
COPYRIGHT STATEMENT

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation from

the thesis and no information derived from it may be published without the author's prior

consent.

Copyright © 2021 Sarah Alhammad

II

TRACING LEARNING ENVIRONMENT IN JAVA PROGRAMMING LANGUAGE

by

Sarah Alhammad

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Engineering, Computing and Mathematics

April 2021

III

Acknowledgements

First and foremost, all praise and gratitude is due to Allah the All-Compassionate and All-

Merciful for giving me the potential and patience to persevere and reach this stage of my

PhD research, in particular. Without Him, I would not have achieved anything.

 I also owe a debt of gratitude to my beloved parents for their considerable encouragement

and support, and passionate love and prayers for my success. Any success that might be

resulted, hopefully, should help me make them proud and happy of me. May Allah reward

them the best.

My unreserved love, thanks and appreciation must go to my husband (Ahmad) and

children (Anoud, Abdullah, and Danah) who have been very patient, understanding, and

inspiring to me throughout the PhD journey . May Allah bless them.

I should not forget my dear siblings who have been always supportive to me whenever I

am in need and without any reservation. Many thanks to them.

This thesis would not have been completed on time without the invaluable guidance,

wholehearted support, timely feedback and utmost professionalism from my Director of

Studies Dr. Shirley Atkinson . I would like to express my special thanks and admiration to

her . It has been really a pleasure and an incredibly rewarding experience to work with her

and I am looking forward to continue doing so in future. I also wish to

thank my second supervisor Dr. Liz Stuart for her time and efforts in making the

PhD journey easier and better.

I acknowledge with grateful the government of Saudi Arabia, Ministry of Education,

Princess Nora Bint Abdulrahman University , for granting me the scholarship and

sponsoring my undertaking of this PhD programme.

Lastly, I would like to thank Plymouth University and special thanks to my colleagues and

friends at the Centre for Security, Communication and Network Research.

IV

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award without prior agreement of the Doctoral

College Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not formed part

of any other degree either at the University of Plymouth or at another establishment.

The following courses organised by University of Plymouth were attended: Unconscious

bias, Diversity in the workplace, GDPR and information security, Health and safety,

Overview of Library Services & Recourses for Researchers, and Research methods –

STEMMD disciplines.

Relevant scientific seminars and conferences were attended at which work was often

presented and several papers were published and prepared for publication in the course of

this research project.

Publications:

1) Alhammad, S., Atkinson, S., and Stuart, L. (2016). The role of visualisation in the

study of computer programming . Proceedings of the 27th Annual Workshop of the

Psychology of Programming Interest Group (PPIG 2016),Cambridge, UK, 2016, pp.

5–16.

url : http://www.ppig.org/library/paper/role-visualisation-study-computer-programming

PEARL:https://pearl.plymouth.ac.uk/bitstream/handle/10026.1/8051/paper_the%20role%20

of%20visualisation%20in%20the%20study%20of%20computer%20programming.pdf?sequ

ence=1&isAllowed=y

http://www.ppig.org/library/paper/role-visualisation-study-computer-programming

V

2) Alhammad, S., Atkinson, S., and Stuart, L. (2018). Overview of using visualisation in

programming learning. International Conference on Recent Advances in Computer

Science and Information Technology (ICRACSIT), Dubai, UAE,2018, pp. 54–58.

PEARL:https://pearl.plymouth.ac.uk/bitstream/handle/10026.1/12492/paper_sarah_alhamm

ad_ICRACSIT.docx?sequence=1&isAllowed=y

3) Alhammad, S., Atkinson, S., and Stuart, L. (2018). Overview of using visualisation in

programming learning. International Journal of Advances in Electronics and

Computer Science, Vol. 5, Issue 7, pp. 20–24.

DOI: http://iraj.doionline.org/dx/IJAECS-IRAJ-DOIONLINE-12898

Word count of the main body of thesis: 45,369 words

Signed.……………Sarah…………………………

Date………………27/ 4 / 2021………….……

1

Abstract

Tracing Learning Environment in Java Programming Language

Sarah Alhammad

The visualisation approach is one of the programming learning styles that has been taken

into account in programming education. A collection of visualisation tools has emerged

with the aim of assisting novice programmers in learning how to program. Each tool has its

own set of features that may or may not be helpful in gaining a better understanding. The

methods that we used in this study are focused on using memory referencing and

visualisation to clarify what happens during individual program statement executions.

Understanding the efficacy of current instructional resources is a critical component of

gathering students' requirements and needs for future improvement.

The “Tracing Learning Environment” (TLE) is developed for novice programmers to help

them trace the sequence of execution of a software program and the reserved place of

data in the memory. The framework relies on using visualisation as the programs are run

and to show the effect of each statement in the code. It provides an environment for

learners to see what happens to the data while running the program.

The specification of the TLE draws largely on research regarding the role of visualisation in

teaching computer programming and associated literature on tools to support learning

programming.

The TLE framework has been evaluated by conducting an empirical study using a mixed-

method approach with novice and expert participants. The study has included surveys,

focus groups, and semi-structured interviews. Student performance was measured before

and after using the visualisation tool and compared with a control group who participated in

a standard teaching session only.

2

 Early findings highlighted the need to visualise the control of the execution of code,

evaluation of expressions, represent the class hierarchy along with the importance of a

good interface/usability of the tool and to consider the programming languages supported.

The evaluation findings are in line with the literature surrounding the benefits of using

visualisation in learning to program. The findings found visualisation increased the

students’ performance and confidence. When compared to the regular lab activities, the

visualisation contributed to better understanding and support for learning to program.

3

Contents

COPYRIGHT STATEMENT .. I

AUTHOR’S DECLARATION .. IV

CONTENTS .. 3

LIST OF FIGURES .. 6

LIST OF TABLES .. 7

CHAPTER 1 INTODUCTION .. 8

 INTRODUCTION .. 8

 STATEMENT OF THE PROBLEM .. 9

 PURPOSE OF THE STUDY ...10

 RESEARCH QUESTIONS ...10

 RESEARCH HYPOTHESES ..11

 THESIS ORGANISATION...11

CHAPTER 2 PROGRAMMING LEARNING SYSTEMS ..13

 INTRODUCTION ...13
 THE EVOLUTION OF LEARNING TO PROGRAM FROM THE PERSPECTIVE OF PROGRAMMING LEARNING

SYSTEMS ...13

 COMPUTER SCIENCE IN SAUDI ARABIA ...17

 NOVICE PROGRAMMERS ...18

 E-LEARNING OR BLENDED LEARNING ..19

 E-LEARNING AND VISUALISATION ..20

 STRENGTHS OF USING SYSTEMS AND APPLICATIONS IN LEARNING PROGRAMMING21

 WEAKNESSES OF USING LEARNING SYSTEMS AND APPLICATIONS IN LEARNING PROGRAMMING23

2.8.1 The difficulty of choosing the right programming language ...24

2.8.2 Explain errors to individual novice programmers ...25

2.8.3 The increased complications of learning ..25

2.8.4 Tutor preparation ...26

2.8.5 Information retrieval ..26

2.8.6 Other systems that require a lot of practice ...26

2.8.7 Increased number of instructional texts ..26

 CONCLUSION ..27

CHAPTER 3 PEDAGOGICAL THEORY: THRESHOLD CONCEPTS ..29

 INTRODUCTION ...29

 CHARACTERISTICS OF THRESHOLD CONCEPTS ..29

 THRESHOLD CONCEPTS IN COMPUTER SCIENCE ..30

 PROPOSED MODELS FOR THRESHOLD CONCEPTS ..37

 CONCLUSION ..38

CHAPTER 4 VISUALISATION IN PROGRAMMING LEARNING ..39

 INTRODUCTION ...39

 MEMORY REFERENCE VISUALISATION ...39

 TOOLS TO SUPPORT PROGRAMMING LEARNING ...40

4.3.1 The BlueJ tool ..44

4.3.2 Jeliot 3 ..45

4.3.3 DrJava ..46

4.3.4 ProfessorJ ..48

4

4.3.5 WebTasks ...50

4.3.6 The Alice tool ...51

4.3.7 The ANIMAL system ..53

4.3.8 Visual Logic ...54

4.3.9 Online Python Tutor ...55

4.3.10 The Visualiser ..56

 VISUALISATION EVALUATION ...57

4.4.1 The methodology used to evaluate the tools ..58

4.4.2 The measured factors ...61

4.4.3 Programming topics ...64

 CONCLUSION ..66

CHAPTER 5 RESEARCH METHODOLOGY..68

 INTRODUCTION ...68

 RESEARCH METHODOLOGY..69

5.2.1 Deductive and inductive approaches ...72

5.2.2 The worldview (epistemological) consideration ..72
1. Positivism .. 72
2. Constructivism .. 73

 QUANTITATIVE METHOD ..75

5.3.1 Survey with experiment ..76

5.3.2 Survey measurements ...77

5.3.3 Data collection ..80

5.3.4 Data analysis strategy ...82

 QUALITATIVE METHOD ..82

5.4.1 Grounded Theory ...83

5.4.2 Semi-structured interviews..87

5.4.3 Focus groups ..89

5.4.4 Data analysis strategy ...89

 ETHICAL ISSUES ...91

 CONCLUSION ..93

CHAPTER 6 INVESTIGATING THE ROLE OF VISUALISATION IN THE STUDY OF COMPUTER

PROGRAMMING ...94

 INTRODUCTION ...94

 DATA COLLECTION ..94

6.2.1 Interviews ...94

6.2.2 Tool selection ...97

6.2.3 Study tasks (threshold concepts) ...97

 DATA ANALYSIS .. 100

 FINDINGS .. 100

6.4.1 Controlling the execution of the code ... 101

6.4.2 Availability of the tool ... 102

6.4.3 Error explanation ... 103

6.4.4 Interface/usability of the tool .. 104

6.4.5 Programming languages supported .. 104

6.4.6 Expression evaluation .. 105

6.4.7 Representation of class hierarchy ... 106

6.4.8 Maintaining an event history .. 106

6.4.9 Tool comparison ... 107

 VISUAL CODE FLOW TOOL ... 109

 VISUAL CODE FLOW COMPONENTS .. 112

5

 CONCLUSION .. 118

CHAPTER 7 EVALUATION OF THE USE OF VISUALISATION IN PROGRAMMING LEARNING .. 120

 INTRODUCTION ... 120

 OBJECTIVES .. 121

 EVALUATION METHOD ... 121

7.3.1 Selection of population ... 123

7.3.2 Instrument .. 124

7.3.3 Programming subjects .. 124

7.3.4 Quantitative method ... 125

7.3.5 Experiment preparation .. 129

7.3.6 Experiment procedures ... 130

7.3.7 Focus groups .. 131
1. Focus group preparation.. 131
2. Focus group procedures .. 132

7.3.8 Interviews ... 134
1. Interview preparation .. 134
2. Interview procedures .. 134

 FINDINGS .. 137

7.4.1 Survey results ... 137
1. Students’ difficulties .. 150

 ... 150
2. Students’ satisfaction .. 151

7.4.2 Qualitative findings .. 155
1. Focus group data ... 155
2. Interview data ... 162

 CONCLUSION .. 165

CHAPTER 8 CONCLUSIONS AND FUTURE WORK .. 166

 INTRODUCTION ... 166

 CONTRIBUTIONS AND ACHIEVEMENT OF THE RESEARCH ... 166

 THE RESEARCH QUESTIONS ... 167

 LIMITATIONS OF THE RESEARCH .. 169

 FUTURE RESEARCH .. 169

 THE IMPORTANCE OF VISUALISATION IN PROGRAMMING LEARNING.. 170

 RESEARCH DISSEMINATION .. 171

REFERENCES .. 172

APPENDICES .. 182

APPENDIX A- ETHICAL APPROVAL LETTER AND FORM- CONSENT FORM- INFORMATION SHEET (DATA COLLECTION) 182

APPENDIX B- QUESTIONS FOR SEMI-STRUCTURED INTERVIEWS - STUDENTS AND NOVICES PROGRAMMERS 198

APPENDIX C- VISUAL CODE FLOW ... 203

APPENDIX D- ETHICAL APPROVAL LETTER AND FORM- CONSENT FORM- INFORMATION SHEET (EVALUATION OF VISUALISATION) 204

APPENDIX E- EVALUATION SURVEY- FOCUS GROUP QUESTIONS- EXPERT INTERVIEWS QUESTIONS ... 228

E-1 Pre-survey for control and visualisation group .. 228

E-2 Post-survey for control and visualisation group ... 237

E-3 Questions for Focus Groups .. 249

E-4 Questions for semi-structured interviews- expert interview ... 253

APPENDIX F- INTERVIEWS AND FOCUS GROUPS TRANSCRIPT .. 256

F-1 Interviews with programming students in the data collection Phase.. 256

F-2 Interviews with Experts in the Evaluation Phase ... 286

F-3 Focus Group Discussion with The Students In The Evaluation Phase .. 292

6

List of Figures

Figure 1. Memory diagram.. .. 33

Figure 2. BlueJ.. .. 37

Figure 3. Jeliot .. 39

Figure 4. DrJava.. .. 40

Figure 5. ProfessorJ and DrScheme. .. 42

Figure 6. WebTasks.. .. 43

Figure 7. Alice.. .. 45

Figure 8. ANIMAL system.. .. 46

Figure 9. Visual Logic.. ... 47

Figure 10. Online Python Tutor.. ... 48

Figure 11. The Visualiser tool.. ... 49

Figure 12. Methodology and Experiments Diagram... 62

Figure 13. Visual Code Flow tool interface ... 106

Figure 14. Visual code flow interface for the programming problem of calling method and passing

parameters... 110

Figure 15. Visual code flow interface for the programming problem of defining and using classes

and objects .. 110

Figure 16. Visual code flow interface for the programming problem of class inheritance............. 111

Figure 17. Experiment components ... 115

Figure 18. Case A - students’ confidence regarding general topics in programming 138

Figure 19. Case B – students’ confidence regarding general topics in programming 141

Figure 20. Case C - students’ confidence regarding general topics in programming 142

Figure 21. Satisfaction level of the participants regarding the use of the Visual Code Flow tool in

the Case A problem ... 145

Figure 22. Satisfaction level of the participants regarding the use of the Visual Code Flow tool in

the Case B problem ... 146

Figure 23. Satisfaction level of the participants regarding the use of the Visual Code Flow tool in

the Case C problem ... 147

7

List of Tables

Table 1. The five phases of research in threshold concepts ... 31

Table 2. Tools/models supporting the visualisation ... 41

Table 3. Coding framework table for interviews ... 90

Table 4. Visual code flow components ... 113

Table 5. Number of students who participated in the experiment .. 123

Table 6. Arrangement of the students in the experiment .. 129

Table 7. Number of groups/participants in the focus group ... 131

Table 8. Expert interview background questions ... 135

Table 9. Statistical results for the visualisation group.. 137

Table 10. Statistical results for the control group .. 138

Table 11. Comparison between the visualisation and control groups ... 138

Table 12. Case A - Question topics ... 139

Table 13. Case A - Students’ level of confidence in solving the problem 139

Table 14. Case B - Question topics ... 140

Table 15. Case B - Students’ level of confidence in solving the problems 141

Table 16. Case C - Question topics ... 142

Table 17. Case C – Students’ level of confidence in solving the problems 143

Table 18. Summary of content - general comments in a focus group for tool usage 156

Table 19. Case A - focus group summary of content-specific comments 158

Table 20. Case B - focus group summary of content-specific comments 160

Table 21. Case C - focus group summary of content-specific comments 161

Table 22. Summary of content comments for the experts’ interviews .. 163

8

Chapter 1 INTODUCTION

 Introduction

Programming is challenging, and all learners need to acquire specific skills (Milne and Rowe,

2002). Several researchers have investigated the difficulties surrounding learning and teaching

programming. For instance, Milne and Rowe surveyed students from Dundee University to uncover

common problems and major areas of difficulties students and tutors encounter in an object-

oriented programming course. They found the most problematic areas involved using pointers and

memory-referencing concepts and that this was partially because of the students’ inability to absorb

what was happening in the program memory during program execution (Milne and Rowe, 2002).

Siti Rosminah and Ahmad Zamzuri (2012) found the same problem in their study that showed that

students’ difficulties involved understanding the role of variable position in computer memory.

Husain et al. (2013) found that students had difficulty in writing programs and that even students

with high grade point averages (GPAs) had trouble applying the programming concepts they

learned in lectures. The two most challenging factors for those students were in the design and

implementation phase when they started writing their programs.

The main challenge facing novice programmers is understanding the impact of each execution

statement in the program code (Evangelidis et al., 2001). There is a gap between how a student may

represent the problem/solution in their mind and how it will be represented in the computer.

Therefore, students might not predict the results of each instruction correctly. In predicting the

output of each program instruction, it becomes difficult to know when there is insufficient

programming knowledge (Fitzgerald et al., 2008).

The standard teaching of programming languages relies on lectures and labs. This is static

programming and does not motivate students to think or dynamically interact with programs (Law

et al., 2010; Gomes and Mendes, 2007; Al-Imamy et al., 2006). Teachers focus on syntax, rules and

grammar. They often teach students how to define the identifiers, the different data types, the

operators and operands and how to construct different expressions, such as conditional statements

9

and loops. Programming teachers sometimes follow these strategies because they lack experience or

have limited lecture time. For this reason, teachers tend to focus on the format of the program rather

than on how to solve problems through programs. Students have to know how to write a program as

a collection of expressions in a well-structured form. The challenge in learning programming

languages is knowing how the program works and how to structure it (Ala-Mutka, 2004).

The visualisation method in learning programming includes showing or visualising the impact of

the programming code on the memory, which allows novices to ‘see’ what happens during program

execution. Use of the visualisation method was introduced in learning programming as Memory

Transfer Language (MTL) (Mselle, 1989). Since the invention of the visualisation method,

researchers have investigated the benefits of using this approach in learning programming.

Visualisation systems have been developed to aid students’ understanding, and some of these

systems have been evaluated by conducting different experiments, including BlueJ (Hagan and

Markham, 2000; Sun 2010), AnimPascal (Satratzemi et al., 2001), Jeliot3 (Moreno et al., 2004), the

Memview tool (Gries et al., 2005), Turtlet (Kasurinen et al., 2008), BackStop (Murphy et al., 2008)

and Alice (Salcedo and Idrobo, 2011). The evaluation of visualisation and its tools is discussed

extensively in Chapter 4. The present chapter highlights the main research aims and objectives of

the thesis and describes its structure.

 Statement of the Problem

The visualisation method is one of the learning styles in programming and has been implemented in

programming education. Visualisation tools have emerged with the aim of supporting teaching

novice programmers how to program (Dekson et al., 2009). Each tool has features that may or may

not be useful for better understanding. The tools considered in this research are based on using

memory referencing and visualising in explaining what happens in individual executions of

program statements. Understanding the effectiveness of the existing educational tools is an

important part of learning students’ requirements and needs for further improvement.

10

 Purpose of the Study

The research aim is to develop a new approach that supports learning programming. The approach

explores the effectiveness of using MTL programming. A memory reference or MTL is defined as

the language or device programers use to describe the effect of code lines on computer memory

(RAM). The current study will evaluate existing models to discover the needs of novice programers

and understand their issues. The results of this evaluation will be used to develop a new conceptual

framework to determine whether the concept can be fully or more effectively utilised to support

programming learning.

The study will try to determine and elucidate the strengths and weaknesses of programming

learning systems, particularly visualisation systems and current tools that support programming

education, and to characterise existing visualisation methods and evaluate the necessary features

required for the new framework. The study will explore theories of education to discover the

challenges faced by novice programmers; develop and implement the proposed framework based on

existing tools and the needs of novice programmers; and evaluate the proposed framework by

seeking beginners’ comments and expert opinions to ensure it is appropriate for the requirements of

novice programmers.

Thus, the study will achieve the following:

1. To investigate the effect of using visualisation by tracing the program’s instructions on the

students’ performance.

2. To investigate the effect of using visualisation by tracing the program’s instructions on

students’ understanding of general programming concepts.

3. To investigate the effect of using visualisation by tracing the program’s instructions on

students’ confidence in solving programming problems.

 Research Questions

This study will be able to answer the following questions:

11

1. What is the impact of using program visualisation on students’ performance while they are

tracing the program?

2. What is the impact of using program visualisation on students’ comprehension of the

general programming concepts?

3. What is the impact of using program visualisation on students’ confidence while solving

programming problems?

 Research Hypotheses

 The first main hypothesis is that a significant effect of Student’s performance improved

by using the visualisation of the tracing of the program’s instructions.

 The second main hypothesis is that student’s understanding of general programming

concepts improved when using visualisation of tracing program’s instructions.

The aim of the study is to evaluate existing models to discover the needs of novice programmers

and to understand their issues. The results of this evaluation will be used to develop a new

conceptual framework to determine whether the concept can be fully or more effectively utilised

to support programming learning. The study hypotheses will be discussed based on what has

been seen and observed using a research theoretical framework.

 Thesis Organisation

The thesis is organised as follows. Chapter 2 provides background on the programming learning

systems used in programming education. The chapter discusses the integration and evolution of

programming learning systems. It also describes the strengths and weaknesses that exist in

programming learning systems that should be considered in the new framework.

Chapter 3 discusses important concepts in learning programming with a focus on where students

predominantly encounter difficulties. The chapter describes the characteristics of threshold concepts

and what the threshold concepts are among computer science (CS) concepts.

Chapter 4 discusses the memory reference visualisation method. It includes a literature review of

previous studies conducted in the field and a discussion of some of the models that have been

12

invented and of the tools supporting visualisation. Chapter 5 discusses the methodology and

research methods used. Chapter 6 presents the implementation of the research conducted to

investigate the role of visualisation in programming learning and the development of the tracing

learning environment (TLE) (visual code flow) tool and how it was developed based on findings.

Chapter 7 presents the empirical study to evaluate the TLE framework using the visualisation

method in programming learning and how this affected students’ performance and confidence in

programming. Chapter 8 concludes the thesis by highlighting the study’s contribution and the

importance of the research. It presents the limitations and suggestions for future research. The

chapter discusses the importance, dissemination and impact of the research. The appendices and

references are located at the end of the thesis.

13

Chapter 2 PROGRAMMING LEARNING SYSTEMS

 Introduction

Before the development of programming learning systems, traditional means of teaching

programming entailed a teacher giving detailed examples to students who were required to

internalise the concepts and follow the given examples linked to a programming language. Later,

radio and television channels developed such that lecturers could teach using these mediums.

However, over time certain aspects of programming education changed, such as the learning

environment and the learning materials. Programming education has become more of an online

concept than when it was being taught in classrooms (Robins et al., 2003). How applications and

systems in the learning of programming have evolved over time is discussed in Section 2.2. This

includes e-learning systems that are part of programming education in general, where this thesis is

located. The advantages and disadvantages of using the various systems in programming education

are also discussed.

 The Evolution of Learning to Program from the Perspective of Programming

Learning Systems

E-learning became a common term in 1999 when it was used to refer to learning done over the

Internet. Before the advent of e-learning, B.F. Skinner developed a machine that could connect one

programmer with a large number of students (Skinner, 1958). Skinner had advanced an innovation

by Sydney Pressey, who wanted to create an automatic teacher, an idea that never succeeded. This

was the first time e-learning was used in programming, as the distance between the teacher and the

learner did not matter. The machine was fitted with tests and learning items, which rewarded

students as a consequence of the learning process. It required that the novice programmers be able

to fill in blank spaces, and if the spaces were correctly filled in positive reinforcement would

follow. There were multiple choice questions that had four possible answers the learner could

choose from. The teaching machine was preferred for distant novice programmers, as the physical

14

presence of the teacher was not necessary. It was also less labour-intensive and therefore gained

popularity in programming learning.

Skinner’s programmed instructions became widespread in other fields of learning. The development

of e-learning was enhanced by advancements in communication that occurred in the 1960s, which

allowed people to effectively communicate irrespective of distance and time differences. Later in

the 1960s, Don Bitzer advanced Skinner’s efforts by inventing an automated teaching activity called

Programmed Logic for Automatic Teaching Operations (PLATO). PLATO was more

acknowledged than the Internet and the bulletin boards used today (Bitzer et al., 1967). The

applications preceding PLATO gave birth to other applications that were adopted by academic

institutions, including those that were teaching programming.

In the 1970s, the Basic Instructional Program system resulting from the intelligent tutoring system

also allowed for individualised instruction and gave novice programmers a chance to learn at their

own pace to better understand the programming content (Durzo,1978). Other systems have also

taken programming education to another level, including LOURA, which was developed at

University of Caen. LOURA’s distinctive feature is that it can represent information in the form of

a graph, making it easy to understand. This is a better way of presenting information to novice

programmers than complicated data and figures (Adam and Laurent, 1980). Another system is the

PROUST system, which was developed at Yale University. The PROUST system is given credit

because of its ability to simplify bugs for learners. Researchers continue to pursue the development

of more programming systems that can make programming education interesting and less difficult,

given the variety of systems that novice programmers currently have to blend (Zelhart and

Wallingford, 1994).

Systems and tools in e-learning have been integrated into many fields of education, including

programming. Approximately ten million courses are taught online, and there are approximately

700 e-learning companies in the US (Capper, 2001).

15

New technology has resulted in the incorporation of different applications to facilitate programming

education. Studies estimate that the incorporation of applications began in the 1980s, and this has

increased and evolved drastically over the years (Martín-Blas and Serrano-Fernández, 2009). It is

fundamental to understand that the applications in programming learning are facilitated by

computers and that technology has advanced to the extent of having better applications. Improved

computer technology has resulted in increasingly sophisticated applications that have ensured

programming learning is effective (Harris et al., 2009).

This evolution enabled the involvement of more students in classwork and learning programs.

Further, the advancement of learner-centred programs has been facilitated using video tutorials that

guide students in understanding more about programming (Harris et al., 2009). Some of the

applications in use include Encode, Udacity, Tynker, Khan Academy and code hub. These have

become more advanced, thus facilitating the solving of complex programs. The applications used in

the 1980s facilitated programming education in fewer ways compared to the current applications

that incorporate videos, tutorials, consultation interfaces and exercises to enable learners to learn the

skills and steps required in programming.

Subsequently, the intelligent tutoring system for programming was developed in association with

Stanford University. This system had an advantage over the other systems, which to some extent

could not provide learners with a meaningful learning experience, mainly because they could not

link a learner’s prior knowledge to what they presented. This was contrary to Skinner’s belief that

learning should be meaningful to learners by making what they already know useful in a learning

situation. The intelligent tutoring system for programming gave learners the opportunity to link

what was being presented in class to what they already knew about programming (Yang, 2010).

As mentioned, the involvement of applications has changed drastically, resulting in the

improvement of programming education. Nonetheless, it is important to acknowledge that times

have changed, and there is a need for more sophisticated applications in educating learners about

programming (Tamim et al., 2011). E-learning in programming is essential because of the increase

16

in the number of programmers worldwide. E-learning reaches a wider range of people compared to

conventional classrooms (Ghirardini, 2011).

For instance, the probability of making learners problem solvers is increased, as learners understand

each step involved in programming with less supervision from educators (Behera et al., 2013). This

is possible by incorporating sophisticated applications in the system. More applications have

incorporated an interface for tutors to ensure their involvement, thus facilitating holistic

programming education.

In the past, learning used to incorporate fewer applications to ensure that students learned different

applications in programming education. However, this has changed with the increased number of

applications that can facilitate programming learning in schools. In addition, the applications related

to programming have evolved in different ways, such as in their paradigms and categories. In the

past, all the information was present in a single application without categorisation based on the

learning level of the learner or the examples and topics covered. This has changed in recent years,

as some applications have categorised programming tutorials, such as beginner-level tutorials.

According to Behera et al. (2013), applications have changed drastically with the introduction of

different programming applications for learners; therefore, beginners have a better way of starting

to learn programming compared to the past.

In 2016, the worldwide revenue for self-paced e-learning products and services was $46,674.7

million US (Back and Dietrich, 2017). The evolution of e-learning research has also developed

quickly in the last four years. According to Rodrigues et al. (2019), three common factors in e-

learning have been examined—e-learning content and elements, e-learning demands and online

education. The emergence of mobile learning and cloud computing have made e-learning more

popular and easier to access (Rodrigues et al., 2019).

A 2020 study conducted to evaluate the evolution of e-learning and the research on the topic

revealed that teaching and learning strategies in e-learning focus on assessment methodologies and

self-regulated learning. Interactive learning environments is a topic of e-learning research that deals

17

with the communication between teachers and students. Researchers are interested in the

demographics of the students engaged in online courses and in identifying barriers, potentiates and

psychological profiles (Valverde-Berrocoso et al., 2020).

 Computer Science in Saudi Arabia

In light of the recent worldwide scientific and technical revolution in CS, countries have been

ranked in terms of their progress based on their expertise and competencies in this science.

Therefore, Saudi Arabia has made a significant effort in many fields to keep pace. It has established

universities and colleges specialising in this science and has supported those institutions with the

appropriate budgets, laboratories and equipment. This interest and expansion in CS and other digital

sciences have led to the achievement of advanced levels in all fields and disciplines and the optimal

use of the outputs.

The most prominent CS disciplines are computer programming, networking, information security,

computer and network security, artificial intelligence, graphics, multimedia, machine language,

databases, electronic computing and big data. Because CS encompasses many disciplines, students

must be made aware of them and must be given the freedom to choose so that they benefit from the

various resources to increase their skills and acquire competencies at all levels. The introduction of

computers to the industrial environment is particularly important in Saudi Arabia in both private

and public facilities (Al-Gahtani, 2004).

At Saudi universities that offer CS, it is mandatory that all students in the various disciplines take

two courses on programming. Programming I comprises the basics of programming with C or Java,

such as defining variables, calling methods, mathematic and logic expressions, conditional

statements and iterations. Programming II comprises object-oriented programming, such as defining

classes and objects, inheritance and polymorphism. Other programming languages, such as web

programming languages, are be taught in some computing disciplines but not all. Programming I

and Programming II courses have three hours of lectures and two hours of laboratory work per

18

week. The present study mainly focuses on the programming students in computing departments, as

they are considered novice programmers (see Section 2.4).

Alakeel (2015) investigated the difficulties of learning computer programming in Saudi Arabia,

research in which 90 students participated. Of the students, 79 were aged 19–23 and 11 were aged

24–28. The results showed that some difficulties might truly influence the teaching of computer

programming in some areas of Saudi Arabia, including the insufficient time allotted for laboratories

and tutorial sessions and the insufficient amount and quality of assignments.

Learning computer programming is not limited to a specific age group. Indeed, in some countries

students are taught computer programming basics and languages in the early stages of education.

However, in Saudi Arabia learning programming and programming languages begins at the

university level when students choose to study one of the disciplines related to CS and software.

Students start to study programming languages in the first academic year and continue until the

completion of their university education.

 Novice Programmers

In general, ‘novice programmers’ is a term given to beginning learners who have no programming

experience. In some countries, learning programming starts very early at age five or six, while in

other countries it starts at secondary school or college. Therefore, the age of the population in any

study conducted on novice programmers may differ.

The present study was conducted in Saudi Arabia, where students start learning programming when

they start specialising in the computing field at college from the age of 19. Learning programming

is not mandatory and is not included in the school curriculum at any stage, and there is no research

on why programming has not been taught at an early age. The author speculates that this is because

teaching English, which is used in programming, also does not start at an early age. Recently, there

has been an effort to introduce programming to children aged 7–10 using Scratch, a drag and drop

tool that does not require knowledge of English. However, these efforts have only been made at

19

small private institutions and some international schools, and learning programming is still not

mandatory for all Saudi students (Al-Othman and Almawash, 2020).

For that reason, the population in the present study is comprised of programming students in their

first year of college; therefore, they are considered novices. Moreover, the study considered any

student who started to study any programming concepts from the begging is a novice .

 E-Learning or Blended Learning

E-Learning is a tool that supports the educational process and transforms it from the stage of

initiation to the stage of creativity, interaction and skills development. It combines all forms of

electronic teaching and learning where the latest methods are used in the fields of education,

publishing and entertainment by adopting the use of computers, storage media and networks. The

rapid transfer of technology has led to the emergence of new patterns of learning and teaching,

which has further entrenched the concept of individual or self-learning. E-learning is one of these

evolving patterns of so-called distance learning in general and in computer-based learning in

particular. E-learning relies mainly on computers and networks for the transfer of knowledge and

skills. Its applications include web learning, computer learning, virtual classrooms and digital

collaboration. Online lesson content, audio, video and CDs are offered (Aparicio et al., 2016).

E-learning and e-learning techniques are utilised in teaching in several ways, such as to supplement

and support traditional learning. This can be done inside or outside the classroom. Examples of the

application of e-learning before teaching is instructing students to view a particular lesson on the

Internet or on a CD. Blended learning includes the integration of traditional and electronic

education in the classroom or places equipped with e-learning technology and is characterised by

combining the advantages of traditional and electronic education, but the role of the teacher in this

case is to guide and manage the educational situation and ensure the learner has a positive role. In

addition, the pure model uses e-learning as an alternative to traditional learning so that learning can

be done anywhere and at any time by the learner. The network acts as a primary intermediary to

provide the entire learning process; an example of its application is independent self-study (students

20

studying e-course individually). Studying or completing a project can be done using participatory e-

learning tools, such as chat rooms and forums (Mayer, 2017).

E-learning for programming education has also offered another avenue of providing learning

materials for novice programmers and providing a platform for tutors to access their novice

programmers in various parts of the world. Over time, e-learning has proved to be of assistance to

novice programmers, as they can access even more materials from wherever they are. For instance,

e-learning provides novice programmers the opportunity to access tool books, plugins, workshops,

references and conferences. These services are aimed at making e-learning easy and accessible for

all interested novice programmers. These services have grown incrementally in recent years, as

novice programmers have been able to access all the information they need for programming. This

has attracted a large number of e-learners, making the learning of programming an option for many

people. E-learning has incorporated all the features of the face-to-face learning process, thus

making e-learners comfortable, as they feel equal to their peers. Further, e-learning provides

platforms for novice programmers to review what they have previously learned and provides

answers to their questions about whatever they fail to understand. Other systems allow tutors to

monitor their pupils’ behaviour, enabling them to identify the novice programmers’ areas of

weakness, making the learning of programming even more targeted (Anderson and Skwarecki,

1986).

From the previous description of the features of e-learning and blended learning, we can say that

this research focused on using programming visualisation, which can be utilised in both e-learning

and blended learning. The utilisation of some computerised educational tools or software, such as

visualisation, can facilitate e-learning and blended learning if used as self-learning techniques and

can help tutors present lessons.

 E-learning and Visualisation

The present study focused on using visualisation to facilitate programming education. Memory

reference visualisation is defined by Mselle (1989) as a language or device used by programers to

21

describe the impact of code lines on computer memory (RAM). Visualisation is discussed in depth

in Chapter 4; however, this section will discuss why visualisation is considered to fall under e-

learning. The visualisation method can be used in e-learning and blended learning to facilitate the

learning process. Based on the information in Section 2.5 regarding e-learning and blended

learning, there is a clear relationship between e-learning and visualisation. The use of visualisation

techniques in the learning process is not new but rather has been used in relation to maps and

drawings before our world became more oriented to the use of multimedia in education. People in

the current era prefer learning through visual information more than textual information and

through graphs and other formats that are more accessible than block text. When using any of the

visualisation methods in e-learning, it is necessary to ensure that the presented visualisation is clear

and coherent and that it is not in excess of the need and will add value to learning (Aytekin, 2019;

Conti et al., 2019).

 Strengths of Using Systems and Applications in Learning Programming

Technological advancement has resulted in sophisticated applications aimed at programming

education. According to Resnick et al. (2009), the positive impacts of applications in learning

programming are considered strengths. First, incorporating applications has made it possible for

learning to become more learner-centred and skill-based. Beatty (2013) argues that the paradigm

shift in education insists learners be the centre of attention to facilitate programming learning. In the

past, teachers concentrated on teaching learners about programming. This has changed, as tutors

now refer learners to applications such as Khan Academy and Python Tutor to master the skills

required for programming. This has changed drastically in recent years, as more applications

involve learners. Currently, teachers can assign tasks to groups where learners are asked to develop

programs and the applications enable the learners to know some of the steps, such as debugging

(Schroeder et al., 2010). The tasks ensure learners are more involved in programming, thus making

them more engaged in learning and mastering skills compared to the past. The incorporation of

22

applications makes it possible for learners to become problem solvers, as they can address more

issues independently. The use of applications that offer tutorials using a step-by-step approach to

solve a particular problem ensures that learners can develop solutions on their own.

Further, programming education is research-based; hence, there is a need to develop skills and

knowledge regarding how to handle research. Applications that offer guidelines create a platform on

which learners can develop skills and knowledge about how to solve programming problems

(Schroeder et al., 2010). The incorporation of tutorials and tests after using an application increases

the chances of a student acquiring more knowledge and skills, thus advancing the learning of

programming. The applications are more sophisticated, which makes it easier to solve some of the

complex programs, especially those relating to mathematics or research (Blikstein, 2011).

Programming students can solve complex programs in a short time, which supports time

management and motivates students to tackle complex programming problems.

The applications are an advantage to the teacher, who can assess a student’s progress online, thus

facilitating immediate feedback. Some applications include tests at the end of tutorials, which the

teacher can follow up on to determine the areas or steps that challenge students. Providing feedback

at an early stage makes learning programming more successful, as educators can assist learners

resolve any problems (Hatziapostolou and Paraskakis, 2010). In addition, some applications

increase the interaction between learners and tutors, such as Solo Learn, Khan Academy and

Programming Hub. Studies have shown that parents’ involvement in education encourages learners

to do better. The ultimate goal of learning programming is to ensure that students achieve more by

mastering all the basic steps in programming.

Using systems such as the applications and tools in programming education helps students develop

diverse skills that are practical and can be applied in the job market, which demands new

technologies, coding skills and general programming knowledge (Welsh et al., 2003). Some e-

learning methods may also help individuals gain self-directed learning skills and increase their

capabilities in the workplace, where they can work without supervision. Programming learning

23

systems are custom designed and thus are flexible and easily customisable to suit learners’ needs.

The different systems of e-learning also offer the possibility of monitoring learners while they are

working on problems. Consultation in a difficult case is much easier and more accessible when

using computer-based programs, as the tutor is only a click away. Novice programmers can

comprehend easily and retain the knowledge because of the interactions and simulations involved in

various e-learning methods. In addition, a major strength of using the different e-learning methods

is that the programs are always on and therefore do not interfere with learners’ other programs.

They are manageable, and the learner can be trained at any time of the day. E-learning methods are

cost-effective and save on time and transport costs, among other resources (Welsh et al., 2003).

 In organisations, the use of e-learning programs is manageable and measurable, as the Internet can

show what learners have been able to learn and the difficulties they experienced in completing the

exercises. According to Franzoni et al. (2008), students who attend classes do not discover their

major strengths and weaknesses because they do not have the tutor’s full attention. With e-learning,

the tutor has direct interaction with specific learners. Thus, it is easier to identify one’s weaknesses

and strengths so that necessary action can be taken. E-learning methods also offer a good platform

for evaluating employees in a business situation, as computer-based programs display the scores

from various tests presented to the learner. The use of analogies and practical examples offered in e-

learning helps learners develop ideas that can be applied in the real world and ensures that novice

programers do not blindly fill their minds with theories and formulas. Therefore, e-learning

methods allow better understanding and provide a better learning environment for students than that

provided by attending class or relying on a human tutor.

 Weaknesses of using learning systems and applications in learning programming

Learning programming using applications and tools has many advantages. However, the

incorporation of applications has a drawback in programming education. For example, some

students may overly depend on the applications to solve solutions or complete their tasks, thus

making them incompetent when faced with challenges (Le May et al., 2008). The use of

24

applications to solve programming challenges does not help students, as it makes them dependent to

the extent that they have to refer to the applications to ensure they are confident in their work.

Moreover, applications can make students less motivated or dedicated to programming, as they

have found an easier way of completing their assignments and acquiring programming skills.

According to Le May et al. (2008), applications require close supervision. For example, long

programming projects require that tutors verify different steps before learners procced. These

applications require the teacher’s involvement in order for students to meet deadlines, as less

supervision can result in inefficiency, which impacts programming education negatively. More

drawbacks are discussed in the next section.

2.8.1 The difficulty of choosing the right programming language

Many authors have argued about which programming language should be studied first (Meyerovich

and Rabkin, 2013; Parker et al., 2014; Law et al., 2010). According to some, the first code or

language chosen is not important in programming education. Many systems of programming

education have been introduced, leaving tutors with the challenge of choosing which system to use.

Some tutors choose to blend these systems, making it even more complicated for novice

programmers who know about the existence of other systems. This may leave novice programmers

dissatisfied with the content they are given. There are specific languages for different levels of

novice programmers. For example, Alice for beginners and intermediate learners and Python for

high-level programming. The tutor may shift from Scratch while the learner still needs it, which

makes it difficult for novice programmers to understand lessons (Law et al., 2010).

Scratch and Alice are used in many different environments, such as schools, museums, community

centres and homes. Alice is an innovative 3D programming platform that provides an easy

environment for creating storytelling animations or playing an interactive game or video on the

web. Alice is a free educational tool designed to be the first exposure for students to program

objects. It allows students to learn basic programming concepts in the context of creating animated

films and simple video games.

25

 Whilst Scratch and Alice are especially used for children aged 8–16, younger children can work on

Scratch and Alice projects with their parents or older siblings. Some college students use Scratch in

introductory CS classes. By manipulating objects in their virtual world, students can gain

experience in all programming structures typically taught in an introductory programming course

(Ebrahimi et al., 2013).

2.8.2 Explain errors to individual novice programmers

With the use of many programming systems, novice programmers may get confused and require

individual assistance. Unlike the traditional method of teaching programming where attending to

individual novice programmers was easy, teachers may not be able to correct all the students’

mistakes well. This results in a lack of proper understanding. Failure to explain errors may occur

because the origin of the errors is unclear, thus allowing the errors to remain unattended.

Evaluations of learners’ exercises are therefore not reliable, as they reflect a sum-up image and not

the exact performance of each system involved in the test. A learner may be good at one system and

perform poorly on another; therefore, the strengths of novice programmers are not reflected (Law et

al., 2010).

2.8.3 The increased complications of learning

Programming education is perceived as being fairly difficult for some novice programmers (Siti

Rosminah and Ahmad Zamzuri, 2012). The inclusion of the many systems in learning programming

can make courses sound challenging. It also makes learning cumbersome because of the many

references that may leave a student wondering which system to follow. It makes the use of many

systems in the learning of programming a challenge. For novice programmers who learn by

themselves and who only require evaluations, learning using a few systems should be recommended

for them. This is because it will simplify the learning process. Using too many systems may cause a

lack of understanding (Stankov, Glavinic and Rosic, 2011).

26

2.8.4 Tutor preparation

Even though using a combined system in programming learning makes it easier for novice

programmers to study, it is difficult for tutors. Tutors must accurately borrow from the many

systems and create effective teaching materials. This is time-consuming; therefore, the materials

may not be available to novice programmers at the right time. Tutors may also lack the time to

include all the information from the many systems, thus destroying the purpose of using the various

systems (Mayer, 2013).

2.8.5 Information retrieval

If novice programmers do not retrieve the information provided from different systems, they may

not be able to get the correct information. For instance, solving programming problems by referring

to different applications or learning systems will mislead novices and confuse them. The

effectiveness of information retrieval needs to be tested for accuracy. There is a need for novice

programmers who are provided with e-learning material to have a high-quality retrieval system,

failure of which will lead to inaccurate evaluations (Mayer, 2013).

2.8.6 Other systems that require a lot of practice

Systems such as STRATEX require that novice programmers practice frequently, as the system

elements are to be applied in other areas while learning programming. Therefore, it is a

disadvantage for novice programmers who do not prefer the given system, as they have the

opportunity to choose from various systems. As a result of the combination of various systems,

regular evaluations of novice programmers concerning each system are needed to ensure they have

an equal understanding of all systems (Bode and Hahn, 2015; Padilla et al., 2015; STRATEX,

1997).

2.8.7 Increased number of instructional texts

An increased number of systems requires a greater amount of learning material. Having many

textbooks increases novice programmers’ workload, and they may end up not completing the

course. Others may partially lose interest and end up failing the programming course. Learners may

27

not be interested in the type of evaluation offered by the many systems, and the inclusion of many

systems may make the learning process difficult. Novice programmers may lose focus because of

the increased workload (Resnick et al., 2009).

 Conclusion

In conclusion, irrespective of the shift of programming education from a classroom environment to

a having a choice of environments, e-learning has not changed the basic concepts of programming.

Generally, the inclusion of many systems in the e-learning of programming has advantages and

disadvantages. Therefore, novice programmers have to choose from a long list of systems of

learning programming to suit their needs. Further, tutors must determine if it is in the interest of

their novice programmers to use many systems, whether in classrooms or online.

The chapter discussed the evolution of using systems and applications in programming education,

which can be used as a basis to build a theory about the subject under study. The chapter also

discussed the environment in which the study was conducted (Saudi Arabia) and how the term

‘novice programers’ has been defined and formulated based on programming learning in Saudi

Arabia. The chapter showed how the project work includes e-learning and blended learning.

The chapter also discussed the main aspects of the learning application, and e-learning, that

influence the study. These aspects relate to the strengths and weaknesses in learning applications

and systems that could be exploited in designing this study’s framework. The learning application

can be developed in such a way as to avoid programming learning challenges when using the TLE

framework. The challenge in developing programming learning systems is to limit the obstacles that

novice programmers may face. Factors to consider include choosing the right programming

language based on the students’ level and needs, decreasing the level of complications by

simplifying the learning process, minimising the workload and number of instructional texts to

avoid losing the students’ interest, proper data retrieval to get the correct information, reducing

dependency on the tutor and shifting to self-learning.

28

The next chapter discusses the pedagogical theory. This includes identifying the threshold concepts,

which are the programming problems novice programers struggle with, and how the development of

programming applications will help reduce the obstacles and the lack of programming

comprehension.

29

 Chapter 3 PEDAGOGICAL THEORY: THRESHOLD CONCEPTS

 Introduction

Meyer and Land developed the idea of threshold concepts in 2003 whereby core concepts within

any discipline are considered vital for effective mastery of that discipline (Meyer and Land, 2003).

It is an approach to avoid getting ‘stuck’ in the educational process (Land et al., 2005). This chapter

presents the characteristics of threshold concepts and how we can recognise them. It discusses the

threshold concepts in CS and in programming that were considered when designing the framework

in this study. The proposed models for threshold concepts will be investigated in this chapter.

