grey alder (Alnus incana (L.) 
Moench) have recently been published by Johansson (2005). The equations are of 
multiplicative, additive and logarithmic type using D and H as independent variables and 
crown height included in some of the equations tested. 
 
Volume equations for poplar (Populus sp.) growing on farmland in Sweden have recently 
been published by Hjelm (2011). A number of published equations were tested and two 
equations were constructed. One of the constructed equations is a double entry equation 
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and the other multiple entries with upper height diameter as an additional variable. 
Including the third variable in the equation, increased the performance of the prediction 
notably (Hjelm 2011). 
 
Taper equations 
Taper can be defined as the rate of narrowing in diameter along the tree stem of a given 
form (Gray 1956). Taper equations are often the basis of computer algorithms for 
calculating stem diameter at any height along the stem to predict merchantable volume to 
any limit, a prerequisite for successful forest planning and management (Kublin et al. 
2008). To date, no single theory or model exists that adequately explains the variation in 
stem form for all species (Newnham 1988). According to Kozak (2004), taper equations 
provide forest managers estimates of (1) diameter at any point along the stem, (2) total 
stem volume, (3) merchantable volume and merchantable height to any top diameter and 
from any stump height, and (4) individual volumes for stem sections of any length and at 
any height from the ground. The stem form of a tree is strongly influenced by its crown 
size and position. Changes in the size of the living crown, the distribution of branches 
within the crown and the length of the branch-free bole are attributes that create variations 
in stem taper (Larson 1963). So when two trees with the same total height, but different 
crown length are compared, the tree with the longer crown will exhibit larger breast height 
diameter and greater rate of taper on the lower stem than the tree with shorter crown length 
(Gray 1956, Muhairwe 1994). However incorporating crown dimensions into taper 
equations in previous studies have shown mixed fit results. In most of the basic forest 
mensuration text it is generally assumed that a tree stem can be divided in three geometric 
shapes. Closest to the ground the bole portion is assumed to be a neiloid, the middle 
portion a paraboloid and the upper portion a cone (Hush et al. 1972). Because of that, and 
stem taper curves are predicted to various sizes of trees, a flexibility of the stem taper 
prediction equation is an essential factor and must be taken into account in model 
construction (Eerikainen 2001). Taper equations are generally based on a trees diameter at 
breast height (D), total height (H) and the height above ground (h) (the point where the 
diameter will be predicted) as independent variables. The importance of taper equations is 
demonstrated by the high number of equations published and used, varying in complexity 
and various tree species. Many studies in this field have involved polynomials of order two 
or greater (e.g. Bruce et al. 1968, Kozak et al. 1969, Goulding & Murray 1976, 
Laasasenaho 1982) were the stem profile is describe by a single equation. According to 
Sterba (1980) the weakness of this equation type has been the inability to characterize the 
lower portion of a tree with significant basal swelling. Another type is the segmented 
polynomial equation, which uses different equations for various parts of the stem and then 
mathematically joining them to produce an overall segmented equation (e.g. Max & 
Burkhart 1976, Demaerschalk & Kozak 1977). Later, variable-exponent taper equations 
where introduced, which use changing exponents to describe the different shapes of a bole 
from the ground to the top (e.g. Kozak 1988, 2004, Newnham 1988, 1992). These 
equations enable the exponent to change with relative tree height expressed as  (h/H), 
which allows a single equation to describe the stem profile. Other types of taper equations 
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can also be found in the literature, such as trigonometric (Thomas & Parresol 1991), 
exponential (Biging 1984) and nonparametric (Lappi 2006) equations. Variable exponent 
taper equations have been found to be superior to segmented and simple models for 
estimating stem diameters and volumes (Kozak 1988, Newnham 1992, Muhairwe 1999, 
Rojo et al. 2005). However, they cannot be integrated analytically to calculate total stem or 
log volumes (Diéguez-Arunda et al. 2006), which must be estimated instead from 
calculated diameters and lengths by numerical integration (Kozak 1988). The first 
equations for predicting tree taper in Iceland and Sweden have recently been published 
(Heidarsson & Pukkala 2011, Hjelm 2011). The Icelandic equations were made for 
Siberian larch and lodgepole pine and are variable-exponent taper equations. The Swedish 
equations were made for poplar and simple, segmented and variable-exponent equations 
were tested. The variable-exponent equation had the best fit statistics according to bias and 
RMSE. 
 

Objectives of the study 
The objective of this study was to develop and evaluate volume and taper equations that 
can be used to predict single-tree volume and stem diameter at any given height along the 
tree stem for Sitka spruce, Norway spruce and White spruce, commonly used tree species 
in Icelandic forestry. The objective was also, to compare existing volume equations with 
the best volume equations from this study and evaluate the performance of the existing 
equations with the data set from this study. 
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Material and Methods 

Data collection 
Data from 617 sample trees were used in this study. The material used was selected from 
different research projects were tree volume measurements of Sitka spruce, Norway spruce and 
White spruce were sampled between 2001 and 2009. The data consist of total 6106 
individual tree diameters (over bark) measured at different intervals up to the tip, diameter 
at breast height over bark (1.3 m above ground; D), total height (H) above stump, and stem 
volume (V) above stump (Table 1). Most of the data were from Iceland Forest Service 
research sites located in different parts of the country, planted between 1942 and 1983 and 
represent different climate regions around the country, different types of stands growing on 
different soil types and cover most of the site conditions suitably for forestry on Iceland. 
 
The data used in present study originated from the following data sources; 

• Gpot, data from a project dealing with the growth potential of eleven tree species in 
Iceland described in Snorrason & Einarsson (2006). These plots were evenly spread 
around the whole country. 

• PtH, data from a provenance trial established in 1958 at Hallormsstaður in the 
eastern part of the country. 

• PtS, data from a provenance trial established in 1958 at Stálpastaðir in the western 
part of the country. 

• TP, data originating from thinning trials of Sitka spruce located in Haukadalur and 
Tumastaðir in southern Iceland. 

• PSP, data from permanent sample plots collected during 2002- 2010. 
 
On sample trees from the Gpot data, tree diameters over bark were measured at different 
relative heights; every 5% of height under breast height (1.3 m) and every 10% of total 
height over breast height. For TP and PSP, tree diameters over bark were measured at the 
following relative heights, which are given as percentages of the total tree height: 1, 2.5, 5, 
7.5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90 and 95%. For PtH- and PtS data, diameters over 
bark were measured at the height of 0.5 m and then at one meter intervals up to the tip. In 
figure 1, the volume of different tree parts is demonstrated and may be given with or 
without bark. In this study the total stem volume is of interest (number four). 
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1. 0 + 1 + 2 + 3 + 4    Total tree volume 
2. 1 + 2 + 3 + 4   Total stem plus total branches 
3. 1 + 2    Merchantable tree volume 
4. 1 + 3    Total stem volume 
5. 2 + 4    Total volume of branches 
6. 3 + 4    Unmerchantable tree volume 

 
Figure 1. Total tree volume and volume of different tree parts (from Loetsch & Haller 
1973). 
 
Volume determination on felled sample trees was based on measurements of diameter and 
length. The stem was subdivided into sections and cross-sectional area was measured in the 
middel of each section. For each section, volume was calculated using Huber’s formula, 
were the section is asumed to be cylinder [1]. The total stem volume was derived by 
adding all the sections together.  Summary statistics and relevant tree characteristics are 
provided in Table 1 and 2. 
 
 V = gmL [1] 
 V = volume of the log 
 gm = cross-sectional area at log midpoint 
 L = log length 
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Table 1. Total number of sample trees from different research projects. Gpot data are from 
the 2001 country-wide research; PtH data are from the provenance trial in Hallormsstaður; 
PtS data are from the provenance trial in Stálpastaðir; TP data are from thinning plots and 
PSP data are from permanent sample plots. 
 Gpot PtH PtS TP PSP Total 
Norway spruce 13 151 132  22 318 
Sitka spruce 24 50 52 22 45 193 
White spruce 9 41 41  15 106 
Total 46 242 225 22 82 617 
 
Table 2. Summary statistics for tree attributes for the species in the present study. 
   Norway spruce (n = 318) 

Variable Mean S.D. Maximum Minimum 
D (cm) 9.9 4.2 22.7 1.0 
H (m) 7.3 2.2 13.1 1.7 
Age (years) 47.9 2.9 53.0 27.0 
Volume (dm3) 41.6 36.0 184.0 0.5 
  Sitka spruce (n = 193) 

Variable Mean S.D. Maximum Minimum 
D (cm) 14.5 6.4 28.1 2.8 
H (m) 9.9 3.1 16.3 2.6 
Age (years) 46.5 6.9 62.0 21.0 
Volume (dm3) 113.8 99.7 418.8 2.0 
  White spruce (n = 106) 

Variable Mean S.D. Maximum Minimum 
D (cm) 11.01 5.1 26.0 2.5 
H (m) 7.5 2.2 12.5 2.6 
Age (years) 46.9 4.2 49.0 31.0 
Volume (dm3) 51.5 53.0 280.0 1.9 
D is diameter at 1.3 m above ground level; H is total height; S.D. is standard deviation and 
age is planting age. 
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Figure 2. Geographical location of the study sites. 
 
Methodological considerations and evaluation of the dataset 
A part of the dataset had a spatially hierarchical structure, i.e., several trees were measured 
from the same plot and trees from the same sample plot tend to resemble each other more 
than average. This hierarchical structure might result in dependence between observations 
within a certain plot or site. In order to check if there was dependence in the data-set a 
mixed model approach was applied where the stands and plots within stands were included 
as random effects (parameters) in the model. The mixed model approach didn´t reveal any 
significant effects of sites or plots in the model. The different sites represented in the study 
were also included as indicator variables in the OLS case. However, the site differences 
were not significant in the data set. 
For the volume equations the assumption of constant variance of the dependent variable in 
the regression analyses did not hold because the variation in volume of trees was 
dependent of the tree size (c.f. Korhonen & Eerikäinen 2001). One of the key assumptions 
of regression (with OLS) is constant variance; standard estimation methods being 
inefficient when the errors have non-constant variance (are heteroscedastic). Even though 
the estimates of the parameters may be unbiased, their variance (and standard errors) may 
be biased or inconsistent. To overcome that, logarithmic transformation was used to 
transform the dependent variable (V) to obtain constant variance of the errors (residuals) 
and makes it possible to estimate the parameters by linear regression. This is a common 
procedure when describing volume or biomass in equations with diameter and/or height as 
the independent variables (Pardé 1980). Transformation the logarithmic predictor back into 
the arithmetic scale results in a biased predictor (Lappi 1991). The correction factor for the 
logarithmic equation is approximately half of the estimated error variance of the equation 
(Baskerville 1972). The correction term is an easy statistical tool to extract a systematic 
bias and it should always be used with logarithmic transformations of allometric equations 
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(Sprugel 1983).  In the present study the results were corrected for logarithmic bias 
according to Finney (1941), equation [2]. 
 

𝑄 = 𝑆2/2    [2] 
 
Where S is the residual standard deviation about the regression and Q is the correction 
factor to correct for logarithmic bias. Since there were no evident correlations in the 
volume data after transformation of the dependent variable, it was appropriate to fit the 
regression model using the ordinary least-squares (OLS) method. 
 
Construction of taper models requires information of longitudinal data or multiple 
measurements on individual trees (Lindström & Bates 1990). Where several measurements 
of diameter at several heights from the ground are used from a single tree the 
measurements or error terms are said to be serially correlated, or autocorrelated (Kozak 
1997). This autocorrelation violates the assumption of independence between observations 
that is one important key to obtaining an unbiased estimate of the covariance matrix in 
regression (Valentine & Gregoire 2001). Multicollinearity is common in empirical 
relationships i.e. taper equations, and refers to the existence of a high degree of correlation 
among several independent variables. This occurs when too many variables have been 
included in a model and a number of different variables measure similar phenomena (Rojo 
et al. 2005). The existence of multicollinearity is not a violation of the assumptions 
underlying the use of regression, and therefore does not seriously affect the predictive 
ability of the model (Kozak 1997). However, the presence of multicollinearity may inhibit 
the usefulness of the results. According to Kozak (1997), the following problems occur 
when multicollinearity exists: (1) small changes in the data can produce significant 
changes in the parameter estimates, (2) regression coefficients have high standard errors, 
which affect the significance level of the corresponding independent variable, and (3) the 
regression coefficients may have a wrong sign and/or an unreasonable magnitude. One of 
the main sources of multicollinearity is the use of overcomplicated models that include 
cross product terms, something that is common in many taper equations. To address the 
problem with autocorrelation and multicollinearity a mixed effects modelling technique 
was used in the present study. This modelling approach has gained broad acceptance in 
forest growth and yield modeling to achieve better local prediction and to handle residual 
autocorrelation from repeatedly measured data (Trincado & Burkhart 2006), and estimates 
the covariance matrix of correlated data by allowing a non-constant correlation among the 
observations (Lindström & Bates 1990). Mixed effects models contain both fixed effects 
parameters common to all subjects as in traditional regression and random effects 
parameters specific for each subject accounting for various sources of heterogeneity and 
randomness in the data caused by known and unknown factors (Vonesh & Chinchilli 
1997). 
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Volume equations 
Tree stem volume (V) is usually considered to be a function of the tree’s diameter at breast 
height (D), height (H), and form factor (F). A common expression for tree volume 
equations is: 
 

𝑉 = 𝑓(𝐷,𝐻,𝐹) [3] 
 