 Characteristics of Threshold Concepts

Meyer and Land (2003) described the characteristics of threshold concepts that can be used to

evaluate any scientific concept, whether a threshold concept or not:

1. Transformative: alters the way students view things in the discipline

2. Integrative: links the concepts together and exposes their interrelatedness

3. Irreversible: shifts students’ perspectives

4. Troublesome: difficult for students to learn

5. Limited boundary: prevents students from crossing over the boundaries of the field concepts

(Meyer and Land, 2003).

Recognising threshold concepts is not easy because what are considered threshold concepts by

some people may not be by others. Davies (2003) defined alternative ways of recognising threshold

concepts. Davies suggested two approaches, evaluating how two disciplines analyse the same

aspects and concentrating on the differences between people’s behaviour inside and outside the

community (Davies, 2003).

A study by Shinners-Kennedy and Fincher in 2013 described a new direction for classifying

threshold concepts after many researchers reached ‘dead ends’ while investigating such concepts.

The new direction was to exploit expert teachers’ knowledge. They suggested using content

representation (CoRe) to create pedagogic knowledge through expert teachers. CoRe captures

30

knowledge that helps connect the theoretical aspects to the practical ones. CoRe then examines the

evidence that determines whether the concept is a threshold concept or not (Shinners-Kennedy,

2016).

Regarding threshold concepts in programming, a recent study has shown that the transformative and

troublesome characteristics are vital in programming education (Yeomans et al., 2019). The study

extended existing research on limit concepts in programming education by studying computer

program developers and undergraduate students through the use of focus groups. The results reveal

compelling evidence suggesting that concepts such as ‘classes’, inheritance’ and ‘abstract classes’,

which are found in object-oriented programming, are difficult to understand. The following section

disusses the threshold concepts in programming in more depth based on a chronological sequecne

of studies and phases.

 Threshold Concepts in Computer Science

Ongoing projects have enquired into CS concepts that exhibit threshold-like attributes. An example

of such initiatives is that of Boustedt et al. (2007), who outlined five phases of studies on threshold

concepts (Table 1). Table 1 presents further investigations concerning finding threshold concepts in

programming.

31

Table 1. Research on threshold concepts

Phase
Data collection

method
Findings

Threshold concepts

found in the study

Phase one

(Eckerdal et al.,

2006)

A literature review

by Mayer and Land

(2003)

The study applies the

characteristics of threshold

concepts in the computing

discipline. It shows the

importance of building a

mental model to overcome

difficulties in learning

programming.

Object-oriented

programming

Abstraction

(information hiding)

Further studies in

2006

(Salakoski, 2006) Analysed the

structure and

characteristics of

programs written by

60 students for an

exam

The study found that

program–memory

interaction is difficult to

understand.

Program-memory

interaction

Phase two

(Boustedt et al.,

2007)

Semi-structured

interviews (students)

The study collected the most

common threshold concepts

in computing from students’

perspective.

Object-oriented

programming and

pointers

(McCartney et al.,

2007)

Semi-structured

interviews and

questionnaire

(students) at an

international

conference

(November 2005,

Finland)

The study concentrated on

the strategies students use to

get unstuck. The most

common were learning from

people, examples, gaining

experience, using tools,

tracing and visualisation.

Not defined

Phase three

(Eckerdal et al.,

2007)

Semi-structured

interviews (students)

The study focused on the

liminal space. They found

that liminal space can be a

metaphor for the learning

process concept. In addition,

they found that some liminal

space features can be

particularly useful in

computing, such as those

related to abstractions.

Not defined

32

Phase four

(Sanders et al.,

2008)

Concept maps drawn

by programming

students

The study found that

students have difficulty in

distinguishing the difference

between classes, objects and

instances.

Object-oriented

programming,

specifically

inheritance

(Zander Carol

Boustedt et al.,

2008)

Informal interviews

(instructors) at an

international

conference (June

2005, Portugal)

The study found some

threshold concepts in

computing from the

instructors’ perspective.

33 concepts

The most common

were abstraction,

pointers, differences

between classes,

objects, instances,

recursion-induction

procedures and

polymorphism

Phase Five

(Moström et al.,

2008)

Students’

biographies

The study focused on the

transformative, which led to

defining the abstraction as a

threshold concept in

computing.

Abstraction,

object-oriented,

code reuse and

design patterns, such

as unified modelling

language (UML)

diagrams

(Moström et al.,

2009)

Semi-structured

interviews (students)

and student

biographies

The study examined the

causes and changes of the

transformative in students’

experience while learning to

compute.

Abstraction,

object-oriented,

code reuse and

design patterns, such

as UML diagrams

Further studies

(Rountree and

Rountree, 2009)

Review studies

The study discovered some

of the programming

concepts that can be defined

as threshold concepts.

Abstractions,

program-memory

interactions,

recursion, induction,

polymorphism,

procedures, and the

difference between

objects, classes and

instances

(Sorva, 2010) Not defined The author suggested that

educators should help

students overcome

thresholds when they

become aware of a

‘transluminal’ concept. The

threshold then becomes

more interesting. For a

programer, a transluminal

concept is to cross the

program dynamic threshold

by viewing program

execution from a non-

standing perspective.

Abstraction, object

interaction and

dynamic

programming

33

(Sanders and

McCartney, 2016)

Review studies The study discovered some

programming concepts that

can be defined as threshold

concepts.

Abstraction, class

declaration,

class, object,

instance distinction,

object-oriented

programming,

program-memory

interaction,

parameter passing,

recursion and

pointers

(Meyer et al.,

2016)

Review studies The study suggested

developing a threshold

concepts framework based

on the construct of

integrated threshold concept

knowledge.

-

(Kallia and

Sentance, 2017)

The Delphi method

by asking computing

teachers

The study found some

threshold concepts based on

the computing teacher’s

suggestions.

Parameters,

arguments,

parameter passing,

calling a function,

control flow,

abstraction,

recursion, variables,

variable scope,

return values and

procedural

decomposition

(Yeomans et al.,

2019)

Qualitative study

(focus groups)

The study found some

threshold concepts based on

information from the focus

groups.

Classes and data

structures

Object-oriented programming is one of the threshold concepts investigated in this study. Placed in

phase one by Boustedt et al. (2007) (Table 1), the work by Eckerdal et al. (2006) positioned

threshold concepts in the context of CS education based on a literature review by Meyer and Land

(2003). The hypothesis in the present paper suggests the need to build a visualised mental model to

represent concepts of object-oriented programming. In a similar vein, Eckerdal et al.’s (2006)

findings highlighted the importance of building a mental model to overcome difficulties in learning

programming. Program–memory interaction is also considered a threshold concept (Salakoski,

34

2006). Researchers arrived at this conclusion by analysing the structure and characteristics of

programs written in an exam administered to 60 students.

Phase two also revealed that object-oriented programming is a major concept regarded as difficult

to understand. A set of semi-structured interviews were conducted with graduate students to gather

data and address this troublesome topic in the study by Boustedt et al. (2007). The students agreed

on five vexing issues—the memory model, objects, control statements, parameters and sequential

thinking. The authors argued that two concepts—object-oriented programming and pointers—are

ideal candidates that satisfy the criteria for evaluating an idea as a threshold concept. The evidence

collected from students was quoted in the paper (Boustedt et al., 2007). McCartney et al. (2007)

recommended the development of visualisation as a means of resolving miscomprehension after

conducting semi-structured interviews with students to discern the approaches and strategies they

use to free themselves from an impasse as they learn about computing. The researchers categorised

these strategies as follows: inputs/interactions, which encompass reading, searching for information

on the Internet and using tools; concrete tasks/‘doing’ activities, such as practicing on the basis of

examples and using visualisation and tracing methods; high levels of learning, such as using

abstractions and relating them to real-world examples; and using the force, which involves relying

on their instincts to solve problems.

In phase three is the study by Eckerdal et al. (2007), who conducted semi-structured interviews with

students. The study focused on the liminal space and found that liminal space can be a metaphor for

the learning process concept. They also found that some liminal space features can be particularly

useful in computing, such as those related to abstractions.

In phase four are studies that delve into class inheritance as a threshold concept. For example,

Sanders et al. (2008) explored students’ understanding of object-oriented concepts using concept

maps. The researchers collected 119 maps from 107 students from six institutions in three countries

from 2006–2007. The findings revealed the difficulty students encounter in identifying differences

amongst classes, objects and instances. The researchers connected the data and behaviour to

35

classes, and the students mentioned inheritance but not abstractions or polymorphisms in their

answers (Sanders et al., 2008).

In an experimental study, Zander et al. (2008) carried out informal interviews with various

instructors from several countries during an international conference to seek their opinions on

threshold concepts and relevant criteria. The instructors expressed common concerns over difficult-

to-learn computing ideas, amongst which the most frequently cited were program abstractions,

pointers, objects, classes, instances and recursion. The instructors claimed that some CS theories,

such as constructivism, abstractionism and object orientation, relate to threshold concepts because

these theories share the same characteristics with the concepts. Eckerdal et al. (2007) suggested that

the ability of students to build a mental model and their misconceptions are not threshold concepts

because they are not troublesome. Zander et al. (2008), however, contended that both mental

models and misconceptions are transformative.

In phase five are two studies by Moström et al. (2008, 2009). In Moström et al. (2008), the authors

examined the causes and changes of transformative in students’ experiences as they learn

computing. The researchers collected data from students in the US, the UK and Sweden through

semi-structured interviews and written biographies. The findings indicated that students changed

their behaviours and confidence levels after learning about threshold concepts. They began thinking

in a manner similar to how computer scientists think about ideas and experienced positive change in

their identity via a transition from having no experience to being involved in the learning. When the

students were asked about the concepts that caused the change, some of the items they mentioned

were design patterns, the Big-oh, analysis, the memory model and the halting problem (Moström et

al., 2009).

Other researchers have contributed to defining computing ideas that count as threshold concepts and

have developed solutions to identification issues. These studies are also summarised in Table 1.

Rountree and Rountree (2009) reviewed several studies that examined whether CS ideas are

threshold concepts and reported that most scholars agree on the following ideas as computing-

36

related threshold concepts: abstractions, program–memory interactions, recursion, induction,

polymorphism, procedures and differences amongst objects, classes and instances. They also noted

that what some consider a threshold concept may not necessarily be viewed as such by others.

Accordingly, they suggested examining how practitioners feel about different subjects when

defining threshold concepts. According to Sorva (2010), abstraction (information hiding) and object

interaction can serve as ideal examples of computing threshold concepts. To this list, he added

dynamic program notions (Sorva, 2010), an inclusion grounded in the argument that these notions

are transformative, integrative, irreversible, troublesome and bounded. Sorva (2010) also suggested

that educators should help students overcome difficulties associated with thresholds when they

become aware of a ‘transluminal’ concept, which renders thresholds more interesting. For a

programmer, a transluminal concept involves crossing a program’s dynamic threshold by viewing

program execution from a non-standing perspective.

Based on the review, the most frequently investigated threshold concepts are object-oriented

concepts, abstractions, control statements, arrays, recursion and passing parameters (Sanders and

McCartney, 2016). Meyer et al. (2016) suggested developing a threshold concepts framework based

on the construct of integrated threshold concept knowledge.

Kallia and Sentance (2017) conducted a Delphi method investigation by interviewing experts in

computing teaching who have experience of over seven years. Yeomans et al. (2019) conducted a

qualitative study aiming to address some of the threshold concepts. The study involved focus

groups with students and professional software developers who agreed on classes and data

structures as threshold concepts.

The studies implied that building a mental model best describes and explains threshold concepts.

However, despite the insights derived from these studies, none presented optimal solutions to

overcome difficulties in understanding such concepts. The next section discusses some of the

proposed threshold concept models that aided the improvement of the framework underlying the

current research.

https://www.emeraldinsight.com/author/Meyer%2C+Jan+HF

37

Given that one of the objectives in designing the framework in the present study is to discover the

challenges that confront novice programers, it also investigated the five phases to uncover

programming ideas that can be regarded as threshold concepts. Unravelling such concepts in

programming helped in recognising programming problems that should be incorporated into this

paper’s framework design, such as passing parameters, loops, arrays, recursion and object-oriented

programming, including class inheritance and differences between classes and objects. Covering

threshold concepts in the present paper led to an in-depth evaluation of visualisation in

programming learning. The framework in this paper and Chapter 6 suggest the construction of a

mental model through visualisation. The discussion in this section presents findings from the five

phases, which recommend using mental models and tools to overcome the miscomprehension that

stems from threshold concepts.

 Proposed Models for Threshold Concepts

Vagianou (2006) put forward a model as a solution to the problem presented by Salakoski (2006).

The author introduced the concept of working program storage (WPS), which is a model to advance

students’ transition from end-user to programmer mode. The model employs a mental model and an

external graphical representation. Khalife (2006) agreed with other researchers that one of the

threshold concepts programming students need to know relates to developing a mental model that

elucidates how the internal parts of a computer operate during program execution. Internal

components rely on instruction sets that use memory visualisation to display the effects of program

execution. Khalife (2006) adopted a UML diagram to represent activities and actions in a mental

model, wherein instructions are categorised into declaration, input, output and assignment. The

sequence of solutions is then organised in the appropriate order using the UML diagram. Meyer et

al. (2016) suggested developing a threshold concepts framework based on the construct of

integrated threshold concept knowledge.

https://www.emeraldinsight.com/author/Meyer%2C+Jan+HF

38

 Conclusion

This chapter discussed the characteristics of threshold concepts and how to recognise them. It also

presented a literature review of important studies on CS concepts that are deemed of the threshold

variety. The aim of focusing on threshold concepts was to understand the kinds of problems this

project endeavoured to resolve. Below are summarised the insights derived from studies conducted

to recognise threshold concepts in programming.

 Object-oriented programming is the paradigm most frequently indicated as an ideal

representation of threshold concepts in the studies reviewed (Sanders and McCartney, 2016;

Yeomans et al., 2019). The main issue raised in this regard concerns differences amongst

classes, objects and instances. This gap was considered in developing the framework in this

study to identify a solution to the ambiguity of the aforementioned differences. The

representation of inheritance and class hierarchy, in general, was also discussed in the reviewed

works. Researchers such as Sanders et al. (2008) and Eckerdal et al. (2006) found that students’

fixation on understanding inheritance concepts often prevents them from correctly

demonstrating class hierarchy.

 Building a mental model that shows what happens in memory during program execution is

suggested to overcome students’ misunderstanding. Note, however, that although mental models

have been put forward by Khalife (2006) and Vagianou (2006), these representations have not

been evaluated.

39

Chapter 4 VISUALISATION IN PROGRAMMING LEARNING

 Introduction

There is a high demand for mechanisms that support the teaching of programming, particularly in

finding a solution to the problems and difficulties present in programming education. In addition,

using different methods of teaching can improve the learning process and motivate students to learn

(Mohorovičić and Strčić, 2011), such as the systems and methods discussed in Chapter 2. These

methods improve the thinking and creativity that lead to defining and analysing the problem to

obtain ideal solutions. Approaches such as visualising code or using a memory diagram have made

a vital contribution to the process of teaching and learning how to program. These approaches will

be extensively discussed in this chapter. The visualisation method gives an overview of the studies

that have been conducted in visualisation to support programming education. Tools that follow the

visualisation and memory–referencing approach will be investigated in this chapter.

 Memory Reference Visualisation

Memory reference visualisation or MTL is defined by Mselle (1989) as a language or device used

by programers to describe the impact of code lines on computer memory (RAM). Visualising the

impact of each line of code on RAM allows novices to grasp what each instruction does and its

impact. Thus, students’ comprehension will improve because they can predict the result during the

execution time.

A carefully designed RAM diagram can be used as a pedagogical tool to facilitate students’

understanding of programming. The RAM diagram shows a direct relationship between code and its

effect. Unlike a flowchart, where students need to know the meaning of symbols and their

connections, it does not require that students learn any concepts. A RAM diagram is a portable,

flexible and scalable tool, as it is machine- and language-independent. It can also be used as a code

design and testing tool (Mselle, 1989) (see Figure 1).

40

Figure 1. Memory diagram. Taken from Holliday and Luginbuhl (2003), ‘Using memory diagrams when teaching a

Java-based CS1’, ACMSE.

 Tools to Support Programming Learning

This section gives an overview of some tools that have been used in programming learning at

academic institutions to increase comprehension among students or novice programmers. Table 2

summarises the tools with data type and programming language support, the features and defects

and whether the tools have been evaluated. Note that not all tools have been evaluated; however,

until the time of writing this thesis, there is no reference or evidence for the evaluations. In the case

a tool has been evaluated, the evaluation study was mentioned in the previous section.

The criteria used to review the tools appear in Table 2 and are: whether the tool supports data types,

whether the tool supports programming languages, whether the tool supports object-oriented

programming and whether the tool has been evaluated and how it was evaluated. The researcher

focused on these criteria when implementing the visualisation tool. The criteria are analysed in

Sections 4.3 and 4.4 to understand their importance.

41

Table 2. Tools/models supporting visualisation

Tool/Model Data types
Programmi

ng language
Features/pros Defects /cons

Evaluated or

not

The BlueJ

(Hagan and

Markham,
2000)

Represents

classes and
objects

JAVA

- Supports OOP

- Uses the UML
diagram

- Does not

provide

dynamic

visualisation

AnimPascal

(Satratzemi et

al., 2001)

Standard

data types in

Pascal

Pascal

- Recording
programer action

- Focus on

debugging

- Dynamic
visualisation

Does not support

OOP

DrJava

(Allen et al.,

2002)

All data

types focus
on OOP

JAVA

- Interaction

window

- Testing and

debugging
features

- Detects syntax

errors

- Has no control
over the

execution

- Has no

expression
evaluation

×

The authors

suggested
testing the

tool’s usability

ProfessorJ

(Gray and

Flatt, 2003)

All data
types

JAVA

- Testing and

debugging

features

- Detects syntax
errors

- Highlights the

keywords and
variables

- Contains three

levels: beginners,
intermediate, and

advanced

×

The authors
suggested

testing the

tool’s usability

LIVE

(Campbell et

al., 2003)

Primitives,

pointers,
records

Converts any

code to

JAVA or

C++

- Uses diagrams

- Supports
operations, such

as allocating

memory
reference and

recursion

- Subprograms and

the same variable
names with

different scopes

are also
supported by

LIVE

LIVE is a

procedural system,

not an object-

oriented one,

×

CMeRun

(Etheredge,
2004)

Primitives C++ Dynamic execution

- Has no error

checking; it
works with

syntactically

free error code
- Has restricted

constraints on

×

The author

suggested
intensive

testing for the

tool.

42

the format

Jeliot3

(Moreno et al.,
2004)

All data
types

JAVA

- Provides

dynamic
visualisation

- Error explanation

- Ease of use
- Uses UML

notations to

represent the
objects and their

relations

×

The authors
suggested

an evaluation

for the tool,
but there is no

reference.

Memview
(Gries et al.,

2005)

All data

types

JAVA; it is
an extension

to DrJava

Focus on tracing the
objects and their

interactions

Because it is built

in DrJava
debugger, users

should learn how to

use DrJava

VIP

(Virtanen et

al., 2005)

Primitives,

structs,
pointers and

references

C++

- Open-source
- Controls code

execution

- Expression
evaluation

Does not support
OOP

BackStop

(Murphy et al.,

2008)

All data
types

JAVA

- Handles

exceptional errors

during runtime
- Provides

suggestions and error

correction

It focuses on
simplifying the

runtime error and

not visualising the
outputs.

Turtlet

(Kasurinen et

al., 2008)

Primitives
datatype

Python

Uses games and
lecture

demonstrations for

programming
constructs

As students

suggested, the tool

should support

algorithms and
problem-solving.

No program tracing

or function
explanation.

EduVisor

(Moons and
De Backer,

2009)

Created
specifically

for OOP

JAVA

- Uses different

shapes to

represent classes
and objects

- Specified areas

for variables and
methods

It is a proposed

work; there is no

reference yet about
developing the tool.

×

Dekson

Model

(Dekson et al.,

2009)

Primitives C, C++

- 3D animation,

online chat,

video
- Encourages

distributed

learning
- Automatic

answering

It is a proposed

framework
(demonstration)

×

WebTasks

(Rößling,
2010)

All data

types
JAVA

- Open-source and

run completely
in a web browser

- A database that

has predefined
methods and

- Has a database

for predefined
methods and

examples.

Therefore, the
user has no

×

Note that
students’

positive

feedback has
been collected

43

examples

flexibility in

writing any
code

The ANIMAL

system

(Rößling,
2010)

Designed for
complicated

data

structures,
such as

binary trees

and graphs,

or for sorting
and

searching

algorithms

Predefined
script

language

(ANIMALS

CRIPT)

- Visualise and

animate

algorithms and

data structure
- User-friendly

navigation

×

Note that

students’

positive
feedback has

been collected

Visual Logic

(Gudmundsen

et al., 2011)

Primitives

No specific

language; it

uses icons

- Uses flowcharts

- Has no code to be

written

- Does not support

object-oriented
programming

×

The Alice
(Aktunc,

2013),

(Salcedo and

Idrobo, 2011)

All data

types

There is no

codes; just
provide

animation to

support the

understandin
g of OOP

- Drag-and-drop
interface to

program a 3D

world with

interaction

- No code is used

Online

Python Tutor
(Guo, 2013)

All data

types

Python,

JAVA, C,
C++, Ruby,

Javascript

- Web-based

programming
open-source tool

- The use of

navigation

buttons
- Dynamic

execution of the

program
- Explanation of

errors

- Steps through

execution line
by line

- Does not show

the details of

expression
evaluation

- Scalability - it

does not
support a large

data structure

Visualiser
(Nyamawe,

2014)

Primitives VB.net Uses animation

The proposed

framework
(demonstration) has

not yet been

developed

×

OOPVisual

(Moussa et al.,
2016)

Created

specifically
for OOP

Java
3D interactive

visualisation tool

The proposed tool
has not yet been

evaluated

×

Visualised

Learning

Tool (VLT-

OOP)
(Su and Hsu,

2017)

Created

specifically

for OOP

2D graphical web-

based tool

The proposed tool

has not yet been

evaluated

×

44

This section reviews several common tools that can be used when designing the TLE framework of

the current study, where the advantages and disadvantages of the tools can be exploited during the

design of the framework.

4.3.1 The BlueJ tool

The first use of BlueJ to teach Java was in 1999 in a CS introductory course. The BlueJ tool was

implemented based on UML and JAVA language (Hagan and Markham, 2000; Kölling et al., 2003;

Kölling, 2018). It uses a graphical representation to represent classes and objects within a project

(see Figure 2). Students can create an object through a graphical user interface without writing

codes and can make this object interact with other objects. This can help students strengthen their

understanding of the concept of object-oriented programming (Sun, 2010; Bennedsen and Schulte,

2010).

Figure 2. BlueJ. Taken from Sun, B. (2010). ‘Java teaching based on BlueJ platform’, 2nd International Conference on

Information Engineering and Computer Science - Proceedings, ICIECS 2010, pp. 2–5.

http://doi.org/10.1109/ICIECS.2010.5677726.

BlueJ was selected and discussed in this research due to similarity with the current search because it

is considered a program used in the teaching of Java very easily, and also easy to deal with class,

45

object, and method, and it is considered a very great starting point for beginners, and use it

convenient for applicants, of course the program just IDE such as JCreator and Eclipse But in a

different way suits educational environments such as universities due to its ease of handling. BlueJ

was developed by three universities to help students understand Java language easier and faster. The

idea of the BlueJ tool can be summarised as demonstrating that the class and object are physical to

facilitate imagination and linking things to the learner. It should be noted that BlueJ does not need

the main method to run the program; it deals mainly with the object (Barnes et al., 2006).

4.3.2 Jeliot 3

Visualising object-oriented programs was developed with Jeliot 3 after several generations. The

first generation was Eliot, which was designed to produce algorithm animations. Next, Jeliot I was

specially designed for Internet use, and Jeliot 2000 was dedicated to novice programmers. What

makes Jeliot 3 different from the previous generations is the extension of visualising object-oriented

concepts. Jeliot 3 is different from BlueJ in that it provides dynamic visualisation. In Jeliot 3, many

features have been added to suit user requirements. These include ease of use, consistency and

continuous and complete visualisation that is extensible both internally and externally. The

visualised components that show up in a separate window of Jeliot 3 are designed to simplify the

use of the tool with an animation frame structure (Figure 3, captured from the researcher’s personal

computer). Error explanation and the ability to highlight the line of error is also provided in Jeliot 3.

Jeliot 3 uses UML notations to represent objects and their relations to clarify object-oriented

concepts for students (Moreno et al., 2004; Hongwarittorrn and Krairit, 2010).

46

Figure 3. Jeliot - screenshot from the researcher’s personal computer

Jeliot 3 is one of the tools used in Java education. It is a visualisation tool that can be used in

introductory programming courses. The tool has wide range of Java programs and can interact with

BlueJ IDE. Jeliot 3 has been tested and found to be useful for beginner students who have

difficulties in learning programming. Jeliot 3 is an animation tool that aims to support beginner

programmers and CS students in the introductory stages of learning programming and presents

object-oriented Java object implementation by activating source code evaluation. Most Java is

currently supported by Jeliot 3. The tool has been developed to support object-oriented programs

and to redesign the structure of programs for the better (Moreno et al., 2005).

This tool was used because it helps students in different educational environments. In addition, this

program is one of the tools that will contribute significantly to teaching Java to beginners and will

help motivate novice programmers and encourage them to program.

4.3.3 DrJava

The purpose of the DrJava tool is to teach students how to design programs in Java and how to test

and debug programs. It consists of a window with two panes linked by an integrated compiler

47

(Figure 4). The interaction pane is used to input Java expressions, and the definition pane is used to

enter and edit class definitions. The features in DrJava include the interaction window, which has a

‘read-eval-print’ loop (REPL) to enable access to program components without recompiling.

Testing and debugging features are also available using REPL to test the methods individually.

Moreover, students can debug the code without needing to learn the debugging mechanisms. DrJava

includes an editor to detect syntax errors, and it can highlight the parentheses. DrJava also has an

integrated compiler that is bundled with the Java compiler (Allen et al., 2002).

Figure 4. DrJava. Taken from Allen, Cartwright, and Stoler (2002), ‘DrJava: a lightweight pedagogic environment for

Java’, a paper presented at the SIGCSE.

The DrJava tool is a newly designed program to help beginners and school students to get a

development environment for applications in the way Java easily, making it easier for them to run a

document programmed in an easy way, with plenty of tools to help manage applications

48

interactively. DrJava is a powerful program that provides users with an intuitive programming

environment in order to help them create Java applications and apply their creations. This program

and all its features are designed without any complications to help students understand the structure

of documents and to identify errors easily. It is a program that allows users to work with multiple

documents at the same time and allows the possibility of switching between documents. DrJava

provides a lot of advanced search and navigation tools as well as the possibility to facilitate the

management of bookmarks. In addition, this program is characterised by a user-friendly interface

that is fairly intuitive and customisable, meaning its appearance can be changed at any time. The

program was specifically designed to help students learn and use the Java programming language.

The program features a range of easy-to-use tools. It also has a toolbar and a set of buttons, colours

and window positions. In addition, DrJava is a lightweight Java IDE that combines sophisticated

tools with ease of use to provide an easy environment for learning the introductory programming

language (Allen et al., 2002).

Given the above-mentioned, the DrJava tool was chosen as one of the Java application development

environments, as it is a tool that makes it easier for novice students to learn programming in the

Java language because it has a simple programmed document operating environment with many

tools to help manage applications interactively. It has an easy-to-use and somewhat intuitive

interface, as it was specially designed to help students learn and use Java.

4.3.4 ProfessorJ

ProfessorJ is a pedagogical environment that presents an interface for the Java compiler. It is

implemented based on DrScheme (Figure 5). The ProfessorJ interface consists of two windows, a

definition window containing the code and an interaction window that provides an REPL to

experiment with the code. It has three levels of difficulty—beginner, intermediate and advanced. In

beginner mode, students can define the declaration construction and its restriction. The intermediate

mode starts with teaching object-oriented programming. The advanced mode introduces loops and

arrays. The code in ProfessorJ highlights the keywords and variables. It contains a check-syntax

49

tool. Students can track their variables by binding an instance of the variable to all its uses with

arrows. ProfessorJ has a feature that highlights errors outside of the debugging environment and

that can stop the execution at any time during the debugging mode (Gray and Flatt, 2003).

Figure 5. ProfessorJ and DrScheme. Taken from Gray, K., and Flatt, M. (2003). ‘ProfessorJ: a gradual introduction to

Java through language levels’. Companion of the 18th Annual ACM SIGPLAN, 170–177.

http://doi.org/10.1145/949344.949394.

ProfessorJ is one of the tools used to teach programming for beginners in Java. It allows multiple

class declarations in the definitions window. It also works the same way as DrScheme and DrJava,

so that students using ProfessorJ can access classes written in the Definitions window within the

Interactions window after pressing the Execute button. Each level can interact with other levels,

allowing students to reuse applications in previous levels and allowing teachers to provide full

support libraries implemented in full Java that adapt to educational needs. ProfessorJ is

characterised by a programming environment that faithfully implements a series of pedagogical

subgroups and thus reduces confusion among students, saves the teacher the time it takes to explain

details of a language that is not yet relevant and encourages students in general to think in terms of

well-defined behaviour. In addition, ProfessorJ, a new Java programming environment, offers a

series of languages. ProfessorJ language levels are specifically designed to avoid too much

confusion and to provide support for the novice programmer through a Java-like programming

language. The ProfessorJ environment offers different levels of language (beginner, intermediate,

50

advanced) and provides a simplified interface for the Java compiler and a virtual machine for the

novice student. Each of these levels is a subset of the language to gradually introduce students to

grammatical and semantic details. This tool supports the learning process at both the beginner and

intermediate levels. ProfessorJ customises the Java language and error messages to the needs of

students. Due to their evolving needs, ProfessorJ offers several language levels, from Beginner Java

to Full Java (Georgantaki and Retalis, 2007; Hsia et al., 2005).

4.3.5 WebTasks

WebTasks is a programming task database tool that runs entirely in a web browser and does not

require downloading any program (even Software Development Kit (SDK) on the students’

devices). WebTasks contains Java Server Pages (JSP) pages that run on the Apache Tomcat Server

(Figure 6).

Figure 6. WebTasks. Taken from Rößling, G. (2010). ‘A family of tools for supporting the learning of programming’,

Algorithms, 3, pp. 168–182. http://doi.org/10.3390/a3020168.

The students pick an assignment and then write the body of the methods; most of the methods have

a predefined header. The code is then tested using JUnit. The series of testing continues as recursion

until the problem is solved. The Department of Computer Science at the Technical University of

51

Darmstadt (Germany) developed a system using WebTasks to solve about 118 Java programming

tasks. CS students can log in to the system and try all the tasks, which encourages them to write

Java programs, submit them and receive quick feedback on corrections (Rößling, 2010).

WebTasks is one of the programs used in teaching programming for beginners and is a functioning

platform that allows building applications without a server. WebTasks allows one to build

applications without thinking about infrastructure. One just writes the server-side logic of the topic

or application one wants to create, deploying its functionality via WebTasks and accessing the

backend of servers via HTTP. With a preference for code over configuration, the WebTasks

platform comes with a familiar programming model and excellent authentication and authorisation

support to ensure a pleasant development experience. The WebTasks features a familiar

programming model, an easy-to-use Command Line Interface (CLI) and a robust infrastructure to

help students or novice programmers achieve their goals. WebTasks allows one to securely connect

to application programming interfaces (APIs) that require secret keys, set up web links that run after

certain actions in special applications or talk directly to the current or background database. Server-

free computing is a fairly recent trend in software development that allows developers to focus on

writing application logic and not worrying about server provisioning and management (Baldini et

al., 2017).

Based on the above, the researcher has chosen this tool and reviewed its advantages and

disadvantages in teaching programming in the Java language to junior students. WebTasks’ easy-to-

use features and strong structure help beginning programmers achieve their goals.

4.3.6 The Alice tool

The Alice tool uses a built-in drag-and-drop interface to program a 3D world with interaction (see

Figure 7). Alice is a project of Carnegie Mellon University in the US and was designed to introduce

young people to programming. They learn the fundamentals of object-oriented programming

through the graphical representation of objects (Salcedo and Idrobo, 2011).

52

Figure 7. Alice. Taken from Salcedo, S.L. and Idrobo, (2011). ‘New tools and methodologies for programming

languages learning using the scribbler robot and Alice’, Proceedings of the Frontiers in Education Conference,

FIE, pp. 1–6. http://doi.org/10.1109/FIE.2011.6142923.

The Alice tool is one of the programs used in Java education. It can create 3D animation, and for

non-professional programmers Alice is the best choice. Alice was initially designed to teach the

basic concepts of programming and is used in many colleges and courses. The program has a simple

and easy-to-use user interface. Alice is an open-source educational application based on object-

oriented programming in an integrated development environment. It was developed by Java and has

drag-and-drop functionality to create animated 3D computer graphics. Alice’s application is

characterised by avoiding the problems and obstacles that exist in other tools that make them

unsuitable for the educational curriculum. Most programming languages are designed to produce

code intended for a commercial product, but Alice is intended for educational purposes only. Alice

is associated with the integrated development environment and supports object-oriented

programming. It is designed for people not associated with programming, such as school students,

and has drag-and-drop functionality (Sykes, 2007). Based on the above, and because Alice is one of the

tools used in teaching Java, particularly for non-professional programmers and Java beginners, it is

considered one of the best options for teaching the basic concepts of programming.

53

4.3.7 The ANIMAL system

Different methods for visualising and animating algorithms are used to address more complicated

problems in data structures, such as binary trees and graphs, or to sort and search algorithms (Figure

8). The process helps students understand the behaviour of these structures and algorithms. The

ANIMAL system is one such method. It follows the concept of visualising the representation of

source code and highlighting the current line being executed (Rößling, 2010).

Figure 8. ANIMAL system. Taken from Rößling, G. (2010). ‘A family of tools for supporting the learning of

programming’, Algorithms, 3, pp. 168–182. http://doi.org/10.3390/a3020168.

The ANIMAL algorithm animation tool is used in teaching programming for beginners. It is a new

tool for developing animation to be used in lectures. It provides a small but powerful set of

graphical operators. The animation is created using a visual editor via scripting or via API calls. All

54

animations can be edited visually. ANIMAL provides visual animation editing and is therefore easy

to use. A simple scripting language and animation API are also provided. Further, ANIMAL has a

set of powerful features that can be easily integrated to create and display animations of algorithms,

data structures and many other things. ANIMAL is used in introductory CS courses at universities

due to its ease of use and the fact that little knowledge of software is needed. It is considered a basic

starting point for graphics and programs (Rößling, Schüer and Freisleben, 2000).

4.3.8 Visual Logic

Visual Logic uses the concept of iconic programming (icons and flowcharts) to visualise programs.

Visual Logic has no code to be written (Figure 9). Instead, the user creates a flowchart that

represents the code. Subsequently, the tool traces the flow of the code. The tool demonstrates the

outcomes of executing each icon in the flowchart in popup windows. Visual Logic does not support

object-oriented programming (Gudmundsen et al., 2011).

Figure 9. Visual Logic. Taken from Gudmundsen et al. (2011). ‘How to use executable flowcharts to enhance learning

in general education, CS0, and CS1 courses: tutorial presentation’, The Journal of Computing Sciences in

Colleges, 26(6), pp. 107-109.

Logic programming techniques are adopted for the characterisation, allotment and analysis of

formal languages and natural languages. Visual languages are adopted in this study because they

broaden human–computer interaction. Visual languages are languages that utilise diagrams or other

spatial, graphical representations. Logic, which is a proven framework for handling sequential,

textual languages, can be well employed as the formal basis of such a framework (Meyer, 1993).

55

Based on the above, the reason for choosing Visual Logic in this study is that visual languages

depend on expanding the interaction between humans and computers.

4.3.9 Online Python Tutor

Online Python Tutor is a web-based programming tool that uses extensive visualisation. It is open-

source software where the user embeds their code into the web page, as shown on the left in Figure

10. Subsequently, the code can be traced by using navigation buttons (Figure 10). The visualisation

of the code is shown on the right in Figure 10. This visualisation enables users to watch the

program’s dynamic execution. As the program executes, it depicts changes to frames and objects.

Additionally, it has a program output area. The tool provides explanations of errors, with indicators

pointing to the line on which the error occurred (Guo, 2013; Karnalim and Ayub, 2018).

Figure 10. Online Python Tutor. Taken from Guo, P.J. (2013). ‘Online python tutor: embeddable web-based program

visualisation for CS education’, in Proceedings of the 44th ACM technical symposium on computer science

education, pp. 579-584.

Python is a multi-purpose explanatory language widely used in many fields, such as in building

independent programs using known graphical interfaces and in web programs. It is also used as a

scripting language to control the performance of some of the most popular programs or build

extensions. In general, Python can be used by beginners to create simple programs and to

56

accomplish large projects. Beginning programmers are often advised to learn this language because

it is among the most popular languages. Python is fairly easy to learn. As Python has unusually

easy structures, it is a very powerful but simple way to do object-oriented programming,

particularly in comparison to languages like Java (Ishizue et al., 2018). Online Python Tutor was

chosen in this study because it is one of the tools used by beginners to create simple programs and

because it is both popular and easy to use.

4.3.10 The Visualiser

Nyamawe (2014) presented a framework for a visualiser tool based on MTL (Figure 11). A

visualiser is a tool used to visualise code execution. It explains the hidden processes during the

program runtime, as it displays the line-by-line execution of the computer program. Additional

features should be added to the visualiser, as Nyamawe suggested, such as the ability to replay the

execution, pause the execution and select the execution speed. This proposed framework needs to

be evaluated to assess its functionality and effectiveness among novice programmers.

Figure 11. The Visualiser tool. Taken from Nyamawe, A.S. (2014). ‘A proposed framework for development of a

visualizer based on memory transfer language (MTL)’. arXiv preprint arXiv:1408.2564.

Visual communication is used every, particularly on the Internet. Visualisation is an aspect of all

fields, from construction to engineering to architecture to geography to chemistry. Additionally,

57

digital technology has become an essential component, especially in terms of the discovery of new

knowledge, principles and shifts in the perception of existing theory. This was still significantly

recognising by most teachers, students and pupils. Visualisation is forming a mental image ,

whereby outcomes are perceived by the visual receptors. In education, visualisation is associated

with the application of rules. The visualisation of information is a universal technique regardless of

language, decoding speed or relativity. The danger lies in rational operations, hypertrophy of

sensory impressions and ambiguity of the information. The current trend vis-à-vis visualisation is

speeding up communication using a single and comprehensive tool that facilitates communication

not only of routine matters but also of scientific and technical knowledge. It is of key importance in

education at school and in lifelong learning (Shatri and Buza, 2017).

 Visualisation Evaluation

Since the beginning of using visualisation in programming education, many researchers have

pointed out its advantages (Kasurinen et al., 2008; Mselle and Twaakyondo, 2012; Fouh et al.,

2012; Mather, 2015). Researchers have applied different methodologies to evaluate visualisation

learning systems based on a common hypothesis, which is whether using visualisation or ‘memory

diagrams’ enhances students’ ability to program. Some studies have examined other aspects, such

as usability, complexity, interest and ease of use.

This section evaluates the use of visualisation in previous studies to analyse the current state of the

art and identify emergent issues. The theoretical literature and previous studies related to the

conceptualisation of programming education will be reviewed in three ways—based on the

methodology followed in the study procedures, based on the measured factors in each study and

based on the studies related to programming topics mentioned in each study. The nature of a study

plays a vital role in its findings and the research accuracy. The following are the aspects explored in

the discussion.

58

4.4.1 The methodology used to evaluate the tools

This section discusses how some visualisation tools have been evaluated. The evaluation criteria

differ, and some tools have been evaluated based on their impact on students’ performance or on

experts’ opinions. The purpose in this section is to study the different ways of evaluation and to

choose the most suitable for evaluation in the present study. Different evaluation methods (mixed

methods) are required to evaluate students’ comprehension and the factors that affect it. Using

mixed evaluation methods where both qualitative and quantitative data are gathered leads to the

development of better activities to be undertaken in any educational innovation. Using an evaluation

methodology to collect qualitative data may fail to provide information on students’ performance,

such as scores, drop-out or fail rates and programming errors. However, if only quantitative data is

used student feedback may be lost and the factors that affect their performance might not be

discovered.

In reviewing related works, it was found that some studies did not make adequate use of the

methodology. For instance, in Virtanen et al.’s (2005) study, a questionnaire was presented to

students to evaluate the visual interpreter (VIP) tool, an open-source visualisation tool for teaching

C++.

 VIP attempts to overcome the problem of creating new visualisations in which most instructions

differ from those for using visualisation tools. VIP’s features support editing the code, controlling

code execution, showing the state of the program and providing expression evaluation. The

questionnaire answers revealed positive feedback about the tool. However, as using the tool was not

mandatory, the study results were not broad enough to measure the tool’s usefulness. Therefore, the

researchers opted to use only the quantitative data to evaluate the tool and did not consider the

qualitative data, which may well have affected the results. In the same manner, Sun’s (2010) study

evaluating BlueJ as a pedagogical tool was done by conducting an experiment to solve an object-

oriented programming problem. Students benefit from the tool by learning the concept of object-

59

oriented programming using the interactive mode, but the author failed to provide qualitative data

supporting the findings.

Other studies reviewed failed to present qualitative data to support the statistical data gathered. For

instance, a study by Mselle and Twaakyondo (2012) counted the errors committed by two groups of

students. The study aimed to determine the role of MTL in reducing misconceptions and errors

made by novice programmers. The statistics indicated that students using MTL committed fewer

errors (208) than the control group (392). The authors suggested that further experiments should be

conducted with larger groups and with more diverse populations from different universities and

organisations. However, they seemed to overlook that the number of errors may represent

misunderstanding or other factors, such as students’ interest or confidence, which could have been

determined using qualitative methodology.

Mselle’s (1989) study has the same issue, that is, it only considered students’ scores in evaluating

the use of a memory diagram in programming education. A class experiment was conducted with

100 students at the Kigali Institute of Science and Technology. The students were divided into two

groups, one using a traditional approach (control group) and the second (experiment group) being

instructed by a lecturer using a memory diagram. The performance evaluations of both groups were

made based on their scores on the same final examination. There was a significant difference in the

test scores of the two groups; the average score was 64.67% for the experiment group and 60.02%

for the control group, so the hypothesis was accepted to a certain degree. However, the researcher

stated that certain conditions should be considered when judging the two groups, such as the

possibility that the experiment group was smarter or that their teacher was better than the teacher of

the control group. To address these issues, more class experiments and other qualitative methods

should be carried out to best determine possible reasons for any difference between the two groups’

scores.

The study conducted by Zheng et al. (2017) used a closed questionnaire to evaluate the role of

visualisation variables in teaching C programming students. The study used quantitative data to

60

measure students’ performance and satisfaction. Even though the results showed a significant

improvement in the program construction of novice programmers, students’ scores were the same

for the group that used the visualisation and for the control group that did not. The results of the

satisfaction questionnaire showed the students were not significantly satisfied with their program

construction capabilities. The limitation of this study is that a qualitative experiment using, for

example, open-ended questions was needed to offer a realistic explanation of the quantitative

findings.

In some cases, evaluations lacked statistical evidence, such as in Gouyon and Dixon’s (2005) study

that tested code memory diagram (CMD) software used by the author/developer. The evaluation

was conducted during a teaching session. The results revealed that the software enhanced students’

comprehension during the teaching session, but the main weakness of the study was its failure to

address the impact of the tool on the teaching process. The study could have been improved by

including aspects such as lecturer preparation time and students’ grades and experience. Including

these aspects would have afforded a better explanation of the study’s findings.

In Gouyon and Dixon (2005), three lecturers were interviewed to learn about their experiences

using the software. The lecturers suggested some modifications to the CMD editor and viewer to

make the interface easier to use. Gouyon and Dixon’s argument relies too heavily on quantitative

analysis. Another weakness of the study is that the findings are limited to the lecturers’ perceptions.

An objective comparison of students’ performance and lecturers’ perceptions seems to have been

needed.

Another effect of the methodology on the evaluation accuracy is the number of participants

involved; this plays an essential role in the findings. In their first evaluation of the CMD, Gouyon

and Dixon used various methods to collect data, including a questionnaire, video observation and

participant observation by the teachers and authors. Twenty-five students (of 26) answered the

survey, and 23 indicated the software facilitated their comprehension. The remaining two said they

previously had no difficulties in understanding the concepts, so the software did not add new

61

material for them. The main weakness of this study was the number of students who participated in

the experiment. It is likely that increasing the population would increase the accuracy of the results.

4.4.2 The measured factors

Regarding the use of visualisation in programming education, researchers have specified certain

factors to be measured during their investigations, such as in the studies by Kasurinen et al. (2008)

and Hagan and Markham (2000). In some cases, these measured factors are not enough to judge

visualisation. More than one factor is needed to fully evaluate the visualisation learning systems,

such as compiling students’ scores or errors committed and the sociological aspects relating to the

students, such as their feelings, interests, opinions, ability to program, confidence and/or

satisfaction. The reason for selecting more than one aspect is to better understand the findings that

will lead to improvement. Additionally, the evaluation should be based on different perspectives,

those of students, lecturers, tutors and/or developers. What students suggest may not be noticed by

lecturers and vice versa. An example of missing factors can be seen in a study by Hagan and

Markham (2000). Their experiment was conducted at Monash University with 350 students who

started writing a single class then gradually began writing more classes. The students used the

interactive visual environment of BlueJ, so they advanced from that environment to learn the

object-oriented concept. During the semester, surveys were used to evaluate the students’

expectations and their performance in BlueJ. The study collected information about the students and

their background knowledge in programming and then evaluated their BlueJ experiences. Even

though the survey showed the majority of students had a positive shift in their attitude towards

BlueJ, they still doubted its stability and reliability. The study’s weakness, which leads to not

understanding the reason for the positive shift in the students’ attitude, is the lack of other factors

that should have been measured, such as students’ performance.

Similar to evaluating the ‘Turtlet’ tool, which has been used as a visualisation approach in

programming education (Kasurinen et al., 2008), the researchers collected students’ opinions using

two surveys. The surveys measured aspects such as complexity, interest and ease of use. Although

62

the findings showed that 35% of the students liked the tool, 81% of the students preferred doing the

course project with Turtlet, 96% enjoyed the exercise that was created using Turtlet and 85%

preferred the demonstration. However, the study fails to consider other aspects that would explain

the reason behind this interest. One question that needs to be asked is whether students’ scores were

affected after using Turtlet. In a study by Salcedo and Idrobo (2011), the authors evaluated the

Alice tool by comparing it with different visual tools, such as SCRIBBLER, Microsoft Robotic

Developer Studio 2008R3, NXT Tech Virtual Robotic Worlds and Lego NXT2.0 and with

traditional teaching. The experiment conducted at Icesi University involved 15 lessons covering the

basics of programming. Each lesson included video phones and a workshop, and the videos

included tutorials covering specific topics with three parts—a theoretical introduction, a step-by-

step exercise and results. A questionnaire was distributed at a workshop held after the experiments

to examine the effectiveness of using the tools. The results suggested that using Alice increased the

interest in programming; however, students generally had a negative view of programming

languages before the experiment, as 58% of them found them hard to understand, 92% said they had

enough experience with the lessons and about 67% of them said they had fair or good experiences

with programming languages such as Java and C++. The main weakness of the study is that it relied

on the students’ interest and did not consider performance, which can be used to further explain the

findings.

Murphy et al. (2008) evaluated the BackSTOP tool that has been used for debugging runtime errors.

The aim of developing BackSTOP was to handle exceptional errors during runtime. It provides

clear error messages and suggestions on how to fix them when exceptions occur in Java programs.

The tool was designed to explain 22 different types of errors and exceptions. Two studies were

conducted to evaluate BackSTOP by measuring two aspects, the time needed to find the logical

errors and the time needed to solve them. The first experiment recorded the time needed by 17

students (13 used BackSTOP) at Columbia University to identify and fix the errors related to the

task. The students’ answers were collected after some subjective questions about solving the given

63

task. Of the 13 students, 76% recognised the errors and fixed them within eight minutes. However,

the students in the control group who were selected from the top students fixed the errors in less

than five minutes. The reason it took so long was that the messages in BackSTOP were too long and

it took time to read them. The second experiment was conducted to find logical errors in the

program and involved all 17 students; 47% found the errors within a maximum time of one minute.

The students claimed that the debug tool helped them find errors. A limitation of the study was that

the researchers considered the debugging only. More aspects could have been considered, such as

the ability to write a program with the least number of errors. The authors also suggested comparing

the debugging features when compiled with runtime error handling.

A study conducted by Yang et al. (2018) evaluated the JaguarCode tool that supports Java

programming along with UML diagrams by using static structure and dynamic execution traces for

the program. The authors carried out quantitative and qualitative experiments to investigate the

tool’s effectiveness and the participants’ satisfaction. The experimental results revealed that using

both static and dynamic visualisations had a positive impact on correctly understanding the program

and the tracing problems. The quantitative results showed two aspects, the correct responses for

each question and the response time. The qualitative results showed the participants’ satisfaction

and visualisation usability. The study’s main weakness was the failure to address how JaguarCode

can support students in designing and implementing Java through practical programming exercises.

The study also only collected data from the students’ viewpoint. More investigation with experts is

suggested to better improve the tool. Contrary to that study, which used a questionnaire that

involved questions about the static structure and dynamic execution traces for the program, Zhang

et al. (2013) relied on asking students about data in the static mode of the program and not during

runtime. The study evaluated the use of visual language in animation programs and the impact it has

on students’ comprehension. The findings showed that visualisation increased the students’

comprehension with less effort and less time. However, the questions asked did not focus on the

behaviour of the animation in the program, such as the functions and change of variables during

64

runtime. Instead, it focused on data and control flow. Extending the tool with additional

visualisation based on dynamic analysis would better assist users. Another limitation of the study is

that it measured students’ performance and the usability of the tool. As the authors stated, they need

to investigate other aspects, such as how the visualisation approach helps people implement

animations, remix animations and develop programming skills by exploring animations, debugging

and/or extending animations.

4.4.3 Programming topics

Some of the studies on evaluating visualisation systems only investigated one programming concept

or solved one programming algorithm or one problem\example. These studies are not considered

weak; however, the present study looks at a wider range of programming concepts, such as the

threshold concepts discussed in Chapter 3. The reason is that some of the programming concepts

may have an effect on the understanding of other concepts. Programming concepts are considered

structures built on each other. This is what this study has tried to demonstrate—how understanding

one concept may lead to the improved comprehension of others. In the following examples, the

benefits of these studies are shown, even though they fail to cover a wide range of concepts.

The focus is on object-oriented programming, such as in the studies by Holliday and Luginbuhl

(2003, 2004) and Sun (2010). The study by Holliday and Luginbuhl (2003), conducted at Western

Carolina University, evaluated the use of memory diagrams in object-oriented programming. A

memory diagram is a model that represents entities in object-oriented languages. Entities are

described using shapes, such as circles for objects, rectangles for variables, diamonds for classes

and arrows for references. When students use this model, they can see the program code. The

memory diagram next to the code values of the data written inside the shapes dynamically changes

based on the code execution. The memory diagram was used with CS1 students to help them

understand object-oriented programming concepts. Periodically, the students were asked to

construct a diagram by themselves for better comprehension and to improve their abstract thinking.

The university proposed to study the diagram’s effect on program comprehension in the fall

65

semester of 2002 by including a problem on the final exam that showed code and required the

students to draw a memory diagram. There was a high correlation between the score on the system

diagram question and the entire test score. The study concluded that performance on this issue could

predict a student’s performance on the whole test.

In 2004, Holliday and Luginbuhl (2004) conducted an experiment that used a memory diagram to

assist students’ comprehension. This assessment was then used as feedback to the students to

correct their incomprehension. The students applied the memory diagram on a given example to

evaluate their comprehension. On the given code, some common misunderstandings appeared,

which allowed the instructor to know the students’ weak points. Most of the weak points related to

common misunderstandings when assigning an object and how they related fields to objects. Two

more studies were conducted to evaluate the memory diagram as an assessment tool. The goal of

the first study was to find a correlation between students’ performance on drawing a memory

diagram for a given test question and to use their performance as an indicator to measure their

ability to solve the remaining questions on the same test. The goal of the second study was to find a

correlation between students’ performance in drawing a memory diagram and their performance on

the entire course assessment. The authors found that the correlation existed and that a memory

diagram could be used as an indicator of students’ performance on the test and on the course

assessment.

Sun (2010) also evaluated the use of visualisation. That study evaluated BlueJ as a pedagogical tool

in implementing a project-building clock. The problem is an object-oriented example where

students divide the problem into two classes, DisplayNumber and DisplayClock. Students benefit

from the tool by learning the concept of object-oriented programming using the interactive mode.

Satratzemi et al. (2001) evaluated AnimPascal as a visual tool. What makes AnimPascal different

from other debugging tools is its ability to record programers’ actions. These recorded actions could

be used by instructors to recognise students’ misconceptions. AnimPascal can edit and compile

standard Pascal code and allows observers to watch the dynamic execution.

66

 Conclusion

As this thesis looks at the visualisation method as a proposed solution for the study gap, this chapter

provided a literature review examining the contribution of visualisation to programming learning.

From the previous literature, it can be concluded that different aspects need to be considered to

better evaluate the use of visualisation in programming learning.

Broader and more programming concepts need to be evaluated. In evaluating the methodology used

in programming education, it is better to investigate the use of visualisation in different

programming problems. The findings may be different from one programming concept to another.

Several common tools were also discussed in the chapter; therefore, this study could potentially

benefit from them in designing the TLE framework. The features and defects of the tools could be

exploited in designing the framework.

It is possible to motivate and encourage novice programmers to program using visual tools. The

pedagogical environment presented in the visual tools allows for easy understanding of the

theoretical concepts. The tangible results of evaluating visualisation in programming learning

discussed in this chapter prove the benefits of using visualisation to increase students’

comprehension and interest in programming. The various tools and models—BlueJ, Alice, DrJava,

Online Python Tutor, VIP and AnimPascal—can become a part of strengthening the theoretical

concepts. Visualisation can show the theoretical concepts through interactive environments and the

use of animations, making them easier to understand. However, the field of visualisation should be

expanded and undergo continuous improvement and evaluation. In general, when designing a

visualisation model, one should focus on other aspects besides the graphical representation. One of

these aspects is the theoretical concepts in programming and how they could be fully or partially

covered. Object-oriented programming has been used in some of the tools presented in this chapter.

However, it could be employed and improved in different ways. Still other aspects should be

considered, such as the programming language, the amount of practice, type of examples, data type

support and error handling. The next chapter presents the methodology used for both recognising

67

the aspects considered in developing a visualisation pedagogical environment from the novice’s

perspective and evaluating visualisation in programming education.

68

Chapter 5 RESEARCH METHODOLOGY

 Introduction

The research method is the technique used to collect data using instruments such as questionnaires,

structured interviews and participant observation (Creswell, 2014). The use of any research method

mainly depends on the nature of the research and its objectives.

To better achieve the research objectives of this study, a combination of quantitative and qualitative

methods was chosen. The reason for using both methods is discussed in this chapter in general and

more specifically in Section 5.2.

The study’s research objectives include the following. The first was to evaluate the existing

visualisation tools from the perspective of novice programers. The novices’ requirements were

collected to discover the strong and weak areas in the visalisation tools for the purpose of

improvement. Then the collected characteristics of the visualisation tools were formalised and

considered as features of this study’s visualisation tool. The novice programmers’ requirements and

their feedback were collected via semi-structured interviews. During the interviews, three

visualisation tools were presented to the interviewees to gather their opinions and suggestions for

improvements.

The second research objective was to evaluate the developed visualisation tool based on novices’

performance (students’ scores), novices’ confidence while solving programming problems, novices’

confidence in their understanding of the programming concepts and novices’ satisfaction. A series

of pre-survey and post-survey experiments were conducted to achieve the research objectives. In

addition, focus groups were conducted with the novice programmers after attending a visualisation

session to collect their feedback. Finally, expert evaluation was sought by conducting semi-

structured interviews with experts for further feedback from the their perspectives.

69

 Research Methodology

The research methods used are within the context of the epistemological approach. Of the two main

paradigms proposed by Creswell (1994, 1998), this study uses a qualitative and quantitative

analysis model. Figure 12 shows the qualitative and quantitative methods used.

Figure 12. Methodology and Experiments Diagram

A qualitative study is based on the process of understanding social or human factors through the

creation of a dynamic, holistic image in a natural setting. The people chosen to participate in this

study are likely to be confident with the empirical approach, and the researcher can be put in an

active learning role rather than an expert role (Creswell, 1998).

Three qualitative investigation techniques were employed:

1- Semi-structured interviews with programmer learners in the data collection stage (discussed in

Section 5.4.2 and Chapter 6, Section 6.2.1).

2- Semi-structured interviews with experts in the evaluation stage (discussed in Section 5.4.2 and

Chapter 7, Section 7.3.6).

70

3- Focus groups with novices programmers (discussed in Section 5.4.3 and Chapter 7, Section

7.3.5).

A qualitative approach is used to provide a clear view of a problem to help develop solutions, ideas

or hypotheses for potential quantitative research. It is also used to drive and identify reasons for

opinions and motives. Qualitative information aggregates different methods that include

unstructured and semi-structured methods. Some common methods used in qualitative approaches

are focus groups (group discussions), personal interviews and participation/feedback. This approach

is used when the sample is small and where individuals are selected to achieve a certain quota. A

qualitative approach gives more detail and greater amounts of information, as it gives participants

more space to explore their ideas (Richard, 2013).

These types of research are used to answer ‘why’ and ‘how’ questions about human behaviour,

opinions and experiences. They are useful to describe health, disease, society and cultural and

political issues to understand the personal and subjective experiences of individuals and groups.

They can be divided into the following: language as a means of discovering the process of

communication with specific community groups, describing and translating personal meaning about

circumstances and activities and building theory by discovering patterns and links in qualitative

information. There are criteria for assessing the quality of a qualitative study, including those

relating to good practice in the implementation of a study (methodological rigor) and the standards

associated with the honesty of interpretations given (interpretative rigor) (Lune and Berg, 2016).

Each different method is suitable for collecting a particular type of information. For example, in-

depth interviews are useful to gather data on history and personal perspectives. Another useful tool

is observation, which is appropriate when collecting data on behaviours that occur in their natural

surroundings. Still another useful tool is focus groups, which are optimal in reading information

about the common cultural norms of a group or to form broad insights on issues of concern about

representative cultural groups (Marshall and Rossman, 2014).

71

In addition to a qualitative approach, this study also uses a quantitative approach, which is

commonly used to identify problems by creating numerical information that can be converted into

statistical numbers. It is used to identify literature, attitudes and perspectives. Quantitative data

collection methods are more general and structured than qualitative data collection methods.

The quantitative method is focused on evaluating a hypothesis consisting of variables measured

with numbers based on a numerical analysis of those values. Nevertheless, the application of values

to variables was suggested in the evaluation stage of this research to exclude important factors and

theoretically remove important elements that may be significant but difficult to measure. Another

problem with the quantitative approach is that statistical tests require a precise measurement

approach (Galliers and Land, 1987), which is not possible here due to the subjective nature of

evaluating visualisation in programming learning. Likert scales (Likert, 1932) (refer to Section

5.3.2) are interesting examples of attributing numerical values to something subjectively calculated,

which can then be subject to statistical analysis. In the evaluation process, Likert scales were used

as a way of measuring different attitude values, which is further addressed in Section 5.3.2.

In addition, quantitative data collection approaches include many types of screening, such as online

questionnaires, paper questionnaires, mobile surveys, face-to-face interviews, telephone interviews

and online survey monitoring (Richard, 2013). Therefore, a combination of quantitative and

qualitative approaches was used in this study to generate more in-depth and accurate information on

the research subject.

The research conducted in this study includes both collecting data to discover the visualisation

method characteristics and evaluating the use of visualisation in programming education. To

develop the research, quantitative and qualitative methods were used. The research has a connection

with building or testing theories (Bryman, 2017). Therefore, the following section discusses the

relationship between theory and research to make clear the difference between quantitative and

qualitative research (Bryman, 2017).

72

5.2.1 Deductive and inductive approaches

 The deductive approach includes developing a hypothesis from existing theory. It is commonly

used with scientific investigation. The researcher using a deductive approach collects data to prove

the correctness of any hypothesis generated from the theory. It is mainly associated with

quantitative research (Bryman, 2017). In the present study’s second experiment, data was collected

to test whether visualisation can improve novice programmers’ performance.

The inductive approach is concerned with forming a new theory that emerges from the data. To do

this, researchers use observation and data collection. This approach is mainly associated with

qualitative research (Bryman, 2017). The present study used qualitative data collected from

interviews to discover the visualisation characteristics.

5.2.2 The worldview (epistemological) consideration

Philosophical worldviews have been brought to the study. The researcher can design the research

related to these assumptions and specific methods or procedures and translate this into practice

(Creswell, 2014). The term worldview is defined by Guba (1990) as ‘a basic set of beliefs that guide

action’. Other researchers call worldviews epistemologies and ontologies (Crotty, 1998). The kind

of beliefs held by the researcher will lead them to choosing a quantitative, qualitative or mixed-

methods approach for their research. The following discussion will present the common worldviews

or beliefs considered in this research—positivism and constructivism.

1. Positivism

Positivism is sometimes called the scientific method or scientific research that determines effects or

outcomes (Creswell, 2014). Positivism’s assumptions hold more for quantitative research than for

qualitative research. Positivism studies problems that reflect the importance of identifying and

supporting the causes that influence outcomes, such as found in experiments (Creswell, 2014). It

reduces problems to small sets to be tested, such as variables that form a hypothesis or research

73

question. This quantitative study employed positivism that entails the following (Phillips and

Burbules 2000):

The knowledge – It was thought that the evidence regarding the effectiveness of using visualisation

in programming learning might be insufficient.

Testing the theory by making claims and generating hypotheses.

Gathering data, evidence and other information that form knowledge – In this study, data was

collected to measure the participants’ performance using pre- and post-surveys.

Developing a relationship among variables, such as how improvement in the students’ scores may

affect their confidence in their programming.

Applying validity and reliability in quantitative research is an essential aspect that has been

considered in this research.

2. Constructivism

Constructivism, or social constructivism, means that individuals can develop their understanding

and subjective meaning in a situation based on experience and social actors (Mertens et al., 2009;

Crotty, 1998). Constructivism works mainly with the qualitative approach that requires constructing

meanings (Creswell, 2014). One goal of the research relied on participants’ (novices and experts)

views of and experience with visualisation. The open-ended questions in the interviews and focus

groups were too broad to construct the subjective meaning of a situation. Gathering information in

qualitative research requires the participants’ engagement with their world to understand the context

(Crotty, 1998).

Constructivism is distinguished by its focus on how an individual participates intelligently in

building knowledge from social construction. It states that knowledge and meaning are built

74

historically and culturally through social processes and work. Constructivism and social structure

are used to try to solve the problems of traditional teaching and learning (Young and Collin, 2004).

Constructivism is a synthesis of multiple theories incorporated into one form. It expresses the

assimilation of both behavioural and cognitive ideals. Constructivism maintains that learning is the

process of constructing meaning; this is how people understand their experience. Constructivism is

widely described as an approach to investigate students’ level of understanding and to show that

this understanding can increase and change to higher-level thinking. Thus, constructivism describes

how students can understand material and how to teach material effectively. Considering

constructivism as educational theory, teachers should consider what students know and should

allow their students to put their knowledge into practice. There are two main methods of the

structural perspective: the constructing perspective and the socio-cultural perspective (socio-

constructing perspective) (Amineh and Asl, 2015).

Social constructivism is the sociological theory of knowledge that looks at how social phenomena

or things of consciousness develop in social contexts. Social constructivism considers that

knowledge systems are nothing but human mental structures, and many influences and constraints

have contributed to them, such as the politics of governance and ideologies prevalent in society and

the religious and moral values carried by individuals who make knowledge. They in turn are subject

to laws that safeguard their personal interests and the imperatives of preserving their social status.

These laws are then subject to social constructivism (Samy and Robertson, 2017).

Social constructivism also emphasises that knowledge is the accumulation of cognitive particles that

accumulate through the ages and complement each other and invalidate each other. It is a product of

countless human choices.. Social constructivism is usually placed in opposition to fundamentalism,

which sees phenomena in inherent conditions, cross-historical abstracts independent of human rule

(Mouzelis, 2016).

75

The difference between constructivism and social constructivism theory appears in terms of the role

of the teacher, the role of the learner, goals, the content of education, teaching strategies,

reinforcement processes, the system within the classroom and evaluation. However, both structural

and social constructivism theory make the learner the focus of the educational process and his role

positive, active and effective, and not only influencing it, and making the teacher plays the role of

guidance and guidance, and that it is a source of knowledge, and making learning an active and

continuous process of experience, whether direct or not direct, and the idea of linking (new

information with old information) as a prerequisite for learning to take place, and learning to

discover (i.e. teach the student how to discover the information himself) through research processes

such as observation, interpretation, organisation, inquiry, conclusion, creative and critical thinking

and problem-solving, search for Knowledge, not imparting it in an integrated manner. In addition to

discussion and dialogue is the role of the environment and cooperative social interaction in

imparting knowledge to the individual; therefore, the environment must be enriched. There is also

the idea of organising the content of the subject matter so that it takes into account the inclinations

and individual differences between students (Vall Castelló, 2016).

 Quantitative Method

To evaluate the framework, quantitative analysis was used to measure the students’ performance.

Quantitative methods are considered tools for statistical data to save time and resources. Statistical

data provide clear objectives and guidelines instead of using guesswork (Daniel, 2016).

For a better understanding of the quantitative method, it is necessary to understand variables and

types of variables. Variables are the characteristics of an individual or of groups that can be

measured or observed and that may vary among individuals or groups during the study (Creswell,

2014). According to Creswell (2014), there are different types of variables. However, the present

study focused on three types of variables that play a role in the research: (i) independent, (ii)

dependent (iii) and control variables.

76

i. Independent variables are variables that affect outcomes. In this study’s evaluation of

visualisation, the independent variable is the use of visualisation or lab resources when

participants attend either a visualisation session or a lab session that affect their scores.

ii. Dependent variables are the outcomes or results affected by the independent variable. In this

case, the scores and confidence are examples of dependent variables.

iii. Control variables are special types of independent variables that play a role in the

quantitative results and influence the dependent variables. In this study’s experiment,

students’ age and experience with programming was considered when collecting the data.

The students were on the same academic level in terms of their programming courses.

Based on the above, we can describe a theory as a ‘set of variables, definitions, and propositions

that present a systematic view of phenomena by specifying the relations among variables with the

purpose of explaining natural phenomena’ (Kerlinger, 1979).

The present study used the quantitative method to compare the performance of two groups (a

control group and a visualisation group), as discussed in Chapter 7, Section 7.3.1. Each group relied

on different teaching methods. The performance of the group that used the visualisation method was

compared before and after using the method in a pre- and post-test. Therefore, the statistical data

provide an appropriate interpretation of the findings relating to the comparison.

5.3.1 Survey with experiment

A survey is a data collection tool that contains questions to carry out survey research (Pinsonneeault

and Kraemer, 1993). According to Creswell (2014), ‘a survey design provides a quantitative or

numeric description of trends, attitudes, or opinions of a population by studying a sample of that

population’. After that, the researcher can generalise inferences to the population. Surveys have

internal and external validity, which means the findings for the sample group can be generalised to

a wider population. Surveys are flexible, which means they can be combined with other methods,

77

such as interviews and focus groups. Surveys have ethical advantages, as the identity of the

participants can be ananymous (Creswell, 2014).

This study used a survey in an experiment that involves two groups to compare the performance of

the two groups exposed to two different processes. Each process was considered an attribute for the

survey (Krosnick, 1999). The experiments included a questionnaire in addition to a problem-solving

question. There are several benefits of having a survey in the experiment. First, the findings can be

generalised over the population using either visualisation or regular lab activities in programming

learning. Second, the sample included novices and programming students, and the questionnaire

may help explore the diverse needs and obstacles faced by novice programmers. Third, the

comparison of the findings for both surveys helps in evaluating the framework and provides

evidence.

The basic purpose of the experimental design is to evaluate the impact of the treatment or the

process on an outcome while controlling any other factors that can affect the results (Creswell,

2014). The survey design, the experiment preparations and the procedures are described in Chapter

7.

5.3.2 Survey measurements

Situated in the framework of the surrounding epistemic approach are the research methods used.

Creswell (2014) suggests underpin human or scientific discipline analysis, that of qualitative and

quantitative inquiry, the analysis ways happiness to the qualitative realm were thought of to be the

most relevant. The investigation in the experiment during the evaluation phase sought to evaluate

the participants’ confidence in solving the test and in their knowledge of programming topics. It

also measured their satisfaction with using visualisation. Confidence and satisfaction are subjective

in nature and are typically considered qualitative factors. However, during the evaluation of this

research, applying values to variables was considered to eliminate necessary factors that are

subjective in nature, such as confidence and satisfaction, which are difficult to measure. Likert

78

scales (Likert, 1932) should be mentioned here. These provide an example of numerical values

being attributed to something that is subjectively measured, which might then be subject to

statistical interpretation. A Likert scale is a multiple-item measure of a set of attitudes relating to a

particular thing. It is used to measure the level of agreement. The purpose of using a Likert scale is

to measure the intensity of feelings about the topic in question or the level of agreement with a

statement or set of statements (Bertram, 2006).

Bryman (2017) describes the Likert scale as being one of the most common approaches to

investigating attitudes towards specific ideas. It is also one of the most popular formats for

assessing usability. With a Likert scale, the list of statements should be piloted and refined previous

to using it for a wider audience; however, this was not done in this study due to time constraints

(Kent, Hutcheon et al., 2001).

The questionnaire was the vehicle to measure the respondents’ perspectives regarding visualisation

and provided values for the analysis. Questionnaires often use a rating scale. In this study,

statements were created concerning specific components of the visualisation tool that correlative to

the necessities. Likert scales are used to measure people’s opinions and attitudes. A Likert scale

typically has statements such as ‘Please state whether you agree/disagree with the following’

(Jamieson, 2004). Usually, the format of the level of agreement indicator is a five-point scale going

from ‘strongly agree’ to ‘strongly disagree’. This study used a five-point scale to measure the level

of agreement among the participants. The five-point Likert scale consists of five answer options,

with 5=Strongly agree and 1=Strongly disagree. The intermediate point is ‘Neutral’, which has to

be provided in the questionnaire for the respondents who have a neutral response that is in between

or who are undecided. In determining respondents’ satisfaction or level of agreement, it is most

common to use a 3-point or a 5-point scale. However, the preference in this study was to use a 5-

point scale because it more accurately captures the feelings and attitudes of the respondents. For

instance, when a person agrees with something, the level of agreement could be very strong or very

79

weak, so it is better to provide two options, ‘Strongly agree’ and ‘Agree’ instead of just the one

option ‘Agree’ found in a 3-point scale. The same idea applies regarding disagreement (Taherdoost,

2019).

This study used a 5-point Likert scale to measure the participants’ level of confidence in

programming in the first section of the survey. The statements for this were:

 I can use variables

 I can use class inheritance

 I can use a class constructor

A 5-point scale was also used in Section 3 of the survey (Appendix E), where the level of

participants’ satisfaction was measured. The statements for this were:

 Using the tool helped me to understand classes

 Using the tool helped me to understand objects

 Using the tool helped me to set the variable values defined in the class

 Using the tool helped me to learn Java

 The tool was easy to use

The participants then chose the level of agreement for each statement.

According to Bryman (2012), several points should be considered when constructing a Likert scale.

These are as follows:

 Each item should be presented as a statement and not a question.

 The items should all relate to the same object (learners, students).

 All the items should be interrelated (Bryman, 2012).

The Likert scale has been criticised for a lack of validity and its ability to be reproduced. Therefore,

the scale was used solely to offer guideline rankings and to better explore the respondents’ feelings

regarding visualisation. Respondents’ answers may solely be used as reflections of their feelings

about the model at that moment in time instead of as a generalisable measure.

80

Here, the survey in the second experiment did not have a pilot version. This is because the survey

was to be presented at two specific times, right after having the new lesson on programming (the

pre-survey) and right after the presentation of the visualisation method (the post-survey). Therefore,

there was limited time to distribute the survey. Conducting a pilot survey in that timeframe would

delay the actual survey, which may affect the overall performance.

5.3.3 Data collection

An experimental design was used for the data collection. According to Bryman (2017), an

experimental design involves two groups, an experimental group and a control group. The

experimental group (visualisation group) received experimental treatment—in this case a

visualisation session—but the control group does not receive the same treatment. The control group

relied only on the lecture classes and lab activities for their programming knowledge. Some

experiments include a control group that has the same treatment as the experimental group except it

does not undergo the experimental process, which in this case is use of the visualisation tool.

Therefore, a control group was needed to compare their performance with that of the group that

used the visualisation tool in order to see whether the use of visualisation in programming learning

has or does not have benefits over attending regular classes and labs. Without the control group, it

cannot be determined whether it was the visualisation or other elements that caused the outcome of

the experiment.

As mentioned in this chapter, collecting data involves a pre-survey and a post-survey (Appendix E)

with an experiment conducted with two groups (here, the visualisation group and the control group).

The pre-survey includes a pre-test and subjects that are manipulating the independent variable for

both groups and post-survey respondents. Here, the students’ performance was the dependent

variable that was measured before and after the experiment manipulation.

 The survey was the preferred data collection procedure of the study to gather participants’

opinions. The economical nature of the survey design and the rapid overthrow in data collection are

81

the benefits of using the survey in this study’s experiment design (Gliner et al., 2009). The

experiment preparation and procedures used to collect the data are discussed in Chapter 7.

The cross-sectional method was used in the survey design. According to Creswell (2014), in the

cross-sectional design the data collection happens at one point in time. Cross-sectional studies or

surveys measure both the exposure and outcome in a sample of the population at a point in time. A

major challenge of cross-sectional studies is ensuring that the sample selected and included in the

survey is representative of the population of interest.

To apply the cross-sectional design to the pre-survey and the post survey, the design went through

different phases:

1. Identify the research question

2. Specify target and accessible population

3. The major challenge of cross-sectional studies is choosing a sample that is representative of

the population of interest. This study was careful to choose random participants for both

groups (control and visualisation groups). The participants in both groups had the same

programming level and background knowledge in programming. However, the sample

sections were composed according to their exposure or their attending the visualisation

session.

4. Measure variables of interest (performance; confidence of both groups in solving the test

and in their background knowledge; and satisfaction).

The present study is considered a correlative study because it measures the effect of using

visualisation by following the program’s instructions on student performance. It also reflects the

cross-sectional research correlation because it shows students and the behaviour of the proposed

visualisation program in a specific time period.

82

5.3.4 Data analysis strategy

The analysis objectives for the quantitative data concern reducing the amount of data collected,

finding the relationship between variables and how to develop ways for data presentation (Bryman,

2017). The following steps were considered in the analysis:

 Report the number of participants for each group (visualisation and control groups) in

both surveys (pre-survey and post-survey) (refer to Table 5 in Chapter 7).

 Provide a descriptive analysis for dependent and independent variables, such as mean,

standard deviation and skewness (Section 7.4.1).

 Compare both groups in terms of variables to test the inferential questions or hypotheses

so inferences can be drawn from the sample and applied to a population (Creswell,

2014).

 Qualitative Method

Qualitative methods express meaning, definitions, concepts and descriptions of things. Qualitative

methods include, for example, open-ended questions, focus groups, observation and in-depth

interviews that expand on quantitative data. The qualitative method provides a broad understanding

of the participants’ needs and behaviours. Collecting user requirements relies on non-numerical data

in the form of words and descriptions that lead to descriptive information (Daniel, 2016).

In the qualitative method, the researcher starts by gathering information from participants from

interviews or observations. Then the researcher asks open-ended questions and gathers information

that is placed into categories or themes. Finally, the researcher forms generalisations or theories

from the categories or themes before posing theories or generalisations from the literature or

previous experience (Creswell, 2014).

Different approaches are used to develop theories or generalisations from themes and categories.

Grounded theory (GT) is the approach used in this research to generate the theory about using

visualisation in programming learning. GT gives a different end point that is grounded in

83

information from the participants (Strauss and Corbin, 1994). The following section discusses the

procedures of GT.

5.4.1 Grounded Theory

The design of GT procedures consists of a constructed set of concepts that provide a theoretical

explanation of the social phenomena under study (Corbin and Strauss, 2008). The data from GT can

be gathered in different ways, such as interviews, focus groups or observation. GT has specific

procedures for collecting and analysing data. The procedures are as follows (Corbin and Strauss,

1990):

1. The process of data collection and analysis should be interrelated. The analysis begins once

the first data and information are collected from participants. The benefit of starting the

analysis at the same stage as data collection is the ability to use the results to direct the next

interview or discussion. It may influence the discussion and prompt new questions.

2. Concepts are the basic units of analysis. The purpose of data collection in the qualitative

method is to build theory, which cannot be built without observing activities and actions that

have not been analysed.

3. Form the categories. This means developing a higher level of abstraction that is higher than

the concepts. It involves grouping the participants’ feedback and opinions into categories

based on similarities between concepts.

4. Comparison of similarities and differences. In this case, a comparison between participants’

opinions and feedback regarding their preference of visualisation tool and the difference

between their functionalities was made. Thus, the comparison helped to achieve precision.

5. Writing theories that start generating from the first coding sessions for the categories.

To apply these steps in this research, the steps to analyse the qualitative data gathered from the

interviews in the data collection phase were followed:

84

1. Data collection was achieved through open questions in the interviews. For example, the

interviewer asked ‘What are the strengthen and weakness of the tool?’. All the answers for

one question were collected (all the answers grouped by the one question in Appendix F-1).

2. The coding was done for the answers and finding the repeated themes with keywords and

phrases. For example, some answers were repeated by more than one interviewee, such as

the appearance of the windows, code font and colours (coding with the transcript is in

Appendix F-1).

3. All the repeated answers were grouped and categorised and put into subcategories, so any

codes that have similarities have the same subcategory. For instance, the answers related to

tracing the code and animation are in one group, and any answers related to the appearance

of the objects, classes and inheritance are in one group (a table of the subcategories is in

Appendix F-1).

4. Each subcategory was grouped into a main category. For instance, tracing the code and

animation subcategories are in one category called Expression evaluation. Any

subcategories that describe the appearance of the tool are in the category called Interface (a

table of the main categories is in Appendix F-1).

5. Finally, we end up with a theory about the strengths and weaknesses of the tools based on

the main categories. It was found that some characteristics are more important than others

from the students’ perspective. For instance, Expression evaluation was more important than

Tool availability. All the findings and characteristics are discussed in Chapter 6.

GT is a research method to generate theory that is ‘grounded’ in data that has been systematically

collected and analysed. It is used to detect such things as social relations and the attitude of groups,

recognised as social operations. GT was developed by Glaser and Strauss in their study ‘Awareness

of Dying’. It is a public methodology for improving theory that is grounded in systematically

gathered and analysed data. The advantages of GT (Noble and Mitchell, 2016) are as follows:

85

 Data collection and analysis happen simultaneously.

 Categories and analytic codes are developed from data. Pre-existing conceptualisations are

not to be applied; this is known as theoretical sensitivity.

 Theoretical sampling is applied to refine groups.

 Abstract categories are constructed inductively.

 Social operations are discovered in the data.

 Analytical notes are applied between coding and writing.

 Categories are inserted into a theoretical framework.

Studies that use the GT approach are essentially a phase to conceptual thought and theory structure

sort of experimental testing of the theory. Therefore, a qualitative research approach is applied in

this kind of research. In particular, conceptual thinking and theory building are why investigators

generally employ an inductive, constructivist GT method. It involves the systematic improvement

of theory in a social framework and relies upon inductive approaches that are suitable for studies

where one of the aims is theory development. Furthermore, the research questions and literature

review by themselves support conceptual thinking and theory building rather than empirical testing

of the theory. This type of study follows an inductive theory-building approach. Moreover,

deductive logic is used to test a hypothesis and deny or adjust a theory based on empirical data,

while inductive reasoning requires finding a bound principle and constructing generalisations,

relationships and even theories by analysing the data gathered for this purpose. However, inductive

operations may still have some pre-existing theories or ideas relating to the problem. Nonetheless, it

does not follow to approve or negate the present theories; rather, an effort must be made to create

outlines, stability and importance by gathering data (Khan, 2014).

The role of the literature review in GT is to realise theoretical sensitivity; the investigator must start

with as few predetermined notions, especially hypotheses, as possible so the data can be as critical

to the data as possible. This does not mean that the investigator must start with a tabula rasa, as is

86

often supposed. It is how prior knowledge is applied that makes the difference; it must be applied to

understand the analysis rather than to direct it. Literature can also be used as ‘data’ and constantly

match with the emerging group to be integrated in the theory (Charmaz and Belgrave, 2007).

The suggestion of GT was the reaction to positivism, which was followed by scientific fraud and

positivism (positivism: the belief that everything can be boiled down to mathematical evidence and

that rationality is all-powerful). Wherever, it is similar to the theoretical orientation of the theory

based on the symbolic reaction theory (Priest et al., 2002). Symbolic interactive interaction is

evidenced by the fact that ‘meaning is negotiated and understood through interactions with others in

social processes’ (Starks and Trinidad, 2007, p. 1374).

GT is based on two unique characteristics, continuous comparative analysis and theoretical

sampling (Glaser and Strauss, 1967). Specifically, data collection and analysis are parallel in GT,

and the procedure is neither linear nor sequential. Corbin and Strauss (1990) proposed the following

as evaluation criteria for GT: accuracy in the coding and research process, quality of concepts, the

methodological relationship between concepts, theoretical density, range of differences and

specificity, the importance of theoretical results and theoretical sensitivity .

The focus of GT is the development of theory (Strauss and Corbin, 1994). GT is appropriate when

there is no theory or when the theory is too abstract to be tested, but it is not suitable for testing

theory or generating knowledge from objective reality (Martin and Turner, 1986; Suddaby, 2006).

GT follows coding processes and focuses on creating relationships between groups or building

theories.

The present research used semi-structured interviews with programming novices and students to

collect user requirements. The researcher relied on GT to make the categories of visualisation in

programming learning from the data collected in the interviews with the programming students

(Chapter 6). Moreover, the researcher conducted in-depth interviews with experts (programming

87

lecturers and tutors) to evaluate the framework. Focus groups were also conducted for a better

understanding of the quantitative data collected for the experiment.

5.4.2 Semi-structured interviews

A semi-structured interview is a qualitative method using open questions that gives the interviewer

a chance to explore the subject. Semi-structured interviews are used to understand how to interpose

work and how the questions could be improved. They also allow respondents to suggest issues that

researchers may not have considered (Blandford, 2013).

Interviews are data collection tools that can be used in qualitative research to investigate individual

respondents’ views, perceptions, values and motives. They provide a deeper understanding of a

specific research topic and are best suited when individual participants need to give detailed

insights, particularly when quantitative data (mainly collected from questionnaires) is not

considered enough (Brinkmann and Kvale, 2014). There are three types of research interviews:

 Structured interviews. These take the form of a questionnaire with a set of predetermined

questions administered orally. Such questions are put to the respondent with little or no

variance and with no intention of continuing with follow-up questions for answers that may

need further elaboration. Structured interviews are therefore fairly quick and easy to conduct

and can be useful if clarification is needed for specific questions or if the respondents have

issues with literacy. Generally, if further depth is required, they are of little use.

 Unstructured interviews. Generally, these do not follow any particular principle and are

carried out with little or no coordination at all. They usually begin with an opening question

such as ‘Please explain your experience of doing this to me’ and progress based on the

response. Unstructured interviews are usually time-consuming and can be hard to handle. As

there is a lack of predetermined questions, there is little guidance on what to speak about.

Unstructured interviews require excellent interviewer skills, particularly in areas where

virtually nothing is known.

88

 Semi-structured interviews. These fall between the categories mentioned above. Usually,

semi-structured interviews start with several key questions that help define the areas to be

explored and allow both parties to deviate if an idea or opinion needs to be pursued in more

detail. This offers more versatility compared to structured interviews because it requires

more knowledge, exploration and elaboration. At the same time, concepts that have not been

articulated before can easily arise from the respondents in the same way as in unstructured

interviews.

Preparing an interview guide is an important first step in conducting an effective interview (Gill et

al., 2008). The following important points were taken into account during this process:

 The interviewer must introduce himself and explain the purpose of the interview so that the

interviewee is fully aware of the intent of the study.

 The interviewees must be ensured of the privacy and anonymity of the interview.

 Prepare the questions, taking into consideration that:

 Questions should be applicable to the subject of the research.

 Questions must obey a sequence of logic.

 Questions should be structured in such a way that one can easily navigate to another

subject.

 Questions should be clear and easy to understand, taking into account the interviewee.

 Questions do not give rise to a specific response but rather encourage people to feel

free to offer their own honest answers.

The type of interview chosen in this study was the semi-structured interview because the strengths

of both structured and unstructured interviews are mixed. Most precisely, the participants were

asked a few key questions about their occupation, job description, job responsibilities and years of

experience at the beginning of the interview. Then the interview continued in a more open and

unstructured way on the topic of learning programming using visualisation.

89

Semi-structured interviews were used in the data collection phase to obtain more information by

asking open-ended questions. Semi-structured interviews were also used with experts for the

framework evaluation to give them the freedom to explore issues further. In general, interviews

ensure mutual understanding of the subject. In this case, the interviewer guarantees that

interviewees understand the subjects and may paraphrase the questions. As a result, accurate data

can be collected from the interviews. Moreover, the data obtained from the interviews can be

recorded. Thus, the researcher can review the data many times to ensure more accurate results

(Alshenqeeti, 2014).

5.4.3 Focus groups

A focus group is a group discussion on a particular topic that is guided, monitored and recorded by

the researcher (Gill et al., 2008). It is defined by Krueger and Casey as ‘carefully planned series of

discussions designed to obtain perceptions on a defined area of interest in a permissive, non-

threatening environment’ (Williams and Katz, 2001). There is no specific rule specifying the

number of participants in a focus group, as researchers in this field have argued for different sizes

ranging from approximately 4–12 participants (Masadeh, 2012). The session duration has been

specified in some of the sources to be 60–90 minutes (Evaluation Research Team, 2008). The

questions in a focus group should usually follow a sequence, starting from a broad discussion and

then narrowing to specific questions and ending with exit questions. The starting questions should

prepare participants for an in-depth discussion. Following that are exploration questions that should

engage the participants in the in-depth discussion. Finally, the researcher should ask exit questions

to add any further comments regarding the topic (Eliot and Associates, 2007, 2005).

5.4.4 Data analysis strategy

The qualitative data was analysed from the first coding process through initial and final coding.

This type of coding was chosen to find the keywords and group the features. Text analysis was used

to conduct the first cycle of coding to determine the phrases that were common amongst

90

interviewees. Phrases appeared as word clouds, which were analysed and encoded with suitable

category labels. Next, a second cycle pattern coding method was used to recognise similarly coded

data and to summarise it further into subcategories or to consolidate it. Finally, the findings were

narrated, as they related to the implications of the study (Corbin and Strauss, 2008; Saldaña, 2016).

As an example of the analysis for the interviews, a question and the answers of one of the

participants are shown in Table 3. The answers have been analysed to form subcategories (refer to

GT in Section 5.4.1 and Chapter 6) in the first coding process for the text analysis.

A second round of analysis was done to group the subcategories according to similarities to main

categories. The complete analysis of the interviews is in Appendix F (F-1 and F-2).

Table 3. Coding framework table for interviews

Interview transcript First coding process

Interviewer: ‘What are the strength(s) and

weakness(es) of the Jeliot\Online Python

Tutor\Visual Logic tools?

P1: Jeliot:

‘Like: the appearance of execution which is next to

the code directly

Dislike: 1- the tool cannot go back to previous steps
or forward to next steps (no control on the execution

steps)

2- in case of representing the classes and inheritance,
it was not clear because the classes cascaded and not

represented as hierarchy’

Online Python Tutor:
‘Dislike: 1- she does not like the online tool because

of any Internet issues or problems

2- the execution process like the arithmetic and logic

operation is not clear enough since there is no
expression evaluation and the tool produces the final

result without any details

Like: she likes the control of execution (the existence
of next and back buttons)’

Visual Logic:

‘It is an advanced tool that could be used to learn the
flow of programming but not how to write program

since there is no code to be blogged and evaluated it

is suitable to learn the structure of programming and

program semantics, nothing about memory
referencing.’

Windows preference
Execution preference

Object-oriented representation

Tools availability

Expression evaluation preference
Tracing the program code

91

The same strategy was followed to analyse the focus group discussion; however, the answers of

different students in different discussion groups were grouped according to the type of question. For

inistance, for the question ‘How did you find the animation? What things did you like and dislike?’,

the answers were grouped under the ‘animation’ category. The following is a sample of the

answers; the rest of the discussion transcript is in Appendix F, Section F-3.

B.1.1 ‘Better than using the manual trace’

C.1.6 ‘Prefer the tracing that shows the steps of code flow’

C.1.2 ‘Great for tracing and having an application for the tool would be easier for students to use

rather than a website.’

Note that the participant was given a code, for example C.1.6, which means (programming problem

code. group number. participant number); refer to Section 7.3.5.

 Ethical Issues

Ethical issues concern behaviour and ethical treatment and the introduction of ethical principles in

dealing with right and wrong. Morality conveys moral grace, which conforms to the principles of

true universal behaviour, in particular the principles of collective practice. Therefore, research

requires adherence to universally agreed ethical standards(Resnik et al., 2015).

Ethics in scientific research reinforce the core values of collaborative action, such as trust,

accountability, mutual respect and justice. Cooperation and coordination between many individuals

in different disciplines and organisations are typically involved in research. Moreover, as many

ethical designs help to ensure that research is accountable to the public, research focuses on

different ethical rules. In addition, the rules of writing, copyrights, patents, data distribution

strategies and privacy aim to safeguard intellectual property while supporting cooperation. Ethics

are concerned with avoiding harm and achieving positive results. In addition, applying appropriate

92

ethical attitudes helps eliminate damage. Thus, it is important to be ethical to protect the

participants and the research (Resnik et al., 2015).

According to Tadajewski (2004), a researcher must act appropriately with respect to the rights of

anyone who participated in the research and thus became a subject of the work or who was

consequently affected by it in order to make the research valid. Therefore, ethical practices are vital

for social researchers. Tadajewski (2004) gives two distinct principles that emphasise just like the

method. First, describing the interests of all reactions is critical, and therefore there should be no

deterioration in the form of the people whose data has been collected between the beginning and the

end of the research.

For this study, part of the research plan necessitated that ethical approval be obtained from the

Ethics Committee of the School of Computing at Plymouth University. It showed bias and respect

for ethical considerations. The researcher told the participants that the data is only for scientific

research purposes and that the privacy of the data would be maintained. In addition, in order to

validate the validity and integrity of the study, the researcher made the questionnaire simple and

easy to read so it could be easily answered by study participants. The expressions in the

questionnaire were made suitable for participants at several levels. The interview questions were

straightforward, clear and uncomplicated. A copy of the documentation and the Ethical Approval

Application are included in the appendices (Appendices B and E).

Prior to any interview or experiment or focus group, an information sheet and a consent form were

given to the participants. The information sheet has a description about the topic of the research, the

aim of the research, a description of the overall procedure and the time needed to accomplish each

task. It also states the benefit of the research, the right to withdraw and how the researcher will

ensure data confidentiality. Copies of the information sheets for the data collection interviews and

evaluation experiment are in Appendix A and Appendix D, respectively.

93

Participants had to sign a consent form that includes a description of the research, the purpose and

the objectives. In the consent form, the participants are guaranteed the freedom to withdraw from

the research at any time and anonymity. They are also asked to give permission for audio recording

during interviews and focus group discussions. The researcher also guaranteed avoiding any kind of

risk. A copy of the consent form for the data collection interviews and the evaluation experiment

can be found in Appendix A and Appendix D, respectively.

Regarding sending the interview transcript to participants for approval, this was not done because

the interviews were recorded and any difference in the transcripts would be found on the recorder.

 Conclusion

The chapter presented the research methods used for both collecting user requirements and

framework evaluation. Qualitative and quantitative methods were employed to achieve better data

that contributes to the continuous investigation and improvements in the use of visualisation in

programming learning for novices. The next chapter presents a study that helped determine the

aspects considered in developing a pedagogical visualisation environment from the novices’

perspective.