The form factor is rarely used in tree volume model construction. Even though form (F) is 
required in some formulae for the volume of a tree, it is not a truly independent variable. 
Like volume, the form factor is usually estimated from other measurements of a tree’s 
dimensions and can be neither measured directly nor calculated without first measuring the 
volume (Philip 1994). A number of published tree volume equations were compared in the 
present study and modified to predict the total over bark stem volumes and the following 
second entry logarithmic equations were taken for more in-depth analysis. These were: 
 
 𝑙𝑛𝑉𝑖 = 𝛽0 +  𝛽1𝑙𝑛𝐷𝑖 +  𝛽2 𝑙𝑛𝐻𝑖 +  𝜀𝑖 [4] 
                    
 𝑙𝑛𝑉𝑖 = 𝛽0 +  𝛽1𝑙𝑛𝐷𝑖 +  𝛽2 𝑙𝑛𝐻𝑖 +  𝛽3𝑙𝑛(𝐻𝑖 − 1,3) + 𝜀𝑖 [5] 
 
 𝑙𝑛𝑉𝑖 = 𝛽0 +  𝛽1𝑙𝑛𝐷𝑖 +  𝛽2 𝑙𝑛𝐻𝑖 +  𝛽3𝑙𝑛(𝐻𝑖 − 1,3) + 𝛽4𝑙𝑛(𝐷𝑖 + 20) + 𝜀𝑖 [6] 
 
Where ln 𝑉𝑖 is the natural logarithm (ln) of stem volume, 𝛽0  to 𝛽4 are parameters to be 
estimated, ln(𝐷𝑖) is log diameter at breast height (D), ln(𝐻𝑖) is log total height, ln(𝐻𝑖-1.3) is 
log total height minus 1.3, ln(𝐷𝑖+20) is log diameter at breast height (D) plus 20 and εi is 
the random error term of the equation, which is  assumed to be independent and identically 
distributed with mean equal to zero and constant variances. 
 
Taper equations 
A tree’s taper is the rate of change of stem diameter with increased height along the tree, 
and can be expressed as an equation of diameter at breast height (D), total height (H) and 
upper stem height (h). The use of total tree height in taper equations is very important 
because changes in tree shape and tree taper are characterized by changes in total tree 
height and diameter (Muhairwe 1994). It also enables conditioning of the model such that 
when the height above the ground (h) of prediction is equal to the total height, the 
predicted diameter along the stem is zero, i.e., D=0 when h=H (Muhairwe 1999). The 
common expression for functional form of taper equations is:  
 

𝑑 = 𝑓(𝐷 𝐻 ℎ) [7] 
 
Three taper equations were compared for all three tree species. Two variable-exponent 
taper equations [8] (Kozak 1997) and [9] (Kozak 2004) and one exponential equation [10] 
described by Biging (1984). Equation [8] was found to be the best for Calabrian pine 
(Pinus brutia) in Syria among the 32 equations tested by de Miguel et al. (2011). Equation 
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[9], also developed by Kozak, is newer and should have a lower multicollinearity than 
equation [8] and the Biging equation has the advantage of being simple, having only three 
parameters. The original equations are presented in table 2. According to Kozak (2004) 
equation [9] can be modified or improved for local conditions and different species by 
changing the terms in the exponent, base of the exponent or the multiplier of the base (e.g., 

32
1

bb HDb ). 
 
Table 2. Original taper equations tested in this study. 
 
Equation [8]. 

𝑑𝑖𝑗 = 𝑏1𝐷𝑗
𝑏2𝐻𝑗

𝑏3𝑋𝑏4𝑋0.1 + 𝑏5𝑞𝑖𝑗4 + 𝑏6𝑎𝑟𝑐𝑠𝑖𝑛 �1 − �𝑞𝑖𝑗
1
2 �� + 𝑏7 �

1

𝑒𝑥𝑝

𝐷𝑗
𝐻𝑗

� + 𝑏8𝐷𝑗𝑋 × �1 + 𝜀𝑡𝑖𝑗� + 𝜀𝑟𝑖𝑗
   

 
Equation [9]. 

𝑑𝑖𝑗 = 𝑏1𝐷𝑗
𝑏2𝐻𝑗

𝑏3𝑋𝑏4𝑞𝑖𝑗4 + 𝑏5 �
1

𝑒𝑥𝑝

𝐷𝑗
𝐻𝑗

� + 𝑏6𝑋0.1 + 𝑏7 �
1
𝐷𝑗
� + 𝑏8𝐻𝑗

𝑄 + 𝑏9𝑋 × �1 + 𝜀𝑡𝑖𝑗� + 𝜀𝑟𝑖𝑗
   

 
Equation [10]. 

𝑑𝑖𝑗 = 𝐷𝑗 × (𝑏1 + 𝑏2) × 𝑙𝑛 �1 − λ × )(
3

qij

b
� × �1 + 𝜀𝑡𝑖𝑗� + 𝜀𝑟𝑖𝑗

 
  

 
Where 
𝜆 = 1 − 𝑒𝑥𝑝 �1 − 𝑏1

𝑏2
�   

 
For all the equations, dij is the predicted diameter (d, cm) at relative height i (m) for tree j. 
Dj is diameter at 1.3 m for tree j, Hj is total tree height (m) for tree j, qij is relative height i 
(hi/H) for tree j. In equation [8], X is (1- 2/1

ijq )/(1-(1.3/H)1/2), and Q is (1- 2/1
ijq ). In equation 

[9], X is (1- 3/1
ijq )/(1-(1.3/H)1/3), and Q is (1- 3/1

ijq ). In this study a modified version of the 
Biging equation was tested, where b1 is estimated with A0+A1×ln(Hj/Dj), b2 is 
D0+D1×ln(Hj/Dj) and b3 is C0+C1×(1.3-Hj). For all the equations the parameters b1 to b9, 
A0, A1, D0, D1, C0 and C1 are regarded as fixed. ɛ is the random error component in the 
model. The random variation in dij was separated into: (i) a multiplicative component of 
random variation within the tree (𝜀𝑡𝑖𝑗), and (ii) a additive component to the unexplained 
residual variation (ε rij

). The distributional assumptions of the error terms were: 

),0(),,0(
22 σεσε εε rijtij

NIDNID
rijtij
≈≈ , and tied as: 𝜎𝜀𝑖𝑗2 = f(x)×𝜎𝜀𝑡𝑖𝑗2 +𝜎𝜀𝑟𝑖𝑗2 . 

 

Statistical procedures 
All regression analyses for both volume and taper equations were carried out with the SAS 
statistical software package version 9.2. The primary analysis of the volume equation used 
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the MIXED procedure, while further analysis of the volume equations used the ordinary 
OLS REG procedure for parameter estimation and model fit. The NLMIXED procedure 
was used in parameter estimation and fit of the taper equations. 
 
Evaluating equations 
All the equations were evaluated and compared on the basis of the degree of explained 
variance (R2), bias (B) for systematic errors and root mean squared error (RMSE) as 
indication of precision. Distributions of residuals were also examined visually for identify 
any systematic trends. These statistics were defined as: 
 
 R2 =1 − ∑(𝑦𝑖 −  𝑦𝚤�)2/∑(𝑦𝑖 −  𝑦�)2 
 

 Bias= ∑(𝑦𝑖−𝑦𝚤� )
𝑛

 
 

 RMSE =�∑ (𝑦𝑖− 𝑦𝚤� )2𝑛
𝑖=0

𝑛−1
 

 
Where 𝑦𝑖 ,𝑦𝚤�  and 𝑦� are measured, predicted and average values of the dependent variable 
and n is the total number of observations used to fit the model. Although single indices of 
overall prediction (R2, Bias and RMSE for �̂� and 𝑣�) are good indicators of the 
effectiveness of the equations, they may not show the best equation for practical purposes 

(Muhairwe, 1999). Therefor the relative differences (RD = (𝑣𝑖− 𝑣𝚤� )
𝑣𝚤�

) of the estimated and 

predicted volume equations were evaluated for any systematic trend in different diameter 
classes and at different relative heights along the stem. The taper equations were also 
compared using the Akaike‘s information criterion (AIC) and the Schwarz‘s Bayesian 
information criterion (BIC) derived from the fit statistics, two widely accepted methods 
when comparing models with datasets affected by autocorrelation and different number of 
parameter (Burnham & Anderson 1998). If any of the parameters in the equations was non-
significant according to the t-test (p > 0.05) the corresponding predictor was dropped from 
the equation and a simpler version of the equation was fitted to the data. 
 
A comparison was made of “true“ total stem volume measured from sample trees and the 
different taper equations present in the study. In order to obtain an estimated total volume 
for each individual tree, the volume was derived by numerical integration of the taper 
equation. 
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Results 

Volume equations 

Norway spruce 
The estimated parameters of fitted volume equations tested for Norway spruce are 
presented in table 3. Equations [5] and [6] had the same R2, little higher than equation [4]. 
For equation [6] the parameter 𝛽4 was not significant, indicating any better fit statistics 
with an additional diameter variable into equation [5]. 
 
Table 3. Parameter estimates and fit statistics for Norway spruce. All parameters are 
significant at 5 % level (p < 0.05) except 𝛽4. 
Equation 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 R2 

4 -2.0281 1.6491 0.8629   0.9852 

5 -3.5322 1.6884 2.9168 -1.5059  0.9923 

6 -3.5360 1.6879 2.9160 -1.5052 0.0016 0.9923 

 
Table 4. Mean value of bias (dm3) and RMSE (dm3) in different diameter (D) classes and 
over all fit for equations [4], [5], [6] and existing equation for Norway spruce. The lowest 
values of bias and RMSE in different diameter classes are marked bold. 
Diameter Equation 4 Equation 5 Equation 6 Existing equation 

Class n Bias RMSE Bias RMSE Bias RMSE Bias RMSE 
< 5 36 -0.2094 0.5442 -0.0407 0.3786 -0.0411 0.3786 -2.563 0.5738 

5-7.5 62 -0.705 1.038 0.247 0.986 0.246 0.986 -1.313 1.064 

7.5-10 65 -0.684 2.525 0.190 2.388 0.186 2.388 -2.200 2.337 

10-12.5 79 1.670 4.034 1.109 3.629 1.101 3.629 -1.223 3.914 

12.5-15 38 4.59 6.52 0.935 6.64 0.921 6.64 -0.300 6.39 

15-17.5 24 8.08 10.84 0.391 8.18 0.369 8.18 1.34 10.23 

17.5-20 7 5.03 10.31 -2.05 8.97 -2.08 8.97 -4.78 9.41 

> 20 7 14.40 8.77 2.56 12.73 2.51 12.73 1.59 9.89 

All       318 1.734 6.05 0.546 4.47 0.544 4.47 -1.066 4.75 

 
Results for validation of bias and RMSE for the equations in different diameter (D) classes 
and over all fit are presented in table 4. Equations [5] and [6] perform better than equations 
[4], in most of the diameter (D) classes. The estimated overall value of bias and RMSE for 
the existing equation (Snorrason & Einarsson 2006) tested on data from the present study 
are a little higher than equations [5] and [6] but lower than equation [4] (table 3). When the 
existing equation is compared with equation [5] in different diameter classes the values are 
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marginally higher in most of the diameter classes for the existing equation. When the 
relative difference (RD) for equation [5] is compared to an existing equation made by 
Snorrason & Einarsson (2006) it is clear that the equation [5] has a better fit to the data 
(Figure 3). The existing equation has a poorer fit in diameter classes smaller than 10 cm 
but the bias and variation is very similar in other classes. 
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Figure 3. Residuals expressed as relative differences ((𝑣 −  𝑣�)/𝑣� )  between observed and 
predicted volume for Norway spruce presented in different diameter (D) classes with 95% 
confidence intervals. The classes are 1: D <5 cm, 2: <7.5 cm, 3: <10.0 cm, 4: <12.5 cm, 5: 
<15.0 cm, 6: <17.5 cm 7: <20.0 cm and 8: >20.0 cm. Comparison between equation [5] 
and the existing equation by Snorrason & Einarsson (2006). 
 

Sitka spruce 
The estimated parameters of fitted volume equations tested for Sitka spruce are presented 
in table 5. Equations [5] and [6] have the same R2, marginally higher than equation [4]. 
Parameter 𝛽4 was not significant for equation [6] indicating any better fit statistics with an 
additional diameter variable into equation [5]. 
 
Table 5. Parameter estimates and fit statistics. All parameters are significant at 5 % level (p 
< 0.05) except 𝛽4. 
Equation 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 R2 

4 -2.4533 1.7141 1.0056   0.9884 

5 -3.2870 1.7119 2.5908 -1.3059  0.9892 

6 -3.8570 1.6064 2.3418 -1.0899 0.2694 0.9892 
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Results for validation of bias and RMSE for the equations in different diameter (D) classes 
and over all fit are presented in table 6. The lowest values in every diameter (D) class are 
marked bold. Equations [4], [5] and [6] perform similarly in most of the diameter (D) 
classes but equation [5] has the lowest value more often than the other equations. The 
value of bias and RMSE for the existing equation (Snorrason & Einarsson 2006) tested on 
this study data are little higher than equations [5] and [6] but little lower then equation [4] 
regarding overall bias and RMSE (table 6). 
 