94

 Chapter 6 INVESTIGATING THE ROLE OF VISUALISATION IN THE

STUDY OF COMPUTER PROGRAMMING

 Introduction

Visualisation tools have been introduced into programming education at many academic

institutions. Some of these tools achieve the intended goal and make tangible contributions to

programming education, at least from the tool developers’ perspective (Kasurinen et al., 2008).

However, visualisation tools need to be evaluated continuously to have maximum benefit.

This chapter presents research to investigate some preselected and sample visualisation and memory

reference tools. The purpose is to gain an understanding of the requirements of novice

programmers. Understanding novice programmers’ requirements can help in finding solutions to the

challenges they face in learning programming. Semi-structured interviews with students and novice

programmers were conducted to collect their feedback and opinions about using the visualisation

tools while learning to program. By collecting the students’ opinions and analysing them, the study

can conclude whether visualisation could be better exploited and can determine the features that

need to be improved. This chapter also discusses the presentation and use of visualisation categories

in the Visual Code Flow tool, as well as the interface components and their functionality.

 Data Collection

This research aimed to evaluate the current visualisation tools used to support novice users learning

to program. In particular, the focus was on identifying the strengths and weaknesses of these tools.

This research was conducted with CS students from different levels who are either in their second

year of studying programming or higher to gather information about their experience in using

visualisation tools, to understand their needs better and to gather their opinions about these tools.

6.2.1 Interviews

The study included semi-structured interviews with 20 participants over 22 years old. The

participants were either undergraduates or students who had recently graduated. During interviews,

95

it was verified that each participant had studied programming concepts in depth, including the core

aspects of the use of a loop, object-oriented programming and the calling of procedures. The

interview aimed to elucidate the novice programmers’ experience and to establish their background

in using visualisation tools to support the process of learning to program.

Three tools were presented to the students as a sample of available visualisation support tools.

These tools were Jeliot, Online Python Tutor and Visual Logic (as discussed in Section 4.4). The

students discussed the tools and their usability and determined each tool’s strengths and

weaknesses. The tools were compared based on their usefulness in solving programming problems.

The programming problems were selected based on the threshold concepts, including object-

oriented programming, loops and calling procedures (as discussed in Sections 3.4 and 3.6).

Opinions were also obtained regarding their assessment of the best and worst tool. Interview

questions can be found in Appendix B, and the transcript can be found in Appendix F, Section F-1.

Some of the details of the interview procedure are as follows:

Step 1: The students were welcomed as they arrived (5 minutes)

• The interviewer asked the students if they were willing to participate in the session.

• If they were, the interviewer asked the participants’ permission to audio record the session.

• If they were still willing to participate, the interviewer explained that they could withdraw

from the study at any time and that they could subsequently withdraw their data from the study and

how to do so.

• The interviewer explained that all personally identifiable information would be held separate

from the core dataset and that it would only be used if the student gives consent.

• Once the students were briefed and agreed to participate, the interviewer asked them to sign

the consent document before proceeding. The interviewer provided them with an overview of the

session activities and the duration. This gave a breakdown of how long each step should take. This

96

ensured that the students were fully informed about the process. See Appendix A for the consent

form and information sheet.

Step 2 – The students were given an introduction (5 minutes)

• Initially, the students were introduced to the subject in general and to the objectives of the

study. This gave the students the background they needed to do the tasks.

Step 3 – The participants attempted tasks 1, 2 and 3 (45 minutes for all). See Section 6.2.3 and

Appendix B for more details on the tasks.

o First: The students’ background in using any tool for the purpose of tracing and observing

the program behaviour during their programming study was determined. The discussion expanded

to their experience and whether they benefit from the tool(s). The features and drawbacks of the

tools were discussed from the students’ perspective. This session was designed to last no more than

10 minutes.

o Second: The second part of the discussion involved evaluating the three selected tools. The

tools have a common methodology, which is the program visualisation method. However, each tool

has its own features. See Section 6.2.2 for details on tool selection. The evaluation was done by

presenting three activities that students usually get stuck on. This session was designed to last no

more than 25 minutes.

o Third: The third part of the discussion concerned the comparison of the tools in terms of

solving the three kinds of activities. This session was designed to last no more than 10 minutes.

Step 4 – Final feedback and thanks (5 minutes)

• After all the tasks were completed, the students were asked to comment more generally

about the tools. For example, they were asked their opinion on the method that these tools follow

and whether they found it useful and effective.

• Because it is important that the students be happy with this process, their right to withdraw

their data was reaffirmed.

97

• It is also important to give the students the right to ask questions about the research and the

process. Thus, they were made to feel valued and an important part of the process.

• Finally, the participants were thanked (handing over the thank you card with their code on

it) and asked if they would be willing to participate again at a later stage.

Ethical approval for recording the sessions was specifically sought so that note taking would not

interfere with the process, particularly the discursive process when the participants were describing

the problems they experienced when using the tools.

6.2.2 Tool selection

As most of the participants in the study were expected to have little or no experience using

visualisation tools, a sample of the visualisation tools presented in Section 4.4 was selected. The

tools all shared the common method of using memory referencing to show the effect of execution

on each line in the code. However, each tool had its own specific features. Tool selection was done

carefully to make a comparison of students’ viewpoints clearer. The tools differ in many aspects,

such as in the way they trace the code, how they present the output, how they create error

explanations, the programming languages they support and whether they are available online or

offline. Tool selection was also based on the students’ experiences. The tools were designed for

novice programmers, so they were suitable for the participants in this study and required no training

or special skills.

6.2.3 Study tasks (threshold concepts)

The ‘threshold concepts’ in numerous disciplines are gaining increasing acceptance in the literature

on teaching and learning in higher education and were recently advocated in Erik Meyer and Ray

Land’s Overcoming Barriers to Student Understanding: Threshold Concepts and Troublesome

Knowledge. The first objective of this piece is to challenge this trend by viewing that ‘threshold

concepts’ outlined as are unidentifiable even in principle and by highlighting that different authors

understand ‘threshold concepts’ in different and incompatible ways. The second is to reformulate

98

the notion in a superior way, a way that appears to be correct to the determined of most of its users,

and to investigate numerous consequences for related empirical research that have not yet been

recognised. Broadly, a threshold concept is described as ‘akin to a portal, opening up a new and

previously inaccessible way of thinking about something’, in alleged contradistinction to a ‘core

concept’.

In the present work, the author collected data in the first research phase based on three

programming problems taken from the literature discussed above that are threshold concepts—

loops, calling methods and inheritance. Many studies (Boustedt et al., 2007; Bühlmann, 2011;

Eckerdal et al., 2006; Sanders et al., 2008) have shown that loops, object-oriented programming and

the calling of procedures are threshold concepts that students find difficult to understand. Therefore,

these core threshold concepts are embedded in the three tasks investigated in this study (Chapter 6).

In the second research phase , the use of visualisation in programming learning is evaluated

(Chapter 7). The loop problem was changed because the findings in the data collection phase

(Chapter 6, Section 6.3.9) show that the existing visualisation tools, especially Jeliot, were preferred

by all the participants. Therefore, for the second study three programming problems were adopted

(calling a method, classes and objects and class inheritance). After reviewing the previous

theoretical literature, the choice of threshold concepts was changed due to their relevance to the

current study, where the concept of inheritance is one of the processes in which an object acquires

the characteristics of another object. A base type is derived, taking into account all the fields and

functions of the base type members. Inheritance is most useful when one needs to add functionality

to an existing type. For example, all .NET classes inherit from the system. Object class, so that the

class can include new functions as well as use the functions and properties of the existing object

class as well. Added to that, object classes facilitate rapid development because they reduce the

semantic gap between code and users. System analysts can speak to both developers and users using

essentially the same vocabulary. Object classes often facilitate rapid development because most

99

object-oriented environments come with powerful tools for debugging and testing. Instances of

classes can be checked at runtime to check system performance, as expected.

When one starts programming in Java, there are many new concepts to learn. There are classes,

methods, exceptions, builders and variables. The Java method is a collection of statements that are

grouped together to perform an operation. When one calls the System.out.println () method, for

example, the system actually executes several statements to display a message on the console. To

use the method, it should be called. Method calls are made directly to the class and cannot be called

in the instance instances. Static methods are often used to create utility functions. The calling

method is simple. When the program calls a method, the control in the program is moved to the

method that is called.

Java is a prototype language, and each object in Java has a hidden internal property called

[[Prototype]] that can be used to extend object properties and methods. Classes in Java do not offer

additional functionality and are often described as providing ‘syntactic sugar’ to prototypes and

inheritance in that they provide a cleaner and elegant syntax. Because other programming languages

use classes, the class syntax in Java makes it easier for developers to move between languages.

The problem areas considered in this study are the three programming concepts described earlier as

threshold concepts. Many studies (Boustedt et al., 2007; Bühlmann, 2011; Eckerdal et al., 2006;

Sanders et al., 2008) have shown that loops, object-oriented programming and the calling of

procedures are threshold concepts that students find difficult to understand. Therefore, these core

threshold concepts were embedded in the three tasks investigated in this study.

1 Task 1 (the loop task)

For this task, Program 1 was coded (Appendix B). Initially, this program populated an integer array

data structure of five elements with predefined integer values. The overall aim of Program 1 was to

evaluate the average value of the integers stored in the array. To achieve this, Program 1 established

100

the number of elements in the array. It used a ‘FOR loop’ to calculate the total of all the values.

Subsequently, the average was calculated.

2 Task 2 (the object-oriented program)

For this task, Program 2 was coded (Appendix B). The task used the inheritance from the superclass

(polygon) to calculate the area of the subclass (square). The main program defined an instance of

the class square and passed the length of the side to the method ‘get_area()’, which is inherited

from the superclass (polygon). The area was calculated by the inherited method ‘get_area(),’ and

the result was inherited by the subclass (square). Finally, the result printed in the main program was

an element of the instance from (square) class.

3 Task 3 (the procedure call)

For this task, Program 3 was coded (Appendix B). Task 3 was used to highlight the difference

between passing parameters by value and passing by reference. The main program defined a

variable (parameter) as a global variable and sent its value to the procedure (change_value) as a

pass by value and not by reference. The value of the parameter was changed locally in the

procedure, but the change did not affect the parameter in the main program. The variable was

printed in the main program to show whether or not the value of the variable had been changed.

 Data Analysis

The researcher’s intention was to collect feedback about the existing visualisation frameworks to

determine their benefits and to develop a new framework. The qualitative data supports the research

in focusing on the basic features and aspects that novice students need regarding educational tools.

The strategy used is described in the research methodology in Chapter 5 (Section 5.4.4).

 Findings

During the semi-structured interviews, a substantial amount of data was recorded from the

participants, including what they liked and disliked about each tool. During the data analysis, it was

realised that most of this feedback was concentrated on eight core categories of support tools. All

101

the categories were features of the presented tools. Therefore, the researcher adopted this list of

eight categories as a means of categorising the data analysis. Following is the list of categories:

1. Control of the execution of the code

2. Availability of the tool (online or offline)

3. Error explanation

4. Interface/usability of the tool

5. Programming languages supported

6. Expression evaluation

7. The representation of the class hierarchy

8. Maintaining an event history

6.4.1 Controlling the execution of the code

The analysis stage of this study revealed that the manner in which the participants controlled the

execution of code was important, as the interviews indicated that the students clearly understood the

importance of how the visualisation was being controlled. Of the students, 90% (18 out of 20)

reported that they preferred to have precise controls for the line-by-line execution of the code and

its visualisation.

When this study was designed, careful attention was given to the selection of which support tools to

include. The outcome was that the tools chosen represented various mechanisms for the control of

execution. Further, the participants realised there were different kinds of execution controls, and

they subsequently used them to compare the tools.

During the interviews, the participants used various phrases to describe the control of execution.

These phrases included animation, control buttons, execution speed, tracing and visualisation. For

instance, Participant 5 complained about the inability to have full control of the execution, such as

the ability to go back and forth with each statement.

102

Participant 5: ‘The execution control is not enough; I prefer that I can control the execution

more, for example, going back and forth for each statement.’

Conversely, Participant 19 appreciated the animation and used it to visualise the execution.

Participant 19: ‘I like the animation used to visualise the execution.’

Regarding the speed of the execution and the ability to control it, Participant 7 suggested a slower

speed.

Participant 7: ‘I want to slow down the execution speed.’

Furthermore, Participant 11 suggested an overall more flexible execution process, which gave more

control to the user.

Participant 11: ‘I like the control buttons that make the control of execution more flexible.’

It seems that the participants liked animation in general. However, adding more control for the

animation, such as pause, rewind and going back and forth, would make the tool more useful and

make it easy to track the program execution.

However, these preferences varied. Of the 18 participants, seven appreciated the code animation,

which had few controls. Conversely, five preferred the user to have complete control using the

control buttons. The remaining six participants (30% of the participants) suggested that a mixture of

both methods would be the optimal solution. This was based on the fact that the type of control

required was about the same length of code involved, and the users were familiar with the code.

6.4.2 Availability of the tool

The data analysis revealed that establishing whether the tool was available online and offline is a

relevant aspect for participants. It was clear that this characteristic would influence their choice of

tool. However, for some participants, the tool’s online availability was a genuine concern, as shown

in the feedback below.

Participant 1: ‘I do not like the online tool because of any Internet issues or problems.’

Participant 7: ‘I don’t like the online tools to avoid the connection problems.’

103

Conversely, for others online availability was assessed as a positive aspect of the tool:

Participant 17: ‘I like that the tool is an online tool.’

Thus, the answers given by participants varied regarding this characteristic. In total, 16 of the 20

participants highlighted this characteristic as important. Of these 16, three expressed a preference

for the tool to be downloaded to their devices. They explained that their preference was because of

concerns about their Internet speed and connection. Conversely, nine participants preferred the

online mode, explaining they would have access to the tool at any time and anywhere. The

remaining four participants preferred the option of a mixed mode (combining both online and

offline), where the user could choose the mode required.

6.4.3 Error explanation

The data analysis revealed that the explanations of errors and support for debugging are important

aspects for participants. The participants reported that they required (i) support for finding an error,

(ii) a meaningful explanation of the error and (iii) a suggestion of a suitable means to correct the

error. They noted that ambiguity in the explanation of the error might impede their understanding of

the cause of the error in the code, as shown in the following feedback.

Participant 10: ‘The error explanation was not good.’

Participant 17: ‘The correction suggestion for the error is not helpful enough.’

Subsequently, this may have a negative effect on their learning. When the participants were asked

about the reason for their opinions, they said they could not understand the cause of the error and

the suggestions were ambiguous. Therefore, clarity in error explanation is a high priority. In total,

13 of the 20 participants highlighted this characteristic as important. All 13 participants expressed a

preference for a support tool that explains the error in detail and provides various ways to correct

the error.

104

6.4.4 Interface/usability of the tool

The data analysis revealed the style and appearance of the interface were also important aspects for

participants. Of the 20 participants, 13 (65%) reported on the interface and its usability from

different perspectives. Note that they used different terms to describe their opinion of the interface

of each tool, including font, colour, window and ease of use. In conclusion, it is clear that the

colour, the font and the windows’ appearance played a significant role in attracting the participants

to the tool.

The participants commented on the font type, size and colour used in the text.

Participant 9: ‘The code font is small.’

Some of the feedback gathered from the participants was about how the windows and how the tool

presented the final output:

Participant 1: ‘I like the appearance of execution, which is next to the code directly.’

The participants also gave various comments about the use of an indicator icon to point out the

statement currently being executed.

Participant 2: ‘[I like] the use of green and red pointers (arrows) to indicate the statement

execution whether it is under execution or will be the next statement to be

executed.’

This opinion was reinforced by another participant.

Participant 6: ‘I like the use of red and green arrows as an indication of statement

execution.’

6.4.5 Programming languages supported

Next, the data analysis revealed that both the number and range of programming languages

supported by a tool is important to participants. Again, the participants’ feedback was mixed. Some

participants preferred to use multi-programming language tools, while others expressed a preference

for a bespoke tool for each programming language.

105

Participant 10: ‘I don’t like that Jeliot supports only one programming language.’

Participant 18: ‘I like the Online Python Tutor tool because it supports more than one

language.’

Of the 20 participants, nine (45%) recommended a tool that could be used for multiple

programming languages. The remaining 11 (55%) reported that the choice of programming

language was not a huge issue to consider and that supporting only one language is enough when it

comes to using the tool.

6.4.6 Expression evaluation

The data analysis revealed that details on how and when an expression is evaluated are important

aspects for participants. The participants reported that they had not recognised when expressions

were being evaluated, although there was various feedback on this characteristic. For example, in

Program 1 where the condition of the loop was evaluated, the participants wanted to ‘see’ the

working out of evaluating the condition of the loop at every iteration.

Participant 4: ‘The design needs to be developed, similar to the manual tracing and the

absence of statement expression.’

Participant 18: ‘One of the strengths of the tool is the existence of expression evaluation.’

Participants reported that this evaluation of expressions was primarily used to understand ‘what’s

going on’. This is a vital aspect for increasing learners’ comprehension.

In total, 5 of the 20 participants highlighted this characteristic as important. The participants

reported that they relied on the expression evaluation for evaluating the condition of the control

statement. All the participants who reported the use of the expression evaluation agreed that they

liked it because it is similar to what they had done on manual tracing. Therefore, there was a

requirement to present the user with the automated version of what they would otherwise do

manually.

106

6.4.7 Representation of class hierarchy

The analysis stage of this study revealed the manner in which the tool represented the class

hierarchy was critical to users. Task 2 presented the participants with code from an object-oriented

program. The program is an example of the concept of inheritance, as it inherits variables and

methods from a predefined superclass. The participants assessed how well each tool represented the

classes and their hierarchy. They also reported how much the tool aided their comprehension of the

classes in the code. For example, one participant made the following statement about Jeliot, with

which another participant agreed:

Participant 5: ‘In case of representing the classes and inheritance, it is not clear because

the classes cascaded and were not represented as hierarchy.’

 Participant 3: ‘There was no weakness in the tool’ but then went onto to highlight one

exception: ‘its way to represent the class hierarchy and the variables and

methods which are inherited or private, all of these were not satisfied.’

6.4.8 Maintaining an event history

The final characteristic of the support tools identified as important by the study participants was the

tool’s ability to record the events (history) of everything that occurred during execution. The

participants used the phrase ‘save history’ to describe their requirements for the system to

automatically generate a list of events, which took place throughout the whole process of execution.

Participant 2 complained about the tools being unable to save the history. Participant 3 supported

this by indicating that they would also like a tool that kept results for each execution and that did

not omit events. Based on this feedback, it is clear that users place a high value on having this

history of events to trace through after execution.

107

6.4.9 Tool comparison

The final part of this study focused on comparing the three tools. This comparison was based on

how each tool presents the execution of the three tasks (mentioned in Section 6.4.2) and on the

participants’ opinions about which tools they preferred.

The students excluded the Visual Logic tool from the comparison, as it received a lot of negative

feedback on its usefulness in supporting students learning to program. It was a clear outlier that they

were not interested in pursuing. The reason for this negative feedback was that Visual Logic does

not include any program code and relies too heavily on tracing through the flowchart.

Regarding Task 1, solving the FOR-LOOP task, all 20 participants preferred the Jeliot tool. The

reason for this unanimous decision was that Jeliot had ‘expression evaluation.’ This ‘expression

evaluation’ feature shows the evaluation of the condition of the loop for each iteration. Further, it

shows the loop counter and the loop body.

 Participant 3: ‘I choose Jeliot, in case I am a novice programer because it has the feature

which is expression evaluation.’

Participant 4: ‘Jeliot was clearer than the other tool; I like how it shows the expression

evaluation to clarify the loop counter, loop condition and the body of the

loop.’

These opinions were reinforced by other participants:

Participant 7: ‘Jeliot was clearer because it represents the dynamic change on the loop

counter and condition.’

Participant 15: ‘Jeliot is better because the loop was clearer in how the counter changed

each time and how the loop conditions checked every time.’

Regarding Task 2, based on object-oriented programming, seven participants expressed a

preference for using Jeliot. They attributed this choice to the fact that cascading the classes is more

108

effective than representing them in a hierarchy. This is particularly the case when there are

numerous classes where the screen space will be insufficient to demonstrate the class hierarchy.

Participant 2: ‘Jeliot is better in case of long code and plenty of classes because the class

cascaded, which makes space add classes.’

Participant 4: ‘I prefer Jeliot because of how representing the classes were clear specifically

if the number of classes was large.’

Conversely, most of the participants (11 of 20) preferred the Online Python Tutor tool, as it

represents classes sequentially. Therefore, the participants reported they ‘could see’ the variables

and methods of each class.

Participant 10: ‘Online Python Tutor because the classes were presented sequentially, so it

is clearer than representing the classes on Jeliot.’

Participant 18: ‘Online Python Tutor is better because I like how it draws boxes sequentially

for objects and uses arrows to represent the references.’

Only two of the participants were impartial. Those two participants stated that both class

representations were clear and helped them understand the class inheritance equally.

Finally, regarding Task 3, the researcher asked the participants to compare the tools when calling

procedures and passing parameters. The majority of the participants, 18 of 20, agreed that the

Online Python Tutor tool was best. The reason they gave was that the process of parameter passing

was significantly clearer than in the Jeliot tool.

However, there were different opinions based on the clarity provided by the Online Python Tutor

tool.

Participant 2: ‘Online Python Tutor is clearer on how the transition did from the main to the

procedure and how it affects the value of parameters.’

109

Participant 11: ‘Online Python Tutor was clearer when calling procedures and giving the

returning value; it always writes what the return value is from any

procedure even if it is “void”.’

The remaining two participants said they understood the task equally when using both Online

Python Tutor and Jeliot.

 Visual Code Flow Tool

From the findings in Section 6.3 collected from the semi-structured interviews, the author started

developing the Visual Code Flow tool (Appendix C). This is a visualisation tool that can trace a

program line by line and show the effect of the code in the memory during execution. It shows how

variables, classes and objects are created and how they are changed, as well as how methods are

initialised and called. Recalling from Section 6.3, the findings were categories that were mentioned

during the interviews. Most categories that were mentioned were considered in developing the

Visual Code Flow tool. These are:

1. Control of the code’s execution

2. Availability of the tool (online or offline)

3. Interface/usability of the tool

4. Expression evaluation

5. The representation of the class hierarchy

Control of the code’s execution

Control of the execution was added as a feature in the Visual Code Flow tool because based on the

data collected in the semi-structured interviews 90% of the students (18 of 20) reported that they

preferred to have precise controls for the line-by-line execution of the code and its visualisation. Of

these 18 participants, seven appreciated the code animation, which had few controls, and five

preferred the user to have complete control using the control buttons. The remaining six participants

110

(30% of the participants) suggested that a mixture of both methods would be the optimal solution.

Therefore, in the Visual Code Flow tool the author offered control buttons that can give the user the

option to either play and watch the animation or to control moving through the lines in order to go

line by line.

Availability of the tool (online or offline)

The Visual Code Flow tool was made available online and offline through the application because

based on the data collected in the semi-structured interviews it was found that 9 of the 20

participants preferred the online mode, explaining they would have access to the tool at any time

and anywhere. Three expressed a preference for the tool to be downloaded to their devices. They

explained that their preference was because of concerns about their Internet speed and connection.

The remaining participants preferred the option of a mixed mode (combining both online and

offline), where the user could choose the mode required. For the user’s convenience, and based on

the feedback collected from the participants, the tool works in both online and offline modes.

Interface/usability of the tool

The tool’s interface and its usability are features that were considered in its development. The ease

of use was considered so that novice programmers could benefit from the tool. The tool components

and how they are used are discussed in Section 6.6.

From the investigation and the analysis of the semi-structured interviews, it was found that 13

participants (65%) out of the total of 20 reported on the interface and its usability from different

perspectives. They mentioned the font type, colours, and window parts.

Expression evaluation

The expression evaluation refers to details of what happens to variables during execution. The

expression evaluation suggests the characteristics that contribute to a better understanding of what

111

happens in the memory. The visualisation method is all about the expression evaluation, as it

visualises the change while the program is in the execution process. Of the 20 participants, five

highlighted this characteristic as important. The participants said that they liked the existence of

expression evaluation because it is similar to what they had done on manual tracing. Therefore,

there was a requirement to present the user with the automated version of what they would

otherwise do manually.

112

Representation of class hierarchy

 Representation of class hierarchy is available in the case of using classes and objects. The tool

represents each class with its attributes (variable and methods) and links each class with arrows to

illustrate the relationship between the other classes. In this case, the tool uses the icons to

demonstrate the hierarchy. The analysis stage of this study revealed that the manner in which the

tool represented the class hierarchy was critical to users, that is, either sequential or cascading

representation for the inherited classes. Therefore, most of the participants (11 of 20) preferred the

Online Python Tutor tool, as it represents classes sequentially. The author therefore used sequential

representation for the inherited classes in the implementation of the Visual Code Flow tool.

 Visual Code Flow Components

The Visual Code Flow tool has three panels—a code panel, a memory panel and an output panel

(Figure 13). It uses animation and variable transition from the code panel to/from the memory panel

and the output panel that shows how the code execution affects the variables, classes and objects. It

shows how the variables’ values, which are defined inside methods or classes, have been set or

received (Appendix C).

The main interface is divided into five key areas, as follows.

 The code area: where the code is presented and expression evaluation occurs

 The visualisation area: a memory area simulator where the tracing results are presented

in addition to the class hierarchy (if it exists), classes, objects, variables and methods

stored

 The control execution area, which has two options—either to monitor the execution in

animation mode or use the control buttons.

 The output area: where the program displays the output(s)

113

Table 4 shows the Visual Code Flow tool and its components.

Table 4. Visual Code Flow tool components

Components Description Figures\examples

Control

buttons

Control buttons consist of:

 Play button, press to

pause after playing

 Backward and forward

buttons

Methods Text without box
calculateArea()

Variables Light blue box

Classes

Dark grey box

AccountClass

width=10.0

length=20.0

Figure 13. Visual Code Flow tool interface

114

Objects

An ellipse with three parts:

object name, local

variables and local

methods

Class and

object

relationship

Refer the object to its class

using a dotted line

Inheritance

The example shows two

classes of MathsLevel1

and MathsLevel2.

Object ‘example’ inherits

the attribute from class

MathLevel1 and has its

attribute from class

MathsLevel2.

Expression

evaluation

In the example given, for

the statement
area=theWidth*theLength,

it shows the value of each

variable

accObject1

balance= 50.0

AccountClass(…)
addMoney(…)
getBalance(…)

AccountClass

accObject1

balance= 50.0

AccountClass(…)
addMoney(…)
getBalance(…)

z = 30

addition(…)
subtraction(…)

test

MathsLevel1

example

addition (…)
subtraction (…)

z = 0

multiplication(…)

Maths Level2

Maths Level1

115

Visual Code Flow tool features:

1- Control of the code’s execution

The control of the execution will follow two modes:

 Animation

 Where the user starts the animation and can pause it at any time and watch the sequence

of the code execution. In the first row in Table 4, one can see the play button that can be

used to start the animation. The button will change to pause when one starts the play in

order to pause the animation at any time.

 Control button

 Where the user can go through the code line by line by clicking the forward button or

going back line by line using the backward button. In the first row in Table 4, one can

see the backward and forward buttons that can be used to start the line-by-line control.

2- Interface/usability of the tool

Table 4 shows how the author used shapes to distinguish the shape of classes and objects. A normal

grey box was used to represent the classes, and an ellipse was to represent the objects with three

parts—object name, local variables and local methods. Dotted lines were used to link each object to

116

its class, as can be seen in the sixth row in Table 4. Text without any box represents the method, as

can be seen in the second row in Table 4.

The Visual Code Flow tool also uses different colours to distinguish the different parts of the

program. For instance, the light blue box represents the variables, and the dark grey box represents

the classes. The inherited attributes in any object were embedded inside the inherited objects, as can

be seen in the seventh row in Table 4.

3- Expression evaluation

The last row in Table 4 shows an example of how the author did the expression evaluation. When

there is any arithmetic or logic operation, the values of each variable is written in the variable name

in the expression to show its value before and after the execution of the statement.

4- Representation of class hierarchy

Representation of the class hierarchy was done sequentially. As noted earlier, this was the most

preferred representation among the participants. As can be seen in Table 4 in the seventh row, the

inherited classes appear from top to bottom in sequential order. The tool represents each class with

its attributes (variable and methods) and links each class with dotted lines to illustrate the

relationship between the other classes. For every subclass, a dotted line was used to refer to which

superclass the subclass belongs. A light blue ellipse inside each subclass shows what variables and

methods have been inherited from the superclass.

5- Programming problems

The Visual Code Flow tool presents three programming problems—calling methods, classes and

objects and class inheritance. The three problems were selected because they are considered

threshold concepts that students usually get stuck on in computing (Boustedt et al., 2007; Sanders et

al., 2008; Bühlmann, 2011; Sanders et al., 2012; Sanders and Mccartney, 2016; Kallia and

Sentance, 2017).

117

The demonstration of the three problems at the end of the code execution is shown in Figures 14, 15

and 16, respectively.

Figure 14. Visual code flow interface for the programming problem of calling method and passing parameters

Figure 15. Visual code flow interface for the programming problem of defining and using classes and objects

118

Figure 16. Visual code flow interface for the programming problem of class inheritance

 Conclusion

This chapter presented a collection of data for the user requirements needed to develop a new

framework. The study intended to show how visualisation tools and models are used to support the

study of computer programming. The purpose was to establish whether visualisation could be

exploited more fully or more effectively to support this learning. If that were the case, then this

study would aim to define the requirements of novice programmers.

The results presented in this chapter show the categories of the visualisation tools and the students’

preferences in using them. The students evaluated the following eight characteristics: tool

availability, error explanation, expression evaluation, the interface, programming languages the tool

support, animation, class hierarchy and saving the execution history.

The design component of the Visual Code Flow tool depended largely on the features found in the

research study in this chapter regarding the role of visualisation in the study of computer

programming and on the literature on the tools supporting programming education. This chapter

presented how the Visual Code Flow was developed based on the research findings.

119

The categories of the Visual Code Flow tool that was developed and discussed in this chapter are:

 Intuitive control of the execution of the program code. The tool enables users to play and

pause the execution whenever they want, or they can add more control by navigating through

the lines of the code line by line.

 Availability of the tool (online or offline).

 Because the tool is dedicated to novice programmers, it has a clear interface that allows ease

of use.

 The existence of expression evaluation, which means clearly showing the value of variables

in any arithmetic or logic statement.

 The tool provides a clear representation of the variables and methods.

 The tool provides a clear, intuitive representation of the class hierarchy and uses different

shapes and colours to represent classes and objects. It uses lines to show the relationships

between classes and objects and represents class inheritance by referring each subclass to its

superclass.

 Highlighting the line currently being executed makes it easier to connect the code with the

visualised representation.

 Animation and transition for every component in the program from/to the code panel to the

memory or output panel showing the change happening for each component if change exists.

 Visual Code Flow simulates tracing in the manual method when using paper and pen.

The TLE evaluation that will be discussed in the next chapter used the Visual Code Flow tool as an

instrument to measure the students’ performance and confidence and to collect experts’ perspectives

through experiments that involved surveys, focus groups and interviews.

120

Chapter 7 EVALUATION OF THE USE OF VISUALISATION IN

PROGRAMMING LEARNING

 Introduction

The chapter presents an empirical study evaluating the application of visualisation when learning to

program. Visualisation to trace the execution of a given program was used with novice

programming students in a mixed-methods study. Pre- and post-test surveys, focus groups and

interviews were used to gather information on student performance and confidence from both

participants and a control group. The control group did not attend a visualisation session but only a

standard teaching session.

The students’ confidence in solving programming problems was a major aspect of the study. The

study compared the students’ confidence in the pre-test and the post-test, combined with data from

focus groups with the students and interviews with programming teachers.

To evaluate the TLE framework, a visualisation model was developed to test its usability among

novice programmers and instructors. The framework was evaluated using experiment and expert-

based evaluation. The evaluation investigated the students’ performance by measuring their scores.

There are some factors that could serve as implications for the study conducted in Chapter 6. First,

the data collection period was limited, and because the research method involved semi-structured

interviews the researcher had a limited period of time to gather students’ opinions. To perform a

more in-depth evaluation, the students would need to practice using the tools and become familiar

with them. Second, the data collected from the study was qualitative data that does not measure the

effect of visualisation on the students’ performance, comprehension and confidence. An evaluation

that measures the students’ scores is needed to understand the impact of visualisation on novice

programrs.

121

 Objectives

The purpose of this study was to evaluate the use of visualisation in learning to program from the

perspectives of students and experts. The study aimed to discover the impact of using visualisation

by tracing the program’s instructions on the students’ performance. Further, the study measured the

students’ level of confidence when solving programming problems before and after the

visualisation. One of the factors investigated in the study was whether visualisation improves

students’ learning of programming concepts. The purpose was to evaluate whether visualisation

plays a role in students’ understanding of general programming concepts. Further, the study

measured students’ satisfaction with the visualisation tool. Finally, experts’ opinions about the

effectiveness of introducing visualisation in programming education were collected.

 Evaluation Method

The evaluation phase sought to combine quantitative and qualitative approaches. The balance

between quantitative and qualitative research helps fill the gaps between the two approaches.

Relying on qualitative data may not provide a complete picture for evaluating an educational tool.

For this evaluation, the quantitative data provided information about the students’ performance and

use of the tool, while the qualitative data gathered provided information on the opinions of the

students and the perspectives of experts.

Therefore, a combination of surveys, focus groups with students and interviews with experts may

draw additional findings that contribute to the research. Figure 17 shows the expirement’s

componenets and the flow of procedures that each group of participants went through.

122

Figure 17. Experiment components

The experiment divided the participants into two groups; one group took part in the visualisation

session and the other did not (control group). Therefore, the control group only experienced the lab

activity and the visualisation group experienced a visualisation session. All participants took part in

pre- and post- activity surveys. Each survey measured the participants’ scores and confidence level

in answering each question.

Conducting a class experiment that compares the performance of two groups (control and

experimental) has been used in previous studies to evaluate visualisation in programming education.

For instance, Mselle (1989) tested hypotheses concerning using memory diagrams in programming

education to enhance students’ ability to write code by conducting a class experiment involving 100

students divided into two groups (control and visualisation groups). The researcher then compared

the test scores of the two groups in the final exam.

A questionnaire is a common approach used to collect quantitative data in evaluating the

visualisation method. Researchers such as Dixon (2004b), Virtanen et al. (2005), Kasurinen et al.

(2008) and Sun (2010) evaluated the use of their visualisation tools by administering questionnaires

to determine their tools’ effectiveness.

123

The evaluation in the present study also included interviews, which have been used effectively in

the related research to collect qualitative data. Dixon (2004a) tested a visualisation tool by

collecting feedback through interviews with the author/developer and lecturers.

7.3.1 Selection of population

The number of students in each group differed slightly, as it depended on the course classes and the

laboratory (see Table 5).

Table 5. Number of students who participated in the experiment

 Visualisation group Control group

Pre-test

session

Post-test

session

Pre-test

session

Post-test

session

Calling method 31 31 29 29

Classes and objects 30 30 24 24

Class inheritance 26 26 26 26

In the experiment and the focus group, the participants were students enrolled in Programming

Language I and II courses. The programming curriculum included computer concepts and

programming in Java. The Programming Language I course, a prerequisite for Programming

Language II, consisted of classes, objects and methods and was taken in the first year in the first

semester. The Programming Language II course included class inheritance and was taken in the

second semester of the first year. As the target of the study was novice programers, the experiments

were conducted after participants took the courses to guarantee no other factors would affect the

results. Table 6 shows the students’ experience in terms of modules taken by students in each group.

Table 6. The experience in terms of modules taken by the students in each group and section

 Groups/Sections

Case A students

Call method

Case B students

Classes and objects

Case C students

Class inheritance

M
o
d
u
le

s

Variables, data types, I/O operations, arithmetic operations, using

constants and comments, debugging, Boolean expressions, relational

operations, conditional statements (if, switch), loop (while, do while, for

loop), break and continue, methods

 Arrays, introduction to classes, constructors,

Class inheritance

124

The expert interviews were conducted with six lecturers and tutors, as shown in Table 7.

Table 7. Number of experts who participated in the experiment

Personal

information

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6

Gender F F F F M M

Degree Master PhD

Occupation Lecturer Assistant

professor

Associate

professor

Assistant

professor

Assistant

professor

Associate

professor

The lecturers and tutors who participated in the interviews were selected based on their experience

in programming education. They had a minimum of seven years of teaching experience. The

teaching experience was mainly in programming for beginners and at the advanced level for

programming languages such as C, C++, C # and Java and web programming.

7.3.2 Instrument

The Visual Code Flow tool was used to evaluate the use of visualisation in programming education.

It was developed based on the characteristics of the user requirements collected from semi-

structured interviews in a qualitative study (Alhammad et al., 2016) (refer to Section 6.5). The

researcher presented the Visual Code Flow to the visualisation group after the pre-test. The students

were then given time to use the tool by themselves during the session.

7.3.3 Programming subjects

The programming problems embedded in the study were based on identified threshold concepts that

students commonly find difficult, as discussed earlier in Sections 3.6 and 6.2.3. These were calling

a method, classes and objects and class inheritance.

125

7.3.4 Quantitative method

Surveys were used to collect quantitative data in the experiment. Surveys are considered an

effective tool to gather and analyse data from a large number of participants. As three programming

topics were being covered, the survey questions were different depending on the topic. Therefore,

for each problem, two types of surveys were distributed for each group: a pre-survey and a post-

survey (see Appendix E). The surveys consisted mainly of three sections:

1. Section one: A questionnaire that measured the participants’ confidence in their

understanding of programming concepts. The first section in the questionnaire was provided

for both surveys to compare the data before and after the experiment.

The questions in the first section for both groups and both surveys (pre- and post-survey) are

basically the same but with a slight difference depending on the programming topic. The following

questions appeared in the first section of the questionnaire:

Common questions that appeared in the survey for the three topics:

 I can program competently in at least one text-based programming language.

 I can use variables.

 I can use the relational operators.

 I can use the arithmetic operators.

 I can debug syntax errors.

 I can debug logical errors.

Questions that appeared in the survey for the call procedure topic

 I can use the procedures.

 I know how to call procedures

 I know how to pass a parameter(s).

 I know how procedures return value(s) to the program.

Questions that appeared in the survey for classes and objects topic

 I can use classes and objects.

 I know how to use constructors.

Questions that appeared in the survey for class inheritance topic

 I can use classes and objects.

 I can use the class inheritance.

126

2. Section two: This section consisted of two parts. The first part included a test programming

problem that asked participants to trace the program and then answer some questions

regarding the given program, such as to identify the values of variables or objects in some of

the execution lines. The second part consisted of a questionnaire that measured the

participants’ confidence in solving each question for the given program.

Questions that appeared in the survey for the call procedure topic

 What is the purpose of the program?

 What is the output of the program?

 What does the statement in line 7 do?

 What is the value of the variable width after executing line 7?

 What is the value of the variable length after executing line 7?

 What is the value of the variable theWidth after executing line 9?

 What is the value of the variable theLength after executing line 9?

 What is the value of the variable area after executing line 12?

 What is displayed after executing line 13?

 What is displayed after executing line 14?

 Which line(s) of the code (if any) did you struggle with understanding?

Questions that appeared in the survey for classes and objects topic

 What is the purpose of the program?

 What is the output of the program?

 What is the value of variable balance in account1 after executing line 5?

 What is the value of variable balance in account2 after executing line 6?

 What is displayed after line 8 is executed?

 What is displayed after line 10 is executed?

 What is the value of variable balance in account1 after executing line 12?

 What is the value of variable balance in account2 after executing line 13?

127

 What is displayed after line 15 is executed?

 What is displayed after line 17 is executed?

 Which line(s) of the code (if any) did you struggle with understanding?

Questions that appeared in the survey for the class inheritance topic

 What is the purpose of the program?

 What is the output of the program?

 What does the statement in line 28 do?

 What are the attributes of object test after executing line 7?

 What is the value of variable z after executing line 8?

 What is displayed after line 20 is executed?

 What are the attributes of object example after executing line 9?

 What is the value of variable z after executing line 10?

 What is displayed after line 25 is executed?

 What is the value of variable z after executing line 11?

 What is displayed after line 33 is executed?

 Which line(s) of the code (if any) did you struggle with understanding?

3. Section three: The participants of the visualisation session were also asked to answer a third

part in the survey, a questionnaire to measure the level of satisfaction in using the

visualisation tool. This section was only included in the post-survey.

Questions that appeared in the survey for the call procedure topic

 Using the tool helped me understand the procedure call.

 I would prefer to use the tool to trace the code rather than manual approach in Section 2.

 I would prefer to use the manual approach in Section 2 to trace the code rather than the

tool.

 The tool was useful for learning Java.

 Using the tool helped me understand the changes in the variable values.

128

 The tool is easy to use.

 I would use a tool like this one.

Questions that appeared in the survey for classes and objects topic

 Using the tool helped me understand classes.

 Using the tool helped me understand objects.

 Using the tool helped me understand the difference between classes and objects.

 Using the tool helped me understand the class constructor.

 Using the tool helped me understand how to set the variable value defined in the class.

 Using the tool helped me understand how to get the variable value defined in the class.

 I would prefer to use the tool to trace the code rather than manual approach in Section 2.

 I would prefer to use the manual approach in Section 2 to trace the code rather than the tool.

 The tool was useful for learning Java.

 Using the tool helped me understand the changes in the variable values.

 The tool is easy to use.

 I would use a tool like this one.

Questions that appeared in the survey for the class inheritance topic

 Using the tool helped me understand class inheritance.

 Using the tool helped me understand how to set the value of the variable that is inherited

from the superclass.

 Using the tool helped me understand how to get the value of the variable that is inherited

from the superclass.

 I would prefer to use the tool to trace the code rather than the manual approach in

Section 2.

 I would prefer to use the manual approach in Section 2 to trace the code rather than the

tool.

 The tool was useful for learning Java.

129

 The tool is easy to use.

 I would use a tool like this one.

7.3.5 Experiment preparation

As mentioned in Section 7.3.1, the participants were students at an academic institution, and the

experiments were conducted on campus. The researcher made an agreement with the lecturer and

tutor who taught the students for either spare time or class time or lab time to conduct the

experiment. This agreement was reached either via email or in person. A total of six different

sections participated in the experiment (Table 8) to arrange the students in the experiment groups. A

section means a group of students who attended the lecture for a specific course at the same time

and were taught by the same lecturer.

Table 8. Arrangement of the students in the experiment

Problem Case Control Group Visualisation Group

Calling method Section 1 Section 2

Class and object Section 3 Section 4

Class inheritance Section 5 Section 6

For each section, the students spent approximately 40–50 minutes completing the pre-survey in the

classroom and 50–60 minutes completing the post-survey in the computer lab. The researcher

managed the date and time of the experiment, so the pre-survey came after the students were taught

the lesson during the lecture time. The researcher managed the post-survey that came after the lab

session for the control group and before the lab session for the visualisation group. Therefore, the

researcher guaranteed that they compared the effect of the lab activity on the students’ performance

against the effect of visualisation.

130

7.3.6 Experiment procedures

Both groups followed the same procedure in completing the pre-survey. The following steps

describe the procedure for the pre-survey:

1) The researcher asked the students if they were willing to participate in the experiment. If they

were willing, then the researcher explained about withdrawal—that they could withdraw at any

time from the experiment but not the learning course and could subsequently withdraw their

data from the survey and the study and how to do so. The researcher explained that all

personally identifiable information would be held separate from the core dataset.

2) Once the students were briefed and if they were willing to participate, the researcher asked them

to sign the consent document before proceeding. An information sheet was also provided.

3) The researcher provided the students with an overview of the session activities and duration.

The overview gave a breakdown of how long each step should take. This ensured that the

students were fully informed of the process.

4) The students were given an introduction to the subject and the objectives of the study. The

introduction provided the students with the background they needed to do the tasks.

5) The researcher explained the survey questions and how the students should fill out the answers.

6) After that, the students attempted to answer the survey. The students could interrupt the

researcher to ask for clarification of any point.

7) Last, the papers were collected by the researcher.

Both groups followed the same procedure in completing the post-survey, except that for the

visualisation group the step before answering the post-survey consisted of presenting the

visualisation method using the Visual Code Flow tool and asking them to try it on their computers

during the session. The visualisation demonstration lasted 20–30 minutes depending on the

programming problem. The control group relied on the lecture notes and lab work to continue their

part of the experiment.

131

7.3.7 Focus groups

After the experiment, the visualisation group was invited to a focus group to discuss their

experience. They were asked to express their feedback and the aspects they liked or disliked in

using the visualisation.

The purpose of conducting focus groups in this evaluation was to provide an atmosphere for the

students where they would feel comfortable relating their ideas, concerns and experience. In the

focus group discussion, students could influence each other and could share their opinions and

thoughts, unlike with surveys that do not give participants the opportunity to develop new ideas.

Researchers in the educational field, such as Williams and Katz (2001), have pointed out the

advantages of conducting focus groups. According to their study, focus groups help in evaluating

and developing learning tools. Conducting focus groups in the present study contributed to the

evaluation of visualisation and to understanding the students’ needs.

1. Focus group preparation

To gather the participants, the moderator arranged a timetable based on the free time (break time)

available in the students’ schedule. Students were distributed by their reference number across the

focus group timetable. The timetable was organised according to each programming problem

(Cases A, B and C) and the group number, as each case contains more than one group. For each

problem, there were five or four groups. The visualisation group was distributed among these small

groups of six to seven students to make the discussion easier to control (Table 9).

Table 9. Number of groups/participants in the focus group

Problem labels Number of participants in each group

A: Calling method

Total of 31 participants

1st group=7 2nd group=6 3rd group=6 4th group=6 5th group=6

B: Classes and objects

Total of 30 participants

1st group=6 2nd group=6 3rd group=6 4th group=6 5th group=6

C: Class inheritance

Total of 26 participants

1st group=7 2nd group=7 3rd group=6 4th group=6

132

 As Table 9 shows, each problem was assigned a code, A, B or C, for the three problems and a

group number from one to five. For instance, the participants in the Case A problem who belonged

to the third group were assigned a reference (A.3.P2). The researcher emailed an invitation to the

students who participated in the focus groups that contained a timetable specifying when and where

the focus group would be conducted.