Table 6. Mean value of bias (dm3) and RMSE (dm3) in different diameter (D) classes and 
over all fit for equations [4], [5], [6] and existing equation for Sitka spruce. The lowest 
values of bias and RMSE in different diameter classes are marked bold. 
Diameter Equation 4 Equation 5 Equation 6 Existing equation 

Class n Bias RMSE Bias RMSE Bias RMSE Bias RMSE 
< 5 10 0.116 0.833 -0.0562 0.731 -0.103 0.755 -4.50 0.794 

5-7.5 20 0.650 3.586 0.810 3.612 0.763 3.598 1.270 3.615 

7.5-10 21 0.375 4.239 0.943 4.268 1.005 4.244 1.333 4.252 

10-12.5 27 -0.433 4.583 0.521 4.427 0.722 4.432 0.762 4.607 

12.5-15 23 3.73 14.67 4.38 14.34 4.76 14.37 4.92 14.63 

15-17.5 30 -1.76 14.54 -2.43 14.25 -1.98 14.26 -0.945 14.48 

17.5-20 19 -4.75 17.35 -4.82 18.36 -4.72 18.29 -4.40 17.45 

> 20 43 13.01 18.46 8.46 17.59 6.84 17.56 10.77 18.10 

All 193 2.85 14.51 2.01 13.54 1.81 13,31 2.81 13.63 

 
Equation [5] was assumed to be the best for Sitka spruce. When the mean relative 
difference (RD) for equation [5] is compared to an existing equation made by Snorrason & 
Einarsson (2006) it can be seen that equation [5] has less variation and a slightly better fit 
than the existing equation in diameter classes 1 and 2 (figure 4). The bias and variation is 
of similar magnitude in the other diameter classes. 
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Figure 4. Residuals expressed as relative differences ((𝑣 −  𝑣�)/𝑣� )  between observed and 
predicted volume for Sitka spruce presented in different diameter (D) classes with 95% 
confidence intervals. The classes are 1: D <5 cm, 2: <7.5 cm, 3: <10.0 cm, 4: <12.5 cm, 5: 
<15.0 cm, 6: <17.5 cm 7: <20.0 cm and 8: >20.0 cm. Comparison between equation [5] 
and the existing equation by Snorrason & Einarsson (2006). 
 
White spruce 
The estimated parameters of fitted volume equations tested for white spruce are presented 
in table 7. Here also, equations [5] and [6] had higher R2 than equation [4] but the 
differences are small and all equations have a good fit to the data. Parameter 𝛽4 in equation 
[6] was not significant, indicating any better fit statistics with an additional diameter 
variable into equation [5]. 
  
Table 7. Parameter estimates and statistics. 
Equation 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 R2 

4 -2.1825 1.8464 0.6961   0.9938 

5 -2.8593 1.8251 1.8661 -0.9002  0.9942 

6 -3.2198 1.7751 1.7563 -0.8137 0.1576 0.9942 

All parameters were significant at the 5 % level (p < 0.05) except 𝛽4. 
 
Results for validation of bias and RMSE for the equations in different diameter (D) classes 
and overall fit are presented in table 8. The lowest value in every diameter (D) class is 
marked bold. Equations [5] perform marginally better than equation [4] and [6] in most of 
the diameter (D) classes. The value of bias and RMSE for the existing equation tested on 
this study’s data are little greater than equations [4], [5] and [6] (table 7). 
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Table 8. Mean value of bias (dm3) and RMSE (dm3) in different diameter (D) classes and 
overall fit for equations [4], [5], [6] and existing equation for White spruce. The lowest 
values of bias and RMSE in different diameter classes are marked bold. 
Diameter Equation 4 Equation 5 Equation 6 Existing equation 

Class n Bias RMSE Bias RMSE Bias RMSE Bias RMSE 
< 5 10 0.178 0.321 -0.0034 0.2035 0.0346 0.2489 0.536 0.467 

5-7.5 25 0.109 1.098 0.215 1.074 0.277 1.129 0.509 1.245 

7.5-10 16 -0.513 1.867 0.198 1.482 -0.137 1.824 -0.367 1.760 

10-12.5 19 0.749 2.868 0.396 3.323 0.898 3.10 -1.161 4.129 

12.5-15 12 -0.450 7.10 -0.429 6.38 -0.546 6.64 -3.52 6.55 

15-17.5 8 -2.05 10.10 -1.96 10.72 -2.02 10.67 -4.62 12.56 

17.5-20 10 9.27 7.72 7.66 6.92 7.23 6.88 1.22 6.36 

> 20 6 1.69 24.80 -1.09 25.8 -2.81 26.3 -8.81 28.10 

All 106 0.909 7.56 0.659 7.51 0.566 7.57 -1.224 8.13 

 
In figure 5 the relative difference (RD) for equation [5] is compared to an existing equation 
made by Snorrason & Einarsson (2006). The existing equation has a local bias in diameter 
class 1 and looks little crooked compared to equation [5]. Equation [5] has a small local 
bias in class 7. 
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Figure 5. Residuals expressed as relative differences ((𝑣 −  𝑣�)/𝑣� )  between observed and 
predicted volume for White spruce presented in different diameter (D) classes with 95% 
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confidence intervals. The classes are 1: D <5 cm, 2: <7.5 cm, 3: <10.0 cm, 4: <12.5 cm, 5: 
<15.0 cm, 6: <17.5 cm 7: <20.0 cm and 8: >20.0 cm. Comparison between equation [5] 
and the existing equation by Snorrason & Einarsson (2006). 
 
In figures 6, 7 and 8 a graphical comparison between earlier published equations and 
equation [5] are presented. A previously published study of Brandel (1990), equation 100- 
01 for Norway spruce in northern Sweden (figure 6) used the same variables as the 
equation [6] in this study. For the Sitka spruce a previously published study by Bauger 
(1995) based on samples from plantations on the west coast of Norway is compared (figure 
7). Bauger used the same variables as equation [6] in this study, except from that (D+40) is 
used instead of (D+20). The White spruce was compared to the same study of Brandel as 
for Norway spruce (figure 8). This was done because no similar equations for comparison 
with white spruce were found in the literature. The 1 to 1 line is a 100 % fit to equation [5]. 
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Figure 6. Graphical comparison between the equation published by Brandel (1990) and 
equation [5] from the present study for Norway spruce. 
 



26 
 

Volume (dm3) equation 5

V
ol

um
e 

(d
m

3)
 r

ef
er

en
ce

 e
qu

at
io

n

5004003002001000

500

400

300

200

100

0

 
Figure 7. Graphical comparison between the equation published by Bauger (1995) and 
equation [5] from the present study for Sitka spruce. 
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Figure 8. Graphical comparison between the equation published by Brandel (1990) and 
equation [5] from the present study for White spruce. 
 
The reference studies showed some important differences in predicting the volume of the 
sample trees compared to equation [5]. The volume prediction was very similar for 
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Norway spruce, with only a small tendency for underestimation for larger trees with 
Brandel (figure 6). For Sitka spruce the reference study underestimated the volume of 
bigger trees (figure 7) and for White spruce the reference study tended to overestimate the 
volume of bigger trees (Figure 8). This comparison of equation [5] with the reference 
studies shows clearly the necessity to develop specific volume equations for Icelandic 
conditions. 
 