2. Focus group procedures

As discussed in Section 7.3.7, the visualisation group discussed their experience and provided their

feedback and suggestions in the focus group sessions. The researcher herself moderated the focus

groups, asked the questions and monitored and guided the discussion (see Appendix E for the focus

groups questions). Each session lasted 45–50 minutes. The researcher gathered the students in a

quiet and convenient meeting room that had a circular table so the students felt comfortable during

the session. The researcher first introduced herself and presented the topics and the objectives. She

then distributed a short questionnaire to determine the students’ learning tool experience to prepare

them for the in-depth discussion. As the students were already involved in the visualisation session

and completed the pre- and post-surveys, the following step involved asking the students about their

experience and feedback. The following were the suggested questions for the moderator to manage

the discussion. The questions evolved based on the participants’ answers.

Section one: Short questions

 Which level or course of programming do you study now?

 Which programming languages do you learn?

 What materials or websites do you use in addition to the lecture notes in studying

programming?

 Have you ever used a visualisation tool to improve your understanding of programming?

(interviewer should explain the nature of visualisation tool)

o If so, what tool?

o How often do you use it?

133

o What aspects of the tool do you like/dislike?

Section two: Open-ended questions

Note that the discussion evolved depending on the topic and on the students’ answers.

 What are the strengthen(s) and weakness(es) of the tool in general?

 How did you find the method representation? What things did you like and dislike?

 How did you find the variable representation? What things did you like and dislike?

 How did you find the expression of evaluation? What things did you like and dislike?

 How did you find the passing parameters and calling method representation? What things

did you like and dislike?

 How did you find the class representation? What things did you like and dislike?

 How did you find the object representation? What things did you like and dislike?

 How did you find the class inheritance representation? What things did you like and dislike?

 How did you find the output representation? What things did you like and dislike?

 How did you find the animation? What things did you like and dislike?

 How did you find the control of execution? What things did you like and dislike?

 Would you use the tool if possible? Explain why or why not.

 Do you think it is beneficial and may improve programming learning?

 What improvements should be implemented in refining this tool?

Finally, the researcher concluded the focus group by asking the students to add any suggestions or

voice any concerns they still had. All sessions of the focus group were audio recorded, and the

researcher transcribed the discussion after the sessions. To understand the participants’ comments,

the transcripts were shortened to include only essential information. The transcripts were then

cleaned and labelled with the group and participant numbers, so each comment appeared in a

separate row labelled by the group and participant number. The answers for each question collected

from the different groups were grouped and assigned codes and a participant ID. After all the

134

responses were entered, they were categorised according to some keywords and topics. The

constant comparative analysis method was used to analyse the data, as recommended in the case of

a focus group that consists of multiple groups in the same study (Kolb, 2012). See Appendix F,

Section F-3 for the focus group transcript to see how the participants answered the discussion

questions.

7.3.8 Interviews

Further evaluation of the visualisation was carried out through semi-structured interviews with

experts in the field (lecturers and tutors). Semi-structured interviews were used in order not to limit

respondents but allow an open conversation to gather the maximum amount of data.

1. Interview preparation

Before an interview took place, experts were invited via email or personally to participate in the

interview. The participants had the right to choose the date and time that was suitable for them.

Eventually, the researcher and the participants agreed on the date, time and place for the interviews.

Participants were informed about ethical principles, such as confidentiality, in the invitation email.

Interviews were conducted in a quiet office to ensure the participants’ comfort.

2. Interview procedures

Six participants were interviewed separately, with each interview lasting 50–60 minutes.

 First, the researcher introduced the topic and the research objectives (see Appendix E for

the experts’ interview questions). The researcher asked the participants about their

experience and background in programming education.

Section1: Background information

 Do you teach a programming language(s)?

If yes, proceed to the following questions.

 How long have you been teaching programming?

 Which level or course of programming do you teach?

 Which programming language do you teach?

135

 What is your experience (if any) using visualisation tools to improve your teaching

of programming courses?(Interviewer should explain the nature of the visualisation

tool.)

If yes, the following questions will be asked.

 What is the tool? Describe how it works and its method.

 How often do you use it?

 What are the tools’ features?

 What aspects of the tool do you like/dislike?

 To what extent was it helpful?

Table 10 summarises the answers to each question regarding the interviewees’ experience

teaching programming.

Table 10. Expert interview background questions

Question Answers

 Expert 1 Expert 2 Expert 3 Expert 4 Expert5 Expert 6

Teaching

experience

7 years 10 years 15 years 13 years 9 years 17 years

Course level Programming I and II

Programming

languages

Java Java,C,C++ Java,

.NET

Java,C,C++,

Pascal

Java,

Pascal

Java,C,C++,

Pascal, Python

Using

visualisation
tools

None Jeliot Jeliot BlueJ None Python Tutor

 The researcher presented the visualisation method using the tool (Visual Java Code) to the

participants and then asked for their feedback, comments and suggestions about using

visualisation in studying programming. The questions were as follows.

Section 2: Evaluation questions for the Visual Java Code tool

 What are the strengthen(s) and weakness(es) of the tool?

136

 Will you use it if possible? Explain why or why not.

 Do you think it is beneficial and may improve programming learning?

 What improvements should be implemented in refining this tool?

 How did you find the method representation? What things did you like and dislike?

 How did you find the variable representation? What things did you like and dislike?

 How did you find the expression of evaluation? What things did you like and dislike?

 How did you find the passing parameters and calling method representation? What

things did you like and dislike?

 How did you find the class representation? What things did you like and dislike?

 How did you find the object representation? What things did you like and dislike?

 How did you find the class inheritance representation? What things did you like and

dislike?

 How did you find the output representation? What things did you like and dislike?

 How did you find the animation? What things did you like and dislike?

 How did you find the control of execution? What things did you like and dislike?

 Finally, the researcher asked the experts for any further comments or suggestions. See

Appendix F, Section F-2 for the interview transcript to see how the participants answered

the interview questions.

The researcher audio recorded the interviews and transcribed the data afterwards. The collected

responses were categorised by participant code, and the answers were listed under each question.

The answers for each expert were grouped under each question and assigned the participant

reference for each answer (row). The cycle pattern coding method was used to analyse the data

(Saldaña, 2016). The data analysis is discussed in Section 5.4.4.

137

 Findings

7.4.1 Survey results

The quantitative analysis measured three factors for both groups in the pre- and post-tests, the

students’ scores on the test, their level of confidence while completing the test and their confidence

about programming topics in general. Students’ satisfaction was measured for the visualisation

group only. After the results were analysed, the improvement achieved by both groups was

measured.

The scores of both groups showed improvement in students’ performance after attending either a

visualisation session or a lab session. However, the visualisation group achieved better

performance. The increment in the average scores for the visualisation group was more than that of

the control group. Table 11 summarises the mean (M), standard deviation (SD) and skewness (SK)

of the visualisation group’s test scores.

Table 11. Statistical results for the visualisation group

 Pre-test

 M SD Sk

Post-test

 M SD Sk

Calling method 6.5 2.1 -0.5 7.6 3.1 -1.0

Classes and objects 4.1 2.8 0.2 5.3 3.0 -0

Class inheritance 4.7 2.4 -0.0 6.8 3.2 -0.2

The increase in the three means shows the visualisation method increased students’ comprehension

of the programming topics, as individuals had like responses to every question. Class inheritance

had a high rate of increase in the average score of students, which means the visualisation of class

inheritance had the most effect on understanding.

For the control group, the mean in every problem increased when lab sessions were carried out

regularly, indicating those students’ responses became more similar. However, the mean for the

calling method did not show a significant difference between the two tests. Table 12 summarises the

M, SD and SK of the control group’s test scores.

138

Table 12. Statistical results for the control group

Table 13 summarises the comparison between the visualisation and control groups.

Table 13. Comparison between the visualisation and control groups

 Visualisation group Control group

 M SD SK M SD SK

Calling method 7.6 3.1 -1 7.1 2.9 -0.5

Classes and objects 5.3 3.0 -0 4.9 2.9 0.4

Class inheritance 6.8 3.2 -0.2 6.1 3 -0.2

The mean of the three problems best compares the visualisation group and the control group. The

factors calculated for the visualisation group for every issue are higher than those for the control

group. The statistical differences reveal the visualisation group was more effective in improving

their performance than the control group.

To confirm the findings regarding the students’ scores, the researcher analysed whether the

students’ confidence improved while answering the test questions. The findings showed that

visualisation plays a positive role in gaining confidence while answering programming questions.

To better understand the transformation of the students’ confidence while solving the programming

problems, the researcher categorised the findings based on the three problems (Cases A, B and C).

In all of Cases A groups, the participants reported their level of confidence (not confident, confident

or very confident) for each question they solved. Only the level of confidence for the correct

answers was counted.

 Pre-test

 M SD SK

Post-test

 M SD SK

Calling method 7.0 2.6 -0.6 7.1 2.9 -0.5

Classes and objects 4.1 3.6 0.5 4.9 2.9 0.4

Class inheritance 5.2 3.1 0 6.0 3 -0.2

139

Case A: calling a method

The questions given to the participants were classified into main topics. Table 14 shows the topics

and gives examples of the kinds of questions.

Table 14. Case A - question topics

Question topics Example

The output of the calling method

problem
What is the output of the program?

Call a method
What does the statement calculateArea (width, length)
do?

Value(s) of the passing parameter(s)
What is the value of the variable width after calling the method

calculateArea (width, length)?

Value(s) of the variable(s) in the

method header

What is the value of the variable theWidth after the method calling

static void calculateArea(double theWidth, double theLength)?

Arithmetic expression
What is the value of variable area after the execution of sentence
 area = theWidth * theLength ;?

Table 15. Case A – students’ level of confidence in solving the problem

The topics in

Case A

Control group

Pre-test post-test

Visualisation group

Pre-test post-test

*x Y z X Y Z x y z x Y z

The output of

the calling

method

problem

11% 25.9% 62.9% 10.7% 25% 64.2% 4.17% 50% 45.8% 0 56% 44%

Call a method 21.4% 42.8% 35.7% 21.4% 35.7% 42.8% 30% 40% 30% 0 31.2% 68.7%

Value(s) of the

passing

parameter(s)

13.4% 30.7% 55.7% 9.26% 37% 53.7% 16.3% 59.1% 24.4% 17.6% 23.5% 58.8%

Value(s) of the

variable(s) in

the method

header

20% 36% 44% 20% 33.3% 46.6% 56.2% 28.1% 15.6% 17.6% 23.5% 58.8%

Arithmetic

operation
25.9% 25.9% 48.1% 15.3% 30.7% 53.8% 25% 50% 25% 13% 65.2% 21.7%

* x=not confident, y=confident, z=very confident

140

The confidence level of the participants for both groups was evaluated based on the topics in Table

14. The results presented in Table 15 show the percentage of respondents who identified their level

of confidence in both groups for both tests.

In the visualisation group, the students had a positive shift in their level of confidence in solving the

calling method problem (Case A) after attending the visualisation session. Most students were not

confident in solving the question related to the value of the variables received by the method header

after calling the method in the pre-test. In the post-test, most students became very confident in

solving the same question. More than half of the students (58.8%) became very confident in solving

the question, an increase from 15.63% before the visualisation. In addition, the percentage of very

confident students in the passing parameter question increased significantly from 24.49% to 58.8%.

However, the students in the control group were still struggling after attending the lab session.

Although the number of students who became confident increased, the number of non-confident

students remained the same for the question related to the value of the variables received by the

method header after calling the method. There was an improvement in confidence for the control

group students for the rest of the questions, but it was not as remarkable as for the visualisation

group.

Case B: classes and objects

The researcher classified the questions that were given to the participants about the classes and

objects problem into topics. Table 16 shows the topics and gives examples of the kinds of questions.

Table 16. Case B – question topics

Question topics Example

The output of the program What is the output of the program?

Class constructor/object creation

What is the value of variable balance in account1 object after

executing the following statement?

 Account account1 = new Account (50)

Get value(s) from the object before the

set method

What is the value of variable balance in account1 after executing

account1?getBalance ()?

141

Set value(s) to object

What is the value of variable balance in account1 after executing

account1.addMoney (bonus)?

Get value(s) from the object after the set
method

What is the value of variable balance in account1 after executing
account1?getBalance ()?

The confidence level of the participants in both groups was evaluated based on the topics in Table

16. The results presented in Table 17 show the percentage of respondents in both groups who

identified their level of confidence for both tests.

Table 17. Case B – students’ level of confidence in solving the problems

The topics in

Case B

Control group

Pre-test Post-test

Visualisation group

Pre-test Post-test

*x Y Z X Y Z X Y z x Y z

The output of the

program
25% 62.5% 12.5% 25% 62.5% 12.5% 33% 66.6% 0 9.09% 27.2% 63.6%

Class constructor/

object creation
36% 45.4% 18% 33% 41.6% 25 % 71.4% 22.8% 5.7% 25 % 35.7% 39.2%

Get value(s) from

object before set

method

57% 42.8% 0 60% 40% 0 76.4% 23.5% 0 30% 40 % 30%

Set value(s) to

object
20% 60 % 20 % 20 % 60% 20% 55.5% 44.4% 0 16.6% 33.3% 50%

Get value(s) from

object after set

method

60% 40 % 0 60 % 40 % 0 83.3% 16.6% 0 25% 43.7% 31.2%

* x=not confident, y=confident, z=very confident

In the pre-test survey given to the visualisation group for Case B, many students were not confident

in answering the questions presented in the program. The only issue related to creating an object,

where two students (5.7%) were very optimistic and very confident about solving the question.

After the experiment using visualisation was administered to the students, most responded

positively about solving the object creation question and using the class constructor. The percentage

of non-confident students who solved the question decreased from 71.4% to 25%. The second topic

evaluated was getting values from an attribute in an object by asking about the value return from the

method (get). The percentage of non-confident students who solved the question decreased from

142

76.4% to 30%, and the number of very confident students rose by 30%. The third topic was setting

values in an object’s attribute. For example, the students were asked to recognise the value of the

variable (balance) that was defined in two objects (account1) and (account2) before and after

adding a bounce to the balance existing in the two objects. The students’ confidence in answering

the question improved. The results showed 50% of the students became very confident in answering

the question correctly, while none were very confident in the pre-test. The fourth topic asked the

students about the set method, but this time after executing the set method, which changed the value

of the variables. The percentage of non-confident students who solved the question decreased from

83.3% to 25%, and the number of very confident students rose to 31.2%. Overall, the students

showed improved confidence in finding the program output after visualisation.

The control group showed a slight improvement on one topic—the class constructor—after

attending the lab session. The number of very confident students who solved the question of the

class constructor increased from 18% to 25%. However, the rest of the questions did not register

any improvement in the students’ confidence. The results showed that the lab session did not affect

the confidence of students in finding the program output.

Case C: class inheritance

The researcher classified the questions given to the students in the class inheritance problem into

topics. Table 18 shows the topics and gives examples of the kinds of questions.

Table 18. Case C – question topics

Question topics Example

The output of the program What is the output of the program?

Identify the class inheritance
What does the following statement do?

public class MathsLevel2 extends MathsLevel1

Create an object from the superclass
What are the attributes of object test after executing

 MathsLevel1 test = new MathsLevel1 ()?

Operate a superclass

What is the value of variable z after executing

test.addition(input1,input2), where z is a local variable in the object
test?

Create an object from a subclass
What are the attributes of object example after executing

MathsLevel2 example = new MathsLevel2 ()?

143

Operate the inherited method

What is the value of variable z after executing

example?subtraction(input1,input2), where subtraction is an
inherited method?

Operate the non-inherited method

What is the value of variable z after executing

example?multiplication(input1,input2), where multiplication is a
non-inherited method?

The confidence level of the participants in both groups was evaluated based on the topics in Table

18. The results presented in Table 19 show the percentage of respondents who identified their level

of confidence in both groups for both tests.

Table 19. Case C- students’ level of confidence in solving the problems

The topics in Case C

Control group

Pre-test post-test

Visualisation group

Pre-test post-test

*x Y Z x Y z x y z X Y z

The output of the

program
5.5% 66% 27.7% 7.69% 53.8% 38% 11.5% 42% 46% 4.7%

28.5

%
66%

Identify the class

inheritance
5% 65 % 30% 23.5% 29% 47% 22.7% 45% 31.8% 16% 24% 60%

Create object from

the superclass
33% 66% 0 0 60% 40% 100% 0 0 23%

53.8

%
23%

Perform operation

in a superclass
20% 32% 48% 8.3% 25% 66.6% 36% 45% 18% 14.2%

28.57

%
57%

Create object from a

subclass
25% 25% 50% 0 0 100% 66.6% 0 33% 41.6%

16.6

%

41.67

%

Perform operation

in inherited method
13% 46% 40% 21% 25% 53.5% 36% 52% 12% 11.5% 23% 65%

Perform operation

in non-inherited

method

10% 51% 37.9% 8% 36% 56% 45% 45% 10% 29.6%
25.9

%

44.4

%

* x=not confident, y=confident, z=very confident

For the class inheritance problem (Case C), students in the visualisation group had a significant

level of confidence regarding the questions. The degree of confidence increased when the post-test

was undertaken. In general, the students became more confident when creating class inheritance and

dealing with the inherited components. The results showed an increase in the students’ confidence

when answering the program output question in the post-test. However, the problem that registered

144

the highest decrement for the non-confident students was creating an object from the superclass.

The number of negative responses about solving the question decreased from 100% to 23%. The

number of students who became very confident increased from 0% to 23%. The results also showed

an improvement in answering the question about performing operations in the inherited methods.

The number of students who responded negatively to solving the question decreased from 36% to

11.5%. The number of students who became very confident rose from 12% to 65% of the total

students, while the improvement achieved for the question about performing the operation in the

non-inherited method rose from 10% to 44.4%. The control group had the same improvement, but

with a lower ratio for the questions about how to create an object from a subclass and a superclass

and how to operate the superclass. However, the rest of the questions, those about identifying class

inheritance or performing operations in inherited or non-inherited methods, registered decreased

confidence. For instance, the percentage of non-confident students who solved the identifying class

inheritance question increased from 5% to 23.5%, and the number of confident students decreased

from 65% to 29.41%.

Finally, the third aspect analysed was the transformation in students’ confidence regarding

programming topics. The survey revealed whether students’ confidence in understanding

programming concepts in general changed after administering each process. The questions in this

part were slightly different depending on the programming concept that was focused on. As there

were three concepts that covered programming problems presented in the pre- and post-tests, the

discussion was categorised based on the three cases, A, B and C, for calling a method, classes and

objects and class inheritance problems, respectively.

There were common questions in the pre- and post-surveys for the three cases, as follows.

 I can program competently in at least one text-based programming language.

 I can use variables.

 I can use the relational operators.

 I can use the arithmetic operators.

145

 I can debug syntax errors.

 I can debug logical errors.

Case A: calling a method

More questions were added to Case A, as follows.

 I can use the methods.

 I know how to call methods.

 I know how to pass a parameter(s) to a method.

 I know how methods return value(s) to the program.

Figure 18 shows the changes in the students’ responses in the pre- and post-tests for both groups.

Figure 18. Case A - students’ confidence regarding general topics in programming

146

For the visualisation group that solved the calling method problem, in the first survey conducted

before the experiment (Figure 18 (a)) the number of students who were confident using variables in

a program was the highest, while the number of students confident in their ability to debug logical

and syntax errors, pass a parameter and use the methods was the lowest. This means that most of the

students could use variables before the experiment, while only a few students strongly agreed they

were confident in applying programming methods with passing parameters and debugging logical

and syntax errors.

The findings indicate that visualisation can make a positive difference in students’ confidence

regarding the Case A problem in general. The results showed that after the visualisation session

(Figure 18 (b)) approximately 58% of the respondents strongly agreed they could apply variables; it

was the question that recorded the highest number of respondents. Most of the students agreed more

that they could use the procedure/methods, return values from the method and pass a parameter to

the method. In addition, a substantial number of students were neutral regarding their ability to

debug syntax errors. There was no remarkable improvement in the students’ confidence in

debugging errors, as the visualisation tool did not provide debugging errors. The other question that

most students felt neutral about was their ability to write a program. However, students’ confidence

in writing programs increased after the visualisation session.

The results for the control group were somewhat the same before attending the lab session (Figure

18 (c)). After attending regular lab sessions (Figure 18 (d)), students became confident in how to

call a method and pass parameters. The confidence achieved in understanding the methods was

similar to the confidence achieved in the visualisation group. For instance, the increasing ration of

the number of students from the control group who strongly agreed on how to call a method was

6.89% of the percentage of the students, which is approximately the same increasing ration

achieved by the visualisation group. However, the visualisation group became more confidence in

how to pass parameters to the method. The total percentage of students who agreed or strongly

agreed on understanding how to pass parameters to a method was 58.62% and 54.84% for the

147

control and visualisation groups, respectively. However, this percentage rose to 65.5% and 70.9%

for the control and visualisation groups, respectively.

Moreover, the visualisation group achieved more confidence in how to return values to a method.

The percentage of students from the visualisation group who agreed or strongly agreed they

understood how to return values to a method rose from 38.7% to 58%, while the percentage in the

control group went from 48% to 51.7%. The results showed that the lab session did not affect the

students’ confidence in debugging errors and the use of variables. However, it reduced the

confidence in performing arithmetic operations but improved the confidence in the rest of the

topics, such as performing relational operations and how to write a program but to a lesser extent

than the visualisation sessions.

Case B: classes and objects

The higher-level students studying more advanced programming were asked to solve the classes

and objects problem. In the first part of the survey, more focused questions relating to the classes

and objects were added to Case B, as follows.

 I can use classes and objects.

 I know how to use constructors.

In Case B, the students’ confidence in general programming topics before the experiments varied

across the participants (Figure 17).

148

Figure 19. Case B – students’ confidence regarding general topics in programming

Most students in both groups were neutral regarding their ability to write a program in the pre-test

(Figures 19 (a) and (c)). Most students strongly agreed they were able to use variables in relation to

arithmetic and relational operators. However, they disagreed that they were able to use constructors.

In the pre-test, 70% of the students in the visualisation group either disagreed or strongly disagreed

that they were able to use constructors. After the visualisation session, their confidence level

increased (Figure 19 (b)). It was observed that most were becoming neutral regarding their ability to

use constructors, and the percentage who disagreed decreased to 30%. Before the experiment, the

students had little confidence in their ability to use classes and objects (Figure 19 (a)); only 23%

agreed they could use classes and objects. However, this percentage rose to 50% after attending the

visualisation session (Figure 19 (b)).

149

The control group achieved limited confidence in understanding classes, objects and class

constructors after attending regular lab sessions (Figure 19- c,d). An increment of one student

strongly agreed regarding understanding the class constructor, while in the visualisation group there

was an increment of two students for the same concept. Most of the students remain neutral toward

the classes and objects topic.

Case C: class inheritance

The third group that was asked to solve the class inheritance was also asked about their ability to

use class inheritance. Figure 20 shows the statistical analysis for the Case C group.

Figure 20. Case C - students’ confidence regarding general topics in programming

In the pre-test for both groups (Figures 20 (a) and (c)), the students showed a high level of

confidence in the general topic, such as identifying variables, performing arithmetic and relational

operations, debugging errors and writing programs. This result was expected, as the students studied

150

the more advanced level of programming. After administering the visualisation session, the number

of respondents who stated they were confident in their ability to use class inheritance increased.

Before the session, 27% agreed they were confident in understanding class inheritance, but after the

session the percentage rose to 42%. The control group showed more improvement after undertaking

regular lab sessions, as the percentage of students who stated they were confident in understanding

class inheritance increased from 19.23% to 50%. Therefore, the lab sessions contributed to a better

understanding of the meaning of class inheritance.

1. Students’ difficulties

The survey for both tests (pre- and post-test) had a question asking participants about the statements

in the code for the given program they had difficulty understanding or solving. In the calling

method problem, most of the respondents pointed to the calling method statement and the method

header. For the visualisation group, the percentage of students who had difficulty with the calling

methods decreased from 26% to 13%, while the percentage of students who struggled in tracing the

method header decreased from 22.5% to 13%. For the control group, in the post-test the percentage

of students who said they had difficulty in tracing the method calls decreased, while the percentage

of students who were still having difficulty solving the method header question remained the same.

Ten percent of the students were struggling with both statements in the pre-test, but that percentage

decreased to 3.4% on the post-test.

In the classes and object problem, the statement the visualisation group highlighted as difficult was

the statement (account1.getBalance ()). The percentage of students who were struggling with the

statement decreased from 26% to 10% in the post-test. The control group referred to the call a

method statement that is defined in objects such as (account1.addMoney()). However, the

percentage of students who pointed out the problem decreased in the post-test from 16% to12.5%.

Last, for the class inheritance problem both groups had difficulty with two statements:

(test.addition(input1,input2)) and (example.subtraction(input1,input2)); 30.7% of the control group

students and 38% of the visualisation group students struggled with the statements. In the post-test,

151

the number of struggling control group students decreased to 3.8% and 11.5% for statement one and

statement two, respectively, while the number of struggling visualisation group students decreased

to 15% and 23% for statement one and statement two, respectively.

2. Students’ satisfaction

Students in the visualisation group were asked to give their feedback after going through the

visualisation of the three problems— Cases A, B and C. For the calling method (Case A), the

students responded to the following statements:

 Using the tool helped me understand the procedure call .

 I would prefer to use the tool to trace the code rather than the manual approach.

 I would prefer to use the manual approach to trace the code rather than the tool.

 The tool was useful for learning Java.

 Using the tool helped me understand the changes in the variable values.

 The tool was easy to use.

 I would use a tool like this one.

Figure 21 shows the students’ satisfaction regarding the statements above by indicating their level

of agreement.

152

Figure 21. Satisfaction level of the participants regarding the use of the Visual Code Flow tool in the Case A problem

Many students strongly agreed they were satisfied with the experiment that helped them to perform

the method calling questions and with how they passed parameters to the method. There was less

satisfaction regarding preferring to use the manual approach to trace the program compared to using

the Visual Code Flow tool. The students agreed the tool was easy to use, useful for learning Java

and helped them to understand how the variables changed.

The Case B students were asked to give their opinion about the following statements:

 Using the tool helped me understand classes.

 Using the tool helped me understand objects.

 Using the tool helped me understand the difference between classes and objects.

 Using the tool helped me understand the class constructor.

 Using the tool helped me understand how to set the variable value defined in the class.

 Using the tool helped me understand how to get the variable value defined in the class.

0% 10% 20% 30% 40% 50% 60%

Understand the procedure call

Prefer to use the tool

Prefer to use the manual approach

Useful for learning Java

Understand changes in the variable values

The tool is easy to use

I would use a tool like this one

percentage of respondents

Strongly Disagree Disagree Neutral Agree Strongly agree

153

 I would prefer to use the tool to trace the code rather than the manual approach.

 I would prefer to use the manual approach to trace the code rather than the tool.

 The tool was useful for learning Java.

 Using the tool helped me understand the changes in the variable values.

 The tool was easy to use.

 I would use a tool like this one.

A significant number of participants who solved the classes and objects problem said they were

satisfied with the experiment with the visualisation method (Figure 22).

Figure 22. Satisfaction level of the participants regarding the use of the Visual Code Flow tool in the Case B problem

Most responses agreed on handling the differences between classes and objects. Students mostly

agreed that visualisation helped them to understand, set and get variables’ values defined in a class.

When asked about whether the visualisation helped them understand the class constructor, the

majority of the responses were neutral.

Finally, the Case C students were asked to give their opinion regarding the following statements:

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Understand classes

Understand objects

Understand the difference between classes and…

Understand the class constructor

Understand set method

Understand how to get method

Prefer to use the tool

Prefer to use the manual approach

Useful for learning Java

Understand changes in the variable values

The tool is easy to use

I would use a tool like this one

percentage of respondents

Strongly Disagree Disagree Neutral Agree Strongly agree

154

 Using the tool helped me understand class inheritance.

 Using the tool helped me understand how to set the value of the variable inherited from the

superclass.

 Using the tool helped me understand how to get the value of the variable inherited from the

superclass.

 I would prefer to use the tool to trace the code rather than the manual approach.

 I would prefer to use the manual approach to trace the code rather than the tool.

 The tool was useful for learning Java.

 The tool was easy to use.

 I would use a tool like this one.

Figure 23 shows the students’ satisfaction regarding the statements above by indicating their level

of agreement.

Figure 23. Satisfaction level of the participants regarding the use of the Visual Code Flow tool in the Case C problem

Students working on class inheritance strongly agreed they were satisfied with the visualisation.

The majority strongly agreed that the tool helped them understand class inheritance and how to get

0% 10% 20% 30% 40% 50% 60% 70%

 Understand the class inheritance

Understand set method inhirited from superclass

Understand how to get method inhirited from
superclass

Prefer to use the tool

Prefer to use the manual approach

Useful for learning Java

The tool is easy to use

I would use a tool like this one

percentage of respondents

Strongly Disagree Disagree Neutral Agree Strongly agree

155

and set the inherited methods. For all three problems, the students who experienced the visualisation

were satisfied and preferred to use the Visual Code Flow tool as an alternative to the manual

approach. They agreed on the usefulness of the tool and its ease of use.

7.4.2 Qualitative findings

To better understand the quantitative findings, the researcher examined the results by conducting a

focus group with the students and by interviewing experts. All the keywords determined during the

interviews and the focus group were features in the presented visual tool (see Sections 5.4.1 and

5.4.4). In the focus group, the students described what they liked and disliked. Therefore, the

researcher used those features as keywords for the analysis.

1. Focus group data

A constant comparison analysis was used to analyse the focus group data in this experiment. Three

major stages characterise this type of analysis (Corbin and Strauss, 1990). In the first stage, the data

were shortened into small units. A code was then assigned for each unit. In the second stage, the

codes were grouped into categories. Finally, one or more themes that expressed the content of each

of the groups were determined (Bishop-Clark et al., 2007).

The comments made in the focus group discussion were categorised into general comments and

specific comments relating to the understanding of the three problems. General comments were

about the design of the interface and usefulness, including the control of execution. Table 20 gives a

summary of the general comments of the focus group regarding tool usage.

156

Table 20. Summary of content - general comments of the focus group regarding tool usage

Category

No. of

participants

Sample comment (s)

Interface

A.2.1 ‘The portions of the window was clear.’

C.3.4 ‘The position of each window has to make sense.’

C.1.7 ‘Colours were not distracting me.’

Usefulness

B.1.1 ‘Better than using the manual trace.’

C.1.6
‘Prefer the tracing that shows the steps of code flow.’

C.1.2

‘Great for tracing and having an application for the tool

would be easier for students to use rather than a website.’

B.5.6

‘I would like to use this method after finishing each

chapter.’

A.3.2

‘Very useful.’

A.5.1

‘I like the idea of the tool, and I think it will help me to

learn Java.’

B.1.5

‘I may use the manual trace and then refer to the tool to

make sure that my answer is correct.’

A.5.2

‘Make easier to understand and suggest to add visual

examples of how the method can be used to program

certain things like video games.’

Control of

execution

B.3.3

‘Control buttons were clear and easy to understand.’

C.1.4

‘The motion of going step by step was suitable.’

B.2.6 ‘Prefer to control my tracing.’

157

Regarding interviews conducted with the sample study, the researcher summarised their answers

according to the following questions:

What are the strengthen(s) and weakness (es) of the tool in general?

When asking the students about the strengths and weaknesses of the tool, most of the discussion

was about the tool’s usefulness. The students mentioned the tracing feature and described it as

useful, saying they may use it to improve the manual tracing that they usually use.

For instance, Participant C.1.2 said ‘Great for tracing’. Participant B.1.5 preferred using it after

using the manual trace to confirm his answers. The participants mentioned how the visualisation

helped them to understand the three problems in some specific comments. The researcher

categorised the specific comments relating to the problems.

How did you find the output representation? What things did you like and dislike?

When asking the students about the output representation, most of the discussion was that changing

the values of a method’s parameters inside the method would affect the values of variables in the

main method. Moreover, the variable of output representation passed to the method has the same

memory location as the method’s parameters themselves. From the students’ point of view, the

variable representation similar to what was shown in class helped them to identify the value of the

area and helped them to understand the calculated balance.

Participant A.4.5: ‘I thought that the variables that have been passed to the method have the

same memory location for the method’s parameters themselves.’

How did you find the animation? What things did you like and dislike?

When asking the students about animation, from their point of view changing the values of the

method’s parameters inside the method affects the values of variables in the main method. Further,

the variables passed to the method have the same memory location as the method’s parameters

themselves.

Participant A.1.2: ‘Before, I was thinking that changing the values of method’s parameters

inside the method will take effect on the values of variables in the main method.’

158

How did you find the control of execution? What things did you like and dislike?

When asking the students about control of execution, they said that it made them understand the

concept of classes and objects. Some preferred the play mode, and others liked having complete

control over execution to trace line by line. Further, it helped define the concept of the class as

abstract and to understand how it works. Control of execution also helped students to know the

difference between class and object and to transfer the inherited object to the memory location. It

facilitated self-learning and practicing after the lecture.

Participant B.3.3: ‘Control buttons were clear and easy to understand.’

Participant B.2.6: ‘Prefer to control my tracing.’

Participant C.1.4: ‘The motion of going step by step was suitable.’

Case A: calling method

Students who solved the calling method problem described the animation and expression evaluation

as helpful for understanding the passed parameter to the method. Table 21 gives a summary of the

specific focus group comments for Case A students.

Table 21. Case A - summary of content-specific focus group comments

Category No. of

participants

Sample comment (s)

Animation A.1.2

‘Before, I was thinking that changing the

values of method’s parameters inside the

method will take effect on the values of

variables in the main method.’

A.4.5

‘I thought that the variables that have been

passed to the method have the same memory

location for the method’s parameters

themselves.’

Expression

evaluation
A.3.4 ‘Helps me to identify the value of the area.’

159

The animation helped the students resolve misunderstandings regarding the memory location for the

parameters, which contributed to understanding the pass parameters. Of the students, 80.4% who

solved the pass parameter problem mentioned the animation was helpful and that it improved their

understanding of how the parameters transfer from the method call to the destination in the method

header.

Participant A.1.2: ‘Before, I was thinking that changing the values of the method’s

parameters inside the method will take effect on the values of variables in

the main method.’

Participants A.4.5: ‘I thought that the variables that have been passed to the method have

the same memory location for the method’s parameters themselves.’

The call method problem contains arithmetic operations that calculate the area. The participants

noted the expression evaluation helped them to ‘see’ how the values of the variables on the right-

hand side of the expression were recalled, replaced and calculated.

Participant A.3.4: ‘Helps me to identify the value of area.’

Case B: classes and objects

In the discussion with the students who solved the classes and objects problem, they mentioned how

they had misunderstood the concept of class and object. They stated that visualisation helped them

correct their misunderstandings regarding the class constructor and the representation of classes and

object and to understand the expression evaluation. Table 22 gives a summary of the specific focus

group comments of Case B students.

160

Table 22. Case B - summary of content-specific focus group comments

Category No. of

participants

Sample comment(s)

Animation

B.4.1
‘It makes me understand the concept of classes

and objects because I misunderstood them.’

B.4.4

‘I knew the concept of the class as abstract, but

now I understand how it works. Moreover, I

understand how we can define more than one

object from the same class, but each object has

different memory locations so the changing in

one attribute for one object will not affect the

same attribute in the other objects.’

Class constructor B.2.3

‘I was thinking that class constructor is a

method that should be invoked same as any

other method, the step by step tracing for the

code makes me understand that class

constructor is automatically invoked when

creating the object.’

Representation of

classes and object

B.3.1 ‘Similar to UML representation.’

B.4.6
‘Helps me know the difference between class

and object.’

B.3.2 ‘Like the representation of data inside object.’

B.2.1
‘Like the referring exists that relate the class to

its objects.’

Expression

evaluation
B.4.5 ‘Understand the calculated balance.’

The representation of the classes and objects used in the tool was the aspect most mentioned by the

participants. The representation helped to distinguish between the class and the object.

161

The animation also helped in understanding the difference between the class and the object. Some

of the participants mentioned they had difficulty understanding how the different objects derives

from the same class located in memory.

Participant B.4.4: ‘I knew the concept of the class as abstract, but now I understand how it

works. Moreover, I understand how we can define more than one object

from the same class, but each object has different memory locations so the

changing in one attribute for one object will not affect the same attribute in

the other objects.’

The participants mentioned how the visualisation and tracing the code helped them to understand

the class constructor and when it should be invoked and take effect.

Participant B.2.3: ‘I was thinking that class constructor is a method that should be invoked

same as any other method, the step by step tracing for the code makes me understand that class

constructor is automatically invoked when creating the object.’

Case C: class inheritance

In the discussion with the class inheritance students, they stated that they understood the scope of

the subclass using the representation in the visualisation. Table 23 gives a summary of the specific

focus group comments for Case C students.

Table 23. Case C - summary of focus group content-specific comments

Category
No. of

participants
Sample comment (s)

Animation C.2.1
‘Like the transfer of the inherited object to

the memory location.’

Representation

of inheritance

C.4.3

‘Using shapes to represent inheritance with

(box) inside (box) makes me understand what

attributes are should be in the subclass.’

C.1.6

‘Before, I thought that any change happens

inside any inherited variable or method

should be done to every copy exist in any

other object for the same variable or

method.’

162

The representation of the inheritance contributed to improving the students’ comprehension. The

participants said using the boxes helped them to know the scope of the superclass and the subclass.

It helped in identifying where any change took place.

2. Interview data

The purpose of the expert interviews was to gather experts’ opinions on using visualisation during

lectures or lab activities and whether it could help improve performance. This qualitative data

analysed the first coding process through initial and final coding. Text analysis was used to conduct

the first cycle of coding to determine keywords and phrases that were common amongst

interviewees. Keywords and phrases appeared as word clouds, which were then analysed and

encoded with suitable category labels. The second cycle of coding then compared the keywords to

find similarities and differences. The second cycle pattern coding method was used to recognise

similarly coded data and summarise it into sub-categories or to consolidate it (Saldaña, 2016).

The researcher examined the data from the expert interviews and categorised it into groups. The

main comments were about five fundamental issues regarding how visualisation will lead to better

understanding. Table 24 summarises the categories of the issues raised and gives sample comments.

163

Table 24. Summary of content comments from the experts’ interviews

Category Interviewee Sample comments

Design of the

visualisation

Expert 1

‘Using different shapes and styles to represent variables, objects, and

classes will help the students to distinguish the difference between

them.’

Expert 2

‘The structure and branching that have been used in the memory

frame will help in understand which item is belong to what method or
class , for example the student can recognise that variable (width)

and variable (length) belongs to the method (main) which belongs to

class (parameterExample) also the objects (test) is an object from
class (MathsLevel1) where object (example) is an object from class

(MathsLevel2).’

Expert 3

‘I like the highlighting of every single statement before, and during

the execution, that will show the flow of the code and give enough

time for the student to understand what happens during execution.’

Usefulness

Expert 2

‘I would like to use the visualisation as a supplement in lectures or

even before starting the lab activity to improve the student’s

comprehension.’

Expert 6
‘It is easy to use and doesn’t need any training sessions so the

students can use it as self-learning’

Expert 4

‘During lectures, I keep on drawing shapes and arrows to show the

variables and their changes, this tool will consume my effort and

time.’

Calling

methods

Expert 5

‘Showing how the parameters travel from where it is calling to
memory and finally to their place in the header.’

Expert 1
‘Helps to understand that sending and receiving parameters have

different memory location.’

Classes and

objects

Expert 2

‘The difference between the classes and objects are one of the

challenges in programming teaching; I think using visualisation to

present the class and object with different shapes and format will be

very helpful.’

Expert 5

‘Students now become able to know the difference between object and

class.’

Class

inheritance

Expert 6
‘Showing how the attributes inherited from the superclass by using
drawing and animation will add support for me when teaching the

class inheritance lesson since it always confuses the students.’

164

Expert 3

‘Drawing the inherited object inside the super-class object was very

clear and meaningful.’

All six interviewees commented about how the design of the visualisation and animation may help

improve understanding.

Expert 1: ‘Using different shapes and styles to represent variables, objects, and classes will

help the students to distinguish the difference between them.’

Expert 2: ‘The structure and branching …’

Expert 3: ‘I like the highlighting of every single statement …’

Some of the interviewees suggested using the visualisation as a supplement to support their

lectures.

Expert 2: ‘I would like to use the visualisation as a supplement in lectures or even before

starting the lab activity to improve the student’s comprehension.’

The interviewees agreed on the three selected problems with which the students struggled. All the

experts liked the tracing that showed how the parameters transferred and how they changed. For

instance:

Expert 5: ‘Showing how the parameters travel from where it is calling to memory and finally

to their place in the header.’

They liked the representation of the classes and objects. However, one expert suggested using a

different shape for the inherited class.

Expert 2: ‘Why you use the same shape to represent the object test and object example.’

Moreover, they liked the representation of class inheritance. However, two of them suggested using

the same class hierarchy in the UML diagram, which uses the branching from the superclass.

Expert 1: ‘The students familiar with the class hierarchy in the UML, so I suggested to use it

in the class inheritance representation.’

The interviewees suggested other concepts, such as loops, array and recursion.

165

Expert 2: ‘I suggested to develop an example about loops and recursions; this will help the

students to keep track of the loop counter and show how the condition test should

be made.’

Expert 4: ‘I prefer to use visualisation with arrays to represent the rang and contents of

each element of the array.’

 Conclusion

Despite the availability of visualisation in programming learning, continuous evaluation for better

development is required. The research in this study aimed to evaluate visualisation from the

perspectives of novices and experts to improve the visualisation tool. Improvement of the tool can

help students learn how to program and learn fundamental programming concepts. Based on the

results, the researcher can propose visualisation as an effective method that can be considered as a

teaching approach. The major finding of this study is that visualisation positively affected students’

programming comprehension and helped in assessing the students’ confidence regarding

programming concepts and solving programming problems.

The study suggests expanding the scope of the presented problems in the Visual Code Flow tool.

The experts in the field suggest including other threshold concepts, such as the use of a loop, an

array and recursions.

There are certain limitations to the study. The students only used visualisation for one hour (during

lecture time), which was too short; they needed more time to try the tool. Another limitation is that

the scope of the tool covered three examples that were limited to three programming concepts.

Further studies can investigate and evaluate various problems, such as control statements and

arrays.

166

Chapter 8 CONCLUSIONS AND FUTURE WORK

 Introduction

The following sections discuss the importance of visualisation in programming learning and the

necessity for continued improvement to meet novices’ needs. The main objective of this research

was to define an approach to increase novices’ comprehension when learning programming and

thereby improve their performance. An additional aim was to expand and improve the model. The

research investigated the obstacles and challenges novice programmers face in understanding

programming concepts generally and in existing programming learning systems. The proposed

approach is based on two main concepts—pedagogy theory (threshold concepts) and the benefits of

using visualisation in programming learning. The proposed approach was evaluated based on such

aspects as novices’ performance and confidence in solving programming problems and in

understanding programming concepts. Expert evaluation was provided for further improvement.

The objective was achieved by defining the gap between the threshold concepts and novice

programmers’ needs after carefully reviewing the most appropriate approaches. Thereafter, a

comprehensive visualisation tool was designed and was then evaluated by students and experts.

 Contributions and Achievement of the Research

Overall, the research achieved all the objectives set out in Chapter 1 using a series of experiments in

the first and second phases and studies to examine the learning environment. The main

achievements of this research are as follows.

 It established a current understanding of strengths and weaknesses in programming learning

systems, specifically visualisation systems and some existing tools that support the teaching of

programming.

 It defined the attributes of current visualisation methods and assessed the necessary attributes

required for the new framework.

167

 It explored pedagogy theories related to the threshold concepts to discover the challenges for

novice programmers.

 It developed and implemented the proposed framework based on the existing tools and novice

programmers’ needs.

 It evaluated the proposed framework by obtaining novices’ feedback and experts’ opinions to

ensure it is appropriate for novice programmers’ requirements.

Overall, the study contributed to finding what programming learners need in a visualisation tool.

The study defined the features and characteristics of a visualisation tool in order to refine it based

on the learners’ perspectives. The study also contributed to identifying some of the threshold

concepts in programming that visualisation can help learners to understand better. It also evaluated

the visualisation tool to determine the impact of visualisation on learners’ performance, confidence

while solving programming problems and development in terms of understanding general

programming concepts.

 The Research Questions

The achievements in terms of answering the research questions can be summarised as follows.

1. What is the impact of using program visualisation on students’ performance while

tracing the program?

The major finding of this study was that visualisation positively affected students’

programming comprehension. However, a significant difference was observed between the

performance of the control group and that of the visualisation group. The improvement in the

visualisation group was more remarkable than that in the control group. The reasons for this

can be explained from different perspectives.

 According to Mselle and Twaakyondo (2012), MTL permits novices to illustrate code

execution as the machine does it. Students feel the machine can be viewed as a human that can

respond and anticipate what the code is doing. The study findings support this idea. This can

explain the improvement in the students’ scores. Most of the students in the visualisation group

168

indicated that visualisation and animation helped them understand object-oriented

programming. Therefore, the present study has proven what was discussed by researchers such

as Hagan and Markham (2000), Holliday and Luginbuhl (2004) and Sun (2010).

2. What is the impact of using program visualisation on students’ comprehension of

general programming concepts?

Assessing students’ comprehension of general programming concepts is one of the aims of

this study. Therefore, the researcher measured the comprehension of the students before and

after using visualisation by asking them general questions about their understanding of some

of the programming topics. The results indicated that students’ comprehension increased

after attending the visualisation session. This can be seen in the students’ answers to the

general questions at the beginning of the survey.

3. What is the impact of using program visualisation on students’ confidence while they

are solving programming problems?

Another aim of this study was to assess students’ confidence in solving programming

problems. There is a strong relationship between committed errors in programming and

students’ confidence. The study by Mselle and Twaakyondo (2012) showed how

visualisation reduced the number of errors students committed. The present study showed

how visualisation increased students’ confidence and consequently reduced mistakes. The

survey asked the students about their confidence when answering each step in the

programming problem. In comparing the responses about confidence before and after the

visualisation, an improvement in the students’ confidence while solving the programming

problems can be seen.

169

 Limitations of the Research

Although the objectives of the research program have been met, a number of decisions had to be

made that imposed limitations on the work. These decisions were typically a result of either

practical constraints or time restrictions. The key limitations of the research are summarised below.

1- The number of programming problems considered in the investigation and in the visual code

flow tool implementation was limited to three. The researcher believes that expanding the

scope of the programming problems and investigating other threshold concepts in

programming would have provided more data and allowed a more in-depth exploration of

more difficulties faced by programming learners.

2- In both experiments, the participants did not have the chance to practise using the

visualisation tool for longer than the time allotted for the interview or experiments.

Allowing them to use the visualisation tool for a longer period would allow for a better

evaluation of the tool.

3- The research population in the study was not generalisable across the worldwide population,

as the participants were from one area. Moreover, the sample size used in conducting

qualitative research in the interviews and focus groups was limited. Because of the nature of

the study, it was difficult to gather a large sample for the interviews, as that would have

consumed significant time and effort. The kind and size of the research population could

affect the reliability of the results, which would increase the variability and may lead to bias.

 Future Research

There are a number of areas that require future work, both specifically related to this research and

more generally to visualisation.

1- Other programming problems that students usually struggle with, such as arrays and

recursion, should be investigated.

170

2- Empirical research to compare the approach in this study with approaches in related works

could be conducted. Such a comparison would uncover more strengths and/or weaknesses of

all the various approaches that benefit visualisation in programming learning.

3- The Visual Code Flow tool needs to be improved in terms of its capacity to find and debug

errors. Error debugging is a potentially valuable measure of students’ performance and has

an impact on their comprehension.

4- Other methodologies should be used to gather quantitative data about performance, task

duration and tool usage, such as automatic recording or video analysis. The researcher

suggests quantitative data, such as counting the number of errors committed while writing a

program or the time needed to solve or trace a programming question. This kind of data may

provide more evidence on performance and confirm the study findings.

5- The researcher suggests extending the study to cover various international sites and

expanding the sample size for both quantitative and qualitative research. The larger the

sample, the more valid the research results will be.

 The Importance Of Visualisation In Programming Learning

It has become clear that programming is a challenge to most students and that mastering the basics

of a programming language is a huge obstacle for many. Traditional teaching methods are often

passive and thus do not engage students in active learning with dynamic program execution.

Programming is dynamic by nature; however, traditional learning materials have a static format.

Using visualisation in programming learning showed that it contributes to a better understanding

and improvement in programming performance among students. Based on the literature reviewed

and on the study findings, the researcher proved that a significant percentage of students achieved

better results when they were using a software visualisation tool. The researcher believes that

visualisation should be continuously improved to keep up with both students’ needs and the

evolution of programming languages.

171

The future of visualisation implementations will have to consider diverse programming issues, such

as side effects in expression evaluations and data dependencies. Students should be able to learn

from their mistakes by representing them during dynamic execution. The continued growth of

visualisation tools and research into their usability and ability to improve students’ comprehension

is both necessary and expected.

 Research Dissemination

While there are many studies to proof the advantages of using visualisation in programming

learning, the present study emphasises the need to introduce visualisation as an official aspect at

academic institutions. Visualisation in programming learning is widely accepted; however, it is not

recognised by many programming learners, as was shown in the interviews conducted with the

programming students in Chapter 6. Therefore, efforts to include visualisation in programming

learning should continue in order to disseminate visualisation among programming learners.

Academic institutions can further this cause by introducing and using visualisation in lectures and

computer labs. Continuing to have conferences and publications about the importance of using

visualisation in programming learning can facilitate this. The research conducted has considered the

need for visualisation and has proposed means that can contribute to its improvement.

The impact of this study is that it encourages educational institutions to use visualisation as a

method to facilitate the learning of programming. This is particularly important in Saudi Arabia,

where the visualisation method is little known. This study will hopefully help introduce the use of

visualisation to Saudi programming learners. The study explains the benefits of using visualisation

and how it will positively affect programming learners’ performance and programming knowledge.

172

References

Adam, A., and Laurent, J.-P. (1980). LAURA, a system to debug student programs.
Artificial Intelligence, 15, pp. 75–122. http://doi.org/10.1016/0004-3702(80)90023-5.

Al-Gahtani, S. S. (2004). Computer technology acceptance success factors in Saudi
Arabia: an exploratory study. Journal of Global Information Technology
Management, 7(1), pp. 5-29.

Aktunc, O. (2013). A Teaching Methodology for Introductory Programming Courses using
Alice, 3(1),pp. 350–353.

Al-imamy, S., Alizadeh, J., and Nour, M. a. (2006). On the Development of a Programming
Teaching Tool : The Effect of Teaching by Templates on the Learning Process.
Journal of Information Technology Education, 5, pp. 271–283. Retrieved from
http://www.editlib.org.ezproxy.psz.utm.my/p/111545/.

Al-Othman, A. and Almawash, F., (2020). The Impact of Teaching Programming by using
Scratch on Self-motivation towards Learning Programming for Primary School
Students in Riyadh. Journal of Educational and Psychological Studies [JEPS], 14(1),
pp.54.

Amineh, R. J., and Asl, H. D. (2015). Review of constructivism and social constructivism.
Journal of Social Sciences, Literature and Languages, 1(1), pp. 9-16.

Alakeel, A. M. (2015). Investigating Difficulties of Learning Computer Programming in
Saudi Arabia. Universal Journal of Educational Research, 3(9), pp. 567-577.

Ala-Mutka, K. M. (2004). Problems in learning and teaching programming-a literature study
for developing visualizations in the Codewitz-Minerva project. Codewitz Needs
Analysis,pp. 1–13.

Anderson, J. R., and Skwarecki, E. (1986). The automated tutoring of introductory
computer programming. Commun. ACM, 29(9),pp. 842-849.

Aparicio, M., Bacao, F., and Oliveira, T. (2016). An e-learning theoretical framework. An e-
learning theoretical framework(1), pp. 292-307.

Arango-Muñoz, S. (2015). Joëlle Proust: The Philosophy of Metacognition: Mental Agency

and Self-Awareness. In: Springer.
Alhammad, S., Atkinson, S., and Stuart, L. (2016). The role of Visualisation in the study of

Computer Programming. In 27th Annual Workshop of the Psychology of Programming
Interest Group - PPIG 2016 ,pp. 5–16. Cambridge,UK.

Allen, E., Cartwright, R., and Stoler, B. (2002). DrJava: A lightweight pedagogic
environment for Java. Paper presented at the SIGCSE.

Alshenqeeti, H. (2014). Interviewing as a Data Collection Method: A Critical Review.
English Linguistics Research, 3(1),pp. 39–45. http://doi.org/10.5430/elr.v3n1p39.

Aytekin, M. C. (2019). Construction and visualization of concept prerequisite graphs for e-
learning (Doctoral dissertation).

Back, G.G. and Dietrich, G.S., 2017. Market Trends. In Handbook of Incineration of
Hazardous Wastes (1991) ,pp. 59-66. CRC Press.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., and Slominski, A.
(2017). Serverless computing: Current trends and open problems. In Research
Advances in Cloud Computing ,pp. 1-20: Springer.

Barnes, D. J., Kölling, M., and Gosling, J. (2006). Objects First with Java: A practical
introduction using BlueJ: Pearson Prentice Hall London.

Bode, R., and Hahn, N. (2015). StratEx Environmental Testing.
Bennedsen, J., and Schulte, C. (2010). BlueJ Visual Debugger for Learning the Execution

of Object-Oriented Programs? ACM Transactions on Computing Education, 10(2),

173

pp.1–22. http://doi.org/10.1145/1789934.1789938.
Beatty, K. (2013). Teaching and researching: Computer-assisted language learning.

Routledge.
Behera, A. K., Verbert, J., Lauwers, B., and Duflou, J. R. (2013). Tool path compensation

strategies for single point incremental sheet forming using multivariate adaptive
regression splines. Computer-Aided Design, 45(3), pp. 575-590.

Bertram, D. (2006). Likert Scales: CPSC 681—Topic Report. Poincare, pp.1–11.

http://doi.org/10.1002/9780470479216.corpsy0508
Bishop-Clark, C., Courte, J., Evans, D., and Howard, E. (2007). A Quantitative and

Qualitative Investigation of Using Alice Programming to Improve Confidence,
Enjoyment and Achievement Among Non-Majors. Journal of Educational Computing
Research, 37(2), pp.193–207. http://doi.org/10.2190/J8W3-74U6-Q064-12J5

Bitzer, D. L., Hicks, B. L., Johnson, R. L., and Lyman, E. R. (1967). The Plato System:
Current Research and Developments. IEEE Transactions on Human Factors in
Electronics, HFE-8(2), pp.64–70. http://doi.org/10.1109/THFE.1967.233313

Blandford, A. (2013). Semi-Structured Qualitative Studies. The Encyclopedia of Human-
Computer Intreraction, 2,pp.53.

Blikstein, P. (2011). Using learning analytics to assess students' behavior in open-ended
programming tasks. Paper presented at the Proceedings of the 1st international
conference on learning analytics and knowledge.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., and
Zander, C. (2007). Threshold concepts in computer science. ACM SIGCSE Bulletin,
39(1), pp. 504. http://doi.org/10.1145/1227504.1227482.

Bryman A (2012) Social Research Methods. Fourth edition. Oxford University Press,
Oxford.

Bryman, A. (2017). Social Research Methods. Oxford University Press (Vol. 91).
Brinkmann, S. (2014). Doing without data. Qualitative Inquiry, 20(6), pp.720-725.
Brusilovsky, P. (1994). The Construction and Application of Student Models in Intelligent

Tutoring Systems. The Construction and Application of Student Models in Intelligent
Tutoring Systems, 32(1),pp. 70–89.

Bühlmann, M. (2011). T He Q Uality of D Emocracy ; C Rises and S Uccess S Tories,
49(1), 123–128.

Campbell, A., Catto, G., and Hansen, E. (2003). Language-independent interactive data
visualization. ACM SIGCSE Bulletin, pp.215–219. Retrieved from
http://dl.acm.org/citation.cfm?id=611972.

Capper, J. (2001). E-Learning Growth and Promise For the Developing World.
TechKnowLogia, May/June, 7–10. Retrieved from www.TechKnowLogia.org.

Charmaz, K., and Belgrave, L. L. (2007). Grounded theory. The Blackwell encyclopedia of
sociology.

Conti, S., Peruginelli, G., and Francesconi, E. (2019). The e-learning approach and
visualisation techniques in the judicial area. J. Open Access L.

Corbin, J., and Strauss, A. (1990). Grounded Theory Research: Procedures, Canoan and
Evaluative Criteria. Zeitschrift Fur Soziologie, 19(6), pp.418–427.
http://doi.org/10.1007/BF00988593.

Corbin, J., and Strauss, A. (1990). Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative Sociology, 13(1), pp.3-21.

Corbin, J., and Strauss, A. (2008). Basics of Qualitative Research (3rd ed.): Techniques
and Procedures for Developing Grounded Theory. Basics of Qualitative Research (3rd
ed.): Techniques and Procedures for Developing Grounded Theory. SAGE
Publications, Inc., pp.1–23. http://doi.org/http://dx.doi.org/10.4135/9781452230153.

Crotty, M. (1998). The foundations of social research. London: Sage.

174

Creswell, J. (2014). Research Design:qualitative,quantitative,and mixed methods
approaches. SAGE (4th ed., Vol. 91).

Creswell, J. W. (1994). Research design: Qualitative and quantitative approaches.
Thousand Oaks, Calif: Sage Publications.

Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five
traditions. Thousand Oaks, Calif: Sage Publications.

Daniel, E. (2016). The Usefulness of Qualitative and Quantitative Approaches and
Methods in Researching Problem-Solving Ability in Science Education Curriculum,
7(15), pp. 91–100.

Davies, P. (2003). Threshold Concepts: how can we recognise them? European
Association in Learning and Instruction Conference EARLI, 44, pp.1–21.
http://doi.org/10.4324/9780203966273

Dekson, D. E., Suresh, E. S. M., and Ponnusamy, R. (2009). Intelligent system to teach
programming languages. 2009 International Conference on Intelligent Agent and
Multi-Agent Systems, IAMA 2009. http://doi.org/10.1109/IAMA.2009.5228014

Dixon, M. (2004a). Code-Memory Diagram Animation Software Tool : Towards on-Line
Use. Proceeding of the IASTED International Conference WEB-BASED EDUCATION,
(February 16-18,2004,Innsbruck,Austria), pp. 601–603.

Dixon, M. (2004b). Generic Code-Memory Diagram Animation Authoring Tool : Impact on
Learning and Teaching Object-Oriented Programming.

Durzo, J., (1978) . Basic considerations for implementing instructional development
programs in higher education: Some suggestions from the literature. Journal of
Instructional Development, 1(2), pp.30-35.

Ebrahimi, A., Geranzeli, S., Shokouhi, T., and Tee, E. R. (2013). Programming for
children:“Alice and Scratch analysis”. Paper presented at the 3rd International
Conference on Emerging Trends of Computer and Information Technology
(ICETCIT), Singapore.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., and Zander, C.
(2006). Putting threshold concepts into context in computer science education. ACM
SIGCSE Bulletin, 38(3), pp.103. http://doi.org/10.1145/1140123.1140154

Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., Thomas, L., and Zander, C.
(2007). From Limen to Lumen: Computing students in liminal spaces. Proceedings of
the Third International Workshop on Computing Education Research - ICER ’07,
pp.123–132. http://doi.org/10.1145/1288580.1288597.

Eliot and Associates (2007). (2005). Guidelines for conducting a focus group.
Etheredge, J. (2004). CMeRun. ACM SIGCSE Bulletin, 36(1),pp.22.

http://doi.org/10.1145/1028174.971311
Evaluation Research Team. (2008). Data Collection Methods for Program Evaluation:

Focus Groups. Evaluation Briefs, (13),Retrieved from
http://www.cdc.gov/healthyyouth/evaluation/index.htm.

Evangelidis, G., Dagdilelis, V., Satratzemi, M., and Efopoulos, V. (2001). X-compiler: Yet
another integrated novice programming environment. Proceedings - IEEE
International Conference on Advanced Learning Technologies, ICALT 2001, pp.166–
169. http://doi.org/10.1109/ICALT.2001.943890.

Franzoni, A. L., Assar, S., Defude, B., and Rojas, J. (2008, July). Student learning styles
adaptation method based on teaching strategies and electronic media. In 2008 Eighth
IEEE International Conference on Advanced Learning Technologies ,pp. 778-782.
IEEE.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., and
Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-institutional study of
novice debuggers. Computer Science Education, 18(2), pp.93–116.
http://doi.org/10.1080/08993400802114508

Fouh, E., Akbar, M., Shaffer, C. A., and Tech, V. (2012). The Role of Visualization in

175

Computer Science Education.
Georgantaki, S., and Retalis, S. (2007). Using educational tools for teaching object

oriented design and programming. Journal of Information Technology Impact, 7(2),
pp. 111-130.

Ghirardini, B. (2011). E-learning methodologies: A guide for designing and developing e-
learning courses. Food and Agriculture Organization of the United Nations (FAO).
http://doi.org/I2516E/1/11.11.

Gill, P., Stewart, K., Treasure, E., and Chadwick, B. (2008). Methods of data collection in
qualitative research: Interviews and focus groups. British Dental Journal, 204(6),pp.
291–295. http://doi.org/10.1038/bdj.2008.192.

Glaser, B., and Strauss, A. (1967). The discovery of grounded theory: Strategies for
qualitative research. London, UK: Weidenfeld and Nicholson.

Gliner, B. E., Wyler, A., Fowler, B., Sheffield, W. D., Kuntz, R., Leyde, K., and Sloan, L. R.
(2009). U.S. Patent No. 7,483,747. Washington, DC: U.S. Patent and Trademark
Office.

Gomes, A., and Mendes, A. J. (2007). An environment to improve programming education.
Proceedings of the 2007 International Conference on Computer Systems and
Technologies. ACM, 1. http://doi.org/10.1145/1330598.1330691.

Gouyon, F., and Dixon, S. (2005). A review of automatic rhythm description
systems. Computer music journal, 29(1), 34-54.

Gray, K., and Flatt, M. (2003). ProfessorJ: a gradual introduction to Java through language
levels. Companion of the 18th Annual ACM SIGPLAN, 170–177.
http://doi.org/10.1145/949344.949394.

Gries, P., Mnih, V., Taylor, J., Wilson, G., and Zamparo, L. (2005). Memview: A
Pedagogically-Motivated Visual Debugger. Proceedings Frontiers in Education 35th
Annual Conference, S1J–11–S1J–16. http://doi.org/10.1109/FIE.2005.1612204.

Guba, E. G. (1990). The paradigm dialog. In Alternative Paradigms Conference, Mar,
1989, Indiana U, School of Education, San Francisco, CA, US. Sage Publications, Inc.

Gudmundsen, D., Olivieri, L., and Sarawagi, N. (2011). Learn how to use executable
flowcharts to enhance learning in general education, CS0, and CS1 courses: tutorial
presentation. Journal of Computing Sciences in Colleges, 26(6), pp.107-109.

Guo, P. J. (2013, March). Online python tutor: embeddable web-based program
visualization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education ,pp. 579-584. ACM.

Harris, J., Mishra, P., and Koehler, M. (2009). Teachers’ technological pedagogical content
knowledge and learning activity types: Curriculum-based technology integration
reframed. Journal of research on technology in education, 41(4), pp.393-416.

Hagan, D., and Markham, S. (2000). Teaching Java with the BlueJ environment.
Proceedings of Australasian Society for Computers in Learning in Tertiary Education
Conference ASCILITE 2000. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.1985andrep=rep1andtyp
e=pdf.

Hatziapostolou, T., and Paraskakis, I. (2010). Enhancing the impact of formative feedback
on student learning through an online feedback system. Electronic Journal of e-
Learning, 8(2), pp. 111-122.

Holliday, M. a., and Luginbuhl, D. (2004). CS1 assessment using memory diagrams. ACM
SIGCSE Bulletin, 36(1), 200. http://doi.org/10.1145/1028174.971373

Holliday, M. A., and Luginbuhl, D. (2003). Using Memory Diagrams When Teaching a
Java-Based CS1.

Hongwarittorrn, N., and Krairit, D. (2010). Effects of Program Visualization (Jeliot3) on
Students’ Performance and Attitudes towards Java Programming. The Spring 8th
International Conference on Computing, Communication and Control Technologies,
(August),pp. 6–9.

176

Hsia, J. I., Simpson, E., Smith, D., and Cartwright, R. (2005). Taming Java for the
classroom. ACM SIGCSE Bulletin, 37(1),pp. 327-331.

Husain, M., Tarannum, N., and Patil, N. (2013). Teaching programming course elective: A
new teaching and learning experience. IEEE International Conference in MOOC,
Innovation and Technology in Education (MITE), pp. 275–279.
http://doi.org/10.1109/MITE.2013.6756349.

Ishizue, R., Sakamoto, K., Washizaki, H., and Fukazawa, Y. (2018). PVC: Visualizing C
programs on Web browsers for novices. Paper presented at the Proceedings of the
49th ACM Technical Symposium on Computer Science Education.

Jamieson, S. (2004). Likert scales: how to (ab) use them. Medical education, 38(12), pp.
1217-1218.

Kallia, M., and Sentance, S. (2017). Computing Teachers’ Perspectives on Threshold
Concepts. In Proceedings of the 12th Workshop in Primary and Secondary Computing
Education ,pp. 15–24. http://doi.org/10.1145/3137065.3137085

Karnalim, O., and Ayub, M. (2018). The Effectiveness of a Program Visualization Tool on
Introductory Programming: A Case Study with PythonTutor. CommIT (Communication
and Information Technology) Journal, 11(2), pp. 67.
http://doi.org/10.21512/commit.v11i2.3704

Kasurinen, J., Purmonen, M., and Nikula, U. (2008). A Study of Visualization in
Introductory Programming. Ppig ’08, (Winslow 1996), pp.181–194.

Khalife, J. T. (2006). Threshold for the introduction of programming: providing learners with
a simple computer model. 28th International Conference on Information Technology
Interfaces, 2006., 71–76. http://doi.org/10.1109/ITI.2006.1708454.

Kent, A., Hutcheon, I., Ryerson, F., and Phinney, D. (2001). The temperature of formation
of carbonate in Martian meteorite ALH84001: Constraints from cation diffusion.
Geochimica et Cosmochimica Acta, 65(2), p. 311-321.

Khan, S. N. (2014). Qualitative research method: Grounded theory. International Journal of
Business and Management, 9(11), 224-233.

Kolb, S. M. (2012). Grounded Theory and the Constant Comparative Method : Valid
Research Strategies for Educators. Journal of Emerging Trends in Educational
Research and Policy Studies, 3(1), pp. 83–86.
http://doi.org/10.1.1.301.9451andrep=rep1andtype=pdf

Kölling, M. (2018). Blue, BlueJ, Greenfoot: Designing Educational Programming
Environments. In S. Goschnick (Ed.), Innovative Methods, User-Friendly Tools,
Coding, and Design Approaches in People-Oriented Programming ,pp. 42-87.
Hershey, PA: IGI Global. doi:10.4018/978-1-5225-5969-6.ch002

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003). The BlueJ system and its
pedagogy. Computer Science Education, 13(4), pp.1–12.
http://doi.org/10.1076/csed.13.4.249.17496.

Kerlinger, F.N. (1979). Behavioral research: A conceptual approach. NewYork:Holt,
Rinehart, and Winston.

Krosnick, J. a. (1999). Survey research. Annual Review of Psychology, 50,pp. 537–567.
http://doi.org/10.1146/annurev.psych.50.1.537

Land, R., Cousin, G., Meyer, J. H. F., and Davies, P. (2005). Threshold concepts and
troublesome knowledge (3): implications for course design and evaluation. Improving
Student Learning Diversity and Inclusivity, 49(3), 53–64. Retrieved from
http://owww.brookes.ac.uk/services/ocsld/isl/isl2004/abstracts/conceptual_papers/ISL
04-pp53-64-Land-et-al.pdf.

Law, K. M. Y., Lee, V. C. S., and Yu, Y. T. (2010). Learning motivation in e-learning
facilitated computer programming courses. Computers and Education, 55(1),pp. 218–
228. http://doi.org/10.1016/j.compedu.2010.01.007.

Le May, M. R., So, D. Y., Dionne, R., Glover, C. A., Froeschl, M. P., Wells, G. A., ... and
O'Brien, E. R. (2008). A citywide protocol for primary PCI in ST-segment elevation

177

myocardial infarction. New England Journal of Medicine, 358(3),pp. 231-240.
Likert, R. (1932). A technique for measurement of attitudes. Archives of Psychology.
Lune, H., and Berg, B. L. (2016). Qualitative research methods for the social sciences:

Pearson Higher Ed.
Ma, W., Adesope, O. O., Nesbit, J. C., and Liu, Q. (2014). Intelligent tutoring systems and

learning outcomes: A meta-analysis. Journal of educational psychology, 106(4),
901.

Martín-Blas, T., and Serrano-Fernández, A. (2009). The role of new technologies in the
learning process: Moodle as a teaching tool in Physics. Computers and
Education, 52(1), pp. 35-44.

Martin, P. Y., and Turner, B. A. (1986). Grounded theory and organizational research. The
journal of applied behavioral science, 22(2), pp. 141-157.

Marshall, C., and Rossman, G. B. (2014). Designing qualitative research: Sage
publications.

Masadeh, M. a. (2012). Focus Group : Reviews and Practices. International Journal of
Applied Science and Technology, 2(10), pp. 63–68. Retrieved from
http://www.ijastnet.com/journals/Vol_2_No_10_December_2012/9.pdf.

Mayer, R. E. (2017). Using multimedia for e‐learning. Journal of Computer Assisted
Learning, 33(5), pp. 403-423.

Mayer, R. E. (2013). Teaching and learning computer programming: Multiple research
perspectives. Routledge.

Mather, R. (2015). Multivariate Gradient Analysis for Evaluating and Visualizing a Learning
System Platform for Computer Programming. Journal, The Iafor Iii, Education Volume,
III(I), pp.17–30.

McCartney, R., Eckerdal, A., Mostrom, J. E., Sanders, K., and Zander, C. (2007).
Successful students’ strategies for getting unstuck. ACM SIGCSE Bulletin, 39(3), pp.
156. http://doi.org/10.1145/1269900.1268831.

Meyer, J. L., Durairaj, S., and Hakhinian, M. (2016). U.S. Patent No. 9,251,360.
Washington, DC: U.S. Patent and Trademark Office.

Meyer, J., and Land, R. (2003). Threshold concepts and Troblesome knowledge:linkages
to ways of thinking and practising within the disciplines.

Meyer, B. (1993). Logic and the Structure of Space-Towards a Visual Logic for Spatial
Reasoning. Paper presented at the ILPS.

Meyerovich, L. A., and Rabkin, A. (2013). Empirical Analysis of Programming Language
Adoption.

Mertens, T., Kautz, J., and Van Reeth, F. (2009, March). Exposure fusion: A simple and
practical alternative to high dynamic range photography. In Computer graphics
forum (Vol. 28, No. 1, pp. 161-171). Oxford, UK: Blackwell Publishing Ltd.

Milne, I., and Rowe, G. (2002). Difficulties in Learning and Teaching Programming — Views
of Students and Tutors. Education and Information Technologies, 7, 55–66.
http://doi.org/10.1023/A:1015362608943

Mohorovičić, S., and Strčić, V. (2011). An Overview of Computer Programming Teaching
Methods. Central European Conference on Information …. Retrieved from
http://www.ceciis.foi.hr/app/public/conferences/1/archive2011/EIS_3.pdf.

Moreno, A., Myller, N., and Bednarik, R. (2005). Jeliot 3, an extensible tool for program
visualization.

Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. (2004). Visualizing programs with
Jeliot 3. Proceedings of the Working Conference on Advanced Visual Interfaces - AVI
’04, 373. http://doi.org/10.1145/989863.989928

Moons, J., and De Backer, C. (2009). Rationale Behind the Design of the EduVisor
Software Visualization Component. Electronic Notes in Theoretical Computer Science,
224(C), 57–65. http://doi.org/10.1016/j.entcs.2008.12.049

Moström, J. E., Boustedt, J., Eckerdal, A., Mccartney, R., Sanders, K., Thomas, L., and

178

Zander, C. (2008). Concrete Examples of Abstraction as Manifested in Students’
Transformative Experiences. Science Education, 125–135.
http://doi.org/10.1145/1404520.1404533

Moström, J. E., Boustedt, J., Eckerdal, A., McCartney, R., Sanders, K., Thomas, L., and
Zander, C. (2009). Computer science student transformations. ACM SIGCSE Bulletin,
41(3), 181. http://doi.org/10.1145/1595496.1562935

Moussa, W. E., Almalki, R. M., Alamoudi, M. A., and Allinjawi, A. (2016). Proposing a 3d
interactive visualization tool for learning oop concepts. 2016 13th Learning and
Technology Conference, L and T 2016, 26–32.http://doi.org/10.1109/LT.2016.7562861

Mouzelis, N. P. (2016). Back to sociological theory: the construction of social orders.
Springer.

Mselle, L. J. (1989). Enhancing Comprehension by Using Random Access Memory (RAM
) Diagrams in Teaching Programming : Class Experiment. Science And Technology.

Mselle, L. J., and Twaakyondo, H. (2012). The impact of Memory Transfer Language
(MTL) on reducing misconceptions in teaching programming to novices. International
Journal of Machine Learning and Applications, 1, 1–6.
http://doi.org/10.4102/ijmla.v1i1.3

Murphy, C., Kim, E., Kaiser, G., and Cannon, A. (2008). Backstop: a tool for debugging
runtime errors. ACM SIGCSE Bulletin, 40(1), pp.173.
http://doi.org/10.1145/1352322.1352193.

Noble, H., and Mitchell, G. (2016). What is grounded theory? Evidence-based nursing,
19(2), pp. 34-35.

Nyamawe, A. S. (2014). A Proposed Framework for Development of a Visualizer Based on
Memory Transfer Language (MTL). arXiv preprint arXiv:1408.2564.

Padilla, S. A., Straus, J., Leidich, J., and Hahn, N. (2015). StratEx Mission Overview.
Parker, K. R., Ottaway, T. A., and Chao, J. T. (2014). Criteria for the selection of a

programming language for introductory courses, (May).
http://doi.org/10.1504/IJKL.2006.009683.

Phillips, D. C. and N. C. Burbules. (2000). Postpositivism and educational research.
Lanham, MA: Rowman and Littlefield.

Pinsonneeault, A., and Kraemer, K. L. (1993). Survey Research Methodology in
Management Information Systems: An Assessment. Journal of Management
Information System, 10(2), 75–105. http://doi.org/10.1016/j.breastdis.2014.01.018.

Priest, H., Roberts, P., and Woods, L. (2002). An overview of three different approaches to
the interpretation of qualitative data. Part 1: Theoretical issues. Nurse Researcher,
10(1),pp. 30.

Resnik, D. B., Elliott, K. C., and Miller, A. K. (2015). A framework for addressing ethical
issues in citizen science. Environmental Science and Policy, 54, 475-481.

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., …
Silver, J. (2009). Scratch: Programming for All. Communications of the ACM, 52(11),
60. http://doi.org/10.1145/1592761.1592779.

Richard, T. (2013). Qualitative versus quantitative methods: Understanding why qualitative
methods are superior for criminology and criminal justice.

Robins, A., Rountree, J. and Rountree, N. (2003). A review and discussion. Computer
Science Education. http://doi.org/10.1076/csed.13.2.137.14200

Rößling, G. (2010). A family of tools for supporting the learning of programming.
Algorithms, 3, 168–182. http://doi.org/10.3390/a3020168.

Rößling, G., Schüer, M., and Freisleben, B. (2000). The ANIMAL algorithm animation tool.
Paper presented at the ACM SIGCSE Bulletin.

Rodrigues, H., Almeida, F., Figueiredo, V. and Lopes, S., (2019). Tracking e-learning
through published papers: A systematic review. Computers and Education, 136,
pp.87-98.

Rountree, J., and Rountree, N. (2009). Issues regarding threshold concepts in computer

179

science. Conferences in Research and Practice in Information Technology Series, 95,
pp. 139–145.

Salakoski, T. (2006). Koli Calling 2005 Conference on Computer Science Education. on
Computing Education Research.(Koli, Finland, 2005 …, (November). Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.9111andrep=rep1andty
pe=pdf#page=10%5Cnhttp://scholar.google.com/scholar?hl=enandbtnG=Searchandq
=intitle:Koli+Calling+2005+Conference+on+Computer+Science+Education#2

Salcedo, S. L., and Idrobo, A. M. O. (2011). New tools and methodologies for programming
languages learning using the scribbler robot and Alice. Proceedings - Frontiers in
Education Conference, FIE, pp. 1–6. http://doi.org/10.1109/FIE.2011.6142923

Saldaña, J. (2016). The coding manual for qualitative researchers. The Coding Manual for
Qualitative Researchers, 339. http://doi.org/10.1109/TEST.2002.1041893

Samy, M., and Robertson, F. (2017). From positivism to social constructivism: an emerging
trend for CSR researchers. In Handbook of Research Methods in Corporate Social
Responsibility. Edward Elgar Publishing.

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Thomas, L., and
Zander, C. (2008). Student understanding of object-oriented programming as
expressed in concept maps. ACM SIGCSE Bulletin, 40(1),pp.332.
http://doi.org/10.1145/1352322.1352251.

Sanders, K., Boustedt, J., Eckerdal, A., Moström, J. E., Mccartney, R., Thomas, L., and
Zander, C. (2012). Threshold Concepts and Threshold Skills in Computing Categories
and Subject Descriptors. Icer’12, 23–30. http://doi.org/10.1145/2361276.2361283

Sanders, K., and Mccartney, R. (2016). Threshold Concepts in Computing : Past , Present ,
and Future. In the 16th Koli Calling International Conference ,pp. 91–100.

Satratzemi, M., Dagdilelis, V., and Evagelidis, G. (2001). A system for program
visualization and problem-solving path assessment of novice programmers. ACM
SIGCSE Bulletin, 33(3), pp.137–140. http://doi.org/10.1145/507758.377667.

Schroeder, A., Minocha, S., and Schneider, C. (2010). The strengths, weaknesses,
opportunities and threats of using social software in higher and further education
teaching and learning. Journal of Computer Assisted Learning, 26(3), pp.159-174.

Shatri, K., and Buza, K. (2017). The Use of Visualization in Teaching and Learning
Process for Developing Critical Thinking of Students. European Journal of Social
Science Education and Research, 4(1), 71-74.

Shinners-Kennedy, D., and Fincher, S. a. (2013). Identifying threshold concepts.
Proceedings of the Ninth Annual International ACM Conference on International
Computing Education Research ICER, pp.9. http://doi.org/10.1145/2493394.2493396.

Shinners-Kennedy, D. (2016). How NOT to identify threshold concepts. In Threshold
concepts in practice ,pp. 253-267. SensePublishers, Rotterdam.

Siti Rosminah, M. D., and Ahmad Zamzuri, M. A. (2012). Difficulties in learning
programming: Views of students. 1st International Conference on Current Issues in
Education, pp. 74–79. http://doi.org/10.13140/2.1.1055.7441

Skinner, B. F. (1958). Teaching machines. Science, 128(3330), pp. 969–977.
Sorva, J. (2010). Reflections on threshold concepts in computer programming and beyond.

Proceedings of the 10th Koli Calling International Conference on Computing
Education Research - Koli Calling ’10, 21–30. http://doi.org/10.1145/1930464.1930467

STRATEX.pdf. (1997).
Stankov, S., Glavinic, V., and Rosie, M. (2011). Design, Implementation and Evaluation.
Starks, H., and Trinidad, S. B. (2007). Choose your method: A comparison of

phenomenology, discourse analysis, and grounded theory. Qualitative Health
Research, 17(10), pp. 1372- 1380.

Strauss, A., and Corbin, J. (1994). Grounded theory methodology. In N. Denzin and Y.
Lincoln (Eds.), Handbook of qualitative research,pp. 273-285. Thousand Oaks, CA:
Sage.

180

Su, J. M., and Hsu, F. Y. (2017). Building a Visualized Learning Tool to Facilitate the
Concept Learning of Object-Oriented Programming. Proceedings - 2017 6th IIAI
International Congress on Advanced Applied Informatics, IIAI-AAI 2017, pp. 516–520.
http://doi.org/10.1109/IIAI-AAI.2017.180.

Suddaby, R. (2006). From the editors: What grounded theory is not. Academy of
Management Journal ARCHIVE, 49(4),pp. 633-642.

Sun, B. (2010). Java teaching based on BlueJ platform. 2nd International Conference on
Information Engineering and Computer Science - Proceedings, ICIECS 2010, 2–5.
http://doi.org/10.1109/ICIECS.2010.5677726.

Sykes, E. R. (2007). Determining the effectiveness of the 3D Alice programming
environment at the computer science I level. Journal of Educational Computing
Research, 36(2),pp. 223-244.

Tadajewski, M. (2004). The philosophy of marketing theory: Historical and future
directions. The Marketing Review, 4(3), pp. 307-340.

Taherdoost,T.,(2019) .What Is the Best Response Scale for Survey and Questionnaire
Design; Review of Different Lengths of Rating Scale / Attitude, Scale / Likert Scale,
International Journal of Academic Research in Management, Vol. 8, No. 1, 2019,
pp. 1-10.

Tamim, R. M., Lowerison, G., Schmid, R. F., Bernard, R. M., and Abrami, P. C. (2011). A
multi-year investigation of the relationship between pedagogy, computer use and
course effectiveness in postsecondary education. Journal of Computing in Higher
Education, 23(1), pp.1-14.

Vagianou, E. (2006). Program Working Storage : A Beginner ’ s Model, 69–76.
Vall Castelló, B. (2016). Bridging constructivism and social constructionism: The journey

from narrative to dialogical approaches and towards synchrony. Journal of
Psychotherapy Integration, 26(2), pp. 129.

Valverde-Berrocoso, J., Garrido-Arroyo, M., Burgos-Videla, C. and Morales-Cevallos, M.,
(2020). Trends in Educational Research about e-Learning: A Systematic Literature
Review (2009–2018). Sustainability, 12(12), pp.5153.

Virtanen, A. T., Lahtinen, E., and Jarvinen, H.-M. (2005). VIP, a Visual Interpreter for
Learning Introductory Programming with C++. Koli Calling ’05.

Welsh, E. T., Wanberg, C. R., Brown, K. G., and Simmering, M. J. (2003). E-learning:
Emerging uses, emirical results and future directions. International Journal of Training
and Development, 7(4),pp. 245–258. http://doi.org/10.1046/j.1360-3736.2003.00184.x

Williams, A., and Katz, L. (2001). The use of focus group methodology in education: Some
theoretical and practical considerations. International Journal for Leadership in
Learning, 5(3).

Yang, F.-J. (2010). The ideology of intelligent tutoring systems. ACM Inroads.
http://doi.org/10.1145/1869746.1869765

Yang, J., Lee, Y., and Chang, K. H. (2018). The Journal of Systems and Software
Evaluations of JaguarCode : A web-based object-oriented programming environment
with static and dynamic visualization. The Journal of Systems and Software,
145(December 2017), pp.147–163. http://doi.org/10.1016/j.jss.2018.07.037.

Yeomans, L., Zschaler, S., and Coate, K. (2019). Transformative and Troublesome?
Students’ and Professional Programmers’ Perspectives on Difficult Concepts in
Programming. ACM Transactions on Computing Education, 19(3), pp.1–27.
http://doi.org/10.1145/3283071

Young, R. A., and Collin, A. (2004). Introduction: Constructivism and social

constructionism in the career field. Journal of vocational behavior, 64(3),pp.373-
388.

Zander Carol Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and
Sanders, K. (2008). Threshold Concepts In Computer Science: A Multi-National

181

Empirical Investigation. Threshold Concepts within the Disciplines, pp.105–118.
Zelhart, F., and Wallingford, E. (1994). A survey of intelligent tutoring systems and the

methods used for effective tutoring. Intelligent Systems Laboratory, pp.1–35. Retrieved
from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.1280andamp;rep=rep1
andamp;type=pdf

Zhang, Y., Surisetty, S., and Scaffidi, C. (2013). Assisting comprehension of animation
programs through interactive code visualization. Journal of Visual Languages and
Computing, 24(5), pp.313–326. http://doi.org/10.1016/j.jvlc.2013.07.001.

Zheng, D., Shi, M., Wang, Y., Eseye, A., and Zhang, J. (2017). Day-ahead wind power
forecasting using a two-stage hybrid modeling approach based on scada and
meteorological information, and evaluating the impact of input-data dependency on
forecasting accuracy. Energies,pp. 10(12).

182

Appendices

Appendix A- Ethical approval letter and form- Consent form- Information sheet

(Data collection)

Ethical approval

183

PLYMOUTH UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING

Research Ethics Committee

APPLICATION FOR ETHICAL APPROVAL OF RESEARCH INVOLVING

HUMAN PARTICIPANTS

All applicants should read the guidelines which are available via the following link:
https://staff.plymouth.ac.uk//scienv/humanethics/intranet.htm

This is a WORD document. Please complete in WORD and extend space where necessary.

All applications must be word processed. Handwritten applications will be returned.

Please submit with interview schedules and/or questionnaires appropriately.

Postgraduate and Staff must submit a signed copy to SciEngHumanEthics@plymouth.ac.uk

Undergraduate students should contact their School Representative of the Science and
Engineering Research Ethics Committee or dissertation advisor prior to completing this form to
confirm the process within their School.

School of Computing, Electronics and Mathematics undergraduate students – please submit
to SciEngHumanEthics@plymouth.ac.uk with your project supervisor copied in.

__

1. TYPE OF PROJECT

1.1 What is the type of project? (Put an X next to one only)

STAFF should put an X next to one of the three options below:

Specific project

Thematic programme of research

Practical / Laboratory Class
.
1.2 Put an X next to one only

POSTGRADUATE STUDENTS should put an X next to one of the options below:

Taught Masters Project

M.Phil / PhD by research

UNDERGRADUATE STUDENTS should put an X next to one of the options below:

Student research project

Practical / Laboratory class where you are acting as the experimenter

2. APPLICATION

2.1 TITLE of Research project

Tracing Learning Environment in JAVA programming Language

https://staff.plymouth.ac.uk/scienv/humanethics/intranet.htm
mailto:SciEngHumanEthics@plymouth.ac.uk
mailto:SciEngHumanEthics@plymouth.ac.uk

184

2.2 General summary of the proposed research for which ethical clearance is sought, briefly
outlining the aims and objectives and providing details of interventions/procedures involving
participants (no jargon)

A plenty of visualization software have emerged recently with the aim of support the
learning how to program for novices programmer. Each tool has its features that may or
may not be useful for better understanding. The software that considered in this research
is the one that based on using memory-referencing and visualizing what happen in the
individual execution for program statement. Clearly, the effectiveness of the existing
educational software is an important part of collecting students requirements and needs for
further improvements.
The objectives of the research is to explore the problem(s) do students have with memory-
reference tools and what are the technical hurdles remain to students being able to learn
programming using the existing tools. The research investigates on the program
visualization tools and compares them for the purpose of collecting user requirements
needed to implement the Ph.D. framework.
The evaluation will incorporate the semi-structured interviews method that the students will
be asked open-ended questions based on issues of interest.
In detail, the interviews will cover the following aspects:

 The students will be asked about their experience and background in using
visualization tools for the purpose of learning programming.

 Three tools will be presented to the students as a sample of using visualization in
the programming learning, and then the students will be discussed the tools, and
its usability determining the strengthen and weakness on them

 Students will be asked to compare the tools among each other on solving some
programming problems and requesting their opinion on the best/worst tool.This will
help to identify the areas where difficulties understanding and the weakness area of
the tools.

Interviewers will request the student’s permission to record these sessions so that the
process is not interrupted by note taking.

2.3 Physical site(s) where research will be carried out

Plymouth University, Drake Circus,Plymouth,PL4 8AA
Princess Norah Bint Abdurrahman University (PNU) , Riyadh, Saudi Arabia

2.4 External Institutions involved in the research (e.g. other university, hospital, prison etc.)

Our research may include participants form other universities in Saudi Arabia .
2.5 Name, telephone number, e-mail address and position of lead person for this project (plus full
details of Project Supervisor if applicable)

PhD Student: Sarah Alhammad: +966554427159 : sarah.alhammad@plymouth.ac.uk
PhD Supervisor: Dr. Shirley Atkinson : 01752 586209 : shirley.atkinson@plymouth.ac.uk

2.6 Start and end date for research for which ethical clearance is sought (NB maximum period is 3
years)

Start date:01-10-2015 End date: 01-10-2018

2.7 Has this same project received ethical approval from another Ethics Committee?

Delete as applicable: No Yes

2.8 If yes, do you want Chairman’s action?

mailto:sarah.alhammad@plymouth.ac.uk
mailto:shirley.atkinson@plymouth.ac.uk

185

Delete as applicable: No Yes
If yes, please include other application and approval letter and STOP HERE. If no, please continue

3. PROCEDURE

3.1 Describe procedures that participants will engage in, Please do not use jargon

The proposed evaluation procedure has four steps. Each is described in detail:

Step 1: The students will be welcomed as they arrive (5 minutes)

 The interviewer will ask the students if they are willing to participate in the session.

 If they are, then the interviewer will ask the users permission to audio record the
session.

 If they are still willing to participate then the interviewer will explain all about
withdrawal - the fact that they can withdraw at any time and they can also
subsequently, withdraw their data from the study and how to do so.

 The interviewer will also explain that all personally identifiable information will be
held separate from the core dataset. It will only be used if the student wishes to
withdraw their consent.

 Once the student has been briefed and if they are willing to participate the
interviewer will ask them to sign the consent document before proceeding.

The interviewer will provide the user with an overview of the session activities and
duration. This will give a breakdown of how long each step should take. This will ensure
that the student is fully informed about the process.

Step 2 – student is given an introduction (5 minutes)

 Initially, the student will be introduced to the subject in general and the objectives of
the study. This will give the students the background they need to do the tasks.

Step 3 – User attempts to do task 1, 2 and 3 (45 minutes for all)

 The tasks are not specified in exact detail here, as they will vary slightly as the
research evolves. However, they will all follow the same basic outline:

o First: The students background on using any tool for the purpose of tracing
and observing the program behaviour during their programming study. The
discussion expanded to their experience and whether they benefit from them.
Moreover, the features and drawbacks existing on the tools from the
students perspective. This session will be designed so that it lasts no more
than 10 minutes.

o Second: The second part of the discussion is evaluating of three selected
tools. The tools have a common methodology that is the program
visualization method. However, each tool has its features.

The evaluation is done by presenting three activities that usually students stuck on. This
session will be designed so that it lasts no more than 25 minutes.

o Third: comparison discussion is the third aspect. The comparison between
the tools on solving the three kinds of activities. This session will be designed
so that it lasts no more than 10 minutes.

Step 4 – Final feedback and thanks (5 minutes)

 After all the tasks are completed, the student will be asked to comment more
generally about the tools. For example, they will be asked their opinion on the
method that these tools follow and whether they find it useful and effective.

 Since we want our students to be happy with this process, we plan to reaffirm their

186

rights to withdraw their data.

 It is also important that we give students the right to ask questions about the
research and the process. We want the students to feel valued as an important part
of this process.

 Finally, we will thank the subjects (handing over the thank you card with their code
on it) and ask them if they would be willing to participate again at a later stage.

Ethical approval for recording of these sessions is specifically sought so that note taking
does not interfere with the process. In particular, the discursive process when users are
describing the problems they see/have experienced when using the tools.

3.2 How long will the procedures take? Give details

All evaluation sessions will last approximately 55-60 minutes.

 Step 1 – As the student arrives they will be welcomed (5 minutes). This includes an
overview of sessions and its duration.

 Step 2 – Interviewer will give an introduction (5 minutes).This includes an overview
of the subject and the study objectives

 Step 3– students attempt to do task 1, 2 and 3 (45 minutes divided over three
interlocutors, 10 min, 25 min, 10 min)

 Step 4 – Final feedback and thanks (5 minutes)

3.3 Does your research involve deception?

Delete as applicable: No Yes
3.4 If yes, please explain why the following conditions apply to your research:

a) Deception is completely unavoidable if the purpose of the research is to be met

b) The research objective has strong scientific merit

c) Any potential harm arising from the proposed deception can be effectively neutralised or
reversed by the proposed debriefing procedures (see section below)

3.5 Describe how you will debrief your participants

The participants will be debriefed as follows

 The students will be thanked for their participation.

 Then, to maintain anonymity, each student will be assigned their own “participators
code”.

 They will be issued with this “participators code” in writing and reminded of the
process/contact details for withdrawing their consent/data from the study.
Specifically

o Participators can withdraw their consent/data from this study, up to 6 weeks
after the date of the usability session took place

o To withdraw, participators simply contact Mrs Sarah Alhammad stating their
unique “participators code”. Contact details include postal as well as
electronic contact information.

o Subsequently, the Participators data will be permanently deleted, and the
participator will receive a confirmation email/letter (as appropriate) to that
effect. It is important that participators who withdraw are kept well informed
and are reassured that their data has been permanently deleted as

187

requested.