Taper equations 
Norway spruce 
Diameter prediction 
The estimated parameters of fitted taper equations for Norway spruce are presented in 
Table 9. Equation [10] had the highest R2 and the lowest RMSE, AIC and BIC (table 10). 
Equations [8] and [9] are almost identical and have similarly fit statistics. Equation [9] had 
the lowest overall bias. 
 
Table 9. Parameter estimates of the taper equations evaluated in the study. 
Equation 8  9  10 

𝛽1 0.9020 𝛽1 0.8832 A0 1.7572 
𝛽2 0.9477 𝛽2 0.9551 A1 -0.3421 
𝛽3 0.1217 𝛽3 0.1219 C0 0.3547 
𝛽4 1.0664 𝛽4 7.6328 C1 -0.2378 
𝛽5 4.3779 𝛽5 -7.0099 D0 0.04598 
𝛽6 3.2313 𝛽6 -3.9757 D1 0.1895 
𝛽7 -2.5545 𝛽7 4.8417   
𝛽8 0.04846 𝛽8 0.2874   
  𝛽9 6.8226   
𝜎𝜀𝑡2  0.3604 𝜎𝜀𝑡2  0.3560 𝜎𝜀𝑡2  0.3109 
𝜎𝜀𝑟2  0.000449 𝜎𝜀𝑟2  0.000458 𝜎𝜀𝑟2  0.000496 

  
 
Table 10. Fit statistics for Norway spruce in present study. 

Equation R2 Bias (cm) RMSE (cm) AIC BIC 
8 0.9840 -0.01603 0.6334 5755.9 5793.5 
9 0.9841 -0.00811 0.6308 5723.9 5765.3 
10 0.9858 0.01302 0.5956 5332.3 5362.4 

 
In figure 9 the mean values of bias for equations [9] and [10] are presented by relative 
height classes. Both equations perform very similarly from bottom up to relative height 
0.3. From relative height 0.7 up to the tip, equation [10] displayed a different direction of 
bias compered to equation [9]. 
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Figure 9. Mean bias in different relative height classes for Norway spruce equations [9] 
and [10]. 
 

Volume prediction 
In table 11 the fit statistics regarding volume predictions by the volume equation [5] and 
the taper equations [8, 9, and 10] on the sample trees are compared. Equation [5] had the 
highest R2 and equation [8] had the lowest bias and RMSE. Equation [5] has a larger bias 
than the other equations, but the RMSE values are very similar among all the equations. 
 
Table 11. Fit statistics for the best volume equation and taper equations predicting volume. 

Equation R2 Bias (dm3) RMSE (dm3) 
5 0.9923 0.5469 4.4770 
8 0.9852 0.1086 4.3745 
9 0.9844 0.2631 4.4815 
10 0.9840 0.1563 4.5385 

 
In figure 10 the relative differences (RD) of the volume prediction for volume equation [5] 
are compared with the tree taper equations used in the study. Equation [8] and [10] have 
local bias in predicting volume of trees with diameter at breast height (D) less than 5 
centimeters and all the equations have a small local bias in relative height class 7. 
Equations [5] and [9] performed better in small diameter classes and all equations perform 
similarly and fairly well in other classes. 
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Figure 10. Residuals expressed as relative differences ((𝑣 −  𝑣�)/𝑣� )  between observed and 
predicted volume for Norway spruce presented in different diameter (D) classes with 95% 
confidence intervals. The best volume equation [5] and taper equations [8, 9, and 10] with 
95% confidence intervals. The classes are 1: D <5 cm, 2: <7.5 cm, 3: <10.0 cm, 4: <12.5 
cm, 5: <15.0 cm, 6: <17.5 cm 7: <20.0 cm and 8: >20.0 cm. 
 
Sitka spruce 
Diameter prediction 
The estimated parameters of fitted taper equations tested for Sitka spruce are presented in 
table 12. In equation [9] parameters 𝛽7 and 𝛽8 were non-signficant so therefore a 7 
parameter version of the equation was fitted to the data leading to little higher AIC and 
little lower BIC values than the 9 parameter version. 
 
Table 12. Parameter estimates of the taper equations evaluated in the study. 
Equation 8  9  10 

𝛽1 0.9296 𝛽1 0.9408 A0 1.4579 
𝛽2 0.9845 𝛽2 0.9814 A1 -0.1102 
𝛽3 0.06513 𝛽3 0.0633 C0 0.4033 
𝛽4 0.9527 𝛽4 8.5617 C1 -0.1906 
𝛽5 5.1690 𝛽5 -4.1980 D0 0.1593 
𝛽6 5.7977 𝛽6 -7.5122 D1 0.3801 
𝛽7 -2.8949 𝛽7 n.s.   
𝛽8 -0.01628 𝛽8 n.s.   
  𝛽9 12.5068   
𝜎𝜀𝑡2  0.6715 𝜎𝜀𝑡2  0.6696 𝜎𝜀𝑡2  0.6576 
𝜎𝜀𝑟2  0.000469 𝜎𝜀𝑟2  0.000478 𝜎𝜀𝑟2  0.000521 
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Equation 10 performed best for all the fit statistics tested for Sitka spruce in diameter 
prediction (Table 13). Equation [8] and [9] perform very similarly but equation [9] has 
little lower value for bias and marginally better fit than equation [8] for RMSE, AIC and 
BIC. 
  
Table 13. Fit statistics for Sitka spruce in present study. 

Equation R2 Bias (cm) RMSE (cm) AIC BIC 
8 0.9861 -0.01388 0.8614 6292.8 6325.4 
9 0.9861 -0.00660 0.8610 6286.1 6315.5 
10 0.9909 -0.00346 0.8577 6248.6 6274.7 

 
In figure 11 the mean values of bias for equations [9] and [10] are presented by relative 
height classes. The equations perform very similarly from bottom up to relative height 0.3. 
From relative height 0.6 up to the tip, equation [10] displayed a different direction of bias 
compared to equations [9]. 
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Figure 11. Mean bias in different relative height classes for Sitka spruce equations [9] and 
[10]. 
 
Volume prediction 
In table 14 the fit statistics regarding volume predictions by the volume equation [5] and 
the taper equations [8, 9, and 10] on the sample trees are compared. Equation [10] had the 
lowest bias and equation [9] the lowest RMSE. Equation [5] had the highest R2 but also 
higher bias and the RMSE is marginally higher than the other equations. 
  