3.6 Are there any ethical issues (e.g. sensitive material)?

Delete as applicable: No Yes
3.7 If yes, please explain. You may be asked to provide ethically sensitive material. See also section
11

188

 4. BREAKDOWN OF PARTICIPANTS

4.1 Summary of participants

Type of participant Number of participants

Non-vulnerable Adults

20

Minors (< 16 years)

0

Minors (16-18 years)

0

Vulnerable Participants

(other than by virtue of being a
minor)

0

Other (please specify)

0

TOTAL

20

4.2 How were the sample sizes determined?

 It is estimated that the average number for effective semi-structured interviews is about 15
to 20 participants. Participants will be recruited using email as well as personal contact.
4.3 How will subjects be recruited?

Participants will be recruited using email as well as personal contact.

4.4 Will subjects be financially rewarded? If yes, please give details.

Yes, subjects will be paid £8 per hour. This rate is based on the current rates used by
Plymouth University for similar experiments.
The students in PNU will volunteer to participate in the study.

5. NON-VULNERABLE ADULTS

5.1 Are some or all of the participants non-vulnerable adults?

Delete as applicable: No Yes
5.2 Inclusion / exclusion criteria

There are no specific inclusion/exclusion criteria

5.3 How will participants give informed consent?

At the beginning, embedded in Step 1 consent is sought for both participation and audio
recording individually.
Again, embedded in the final step, the process for consent withdrawal is reiterated and the
subject is given a written “thank card” which describes how and the time limitations on the
withdrawal of consent.

189

As mentioned in section 3.1 – repeated here for clarity
Step 1: The students will be welcomed as they arrive (5 minutes)

 The interviewer will ask the students if they are willing to participate in the session.

 If they are, then the interviewer will ask the users permission to audio record the
session.

 If they are still willing to participate then the interviewer will explain all about
withdrawal - the fact that they can withdraw at any time and they can also
subsequently, withdraw their data from the study and how to do so.

 The interviewer will also explain that all personally identifiable information will be
held separate from the core dataset. It will only be used if the student wishes to
withdraw their consent.

 Once the student has been briefed and if they are willing to participate the
interviewer will ask them to sign the consent document before proceeding.

The interviewer will provide the user with an overview of the session activities and
duration. This will give a breakdown of how long each step should take. This will ensure
that the student is fully informed about the process.

Step 4 – Final feedback and thanks (5 minutes)

 After all the tasks are completed, the student will be asked to comment more
generally about the tools. For example, they will be asked their opinion on the
method that these tools follow and whether they find it useful and effective.

 Since we want our students to be happy with this process, we plan to reaffirm their
rights to withdraw their data.

 It is also important that we give students the right to ask questions about the
research and the process. We want the students to feel valued as an important part
of this process.

 Finally, we will thank the subjects (handing over the thank you card with their code
on it) and ask them if they would be willing to participate again at a later stage.

Ethical approval for recording of these sessions is specifically sought so that note taking
does not interfere with the process. In particular, the discursive process when users are
describing the problems they see/have experienced when using the tools.

5.4 Consent form(s) attached

Delete as applicable: No Yes
If no, why not?

5.5 Information sheet(s) attached

Delete as applicable: No Yes
If no, why not?

5.6 How will participants be made aware of their right to withdraw at any time?

Ensuring that participants clearly understand their right to withdraw is embedded in the
study. During Step 1, the participator is welcomed. After the welcome, withdrawal of
participation/data and permission to audio record is discussed in detail and written consent
is sought before continuing the interview.

190

Towards the end of the session the participant’s freedom to withdraw their
participation/data is reiterated. Furthermore the process for withdrawing consent is
explained in detail at this stage. The process for withdrawing is described in section 3.5

5.7 How will confidentiality be maintained, including archiving / destruction of primary data where
appropriate, and how will the security of the data be maintained?

None of the results reported from the study will include information that allows
identification of named individuals. No reference will be made to individual persons or
participants, either by name or type of data supplied. However, a coding scheme will be
used. Each participator will be issued with a “code” which will be used to store their
individual data. This code will be required should the user wish to withdraw their
consent/data from the study.

All data will be stored on University equipment. The information will be collected and
stored on a University computer. This computer is password protected and exists behind a
University firewall. The computer is located in a secure building.

6. MINORS <16 YEARS

6.1 Are some or all of the participants under the age of 16?

Delete as applicable: No Yes
If yes, please consult special guidelines for working with minors. If no, please continue.

6.2 Age range(s) of minors

6.3 Inclusion / exclusion criteria

6.4 How will minors give informed consent? Please tick appropriate box and explain (See guidelines)

Delete as applicable: Opt-in Opt-out
6.5 Consent form(s) for minor attached

Delete as applicable: No Yes
If no, why not?

6.6 Information sheet(s) for minor attached

Delete as applicable: No Yes
If no, why not?

6.7 Consent form(s) for parent / legal guardian attached

Delete as applicable: No Yes
If no, why not?

6.8 Information sheet(s) for parent / legal guardian attached

191

Delete as applicable: No Yes
If no, why not?

6.9 How will minors be made aware of their right to withdraw at any time?

6.10 How will confidentiality be maintained, including archiving / destruction of primary data where
appropriate, and how will the security of the data be maintained?

7. MINORS 16-18 YEARS OLD

7.1 Are some or all of the participants between the ages of 16 and 18?

Delete as applicable: No Yes
If yes, please consult special guidelines for working with minors. If no, please continue.

7.2 Inclusion / exclusion criteria

7.3 How will minors give informed consent? (See guidelines)

7.4 Consent form(s) for minor attached

Delete as applicable: No Yes
If no, why not?

7.5 Information sheet(s) for minor attached

Delete as applicable: No Yes
If no, why not?

7.6 Consent form(s) for parent / legal guardian attached

Delete as applicable: No Yes
If no, why not?

7.7 Information sheet(s) for parent / legal guardian attached

Delete as applicable: No Yes
If no, why not?

7.8 How will minors be made aware of their right to withdraw at any time?

7.9 How will confidentiality be maintained, including archiving / destruction of primary data where
appropriate, and how will the security of the data be maintained?

8. VULNERABLE GROUPS

8.1 Are some or all of the participants vulnerable? (See guidelines)

192

Delete as applicable: No Yes
If yes, please consult special guidelines for working with vulnerable groups. If no, please continue.

8.2 Describe vulnerability (apart from possibly being a minor)

8.3 Inclusion / exclusion criteria

8.4 How will participants give informed consent?

8.5 Consent form(s) for vulnerable person attached

Delete as applicable: No Yes
If no, why not?

8.6 Information sheet(s) for vulnerable person attached

Delete as applicable: No Yes
If no, why not?

8.7 Consent form(s) for parent / legal guardian attached

Delete as applicable: No Yes
If no, why not?

8.8 Information sheet(s) for parent / legal guardian attached

Delete as applicable: No Yes
If no, why not?

8.9 How will participants be made aware of their right to withdraw at any time?

8.10 How will confidentiality be maintained, including archiving / destruction of primary data where
appropriate, and how will the security of the data be maintained?

9. EXTERNAL CLEARANCES

Investigators working with children and vulnerable adults legally require clearance from the
Disclosure and Barring Service (DBS)

9.1 Do ALL experimenters in contact with children and vulnerable adults have current DBS
clearance? Please include photocopies.

Delete as applicable: No Yes N/A
 If no, explain

9.2 If your research involves external institutions (school, social service, prison, hospital etc) please
provide cover letter(s) from institutional heads permitting you to carry out research on their clients,
and where applicable, on their site(s). Are these included?

193

Delete as applicable: No Yes N/A
If not, why not?

10. PHYSICAL RISK ASSESSMENT

10.1 Will participants be at risk of physical harm (e.g. from electrodes, other equipment)? (See
guidelines)

Delete as applicable: No Yes
10.2 If yes, please describe

10.3 What measures have been taken to minimise risk? Include risk assessment proformas which
has been signed by the Head of Department

The session will be supervised at all times and equipment that is being used has been
tested for electrical safety. No procedures or content will be used that might be expected
to cause physical or psychological harm.

10.4 How will you handle participants who appear to have been harmed?

11. PSYCHOLOGICAL RISK ASSESSMENT

11.1 Will participants be at risk of psychological harm (e.g. viewing explicit or emotionally sensitive
material, being stressed, recounting traumatic events)? (See guidelines)

Delete as applicable: No Yes
11.2 If yes, please describe

11.3 What measures have been taken to minimise risk?

The session will not expose the user to any psychological risks.

11.4 How will you handle participants who appear to have been harmed?

 12. RESEARCH OVER THE INTERNET

12.1 Will research be carried out over the internet?

Delete as applicable: No Yes
12.2 If yes, please explain protocol in detail, explaining how informed consent will be given, right to
withdraw maintained, and confidentiality maintained. Give details of how you will guard against
abuse by participants or others (see guidelines)

13. CONFLICTS OF INTEREST and THIRD PARTY INTERESTS

194

13.1 Do any of the experimenters have a conflict of interest? (See guidelines)

Delete as applicable: No Yes
13.2 If yes, please describe

13.3 Are there any third parties involved? (See guidelines)

Delete as applicable: No Yes
13.4 If yes, please describe

13.5 Do any of the third parties have a conflict of interest?

Delete as applicable: No Yes
13.6 If yes, please describe

14. ADDITIONAL INFORMATION

14.1 [Optional] Give details of any professional bodies whose ethical policies apply to this research

14.2 [Optional] Please give any additional information that you wish to be considered in this
application

15. ETHICAL PROTOCOL and DECLARATION

To the best of our knowledge and belief, this research conforms to the ethical principles laid down by the
University of Plymouth and by any professional body specified in section 14 above.

This research conforms to the University’s Ethical Principles for Research Involving Human Participants with
regard to openness and honesty, protection from harm, right to withdraw, debriefing, confidentiality, and
informed consent

Sign below where appropriate:

STAFF / RESEARCH POSTGRADUATES

 Print Name Signature Date

Principal Investigator: Sarah Alhammad _______________ 12-Aug-2015

Other researchers: Dr.Shirley Atkinson ________________ 12-Aug-2015

PLYMOUTH UNIVERSITY

195

FACULTY OF SCIENCE AND ENGINEERING

Human Ethics Committee Sample Consent Form

Project :visualization tools evaluation
Consent Form

Name of Principal Investigator

Sarah Alhammad
__
Title of Research

Tracing Learning Environment in JAVA programming Language

__
Brief statement of purpose of work

The purpose of this research is to assess the effectiveness of using visualization tools in
programming learning and collecting the students’ needs and the kind of improvements
that could be implemented in future work.

The objectives of this research have been explained to me.

I understand that I am free to withdraw from the research at any stage, and ask for my
data to be destroyed if I wish.

I understand that my anonymity is guaranteed, unless I expressly state otherwise.
I gave my permission for audio recording .

I understand that the Principal Investigator of this work will have attempted, as far
as possible, to avoid any risks, and that safety and health risks will have been
separately assessed by appropriate authorities (e.g. under COSHH regulations)

Under these circumstances, I agree to participate in the research.

Name: ……………………………………….

Signature: …………….. Date: …………..

PLYMOUTH UNIVERSITY

196

FACULTY OF SCIENCE AND ENGINEERING

Tracing Learning Environment in JAVA programming Language

 Research Information Sheet

Name of Principal Investigator

 Sarah Alhammad

Title of Research

Tracing Learning Environment in JAVA programming Language: evaluate visualization
tools used in learning programming

You have been invited to take part in this tool evaluation study that funded by Plymouth
University. So, if you are interested in participating in this study, please take some time to
read the following information carefully and make sure the study and its procedure are
clear before signing the consent form.

Aim of research

A plenty of visualization software have emerged recently with the aim of support the
learning how to program for novices programmer. Each tool has its features that may or
may not be useful for better understanding. The software that considered in this research
is the one that based on using memory-referencing and visualizing what happen in the
individual execution for program statement. Clearly, the effectiveness of the existing
educational software is an important part of collecting students requirements and needs for
further improvements.
The objectives of the research is to explore the problem(s) do students have with memory-
reference tools and what are the technical hurdles remain to students being able to learn
programming using the existing tools. The research investigates on the program
visualization tools and compares them for the purpose of collecting user requirements
needed to implement the Ph.D. framework.

Description of the overall procedure

The study will last 60 minutes maximum, so this provided three methods to collect the
data, general discussion, presenting the tasks, and collecting feedback through open-
ended discussion. Therefore, the session will be audio recording.
An overview of the timetable is given below:

1. Welcome (5 minutes)
interviewer provides the subject with a written overview of the session with timings

2. introduction: introduced to the subject in general and the objectives of the study (5
minutes)

3. Task1 (10 minutes)
4. Task2 (25 minutes)
5. Task3 (10 minutes)
6. Debrief (5 minutes)

Description of risks

197

There are no procedures or content in this study that could be expected to cause physical
or psychological harm.

Benefits of proposed research

This research will provide several important benefits. Firstly, it is an opportunity to know
the student’s experience in using visualization tools during their programming learning
courses. Secondly, to assess the effectiveness of using visualization tools
And identify the drawbacks that require further design/development. Finally, it is an
opportunity to gather suggestions and opinions about the subject so that new framework
can be developed to increase the usefulness of visualization method in the educational
field.

Right to withdraw

If you note that to take part in this research, please keep this information sheet. Also, you
have the freedom to withdraw your participation/data at any time up to 6 weeks after the
date of the evaluation session. To withdraw, your participation in this study simply contact
Mrs. Sarah Alhammad, stating your unique “participators code” that is this code given on
the day.

Confidently

None of the results reported from the study will include information that allows
identification of named individuals. No reference will be made to individual persons or
participants, either by name or type of data supplied. However, a coding scheme will be
used. Each participator will be issued with a “code” which will be used to store their
individual data. This code will be required should the user wish to withdraw their
consent/data from the study.

All data will be stored on University equipment. The information will be collected and
stored on a University computer. This computer is password protected and exists behind a
University firewall. The computer is located in a secure building.

Please don’t hesitate to contact me if you now wish to withdraw or if you have any
questions about the project. To do this, please contact Mrs. Sarah Alhammad,
email: sarah.alhammad@plymouth.ac.uk

Thank you for taking time to read the information sheet.
Date: / /
__
If you are dissatisfied with the way the research is conducted, please contact the principal
investigator in the first instance: telephone number 01752 586209. If you feel the problem
has not been resolved please contact the secretary to the Faculty of Science and
Technology Human Ethics Committee: Mrs Paula Simson 01752 584503

mailto:sarah.alhammad@plymouth.ac.uk

198

Appendix B- Questions for Semi-structured interviews - students and novices

programmers

Semi-structured interview

List of open-ended questions to evaluate visualization tools used in learning

programming

Participant code :_____________

Dear participant

Thank you for taking the time to have this discussion. The discussion is evaluation of using

visualization tools that assist the leaning of programming and gathering the students opinion and

suggestions.

Regards

Sarah Alhammad

Personal information

Name (optional)

Age 19-21 22-24 25-27

Gender o Male
o Female

Occupation o Undergraduate student
o Post graduate student without job
o Post graduate student with job
o Post graduate student

TASK1: Background information (10 minutes)

Programming language(s) you have learned

When was the last time you wrote
a program ? what was the
purpose?

Few days - few months – a year – more than year

Reason:

199

What are your experiences (if any) on using visualization tools to improve your
understanding to programming?
(interviewer should explain the nature of visualization tool)

If yes, the following questions will be asked:

o What is the tool? (describe how it works and its method)
o How often you use it?
o What are the tool features?
o What the aspects you like/dislike on the tool?
o To what extent it was helpful?

What kind of technical assistance would you like to improve your programming
learning?
Suggestion: (e-learning system, software(s), example databases)

What technical hurdles remain to you being able to learn programming?
Suggestion: lack of (e-learning system, software(s), example databases, program
tracing tools)

TASK2: Evaluated questions for each tool(25 minutes)

Name of the tool:

What are the strengthen(s) and weakness(es) of the tool ?

Will you use it if possible ? explain why or why not

Do you think it is beneficial and may improve programming learning?

What other types of improvements should be implemented to build on this tool?

200

Task3:Comparison between the tools on solving three kind of activities (LOOPS-
Objects- Passing parameters) (10 minutes)

The discussion will be held for each activity on the effectiveness of the tool

Which tool do you prefer for solving the LOOP activity ? Describe why?

Which tool do you prefer for solving the OBJECT activity ? Describe why?

Which tool do you prefer for solving the PASSING_PARAMETER activity ? Describe
why?

The following is the code for the activities that will be used to evaluate the tool

The code is in JAVA language and C++

 JAVA C++

LOOPS
 public class
CalculateArrayAverageExample {
 public static void main(String[] args) {
 int[] numbers = new
int[]{10,20,15,25,16,60,100};
 int sum = 0;
 for(int i=0; i < numbers.length ; i++)
 sum = sum + numbers[i];
double average = sum / numbers.length
 System.out.println("Average value of
array elements is : " + average);
 }
 }

#include <iostream>
using namespace std;
#include <iostream>

int main()
{
 int n, count;
 float x, sum, avg;

 sum = 0;
 cout << "How many numbers? ";
 cin >> n;
 int size= n;
 int array[size];
 for (count=1; count<=n; count++){
 cout << "Enter Number: ";
 cin >> array[n];

201

 sum = sum + array[n];
 }
 cout << "The sum is " << sum << endl;
 avg = sum / n;
 cout << "The average is " << avg << endl;
 system("pause");
 return 0;
}

Objects
public class Polygon {
 int sides;

 Polygon() {
 }

 Polygon(int s) {
 sides = s;
 }

 public int getSides() {
 return sides;
 }
}

public class Rectangle extends Polygon {
 int width, heigth;

 Rectangle() {
 super(4);
 width = 0;
 heigth = 0;
 }

 Rectangle(int w, int h) {
 super(4);
 width = w;
 heigth = h;
 }

 public int getArea() {
 return width * heigth;
 }
}

public class Square extends Rectangle {
 int side;

 Square() {
 side = 0;
 }

 Square(int s) {

#include <iostream>

using namespace std;

class Rectangle {

 int width, height;

 public:

 void set_values (int,int);

 int area() {return

width*height;}

};

void Rectangle::set_values (int

x, int y) {

 width = x;

 height = y;

}

int main () {

 Rectangle rect;

 rect.set_values (3,4);

 cout << "area: " <<

rect.area();

 return 0;

}

202

 super(s, s);
 side = s;
 }
}

public class MyClass {
 public static void main() {
 Square square;
 square = new Square(3);
 int area = square.getArea();
 System.out.println("The area of the
square is " + area);
 }
}

Passing
parameter

public class PrimitiveParameter
{
 public void changeValue (int parameter)
 {parameter = 20;}
 public static void main (String args[]) {
 int parameter = 10;
 PrimitiveParameter test = new
PrimitiveParameter();
 test.changeValue(parameter); }
}

class PrimitiveParameter
{
public:
 virtual void changeValue(int
parameter)
 {
 parameter = 20;
 }
 static void main(std::wstring args[])
 {
 int parameter = 10;
 PrimitiveParameter *test = new
PrimitiveParameter();
 test->changeValue(parameter);
 }
};

203

Appendix C- Visual Code Flow

http://visualcodeflow.com

Open in Google Chrome

http://visualcodeflow.com/

204

Appendix D- Ethical approval letter and form- Consent form- Information sheet

(Evaluation of Visualisation)

Ethical approval

205

PLYMOUTH UNIVERSITY FACULTY OF SCIENCE AND ENGINEERING

Research Ethics Committee

APPLICATION FOR ETHICAL APPROVAL OF RESEARCH INVOLVING

HUMAN PARTICIPANTS

All applicants should read the guidelines which are available via the following link:

https://staff.plymouth.ac.uk//scienv/humanethics/intranet.htm

This is a WORD document. Please complete in WORD and extend space where necessary.
All applications must be word processed. Handwritten applications will be returned.

Postgraduate and Staff must submit a signed copy to SciEngHumanEthics@plymouth.ac.uk

Undergraduate students should contact their School Representative of the Science and
Engineering Research Ethics Committee or dissertation advisor prior to completing this form to
confirm the process within their School.

School of Computing, Electronics and Mathematics undergraduate students – please submit
to SciEngHumanEthics@plymouth.ac.uk with your project supervisor copied in.

__

4. TYPE OF PROJECT

1.1 What is the type of project?

Applicant Type Put X in 1 only

STAFF Specific project

Thematic programme of research

Practical / Laboratory Class

POSTGRADUATE STUDENTS Taught Masters Project

M.Phil / PhD by research X

UNDERGRADUATE STUDENTS Student research project

Practical / Laboratory class where you
are acting as the experimenter

5. APPLICATION

2.1 TITLE of Research project

Tracing Learning Environment in JAVA programming Language
2.2 Name, telephone number, e-mail address and position of applicant for this project (plus full
details of Project Supervisor for postgraduate and undergraduate students)

Ph.D. Student: Sarah Alhammad: +966554427159 / +447450181279
sarah.alhammad@plymouth.ac.uk

Ph.D. Supervisor: Dr. Shirley Atkinson: 01752 586209
 shirley.atkinson@plymouth.ac.uk

2.3 General summary of the proposed research for which ethical clearance is sought, briefly

https://staff.plymouth.ac.uk/scienv/humanethics/intranet.htm
mailto:SciEngHumanEthics@plymouth.ac.uk
mailto:SciEngHumanEthics@plymouth.ac.uk
mailto:sarah.alhammad@plymouth.ac.uk
mailto:shirley.atkinson@plymouth.ac.uk

206

outlining the aims and objectives (no more than 200 words)

A plenty of visualization software has emerged recently with the aim of support the
learning how to program for novices programmer. Each tool has its features that may or
may not be useful for better understanding. The software that considered in this research
is the one that based on using memory-referencing and visualizing what happens in the
individual execution for program statement. The effectiveness of the existing educational
software is an important part of collecting students requirements and needs for further
improvements.
The purpose of this research is to evaluate the use of visualization in programming
learning by measure the students’ performance before and after using the method.
Furthermore, the research will seek to gathered experts’ feedback about the method.

 The evaluation will incorporate experiment using task that the participants will be
asked to solve programming problems and completing surveys regarding their
experiment

 Expert evaluation
 Interviews will be conducted for expert participants (computer programming tutors and
lecturers)

2.4 Physical site(s) where research will be carried out

Princess Norah Bint Abdurrahman University (PNU) , Riyadh, Saudi Arabia

2.5 Does your research involve external institutions (e.g. other university, hospital, prison etc. see
guidelines)

Delete as applicable: yes
2.5a If yes, please give details:

The study will be conducted on the students and faculties of Princess Norah Bint
Abdurrahman University (PNU), Riyadh, Saudi Arabia

 The study will incorporate experiment using tasks that the PNU programming
students will be asked to solve programming problems and completing surveys
regarding their experiment

 The students will be invited to discuss their experiment in focus groups
 Interviews will be conducted for expert participants (computer programming tutors

and lecturers who work at PNU)

2.5b If yes, you must provide letter(s) from institutional heads permitting you to carry out research
on their clients, and where applicable, on their sites(s). Are they included?

Delete as applicable: yes
If not, why not?

2.6 Start and end date for research for which ethical clearance is sought (NB maximum period is 3
years)

Start date: Date of approval End date: 01-10-2019

2.7 Has this same project received ethical approval from another Ethics Committee?

Delete as applicable: No

2.7a If yes, do you want Chair’s action?

Delete as applicable: No Yes
If yes, please include other application and approval letter and STOP HERE. If no, please continue

207

6. PROCEDURE

3.1 Describe (a) the procedures that participants will engage in, and (b) the methods used for data
collection and recording

The proposed evaluation procedure will consist of three methodologies (experiment, focus
group and interviews)
The participants will engage in the three activities as voluntary, and it is not part of their
course, the study will be conducted in their free time.
The researcher will deliver the whole tasks without any involvement from other parties.

The following steps will give details about each methodology and their sessions

Experiment and Focus group :
The evaluation will incorporate experiment using tasks that the participants(students) will
be asked to solve programming problems and completing surveys regarding their
experiment
 The participants will expertise the following aspects:

 The participants will be divided into two groups: the control group and the
experiment group

 Both groups will be asked to solve programming problems (pre-test) and answer a
giving questionnaire which measures the participants’ confidence in solving the
problems

 In the second step, the researcher will present the visualization method using the
tool (Visual Java Code) to the experiment group and ask them to try it on their
computers during the session.
The control group will rely on the lecture notes and lab work to continue their
experiment

 In the final step, both groups will be asked to solve a programming problem (post-
test) and answer a giving questionnaire which measures the participants’
confidence in solving the problems.
The experiment group will be asked to fill a given questionnaire to measure the
level of satisfaction on using the tool.

 In a focus group, the experiment group will discuss their experience on using the
tool determining the strength and weakness of the visualization method.

The following are the procedure steps for each group:
 Experiment group :

The proposed experiment’s procedure for the experiment group has five steps including
the focus group discussion. Each is described in detail:

Step 1: The participants will be welcomed as they arrive (5 minutes)

 The researcher will ask the participants if they are willing to participate in the
session.

 If they are willing to participate then the researcher will explain all about withdrawal
- the fact that they can withdraw at any time from the experiment but not the
learning course and they can also subsequently, withdraw their data in the survey
from the study and how to do so.

 And they can also subsequently, withdraw their data from the study and how to do
so.

 The researcher will also explain that all personally identifiable information will be
held separate from the core dataset. It will only be used if the participant wishes to
withdraw their consent.

 Once the participant has been briefed and if they are willing to participate the

208

researcher will ask them to sign the consent document before proceeding.
The researcher will provide the participant with an overview of the session activities and
duration. The overview will give a breakdown of how long each step should take. It will
ensure that the participant is fully informed about the process.

Step 2 – participant is given an introduction (5 minutes)

Initially, the participants will be introduced to the subject in general and the
objectives of the study. The introduction will provide the participant the background
they need to do the tasks.

Step 3 – participant attempts to do task 1, 2 and 3 (50 minutes for all)

The tasks are not specified in exact detail here, as they will vary slightly as the
research evolves. However, they will all follow the same basic outline:

o Task1: The participant will be asked to answer a questionnaire that includes
two parts:

 First part is a questionnaire about their background in the
programming field.

 The second part is a given programming problem(paper-based)
that they asked to solve it (pre-test).

After that, the papers will be collected by the researcher. This session will be
designed so that it lasts no more than 15 minutes.

o Task 2: The interviewer will present the visualization method, describe the
features of the method and how its work.
This session will be designed so that it lasts no more than 20 minutes.

o Task 3: The participant will be asked to answer a questionnaire that includes
two parts:

 First part is a given programming problem(paper-based)that they
asked to solve it (post-test).

 The second part is a questionnaire about their feedback on the tool
that has been presented.

After that, the papers will be collected by the researcher. This session will be
designed so that it lasts no more than 15 minutes.

Step 4 – Focus group discussion (45 minutes)

 The researcher again will ask the participants if they are willing to participate in the
focus group session.

 If they are, then the researcher will ask the participants’ permission to audio record
the session.

 The researcher will explain all about withdrawal - the fact that they can withdraw at
any time from the focus group but not the learning course and they can also
subsequently, withdraw their data from the study and how to do so.

 The researcher will ask the participants to discuss their experience on using the tool
as group

This session will be designed so that it lasts no more than 45 minutes.

Step 5 – Final feedback and thanks (5 minutes)

 Since we want our participants to be happy with this process, we plan to reaffirm
their rights to withdraw their data.

 It is also essential that we give participants the right to ask questions about the
research and the process. We want the participants to feel valued as an essential
part of this process.

 Finally, we will thank the subjects (handing over the thank you card with their code

209

on it) and ask them if they would be willing to participate again at a later stage.

Ethical approval for the recording of these sessions is specifically sought so that note-
taking does not interfere with the process. In particular, the discursive process when users
are describing the problems they see/have experienced when using the tools.

 Control group :
The proposed experiment’s procedure for the control group has four steps and it will not
involve any focus group discussion. Each step is described in detail:

Step 1: The participants will be welcomed as they arrive (5 minutes)

 The researcher will ask the participants if they are willing to participate in the
session.

 If they are willing to participate then the researcher will explain all about withdrawal
- the fact that they can withdraw at any time from the experiment but not the
learning course and they can also subsequently, withdraw their data in the survey
from the study and how to do so.

 And they can also subsequently, withdraw their data from the study and how to do
so.

 The researcher will also explain that all personally identifiable information will be
held separate from the core dataset. It will only be used if the participant wishes to
withdraw their consent.

 Once the participant has been briefed and if they are willing to participate the
researcher will ask them to sign the consent document before proceeding.

The researcher will provide the participant with an overview of the session activities and
duration. The overview will give a breakdown of how long each step should take. It will
ensure that the participant is fully informed about the process.

Step 2 – participant is given an introduction (5 minutes)

Initially, the participants will be introduced to the subject in general and the
objectives of the study. The introduction will provide the participant the background
they need to do the tasks.

Step 3 – participant attempts to do task 1,and 2 (30 minutes for all)
The tasks are not specified in exact detail here, as they will vary slightly as the
research evolves. However, they will all follow the same basic outline:
Task1 and Task2 will be conducted in two separate days , Task 1 is the pre-test
which should be conducted before computer-lab practice that is part of the course,
while Task 2 is the post-test which should be conducted after the students have the
computer-lab practice.

o Task1: The participant will be asked to answer a questionnaire that includes
two parts:

 First part is a questionnaire about their background in the
programming field.

 The second part is a given programming problem(paper-based)
that they asked to solve it (pre-test).

After that, the papers will be collected by the researcher. This session will be
designed so that it lasts no more than 15 minutes.

o Task 2: The participant will be asked to answer a questionnaire that includes
programming problem(paper-based)that they asked to solve it (post-test).
After that, the papers will be collected by the researcher. This session will be

210

designed so that it lasts no more than 15 minutes.

Step 4 – Final feedback and thanks (5 minutes)

 Since we want our participants to be happy with this process, we plan to reaffirm
their rights to withdraw their data.

 It is also essential that we give participants the right to ask questions about the
research and the process. We want the participants to feel valued as an essential
part of this process.

 Finally, we will thank the subjects (handing over the thank you card with their code
on it) and ask them if they would be willing to participate again at a later stage.

Interviews:
Interviews will be conducted for expert participants (computer programming tutors and
lecturers)
 The interview will discuss the following aspects

 The participants will be asked about their experience and background in teaching
programming.

 The researcher will present the visualization method using the tool (Visual Java
Code) to the participants, and then the participants will give their feedback,
comments, and suggestions.

The interviewer will request the participant’s permission to record these sessions so that
the process is not interrupted by note-taking.

The proposed interviews’ procedure has four steps. Each is described in detail:

Step 1: The participants will be welcomed as they arrive (5 minutes)

 The interviewer will ask the participants if they are willing to participate in the
session.

 If they are, then the interviewer will ask the users permission to audio record the
session.

 If they are still willing to participate then the interviewer will explain all about
withdrawal - the fact that they can withdraw at any time and they can also
subsequently, withdraw their data from the study and how to do so.

 The interviewer will also explain that all personally identifiable information will be
held separate from the core dataset. It will only be used if the participant wishes to
withdraw their consent.

 Once the participant has been briefed and if they are willing to participate the
interviewer will ask them to sign the consent document before proceeding.

The interviewer will provide the user with an overview of the session activities and
duration. The overview will give a breakdown of how long each step should take. It will
ensure that the participant is fully informed about the process.

Step 2 – participant is given an introduction (5 minutes)

Initially, the participants will be introduced to the subject in general and the
objectives of the study. The introduction will provide the participant the background
they need to do the tasks.

Step 3 – User attempts to do three sessions of interview(60 minutes for all)

o First: The participant background on using any tool for teaching
programming. The discussion expanded to their experience and whether

211

they benefit from them. Moreover, the features and drawbacks existing on
the tools from the participant’s perspective. This session will be designed so
that it lasts no more than 10 minutes.
Second: The interviewer will present the visualization method, describe the
features of the method and how its work. This session will be designed so
that it lasts no more than 20 minutes.

o The third part of the discussion is evaluating of the given method. The
participants will be asked about their comments and suggestions.
The evaluation is done by presenting three activities that usually students
stuck on. This session will be designed so that it lasts no more than 30
minutes.

Step 4 – Final feedback and thanks (5 minutes)

 After all the sessions are completed, the participant will be asked to comment more
generally about the tool. For example, they will be asked their opinion on the
method and whether they find it useful and practical.

 Since we want our participants to be happy with this process, we plan to reaffirm
their rights to withdraw their data.

 It is also essential that we give participants the right to ask questions about the
research and the process. We want the participants to feel valued as an essential
part of this process.

 Finally, we will thank the subjects (handing over the thank you card with their code
on it) and ask them if they would be willing to participate again at a later stage.

Ethical approval for the recording of these sessions is specifically sought so that note-
taking does not interfere with the process. In particular, the discursive process when users
are describing the problems they see/have experienced when using the tool.

3.1a If surveying or interviewing, you must include your questionnaire(s) and interview schedule(s).
Are these attached:
Delete as applicable: Yes

3.2 How long will the procedures take? Give details

As mentioned in section 3.1 – repeated here for clarity
The experiment and the focus group for experiment group
All experiment sessions will last approximately 1 hour, 50 minutes including the focus
group discussion
The proposed experiment’s procedure has five steps including the focus group discussion.

 Step 1 – As the participants arrive, they will be welcomed (5 minutes). This includes
an overview of sessions and its duration.

 Step 2 – The researcher will give an introduction (5 minutes).This includes an
overview of the subject and the study objectives

 Step 3– students attempt to do task 1, 2 and 3 (50 minutes divided over three
interlocutors, 15 min, 20 min, 15 min)

 Step 4 – Focus group discussion (45 minutes)

 Step 5 – Final feedback and thanks (5 minutes)
The survey for control group
Pre-survey and post-survey will last approximately 30 minutes for each survey consists of
4 steps

 Step 1 – As the participants arrive, they will be welcomed (5 minutes). This includes
an overview of sessions and its duration.

 Step 2 – The researcher will give an introduction (5 minutes).This includes an
overview of the subject and the study objectives

212

 Step 3– students attempt to do task 1or 2 (15 minutes each)

 Step 4 – Final feedback and thanks (5 minutes)

The interviews
All interviews’ sessions will last approximately 1 hour,15 minutes.

 Step 1 – As the participants arrive, they will be welcomed (5 minutes). This includes
an overview of sessions and its duration.

 Step 2 – Interviewer will give an introduction (5 minutes).This includes an overview
of the subject and the study objectives

 Step 3– participant attempt to do sessions 1,2, and 3 (60 minutes divided over
three interlocutors, 10 min, 20 min, 30 min)

 Step 4 – Final feedback and thanks (5 minutes)

3.3 Does your research involve deception?

Delete as applicable: No
 If no go to section 4

Please explain why the following conditions apply to your research:

3.3a Deception is completely unavoidable if the purpose of the research is to be met

3.3b The research objective has strong scientific merit

3.3c Any potential harm arising from the proposed deception can be effectively neutralised or
reversed by the proposed debriefing procedures (see section below)

3.3d Describe how you will debrief your participants

 4. BREAKDOWN OF PARTICIPANTS

 4.1 Summary of participants

Type of participant Number of participants

Non-vulnerable Adults

65

Minors (< 16 years)

0

Minors (16-18 years)

0

Vulnerable Participants

(other than by virtue of being a
minor)

0

TOTAL

65

213

4.2 How were the sample sizes determined?

It is estimated that the average number for effective experiment is about 60 participants
divided into two groups of 30 in each, the experimental group will distribute into five groups
(5 to 6 participants in each). The experimental group distributed into small groups for
better control during the computer-lab activity.
Moreover, 5 participants will engage in interviews for expert evaluation

4.3 How will subjects be recruited?

Participants will be recruited using email as well as personal contact.

4.4 Will subjects be financially rewarded? If yes, please give details.

The students and faculties in Princess Nora University will volunteer to participate in the
study.

5. NON-VULNERABLE ADULTS

5.1 Are some or all of the participants non-vulnerable adults?

Delete as applicable: Yes
5.2 Inclusion / exclusion criteria

There are no specific inclusion/exclusion criteria

5.3 How will participants give informed consent?

In the beginning, embedded in Step 1 consent is sought for both participation and audio
recording individually.
Again, embedded in the final step, the process for consent withdrawal is reiterated, and
the subject is given a written “thank card” which describes how and the time limitations on
the withdrawal of consent.
As mentioned in section 3.1 – repeated here for clarity
Step 1: The participants will be welcomed as they arrive (5 minutes)

 The researcher/interviewer will ask the participants if they are willing to participate
in the session.

 If they are, then the researcher/interviewer will ask the participants permission to
audio record the session.

 If they are still willing to participate then the researcher/interviewer will explain all
about withdrawal - the fact that they can withdraw at any time and they can also
subsequently, withdraw their data from the study and how to do so.

 The interviewer will also explain that all personally identifiable information will be
held separate from the core dataset. It will only be used if the student wishes to
withdraw their consent.

 Once the student has been briefed and if they are willing to participate the
researcher/interviewer will ask them to sign the consent document before
proceeding.

The researcher/interviewer will provide the user with an overview of the session activities
and duration. The overview will give a breakdown of how long each step should take. It will
ensure that the participants are fully informed about the process.

Step 4 – Final feedback and thanks (5 minutes)

 After all the tasks are completed, the participants will be asked to comment more
generally about the tool. For example, they will be asked their opinion on the

214

method that the tool follows and whether they find it useful and practical.

 Since we want our participants to be happy with this process, we plan to reaffirm
their rights to withdraw their data.

 It is also essential that we give participants the right to ask questions about the
research and the process. We want the participants to feel valued as an essential
part of this process.

 Finally, we will thank the subjects (handing over the thank you card with their code
on it) and ask them if they would be willing to participate again at a later stage.

Ethical approval for the recording of these sessions is specifically sought so that note-
taking does not interfere with the process. In particular, the discursive process when
participants are describing the problems they see/have experienced when using the tool.

5.4 Consent form(s) attached

Delete as applicable: Yes
If no, why not?

5.5 Information sheet(s) attached

Delete as applicable: Yes
If no, why not?

5.6 How will participants be made aware of their right to withdraw at any time?

Ensuring that participants understand their right to withdraw is embedded in the study.
During Step 1, the participator is welcomed. After the welcome, withdrawal of
participation/data and permission to audio record is discussed in detail, and written
consent is sought before continuing the session.
Towards the end of the session, the participant’s freedom to withdraw their
participation/data is reiterated. Furthermore, the process of withdrawing consent is
explained in detail at this stage. The process for withdrawing is described in section 3.1

5.7 How will confidentiality be maintained, including archiving / destruction of primary data where
appropriate, and how will the security of the data be maintained?

None of the results reported from the study will include information that allows
identification of named individuals. No reference will be made to individual persons or
participants, either by name or type of data supplied. However, a coding scheme will be
used. Each participator will be issued with a “code” which will be used to store their data.
This code will be required should the user wish to withdraw their consent/data from the
study.

All data will be stored on University equipment. The information will be collected and
stored on a University computer. This computer is password protected and exists behind a
University firewall. The computer is located in a secure building.

6. VULNERABLE PARTICIPANTS (Minors <18 years, and Vulnerable Adults)

6.1 Are some or all of the participants:

 (Delete as applicable)
Under the age of 16? No

215

Between the ages of 16 and 18? No

Vulnerable adults? (See guidelines) No

If no to all, please proceed to section 7.
If yes, please continue and consult guidelines for working with minors and/or vulnerable groups.

6.2 Describe the vulnerability (for minors give age ranges)

6.3 Inclusion / exclusion criteria

6.4 How will minors and vulnerable adults give informed consent?

Please delete as applicable and explain below (See guidelines)
For minors < 16 only: Opt-in Opt-out

If opt-out, why?

6.5a Consent form(s) for minor/vulnerable adult attached

Delete as applicable: No Yes
If no, why not?

6.5b Information sheet(s) for minor/vulnerable adult attached

Delete as applicable: No Yes
If no, why not?

6.6a Consent form(s) for parent / legal guardian attached

Delete as applicable: No Yes
If no, why not?

6.6b Information sheet(s) for parent / legal guardian attached

Delete as applicable: No Yes
If no, why not?

6.7 How will parent/legal guardians, minors and/or vulnerable adults be made aware of their right to
withdraw at any time?

6.8 How will confidentiality be maintained, including archiving / destruction of primary data where
appropriate, and how will the security of the data be maintained?

Investigators working with children and vulnerable adults legally require clearance from the
Disclosure and Barring Service (DBS)
6.9 Do ALL experimenters in contact with children and vulnerable adults have current DBS
clearance? Please include photocopies.

Delete as applicable: No Yes

If no, explain

216

 7. PHYSICAL RISK ASSESSMENT

7.1 Will participants be at risk of physical harm (e.g. from electrodes, other equipment)? (See
guidelines)

Delete as applicable: No (Go to Q8)
7.1a If yes, please describe

7.1b What measures have been taken to minimise risk?

7.1c How will you handle participants who appear to have been harmed?

8. PSYCHOLOGICAL RISK ASSESSMENT

8.1 Will participants be at risk of psychological harm (e.g. viewing explicit or emotionally sensitive
material, being stressed, recounting traumatic events)? (See guidelines)

Delete as applicable: No (Go to Q9)
8.1a If yes, please describe

8.1b What measures have been taken to minimise risk?

8.1c How will you handle participants who appear to have been harmed?

 9. RESEARCH OVER THE INTERNET

9.1 Will research be carried out over the internet?

Delete as applicable: No (Go to Q10)
9.1a If yes, please explain protocol in detail, including how informed consent will be obtained,
procedures concerning the right to withdraw and how confidentiality will be maintained. Give details
of how you will guard against abuse by participants or others (see guidelines)

9.1b Have you included the online version of questionnaire and information/consent form? This
should be as close to the format which will be viewed on line as possible.

Delete as applicable: No Yes

10. CONFLICTS OF INTEREST and THIRD PARTY INTERESTS

10.1 Do any of the experimenters have a conflict of interest? (See guidelines)

Delete as applicable: No (Go to Q11)
If yes, please describe

10.1a Are there any third parties involved? (See guidelines)

217

Delete as applicable: No Yes
If yes, please describe

10.1b Do any of the third parties have a conflict of interest?

Delete as applicable: No Yes
 If yes, please describe

11. ADDITIONAL INFORMATION

11.1 Give details of any professional bodies whose ethical policies apply to this research

NON

11.2 Please give any additional information that you wish to be considered in this application

NON

12. ETHICAL PROTOCOL and DECLARATION

To the best of our knowledge and belief, this research conforms to the ethical principles laid down by the
University of Plymouth and by any professional body specified in section 10 above.

This research conforms to the University’s Ethical Principles for Research Involving Human Participants with
regard to openness and honesty, protection from harm, right to withdraw, debriefing, confidentiality, and
informed consent.

Sign below where appropriate:

STAFF / RESEARCH POSTGRADUATES

 Print Name Signature Date

Principal Investigator: Sarah Alhammad 30/7/2017

Other researchers: Dr.Shirley Atkinson 31/7/2017

Consent Form (experiment’s consent form)

PLYMOUTH UNIVERSITY

FACULTY OF SCIENCE AND ENGINEERING

218

Human Ethics Committee

Project: Evaluation of visualization method in programming learning
Consent Form (experiment’s consent form)

Name of Principal Investigator

Sarah Alhammad

Title of Research

Tracing Learning Environment in JAVA programming Language

__
Brief statement of purpose of work

The purpose of this research is to evaluate the use of visualization in programming
learning by measure the students’ performance before and after using the proposed
visualisation method.

The objectives of this research have been explained to me.

I understand that I am free to withdraw from the research at any stage and up to 6 weeks
after the date of the evaluation session, and ask for my data to be destroyed if I wish.

I understand that my anonymity is guaranteed unless I expressly state otherwise.
I gave my permission for audio recording the focus group discussion.

I understand that the Principal Investigator of this work will have attempted, as far
as possible, to avoid any risks.

Under these circumstances, I agree to participate in the research.

Name: ……………………………………….

Signature: …………….. Date: ………

Consent Form-(Expert interviews’ consent form)

PLYMOUTH UNIVERSITY

219

FACULTY OF SCIENCE AND ENGINEERING

Human Ethics Committee

Project: Evaluation of visualization method in programming learning
Consent Form-(expert interviews’ consent form)

Name of Principal Investigator

Sarah Alhammad
__
Title of Research

Tracing Learning Environment in JAVA programming Language

__
Brief statement of purpose of work

The purpose of this research is to evaluate the use of visualization in programming
learning from the experts’ perspective, the research will seek to gathered experts’
feedback about the method .

The objectives of this research have been explained to me.

I understand that I am free to withdraw from the research at any stage and up to 6 weeks
after the date of the interview session, and ask for my data to be destroyed if I wish.

I understand that my anonymity is guaranteed unless I expressly state otherwise.
I gave my permission for audio recording.

I understand that the Principal Investigator of this work will have attempted, as far
as possible, to avoid any risks.

Under these circumstances, I agree to participate in the research.

Name: ……………………………………….

Signature: …………….. Date: …………..

Research Information Sheet- student’s experiment (Visualisation group)

PLYMOUTH UNIVERSITY

220

FACULTY OF SCIENCE AND TECHNOLOGY

Tracing Learning Environment in JAVA programming Language
 Research Information Sheet- student’s experiment

Visualisation group

Name of Principal Investigator
 Sarah Alhammad

Title of Research

Tracing Learning Environment in JAVA programming Language: Evaluation of
visualisation method in programming learning

You have been invited to take part in this tool evaluation study which is a voluntary study.
So, if you are interested in participating in this study, please take some time to read the
following information carefully and make sure the study and its procedure are clear before
signing the consent form.
The study involves two groups: experiment group and control group.
To participate in the study, you have been selected to be a member of the experiment
group. This sheet is to describe the overall procedure that members of the experiment
group will experience.

Aim of research

A plenty of visualization software has emerged recently with the aim of support the
learning how to program for novices programmer. Each tool has its features that may or
may not be useful for better understanding. The software that considered in this research
is the one that based on using memory-referencing and visualizing what happens in the
single execution of program statement. The effectiveness of the existing educational
software is an essential part of gathering experts’ feedback about the method for further
improvements.
The purpose of this research is to evaluate the use of visualization in programming
learning by comparing student’s comprehension who is a member of the experiment group
before and after using the visualization method. After that, The survey of experiment group
will be compared with the survey of the control group who rely on lectures notes and lab
practice in their comprehension.