31 
 

Table 14. Fit statistics for taper equations predicting volume.   
Equation R2 Bias (dm3) RMSE (dm3) 

5 0.9892 2.0193 13.5419 
8 0.9831 -0.2066 12.9317 
9 0.9832 -0.1762 12.9100 
10 0.9829 0.1255 13.0216 

 
In figure 12 the relative differences of volume prediction are shown for the best volume 
equation [5] compared with the three taper equations [8, 9, and 10] tested. The three taper 
equations perform a little better than equation [5] when bias and RMSE are compared. The 
taper equations perform very similar in predicting volume for Sitka spruce, except that 
equation [10] how have the lowest bias have a local bias in predicting volume of trees 
smaller than 10 cm (figure 12). In the rest of the diameter classes the predictions had a 
similar trend for all equations. 
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Figure 12. Residuals expressed as relative differences ((𝑣 −  𝑣�)/𝑣� )  between observed and 
predicted volume for Sitka spruce presented in different diameter (D) classes with 95% 
confidence intervals. The best volume equation [5] and taper equations [8, 9, and 10]. The 
classes are 1: D <5 cm, 2: <7.5 cm, 3: <10.0 cm, 4: <12.5 cm, 5: <15.0 cm, 6: <17.5 cm 7: 
<20.0 cm and 8: >20.0 cm. 
 
White Spruce 
Diameter prediction 
The estimated parameters of fitted taper equations tested for White spruce are presented in 
Table 15. In equation [8] the parameter 𝛽8 was not significant and for equation [9] the 
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parameter 𝛽7 was not significant. Therefore a simpler version of the equations was fitted to 
the data sets leading to slightly lower AIC and BIC values than the original versions. 
 
Table 15. Parameter estimates of the taper equations evaluated in the study. 
Equation 8  9  10 

𝛽1 0.9434 𝛽1 0.9418 A0 1.5711 
𝛽2 0.9724 𝛽2 0.9706 A1 -0.1276 
𝛽3 0.06915 𝛽3 0.07140 C1 0.4003 
𝛽4 1.2885 𝛽4 7.7453 C2 -0.1848 
𝛽5 4.5213 𝛽5 -5.0121 D1 0.1038 
𝛽6 4.2600 𝛽6 -5.0541 D2 0.3576 
𝛽7 -3.0399 𝛽7 n.s.   
𝛽8 n.s. 𝛽8 0.05878   
  𝛽9 9.5035   
𝜎𝜀𝑡2  0.4425 𝜎𝜀𝑡2  0.4421 𝜎𝜀𝑡2  0.3874 
𝜎𝜀𝑟2  0.000509 𝜎𝜀𝑟2  0.000520 𝜎𝜀𝑟2  0.000644 

 
Equation [10] had the highest R2 the lowest bias and RMSE (Table 16). Equations [8] and 
[9] performed very similarly with values close to each other but equation [9] had a little 
lower bias. 
 
Table 16. Fit statistics for White spruce in present study. 

Equation R2 Bias (cm) RMSE (cm) AIC BIC 
8 0.9855 -0.01514 0.7035 2378.2 2402.3 
9 0.9854 -0.00885 0.7037 2380.0 2406.8 
10 0.9865 -0.00503 0.6714 2237.3 2258.7 

 
In figure 13 the mean values of bias for equations [9] and [10] have been plotted to relative 
height classes. The equations perform very similarly from bottom up to relative height 0.3. 
From relative height 0.7 up to the tip, equation [10] displayed a different direction of bias 
compared to equation [9]. 
 



33 
 

Relative height class

M
ea

n 
bi

as
 c

m

1,00,80,60,40,20,0

1,0

0,8

0,6

0,4

0,2

0,0

-0,2

-0,4

-0,6

-0,8

-1,0

Variable
EQ 9
EQ 10

 
Figure 13. Mean bias in different relative height classes for white spruce, equations [9] and 
[10]. 
 
Volume prediction 
In table 17 the fit statistics regarding volume predictions by the volume equation [5] and 
the taper equations [8, 9, and 10] on the sample trees are compared. The volume equation 
[5] had the highest R2 and the lowest bias and RMSE. The values of the fit statistic for the 
taper equations are very similarly. 
 
Table 17. Fit statistics for taper equations predicting volume. 

Equation R2 Bias (dm3) RMSE (dm3) 
5 0.9942 0.6596 7.5128 
8 0.9759 -1.5250 8.1970 
9 0.9763 -1.4565 8.1219 
10 0.9753 -1.6555 8.2846 

 
In figure 14 the relative differences of the volume prediction for the best volume equation 
[5] are compared with the three taper equations [8, 9, and 10] tested. Equation [5] has the 
best overall prediction and equation [9] has the best overall prediction among the taper 
equations. Equations [5] have the best prediction in all diameter classes except number 7. 
Equations [8] and [9] perform very similarly but equation [10] shows some under 
estimation in predicting volume of trees smaller than 5 cm at D. The taper equations 
showed a similar trend in the rest of the D classes, with a small tendency of over estimation 
for bigger trees. 
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Figure 14. Residuals expressed as relative differences ((𝑣 −  𝑣�)/𝑣� ) between observed and 
predicted volume for White spruce presented in different diameter (D) classes. The best 
volume equation is [5] and taper equations [8, 9, and 10] with 95% confidence intervals. 
The classes are 1: D <5 cm, 2: <7.5 cm, 3: <10.0 cm, 4: <12.5 cm, 5: <15.0 cm, 6: <17.5 
cm 7: <20.0 cm and 8: >20.0 cm. 
 
Three stem profiles were simulated for a small, average and a large tree using equation 
[10] for Sitka spruce as an example (Figure 15, 16). These stem profiles illustrate the 
changes in stem form along the stem and also differences in stem shape among trees of 
different size. The relative stem profile predicted from taper equation [10] are more 
parabolic for small trees (figure 16), consistent with the findings of Forslund (1991) that 
basal swell and the neolithic proportion at lower stem increased with tree size. 
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Figure 15. Stem profiles for a small (D=7, H=6), average (D=15, H=10) and large (D=30, 
H=16) tree derived from equation [10] for Sitka spruce. 
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Figure 16. Relative stem profiles for a small (D=7, H=6), average (D=15, H=10) and large 
(D=30, H=16) tree derived from equation [10] for Sitka spruce. 
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Discussion 
This study evaluates three volume and three taper equations for Norway spruce, Sitka 
spruce and White spruce. The volume equations predict the total stem volume above stump 
and the taper equations can be used to predict stem diameter at any height along the tree. 
The data covers different climate regions around the country, represents different types of 
stands growing on different soil types and thus covers most of the site conditions suitable 
for forestry in Iceland. Regarding the sample plots, several sample trees within these were 
measured and used in this study. That kind of selection should generally be taken into 
consideration in analysis because trees in the same plot tend to resemble each other more 
than average and might result in dependence between observations. Parts of the data in the 
study were obtained from trees that were removed in thinning. The measured trees from 
these plots may have represented a biased sample since removed trees may have diverged 
slightly according to stem form from the average for the stand. These sources of potential 
error could have an effect on the outcome. In table 18 the fit statistics are presented by the 
origin of the data sets (plot type) used in the study. The volume of Sitka spruce have been 
calculated using equation [5] and [9] and only plots with more than three sample trees are 
included. The results do not reveal any significant effects of plot type. The taper equation 
[9] has marginally lower bias at all plot type except the thinning plot and the RMSE is 
veary similar for all plot types. The bias and RMSE are higher at the PSP and TP and is 
explained by bigger sample trees at these sites compared to PtH and PtS. 
 
Table 18. Average bias (dm3) and RMSE (dm3) for different data set (plot type) were more 
than three sample trees selected from a single plot and/or trees removed in thinning. PSP = 
permanent sample plot, PtH = provenience trail at Hallormsstadur, PtS = provenience trail 
at Stalpastadir and TP = thinning plots. 

PlotType N Bias EQ [5] RMSE EQ [5] Bias EQ [9] RMSE EQ [9] 
PSP 45 3.82 16.95 2.90 16.56 
PtH 50 0.26 4.12 0.16 4.37 
PtS 52 2.27 9.44 -1.33 9.44 
TP 22 -2.86 21.74 -6.15 20.44 

 
The volume equations were transformed to a logarithmic form, a common procedure to 
obtain constant variance of the residuals. Equation [5] which had D, H and (H-1.3) as 
independent variables gave the best results based on fit and validation statistics and was 
most suitable according to residual analyses for all three species. Equation [4], which 
includes only D and H as independent variables performed less well and showed a poor 
performance in predicting volume in smaller diameter classes as well as a large variation in 
different diameter classes for all species. Adding the forth independent variable (D+20) 
into equation [6] improved the precision negligible compared to equation [5] and the 
variable (D+20) was not significant in present data. According to Brandel (1990) the 
variable (H-1.3) mainly affects trees with breast height diameter lower than 15 cm and the 
variable (D+20) affects mainly trees with large diameter. The mean diameter for all the 
species was below 15 cm, which might explain why the variable (D+20) did not improve 
the volume predictions in present study. Equation [5] also appears to be more precise than 
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existing equations made by Snorrason & Einarsson (2006) for all three species when 
predictions were analyzed in different diameter classes (Figure 3, 4, 5). The range of tree 
diameter and height data was similar in that study but the number of sample trees and the 
number of sites were higher in the present one. Volume equation [5] should therefore be 
used instead of the existing equations for which sample size was small. 
 
Overall, there was little local bias across relative height classes in the diameter predictions 
obtained with the three taper equations presented in the study (figures 9, 11 and 13). The 
RMSE of the taper equation in diameter prediction ranged between 0.59 and 0.87 cm and 
the value of R2 ranged between 0.98 to 0.99 for all species. Sitka spruce had the highest 
RMSE values, ranging between 0.85 to 0.87 cm, whereas Norway spruce had the lowest 
values, ranging between 0.59 to 0.64 cm. Equation [10] had the best fit statistics for R2, 
RMSE, AIC and BIC for all three species tested. It also had the lowest bias for Sitka 
spruce and white spruce but equation [9] had the lowest bias for Norway spruce. Equations 
[8] and [9] performed very similarly. Equation [10] gave the best results based on fit and 
validation statistics, the model simplicity and overall model behavior and is recommended 
as the stem profile equation in diameter prediction for Norway spruce, Sitka spruce and 
white spruce in Iceland. The original version of equation [10], which had only three 
parameters was also tested but did not perform as well as the modified version with six 
parameters used in this study. Miguel et al. (2011) present similar results where 32 
equations gathered from the literature were compared. The result showed that, in general, 
taper equations with more parameters presented better fittings than simpler equations up to 
a certain number of parameters (de Miguel et al., 2011). However, in some cases, 
equations with fewer parameters performed better than certain equations with more 
parameters.  
 
The original version of equation [10] was developed and tested on six conifer species of 
Northern California (Biging, 1984). Only fit statistics for ponderosa pine (Pinus 
ponderosa), and white fir (Abies concolor (Gord. & Glend.) Lindl. (Iowiana [Gord.])), 
were presented in the study. For ponderosa pine the R2 value was 0.990 and for white fir 
0.989, which are of similar magnitude as the modified version used in this study where the 
values are 0.985 for Norway spruce, 0.990 for Sitka spruce and 0.986 for white spruce. The 
RMSE values for ponderosa pine and white fir were presented at different relative heights 
in the reference study and were a little higher compared with this study at all relative 
heights except in the section closest to the ground were the values were similar. Bias at all 
relative heights was of similar magnitude, marginally higher in the study of Biging. 
 
The performance of the taper equations was almost identical from the bottom up to a 
relative height 0.4, with similar value of bias for all species tested (Figure 9, 11, 13). From 
relative height 0.4 up to the tip, equation [10] showed different bias compared to equations 
[8] and [9], which were almost identical up to the tip for all species. The largest mean bias 
for all equations and all species was at relative height 0.4 up to 0.6 and at relative height 
0.8 up to 0.9. 
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The performance of volume prediction based on fit statistics showed a slightly different 
trend than the diameter prediction along the stem. Equation [10], which gave the best 
results in diameter prediction for all species, did not perform as well in volume prediction 
of small trees with diameter at breast height (D) less than 5 cm. For Norway spruce, 
equation [8] had the best fit statistic in volume prediction but when the relative differences 
were examined visually in different diameter classes (Figure 10) the same was noticed as 
for equation [10] in predicting volume of small trees. The fit of all the equations was 
similar in the other diameter classes for Norway spruce. For Sitka spruce, equation [5] had 
the highest R2 value (0.989) but also the highest bias and RMSE. Equation [10] had the 
lowest bias and equation [9] the lowest RMSE. When the relative differences in diameter 
classes among the taper equations were examined visually (Figure 12) it revealed the same 
trend for equations [5], [8] and [9] but equation [10] had a different trend in volume 
prediction of small trees and was more biased in diameter classes 1, 2 and 3. For white 
spruce, equation [5] had the best fit statistic and only small local bias in diameter class 7 
(Figure 14). The taper equations had a similar trend in different diameter classes but were 
more biased. The volume estimation of small trees was better for equations [8] and [9] than 
for equation [10] and with increasing stem volume all the taper equations tended to over 
predict the volume of white spruce except in diameter class 7. 
 
None of the taper models performed very well in volume prediction. Equation [10] is 
clearly biased in predicting volume of small trees and the same was true for equation [8] 
for Norway spruce. Equations [5] and [9] seem to be more flexible in predicting the 
volume of small trees as well as other tree sizes. So the best choice in volume prediction 
among the taper equations is equation [9]. However, more independent data to judge the 
equations rehabilitee might be desired.  
 
Recently, Icelandic Forest Service introduced a new forest management planning system. 
The new sets of taper equations are an important component of that system because the 
amount of timber in the forests can be evaluated and the forest resources used more 
effectively. In coming years when trees become bigger than the sample trees used in this 
study a further development of the volume and taper equations will be needed. Also 
additional data should be collected from areas that are not presented in this study. 
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