Description of the overall procedure

The study will incorporate experiment with the students using tasks that the participants
will be asked to solve programming problems and completing surveys regarding their
experiment
All experiment sessions will last approximately 1 hour, 50 minutes including the focus
group discussion.
Focus group discussion will be audio recording. Ethical approval for the recording of these
sessions is sought explicitly so that note-taking does not interfere with the process. In
particular, the discursive process when users are describing the problems they see/have
experienced when using the tools.

An overview of the timetable is given below:

221

1. Welcome (5 minutes). This includes an overview of sessions and its duration.
2. An introduction (5 minutes).This includes an overview of the subject and the study

objectives
3. Task 1, 2 and 3 (50 minutes divided over three interlocutors, 15 min, 20 min, 15

min)
4. Focus group discussion (45 minutes)
5. Debrief (5 minutes)

Description of risks

There are no procedures or content in this study that could be expected to cause physical
or psychological harm.

Benefits of proposed research

This research will provide several significant benefits. Firstly, it is an opportunity to know
the student’s experience and background obtained during their programming learning
courses. Secondly, to measure students’ performance before and after using visualization
method and identify the drawbacks that require further design/development. Finally, it is an
opportunity to gather suggestions and opinions about the subject so that framework can be
updated to increase the usefulness of visualization method in the educational field.

Right to withdraw

If you note that to take part in this research, please keep this information sheet. Also, you
have the freedom to withdraw your participation/data at any time up to 6 weeks after the

date of the evaluation session. To withdraw, your participation in this study merely contact
Mrs. Sarah Alhammad, stating your unique “participators code” that is this code given on
the day.

Confidently

None of the results reported from the study will include information that allows
identification of named individuals. No reference will be made to individual persons or
participants, either by name or type of data supplied. However, a coding scheme will be
used. Each participator will be issued with a “code” which will be used to store their data.
This code will be required should the user wish to withdraw their consent/data from the
study.

The researcher will use an audio recorder to record the focus group discussion and store it
on the researcher’s computer, and it will be deleted from the recorder directly.
All data collected from the questionnaire papers and audio from the focus group
discussion’s will be stored on the researcher computer which is a computer belongs to
Princess Norah Bint Abdulrahman University. This computer is password protected and
exists behind a University firewall. The computer is located in a secure building.

Please don’t hesitate to contact me if you now wish to withdraw or if you have any
questions about the project. To do this, please contact Mrs. Sarah Alhammad,
email: sarah.alhammad@plymouth.ac.uk

mailto:sarah.alhammad@plymouth.ac.uk

222

Thank you for taking time to read the information sheet.
Date: / /
__
If you are dissatisfied with the way the research is conducted, please contact the principal
investigator in the first instance: telephone number 01752 586209. If you feel the problem
has not been resolved please contact the secretary to the Faculty of Science and
Technology Human Ethics Committee: Mrs Paula Simson 01752 584503

Research Information Sheet- student’s experiment (Control group)

PLYMOUTH UNIVERSITY

FACULTY OF SCIENCE AND TECHNOLOGY

Tracing Learning Environment in JAVA programming Language
 Research Information Sheet- student’s experiment

Control group

223

Name of Principal Investigator

 Sarah Alhammad

Title of Research

Tracing Learning Environment in JAVA programming Language: Evaluation of
visualisation method in programming learning

You have been invited to take part in this tool evaluation study which is a voluntary study.
So, if you are interested in participating in this study, please take some time to read the
following information carefully and make sure the study and its procedure are clear before
signing the consent form.
The study involves two groups: experiment group and control group
To participate in the study, you have been selected to be a member of the control group.
This sheet is to describe the overall procedure that members of the control group will
experience.

Aim of research

A plenty of visualization software has emerged recently with the aim of support the
learning how to program for novices programmer. Each tool has its features that may or
may not be useful for better understanding. The software that considered in this research
is the one that based on using memory-referencing and visualizing what happens in the
single execution of program statement. The effectiveness of the existing educational
software is an essential part of gathering experts’ feedback about the method for further
improvements.
The purpose of this research is to evaluate the use of visualization in programming
learning by comparing student’s comprehension who is a member of the experiment group
before and after using the visualization method. After that, The survey of experiment group
will be compared with the survey of the control group who rely on lectures notes and lab
practice in their comprehension.

Description of the overall procedure

The study will incorporate two surveys (pre-test and post-test). The two surveys will be
conducted in two separate days Test1 is the pre-test which should be conducted before
computer-lab practice that is part of the course, while Test 2 is the post-test which should
be conducted after the students have the computer-lab practice.
All sessions will last approximately 30 minutes for each survey.

An overview of the timetable is given below for each survey:

6. Welcome (5 minutes). This includes an overview of sessions and its duration.
7. An introduction (5 minutes).This includes an overview of the subject and the study

objectives
8. Task 1, OR 2 depending whether it is pre-test or post-test (15 minutes)
9. Debrief (5 minutes)

Description of risks

224

There are no procedures or content in this study that could be expected to cause physical
or psychological harm.

Benefits of proposed research

This research will provide several significant benefits. Firstly, it is an opportunity to know
the student’s experience and background obtained during their programming learning
courses. Secondly, to measure students’ performance before and after having lab practice.
Finally, it is an opportunity to gather suggestions and opinions about the subject so that
framework can be updated to increase the usefulness of visualization method in the
educational field.

Right to withdraw

If you note that to take part in this research, please keep this information sheet. Also, you
have the freedom to withdraw your participation/data at any time up to 6 weeks after the
date of the evaluation session. To withdraw, your participation in this study merely contact
Mrs. Sarah Alhammad, stating your unique “participators code” that is this code given on
the day.

Confidently

None of the results reported from the study will include information that allows
identification of named individuals. No reference will be made to individual persons or
participants, either by name or type of data supplied. However, a coding scheme will be
used. Each participator will be issued with a “code” which will be used to store their data.
This code will be required should the user wish to withdraw their consent/data from the
study.

All data collected from the questionnaire papers will be stored on the researcher computer
which is a computer belongs to Princess Norah Bint Abdulrahman University. This
computer is password protected and exists behind a University firewall. The computer is
located in a secure building.

Please don’t hesitate to contact me if you now wish to withdraw or if you have any
questions about the project. To do this, please contact Mrs. Sarah Alhammad,
email: sarah.alhammad@plymouth.ac.uk

Thank you for taking time to read the information sheet.
Date: / /
__
If you are dissatisfied with the way the research is conducted, please contact the principal
investigator in the first instance: telephone number 01752 586209. If you feel the problem
has not been resolved please contact the secretary to the Faculty of Science and
Technology Human Ethics Committee: Mrs Paula Simson 01752 584503

mailto:sarah.alhammad@plymouth.ac.uk

225

Research Information Sheet- expert’s interview

PLYMOUTH UNIVERSITY

FACULTY OF SCIENCE AND TECHNOLOGY

Tracing Learning Environment in JAVA programming Language
 Research Information Sheet- expert’s interview

226

Name of Principal Investigator

 Sarah Alhammad

Title of Research

Tracing Learning Environment in JAVA programming Language: Evaluation of
visualisation method in programming learning

You have been invited to take part in this tool evaluation study which is a voluntary study.
So, if you are interested in participating in this study, please take some time to read the
following information carefully and make sure the study and its procedure are clear before
signing the consent form.

Aim of research

A plenty of visualization software has emerged recently with the aim of support the
learning how to program for novices programmer. Each tool has its features that may or
may not be useful for better understanding. The software that considered in this research
is the one that based on using memory-referencing and visualizing what happens in the
single execution of program statement. The effectiveness of the existing educational
software is an essential part of gathering experts’ feedback about the method for further
improvements.
The purpose of this research is to evaluate the use of visualization in programming
learning from the expert’s perspective.

Description of the overall procedure

The study will incorporate interviews with experts in the field.
Interviews will be audio recording. Ethical approval for recording of these sessions is
sought explicitly, so that note-taking does not interfere with the process. In particular, the
discursive process when users are describing the problems they see/have experienced
when using the tools.

All interviews’ sessions will last approximately 1 hour,15 minutes.

1. Welcome (5 minutes). This includes an overview of sessions and its duration.
2. An introduction (5 minutes).This includes an overview of the subject and the study

objectives
3. Sessions 1,2, and 3 (60 minutes divided over three interlocutors, 10 min, 20 min,

30 min)
4. Final feedback and thanks (5 minutes)

Description of risks

There are no procedures or content in this study that could be expected to cause physical
or psychological harm.

Benefits of proposed research

This research will provide an opportunity to gather suggestions and opinions from experts
on the subject so that the Ph.D. framework can be updated to increase the usefulness of
visualization method in the educational field.

227

Right to withdraw

If you note that to take part in this research, please keep this information sheet. Also, you
have the freedom to withdraw your participation/data at any time up to 6 weeks after the

date of the evaluation session. To withdraw, your participation in this study merely contact
Mrs. Sarah Alhammad, stating your unique “participators code” that is this code given on
the day.

Confidently

None of the results reported from the study will include information that allows
identification of named individuals. No reference will be made to individual persons or
participants, either by name or type of data supplied. However, a coding scheme will be
used. Each participator will be issued with a “code” which will be used to store their data.
This code will be required should the user wish to withdraw their consent/data from the
study.

The researcher will use an audio recorder to record the interviews and store it on the
researcher’s computer, and it will be deleted from the recorder directly.
All data collected from the interviews will be stored on the researcher computer which is a
computer belongs to Princess Norah Bint Abdulrahman University. This computer is
password protected and exists behind a University firewall. The computer is located in a
secure building.

Please don’t hesitate to contact me if you now wish to withdraw or if you have any
questions about the project. To do this, please contact Mrs. Sarah Alhammad,
email: sarah.alhammad@plymouth.ac.uk

Thank you for taking time to read the information sheet.
Date: / /
__
If you are dissatisfied with the way the research is conducted, please contact the principal
investigator in the first instance: telephone number 01752 586209. If you feel the problem
has not been resolved please contact the secretary to the Faculty of Science and
Technology Human Ethics Committee: Mrs Paula Simson 01752 584503

mailto:sarah.alhammad@plymouth.ac.uk

228

Appendix E- Evaluation survey- Focus Group questions- Expert interviews

questions

E-1 Pre-survey for control and visualisation group

Student Survey Questionnaire of evaluating the use of
visualisation in programming (Visual code flow)

Section1:

Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of confidence in programming

I can program competently in at least one text-

based programming language.

I can use variables.

I can use the relational operators.

I can use the arithmetic operators.

I can use the procedures.

I know how to call procedures

I know how to pass a parameter(s).

I know how procedures return value(s) to the

program.

I can debug syntax errors

I can debug logical errors

Call procedure lesson

229

Section 2:

Trace the following code carefully and complete the questionnaire regarding the
code

class parameterExample

{

 public static void main (String[] args)

 {

double width = 10.0 ;

double length = 20.0 ;

calculateArea (width , length);

 }

 static void calculateArea(double theWidth, double theLength)

 {

double area;

area = theWidth * theLength ;

System.out.println(“The area is : ”);

System.out.println (area);

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

230

Please answer the questions in the first column and then choose the level of your confidence in solving

the question

Question Answer
Not
confident

Confident
Very
confident

 Participant’s level of confidence in solving the
questions

What is the purpose of the program?

What is the output of the program?

What does the statement in line 7 do?

What is the value of the variable width after
executing line 7

What is the value of the variable length after
executing line 7

What is the value of the variable theWidth after
executing line 9

What is the value of the variable theLength after
executing line 9

What is the value of the variable area after
executing line 12

What is displayed after executing line 13

What is displayed after executing line 14

Which line(s) of the code (if any) did you struggle
with understanding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Non

231

Student Survey Questionnaire of evaluating the use of
visualization in programming (Visual Java code)

Section1:

Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of confidence in programming

I can program competently in at least one text-based

programming language.

I can use variables.

I can use the relational operators.

I can use the arithmetic operators.

I can use classes and objects.

I know how to use constructors

I can debug syntax errors

I can debug logical errors

Classes and objects lesson

232

Section 2:

 Trace the following code carefully and complete the questionnaire regarding the
code

public class Accountexample

{

 public static void main(String[] args)

 {

Account account1 = new Account (50) ;

Account account2 = new Account (-7.53) ;

System.out.print("First account: ");

System.out.println(account1.getBalance ());

System.out.print("Second account: ");

System.out.println(account2.getBalance ());

double bonus = 100;

account1.addMoney (bonus) ;

account2.addMoney(bonus) ;

System.out.print("First account after adding bonus: ");

System.out.println(account1.getBalance ());

System.out.print("Second account after adding bonus: ");

System.out.println(account2.getBalance ());

 }

}

class Account

{

 double balance;

 public Account (double initialBalance)

 {

balance = initialBalance;

 }

 public void addMoney(double amount)

 {

balance = balance + amount ;

 }

 public double getBalance()

 {

return balance;

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

233

Please answer the questions in the first column and then choose the level of your confidence in solving

the question

Question Answer
Not
confident

Confident
Very
confident

 Participant’s level of confidence in solving the
questions

What is the purpose of the program?

What is the output of the program?

What is the value of variable balance in account1
after executing line 5

What is the value of variable balance in account2
after executing line 6

What is displayed after line 8 is executed

What is displayed after line 10 is executed

What is the value of variable balance in account1
after executing line 12

What is the value of variable balance in account2
after executing line 13

What is displayed after line 15 is executed

What is displayed after line 17 is executed

Which line(s) of the code (if any) did you struggle
with understanding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

22 23 24 25 26 27 28 29 30 31 32 33 34 35 21 19 20 Non

234

Section1:

Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of confidence in programming

I can program competently in at least one text-

based programming language.

I can use variables.

I can use the relational operators.

I can use the arithmetic operators.

I can use classes and objects.

I can use the class inheritance.

I can debug syntax errors

I can debug logical errors

Student Survey Questionnaire of evaluating the use of

visualization in programming (Visual Java code)

Class inheritance lesson

235

Section 2:

Trace the following code carefully and complete the questionnaire regarding the
code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

public class InheritanceExample
{
 public static void main(String[] args)
 {
 int input1 = 20;
 int input2 = 10;
 MathsLevel1 test = new MathsLevel1 ();
 test.addition(input1,input2);
 MathsLevel2 example = new MathsLevel2 ();
 example.subtraction(input1,input2);
 example.multiplication(input1,input2);
 }
}
public class MathsLevel1
{
 int z;
 public void addition(int x, int y)
 {
 z = x + y;
 System.out.println("The sum of the given numbers:"+z);
 }
 public void subtraction(int x, int y)
 {
 z = x - y;
 System.out.println("The difference between the given numbers:"+z);
 }
}
public class MathsLevel2 extends MathsLevel1
{
 public void multiplication(int x, int y)
 {
 z = x * y;
 System.out.println("The product of the given numbers:"+z);
 }

}

236

Please answer the questions in the first column and then choose the level of your confidence in solving

the question

Question Answer
Not
confident

Confident
Very
confident

 Participant’s level of confidence in solving the
questions

What is the purpose of the program?

What is the output of the program?

What does the statement in line 28 do?

What are the attributes of object test after
executing line 7

What is the value of variable z after executing line
8

What is displayed after line 20 is executed

What are the attributes of object example after
executing line 9

What is the value of variable z after executing line
10

What is displayed after line 25 is executed

What is the value of variable z after executing line
11

What is displayed after line 33 is executed

Which line(s) of the code (if any) did you struggle
with understanding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

22 23 24 25 26 27 28 29 30 31 32 33 34 35 21 19 20 Non

237

E-2 Post-survey for control and visualisation group

Note: Section 1 and 2 have been presented to both groups, while section 3 has been presented for

visualization group only

Student Survey Questionnaire of evaluating the use of
visualisation in programming (Visual Java code)

Section1:

Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of confidence in programming

I can program competently in at least one text-

based programming language.

I can use variables.

I can use the relational operators.

I can use the arithmetic operators.

I can use the procedures.

I know how to call procedures

I know how to pass a parameter(s).

I know how procedures return value(s) to the

program.

I can debug syntax errors

I can debug logical errors

Call procedure lesson

238

Section 2:

Trace the following code carefully and complete the questionnaire regarding the
code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

class parameterExample

{

 public static void main (String[] args)

 {

double width = 15.0 ;

double length = 12.0 ;

calculatePerimeter (width , length);

 }

 static void calculatePerimeter (double theWidth, double theLength)

 {

double perimeter;

perimeter = 2 * (theWidth + theLength);

System.out.println(“The perimeter is : ”);

System.out.println (perimeter);

 }

}

239

Please answer the questions in the first column and then choose the level of your confidence in solving

the question

Question Answer
Not
confident

Confident
Very
confident

 Participant’s level of confidence in solving the
questions

What is the purpose of the program?

What is the output of the program?

What does the statement in line 7 do?

What is the value of the variable width after
executing line 7

What is the value of the variable length after
executing line 7

What is the value of the variable theWidth after
executing line 9

What is the value of the variable theLength after
executing line 9

What is the value of the variable perimeter after
executing line 12

What is displayed after executing line 13

What is displayed after executing line 14

Which line(s) of the code (if any) did you struggle
with understanding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Non

240

Section 3:
Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of satisfaction

Using the tool helped me understand the
procedure call

I would prefer to use the tool to trace the code
rather than manual approach in section 2

I would prefer to use the manual approach in
section 2 to trace the code, rather than the tool

The tool was useful for learning Java

Using the tool helped me understand the
changes in the variable values

The tool is easy to use

I would use a tool like this one

 Please feel free to add any comments or suggestions to improve the tool in the following box

241

Student Survey Questionnaire of evaluating the use of
visualization in programming (Visual Java code)

Section1:

Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of confidence in programming

I can program competently in at least one text-based

programming language.

I can use variables.

I can use the relational operators.

I can use the arithmetic operators.

I can use classes and objects.

I know how to use constructors

I can debug syntax errors

I can debug logical errors

Classes and objects lesson

242

Section 2:

 Trace the following code carefully and complete the questionnaire regarding the
code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

public class ExamGrade

{

 public static void main(String[] args)

 {

 Exam exam1 = new Exam (90) ;

 Exam exam2 = new Exam(70) ;

 System.out.print("First exam grade : ");

 System.out.println(exam1.getGrade ());

 System.out.print("Second exam grade: ");

 System.out.println(exam2.getGrade ());

 double bonus = 5.0;

 exam1.addBonus (bonus) ;

 exam2.addBonus(bonus) ;

 System.out.print("First exam grade after adding bonus: ");

 System.out.println(exam1.getGrade ());

 System.out.print("Second exam grade after adding bonus: ");

 System.out.println(exam2.getGrade ());

 }

}

class Exam

{

 double grade;

 public Exam (double initialGrade)

 {

 grade = initialGrade;

 }

 public void addBonus(double plus)

 {

 grade = grade + plus;

 }

 public double getGrade()

 {

 return grade;

 }

}

243

Please answer the questions in the first column and then choose the level of your confidence in solving

the question

Question Answer
Not
confident

Confident
Very
confident

 Participant’s level of confidence in solving the
questions

What is the purpose of the program?

What is the output of the program?

What is the value of variable grade in exam1 after
executing line 5

What is the value of variable grade in exam2 after
executing line 6

What is displayed after line 8 is executed

What is displayed after line 10 is executed

What is the value of variable grade in exam1 after
executing line 12

What is the value of variable grade in exam2 after
executing line 13

What is displayed after line 15 is executed

What is displayed after line 17 is executed

Which line(s) of the code (if any) did you struggle
with understanding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

22 23 24 25 26 27 28 29 30 31 32 33 34 35 21 19 20 Non

244

Section 3:

Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of satisfaction

Using the tool helped me understand classes

Using the tool helped me understand objects

Using the tool helped me understand the
difference between classes and objects

Using the tool helped me understand the class
constructor

Using the tool helped me understand how to set
the variable value defined in the class

Using the tool helped me understand how to get
the variable value defined in the class

I would prefer to use the tool to trace the code
rather than manual approach in section 2

I would prefer to use the manual approach in
section 2 to trace the code, rather than the tool

The tool was useful for learning Java

Using the tool helped me understand the changes
in the variable values

The tool is easy to use

I would use a tool like this one

Please feel free to add any comments or suggestions to improve the tool in the following box

245

Student Survey Questionnaire of evaluating the use of
visualization in programming (Visual Java code)

Section1:

Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of confidence in programming

I can program competently in at least one text-

based programming language.

I can use variables.

I can use the relational operators.

I can use the arithmetic operators.

I can use classes and objects.

I can use the class inheritance.

I can debug syntax errors

I can debug logical errors

Class inheritance lesson

246

Section 2:

Trace the following code carefully and complete the questionnaire regarding the
code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

public class InheritanceExample
{
 public static void main(String[] args)
 {
 int input1 = 50;
 int input2 = 2;
 MathsLevel1 test = new MathsLevel1 ();
 test.multiplication (input1,input2);
 MathsLevel2 example = new MathsLevel2 ();
 example.division(input1,input2);
 example.remainder(input1,input2);
 }
}
public class MathsLevel1
{
 double z;
 public void multiplication(int x, int y)
 {
 z = x * y;
 System.out.println("The product of the given numbers:"+z);
 }
 public void division(int x, int y)
 {
 z = x / y;
 System.out.println("The quotient of the given numbers:"+z);
 }
}
public class MathsLevel2 extends MathsLevel1
{
 public void remainder(int x, int y)
 {
 z = x % y;
 System.out.println("The remainder after dividing the given numbers:"+z);
 }

}

247

Please answer the questions in the first column and then choose the level of your confidence in solving

the question

Question Answer
Not
confident

Confident
Very
confident

 Participant’s level of confidence in solving the
questions

What is the purpose of the program?

What is the output of the program?

What does the statement in line 28 do?

What are the attributes of object test after
executing line 7

What is the value of variable z after executing line
8

What is displayed after line 20 is executed

What are the attributes of object example after
executing line 9

What is the value of variable z after executing line
10

What is displayed after line 25 is executed

What is the value of variable z after executing line
11

What is displayed after line 33 is executed

Which line(s) of the code (if any) did you struggle
with understanding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

22 23 24 25 26 27 28 29 30 31 32 33 34 35 21 19 20 Non

248

Section 3:
Please complete the following questionnaire, by placing a CROSS in the
appropriate space

Statement
Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Participant’s level of satisfaction

Using the tool helped me understand the class
inheritance

Using the tool helped me understand how to set
the value of the variable that is inherited from
the super-class

Using the tool helped me understand how to get
the value of the variable that is inherited from
the super-class

I would prefer to use the tool to trace the code
rather than the manual approach in section 2

I would prefer to use the manual approach in
section 2 to trace the code, rather than the tool

The tool was useful for learning Java

The tool is easy to use

I would use a tool like this one

 Please feel free to add any comments or suggestions to improve the tool in the following box

249

E-3 Questions for Focus Groups

List of open-ended questions in the focus group discussion to evaluate the use of

visualisation in programming learning (Visual code flow)

Group reference :
Date of

discussion:

Interview Start and End

Times:
 Moderator :

Dear participant

Thank you for taking the time to have this discussion. The discussion is an evaluation of using

visualization method that assists the leaning of programming and gathering the students's opinion

and suggestions.

Regards

Sarah Alhammad

250

Section one: Short Questions

Participants reference # :

Which level or course of programming do you study now?

Which programming language do you learn ?

What materials or web-sites do you use beside the lecture notes in studying programming

?

Have you ever use visualization tools to improve your understanding for programming? (

interviewer should explain the nature of visualization tool)

o If so, What is the tool?

o How often you use it?

o What the aspects you like/dislike on the tool?

251

Section two: Open-ended questions

Note that the discussion evolve depending on the topic and on the students answers.

The following is suggested questions to guide the discussion

What are the strengthen(s) and weakness(es) of the tool in general?

How did you find the method representation ? things you like and dislike ?

How did you find the variable representation ? things you like and dislike ?

How did you find the expression of evaluation ? things you like and dislike ?

How did you find the passing parameters and calling method representation ? things you

like and dislike ?

How did you find the class representation ? things you like and dislike ?

How did you find the object representation ? things you like and dislike ?

How did you find the class inheritance representation ? things you like and dislike ?

252

How did you find the output representation ? things you like and dislike ?

How did you find the animation? things you like and dislike ?

How did you find the control of execution ? things you like and dislike ?

would you use the tool if it’s possible? Explain why or why not

Do you think it is beneficial and may improve programming learning?

What should other types of improvements be implemented to build on this tool?

253

E-4 Questions for semi-structured interviews- expert interview

List of open-ended questions to evaluate the use of visualisation in programming

learning (Visual code flow)- expert evaluation

Participant code: Date of Interview:

Interview Start and End

Times:

Notes were taken

by:

Dear participant

Thank you for taking the time to have this discussion. The discussion is an evaluation of using

visualization method that assists the leaning of programming and gathering the expert's opinion and

suggestions.

Regards

Sarah Alhammad

Personal information

Name (optional)

Age

Gender

Degree

Occupation

section1: Background information (10 minutes)

Did you teach Programming language(s), if yes proceed to the following questions

How long have you been teaching programming ?

Which level or course of programming do you teach?

Which programming language do you teach?

What is your experience (if any) on using visualization tools to improve your teaching for

programming courses?(interviewer should explain the nature of visualization tool)

254

If yes, the following questions will be asked:

o What is the tool? (describe how it works and its method)

o How often you use it?

o What are the tool features?

o What the aspects you like/dislike on the tool?

o To what extent it was helpful?

Section 2: Evaluated questions for Visual Java Code tool(20 minutes for each
activity) same questions

What are the strengthen(s) and weakness(es) of the tool?

Will you use it if possible? Explain why or why not

Do you think it is beneficial and may improve programming learning?

What should other types of improvements be implemented to build on this tool?

How did you find the method representation ? things you like and dislike

How did you find the variable representation ? things you like and dislike

255

How did you find the expression of evaluation ? things you like and dislike

How did you find the passing parameters and calling method representation ? things

you like and dislike

How did you find the class representation ? things you like and dislike

How did you find the object representation ? things you like and dislike

How did you find the class inheritance representation ? things you like and dislike

How did you find the output representation ? things you like and dislike

How did you find the animation? things you like and dislike

How did you find the control of execution ? things you like and dislike

256

Appendix F- Interviews and focus groups transcript

F-1 Interviews with programming students in the data collection Phase

Coding Framework Table

Initial coding framework

Note: letter P refer to the participant

Interview transcript Initial coding framework

P1:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P1: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P1:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P1: No

Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P1: e-learning systems.

Interviewer : What technical hurdles remain to you being able to learn
programming?
P1: lack of e-learning system, more training.

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?
P1:
 Jeliot:
 ‘Like: the appearance of execution which is next to the code directly
Dislike:1- the tool cannot go back to previous steps or forward to next steps
(no control on the execution steps)
2- in case of representing the classes and inheritance , it was not clear
because the classes cascaded and not represented as hierarchy ‘

Windows preference
Execution preference
Object oriented
representation
Tools availability
Expression evaluation
preference
Tracing the program code

257

Interviewer: Will you use it if possible ? explain why or why not

Yes, I like the tracing, and how it show the loop counter
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing

Online python tutor:
‘Dislike: 1- she does not like the online tool , because of any internet issues
or problems
2- the execution process like the arithmetic and logic operation is not clear
enough since the there is no expression evaluation and the tool produce the
final result without any details
Like : she likes the control of execution (the existence of next and back
buttons)’
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the tracing, and how it show the classes and object
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing

Visual logic:
‘It is an advanced tool that could be used to learn the flow of programming
but not how to write program since there is no code to be blogged and
evaluated it is suitable to learn the structure of programming and program
semantics , nothing about memory referencing .’
Interviewer:Will you use it if possible ? explain why or why not

No, because it is based on flowchart tracing not the code.
Interviewer:Do you think it is beneficial and may improve programming
learning?
No

Interviewer:What other types of improvements should be implemented to
build on this tool?
P1: The racing is not good enough because there was no code to be traced
only the flowchart and this is not enough
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?

Execution preference
Save action preference
Object oriented
representation
Statement execution
indicator

Programming language
preference
Animation

258

Describe why?
P1: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P1: Online python tutor because the hierarchy of inheritance was
sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P1: Both , I think it is clear in both tools and any representation I can
understand it

P2:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P2: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P2:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P2: No

Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P2: web site that solved programming exercises

Interviewer : What technical hurdles remain to you being able to learn
programming?
P2: lack of practice.

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

Animation interface
preference
Debugging and error
explanation
Tools availability
Expression evaluation

Execution preference
Animation
Use of control buttons

Statement execution
indicator
Animation
Use of the control button

259

P2
Jeliot:
 ‘Dislike: 1- no control on the steps of execution or saving the action history
2- the representation of classes was not clear , the arrows showed to
represent the relation between classes was not obvious
Like: the control in the execution speed ‘
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the loop tracing
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing

Online python tutor:
‘Like: 1- the use of green and red pointers (arrows) to indicate the
statement execution whether it is under execution or will be the next
statement to be executed
2- she likes the control of execution (the existence of next and back
buttons)’
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the tracing, and how it show the classes and object
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing.

Visual logic:
‘It is an advanced tool that could be used to learn the flow of programming
but not how to write program since there is no code to be blogged and
evaluated
It is suitable for program designers not for code programming’
Interviewer:Will you use it if possible ? explain why or why not

No not for learning programming but may be to understand the
programming steps through flowchart.
Interviewer:Do you think it is beneficial and may improve programming
learning?
No

Interviewer:What other types of improvements should be implemented to
build on this tool?
Support the coding trace in addition to the flowchart

Error explanation
Execution speed
Trace the program code
Tools availability

Interface preference
Tools availability
Use of control buttons

260

Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P2: Jeliot because I like the loop tracing.

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P2: Online python tutor because the hierarchy of inheritance was clear

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P2: jeliot, because the highlighted lines were clear and shows the
parameters

P3:
Name (optional)
Age : 22-24
Gender: Female
Occupation : graduated without job

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P3: C,C++,PHP,HTML

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P3: few months in the graduation project

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P3: yes, the built in tracing tool in C programming language.

Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P3: e-learning systems.

Interviewer : What technical hurdles remain to you being able to learn
programming?
P3: nothing

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the

Interface preference
Code font
Error explanation
Expression evaluation
Tools availability
Tracing the program code
Execution speed

261

Jeliot\online python tutor\visual logic tools ?
P3:
 Jeliot:
 ‘There is no weakness, I like it in general except its way to represent the
class hierarchy and the variables and methods which is inherited or private
all of these was not satisfied ‘
Interviewer:Will you use it if possible ? explain why or why not

Yes, it is clear how the counter incremented and the body of the value of
variables in the loop body changed each time.

Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

The class inheritance is not clear. It should support more than one language

Online python tutor:
‘Like: it is support more than one language
Dislike: it is not suitable for novices because the lack of animation and
attraction windows and details on execution’
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the using of green and red arrow used to represent the execution
line and the next line to be executed. I like the tracing line by line, and it
easy to access and understand.
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing

Visual logic:
‘It is an advanced tool that could be used to learn the flow of programming
but not how to write program since there is no code to be blogged and
evaluated’
Interviewer:Will you use it if possible ? explain why or why not

No, I don’t it is beneficial for programmers learners .
Interviewer:Do you think it is beneficial and may improve programming
learning?
No
Interviewer:What other types of improvements should be implemented to
build on this tool?

Programming language
preference
Tools availability
Error explanation
Interface preference
Trace the program code

Animation
Error explanation
Execution preference
Use of control button
Tools availability

262

Support program code and trace the code line by line.
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P3: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P3: Online python tutor because the class and object with their attribute is
good presented .

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P3: jeliot. I think it is clear when trace the line of calling statement and
then jump to the procedure header .

P4:
Name (optional)
Age : 19-21
Gender: male
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P4: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P4:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P4: No

Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P4: learning software that has a bank questions.

Interviewer : What technical hurdles remain to you being able to learn
programming?
P4: extra practice using learning software and learning websites.

Animation
Error explanation
Execution preference
Interface preference
Program language
Tools availability

Animation
Error explanation
Execution preference
Interface preference
Program language
Tools availability

Animation
Error explanation
Execution preference
Interface preference
Ease of use
Tools availability

Error explanation
Execution preference
Interface preference
Tools availability

Error explanation

Animation
Interface preference
Program language
Tools availability

263

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?
P4:
Jeliot:
 ‘Strengthen: like the animation, the interface, and error explanation
There is no weakness in general but I prefer the online tools ‘
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the navigation buttons, the expression explanations, I like the
tracing and how it shows the changing in the variables.
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Support moreprogramming languages.

Online python tutor:
‘Strengthen: online tool, clear tool
Weakness: the design need to be developed, similar to the manual tracing,
and the absence of statement expression’
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the tracing, and the class representation. I like that it is easy to
access online
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?
In each statement in the code , it doesn’t show in details the change of the
variables’ values. I think it need to be added.

Visual logic:
‘It helps on learning the concepts of programming but not how to program’
Interviewer:Will you use it if possible ? explain why or why not

No, because I already know how to work with flowcharts.
Interviewer:Do you think it is beneficial and may improve programming
learning?
Only for people who wants to understand the flowcharts.

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing

Correction suggestion
Tools availability
Interface preferences

Animation
Error explanation
Execution speed and
control
Interface preference
Program language
Tools availability

Animation
Error explanation
Execution preference
Interface preference
Program language
Tools availability

Error explanation
Trace the code
Tools availability

264

Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P4: Jeliot because expression and variables changing is much clear.

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P4: Online python tutor because the hierarchy of inheritance was clear.

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P4: Jeliot and online tutor.

P5:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P5: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P5:Few days for Programming homework and during lab activity.

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P5: No

Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P5: learning websites.

Interviewer : What technical hurdles remain to you being able to learn
programming?
P5: extra practice time and questions.

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the

265

Jeliot\online python tutor\visual logic tools ?
P5:
Jeliot:
 ‘I like all the features in the tool
Weakness: the execution control in not enough , I prefer if I can control the
execution more ,for example, going back and forth for each statement ‘
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like all of the features especially the navigation buttons and the
windows division.
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?
The execution control in not enough , I prefer if I can control the execution
more ,for example, going back and forth for each statement ‘

Online python tutor:
‘The control button is suitable for beginners but not for the experts
Weakness: The absence of animation’
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the tracing and navigations. Also I like the classes representation.
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?
I would like to add buttons to play the execution and pause it .

Visual logic:
‘It does not help on how to program, it is beneficial to learn how to
understand the programming concepts’
Interviewer:Will you use it if possible ? explain why or why not

No ,It does not help on how to program, it is beneficial to learn how to
understand the programming concepts.

Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?
Code tracing like Jeliot and online python tutor.
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

266

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P5: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P5: Online python tutor because the hierarchy of inheritance was
sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P5: Both , I think it is clear in both tools and any representation I can
understand it

P6:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P6: Java

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P1:Few days in the lab activity.

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P6: No

Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P6: e-learning systems.

Interviewer : What technical hurdles remain to you being able to learn
programming?
P6: lack of e-learning system.

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the

267

Jeliot\online python tutor\visual logic tools ?
P6:
 Jeliot:
 ‘I like the tool and I like how it represents the results for each statement in
the code
Weakness: nothing ‘
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the tracing
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing

Online python tutor:
‘Strengthen : the use of red and green arrows as indication of statement
execution
Weakness: The absence of animation , I don’t like the control button and I
prefer the animation’
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the tracing, and how it show the classes and object
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing

Visual logic:
‘It does not help on how to program, it is beneficial to learn how to
understand the programming concepts’
Interviewer:Will you use it if possible ? explain why or why not

No
Interviewer:Do you think it is beneficial and may improve programming
learning?
No

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

268

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P6: Jeliot because the loop counter was clear

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P6: Online python tutor because , objects attribute was clearly presented
also the inheritance representation easy to understand

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P6: jeliot , I need to lear more in Java programming.

P7:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P7: JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P7:Few days when I solve a programming homework.

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P7: No

Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P7: more websites like Khan-academy.

Interviewer : What technical hurdles remain to you being able to learn
programming?
P7: we don’t know much tracing tools that may help us to understand
programming.

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

269

P7:
Jeliot:
 ‘Strengthen : error explanation, animation, showing what happen to the
variables in memory during execution
Weakness: I want to slow down the execution speed ‘
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like error explanation, animation, showing what happen to the
variables in memory during execution
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

I want to slow down the execution speed

Online python tutor:
‘Strengthen : the tracing is good
Weakness: I don’t like the online tools to avoid the connection problems’
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the tracing, and how it show the classes and object
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing except I don’t like the online tools to avoid the connection
problems

Visual logic:
‘It does not help on how to program, it is beneficial to learn how to
understand the programming concepts’
Interviewer:Will you use it if possible ? explain why or why not
It help flowchart learners only as beginning on how to program

Interviewer:Do you think it is beneficial and may improve programming
learning?
No

Interviewer:What other types of improvements should be implemented to
build on this tool?

No
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

270

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P7: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P7: Online python tutor because the hierarchy of inheritance was
sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P7: Both , I think it is clear in both tools and any representation I can
understand it

P8:
Name (optional)
Age : 19-21
Gender: Male
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P8: Java

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P8:Few days practice for exam.

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P8: No

Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P8: I don’t know

Interviewer : What technical hurdles remain to you being able to learn
programming?
P8: more training through bank questions in learning website.

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the

271

Jeliot\online python tutor\visual logic tools ?
P8:
Jeliot:
 ‘Strengthen : the interface, and the tool is showing what happen to the
variables in memory during execution ‘
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the interface, and the tool is showing what happen to the
variables in memory during execution
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

Nothing

Online python tutor:
‘Strengthen : I like the online tool,
Weakness: the execution control buttons because every time I need to click
on the forward and back buttons’
Interviewer:Will you use it if possible ? explain why or why not

Yes, I like the interface, is the tool online and support many programming
langauges.
Interviewer:Do you think it is beneficial and may improve programming
learning?
yes

Interviewer:What other types of improvements should be implemented to
build on this tool?

the execution control buttons because every time I need to click on the
forward and back buttons
Visual logic:
‘It does not help on how to program, it is beneficial to learn programming
concepts’
Interviewer:Will you use it if possible ? explain why or why not

No, I am interested.
Interviewer:Do you think it is beneficial and may improve programming
learning?
No

Interviewer:What other types of improvements should be implemented to
build on this tool?
I don’t know may be support code tracing.
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?

272

Describe why?
P8: Jeliot , I like the loop tracing more in jeliot than online tutor.

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P8: Online python tutor

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P8: jeliot for loop and variable tracing but online tutor for class
representation and object oriented programming.

P9:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P9: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P1:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P9: No

 Jeliot:
 ‘Strengthen : the interface, the speed execution
Weakness: the code font is small ‘
Online python tutor:
‘Strengthen : it is online
Weakness: the error explanation was not good , and the absence of
expression evaluation’
Visual logic:
‘It is nothing to do on how to write a program , I do not think it will help me
to write or trace a program ‘

P10
Name (optional)
Age : 19-21
Gender: male
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

273

P10: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P1:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P10: No

 Jeliot:
 ‘Strengthen : the whole tracing method
Weakness: it supports only one language ‘
Online python tutor:
‘Strengthen : it is online
Weakness: the error explanation was not good , non-friendly interface, and
it is not suitable for beginners’
Visual logic:
‘It does not include the code so it does not help ‘
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P10: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P10: Online python tutor because the hierarchy of inheritance was
sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P10: Both , I think it is clear in both tools and any representation I can
understand it

P11:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P11: C,C++,JAVA

274

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P1:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P11: No
Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P11: assignments

Interviewer : What technical hurdles remain to you being able to learn
programming?
P11: lack of training

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

Jeliot:
 ‘Strengthen : the animation and the visualization that presents the effect of
execution on the memory – the error explanation was great
Weakness: the execution control should be more flexible ‘
Online python tutor:
‘Strengthen : the control buttons that make the control of execution more
flexible
Weakness: the error explanation was not good ,not suitable for beginners
because the interface is not well arranged, it is better that the tool in offline
mode and run as software on the local machine’
Visual logic:
‘It does not help on how to program, it is beneficial to learn how to
understand the programming concepts ‘

Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P11: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P11: Online python tutor because the hierarchy of inheritance was
sequential

275

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P11: Both , I think it is clear in both tools and any representation I can
understand it

P12:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P12: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P12:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P12: No

Jeliot:
 ‘Strengthen : the interface, the animation , the tracing
Weakness: does not support other languages, the control execution ‘
Online python tutor:
‘Strengthen :
Weakness: the error explanation was not good , I prefer the offline mode’
Visual logic:
‘It does not help on how to program, it is beneficial to learn how to
understand the programming concepts ‘
Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P12: Online python tutor because the hierarchy of inheritance was
sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P12: Both , I think it is clear in both tools and any representation I can
understand it

Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

276

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P12: Jeliot , I like the loop demonstration

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P12: Online python tutor because the hierarchy of inheritance was clear
and easy to understand

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P12: Both

P13:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P13: JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P13:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P13: No
Interviewer : What kind of technical assistance would you like to improve
your programming learning? Suggestion: (e-learning system, software(s),
example databases)

P13: learning web sties

Interviewer : What technical hurdles remain to you being able to learn
programming?
P13: tutorial online

TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

Jeliot:
 ‘Strengthen : the error explanation

277

Weakness: the animation needs more control in was fast ‘
Online python tutor:
‘Strengthen : support more than one language
Weakness: how to control the execution was not good, online, the
interface’
Visual logic:
‘It does not include the code so it does not help ‘
Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P13: Online python tutor because the hierarchy of inheritance was
sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P13: Both , I think it is clear in both tools and any representation I can
understand it

Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P13: Jeliot because the loop counter is easy to understand

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P13: Online python tutor because the hierarchy of inheritance is easy to
understand

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P13: Both , I think it is clear in both tools.

P14:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P14: C,C+

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P1:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

278

P14: No
TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

 Jeliot:
 ‘Strengthen : control execution, error explanation, the interface
Weakness: the code font is very small ‘
Online python tutor:
‘Strengthen : the control execution is good I like the (forward and backward
buttons), online
Weakness: the interface not friendly’
Visual logic:
‘Strengthen : trace the flowchart
Weakness: the control execution ‘
Interviewer:Will you use it if possible ? explain why or why not

No, because it is based on flowchart tracing not the code.
Interviewer:Do you think it is beneficial and may improve programming
learning?
No
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P14: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P14: Online python tutor because the hierarchy of inheritance was
sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P14: Both , I think it is clear in both tools and any representation I can
understand it

P15:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

279

P15: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P15:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P15: No

Jeliot:
 ‘Strengthen : the error explanation, the tracing is clear for novices
Weakness: no weakness ‘
Online python tutor:
‘Strengthen : support more than one language online tool
Weakness: the interface is not friendly , I prefer the animation to control
the execution ‘
Visual logic:
‘Weakness: not helpful for tracing especially for long flowchart ‘
Interviewer:Will you use it if possible ? explain why or why not

No, because it is based on flowchart tracing not the code.
Interviewer:Do you think it is beneficial and may improve programming
learning?
No

Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P15: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P15: Online python tutor because the hierarchy of inheritance was
sequential ly represented

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P15: Both

P16:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

280

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P16: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P16:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P16: No
TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

Jeliot:
 ‘Strengthen : I like all its features
Weakness: the correction suggestion for the error is not helpful enough ‘
Online python tutor:
‘Strengthen : it is an online tool
Weakness: interface need to be more colourful ‘
Visual logic:
‘Can be used for implementing projects but not for writing code ‘
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P16: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P16: Online python tutor because the hierarchy of inheritance was
sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P16: Both , I think it is clear in both tools and any representation I can
understand it

P17:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

281

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P17: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P17:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P17: No
TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

Jeliot:
 ‘Strengthen : the interface, the windows, expression evaluation , error
explanation
Weakness: I did not like the speed of animation ‘
Online python tutor:
‘Strengthen : it is an online tool, support more than one programming
language, the execution control
Weakness: interface need to be improved to be more attractive ‘
Visual logic:
‘Suitable to understand how the flowchart works and to understand the
programming semantics and keywords ‘

Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P17: Jeliot because the loop counter was clear and easy to know the values
of variables involved in the loop

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P17: both are the same , for many classes we can use jeliot while if we have
few classes I may choose online python tutor.

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P17: Both of them were good.

282

P18:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P18: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P1:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P18: No
TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

Jeliot:
 ‘Strengthen : the interface, the animation in the execution control, error
explanation
Weakness: nothing ‘
Online python tutor:
‘Strengthen : it is an online tool, support more than one programming
language
Weakness: the error explanation was not clear ‘
Visual logic:
‘Could be used to teach flowchart and programming concepts ‘
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P18: Jeliot because the loop counter was easy to understand.

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P18: Online python tutor because the hierarchy of inheritance was easy to
trace

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P18: Both

283

P19:
Name (optional)
Age : 19-21
Gender: Female
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P19: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P19:Few days for Programming homework

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P19: No
TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

 Jeliot:
 ‘Strengthen : error explanation , the tracing visualization
Weakness: nothing ‘
Online python tutor:
‘Strengthen : the tracing and the control in the execution
Weakness: I do not like the online tool ‘
Visual logic:
‘It does not show any code so I do not think it will be helpful for learning
how to write program concepts ‘
Interviewer:Will you use it if possible ? explain why or why not

No, because it is based on flowchart tracing not the code.
Interviewer:Do you think it is beneficial and may improve programming
learning?
No
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P19: Jeliot because the loop counter was clear and the change of the body
loop also

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P19: Online python tutor because the hierarchy of inheritance was
sequential

284

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P19: Both , I think it is clear in both tools and any representation I can
understand it

P20:
Name (optional)
Age : 19-21
Gender: male
Occupation : Undergraduate student

TASK1: Background information (10 minutes)
Interviewer:What is\are Programming language(s) you have learned

P20: C,C++,JAVA

Interviewer:When was the last time you wrote a program ? what was the
purpose? Reason
P20:Few days for project

Interviewer : What are your experiences (if any) on using visualisation tools
to improve your understanding to programming?
(interviewer should explain the nature of visualisation tool)

P20: No
TASK2: Evaluated questions for each tool(25 minutes)

Interviewer:’ What are the strengthen(s) and weakness (es) of the
Jeliot\online python tutor\visual logic tools ?

Jeliot:
 ‘Strengthen : the error explanation, the tracing very helpful
Weakness: the animation needs more control ‘
Online python tutor:
‘Strengthen : it is easy to use, the interface not complicated
Weakness: how to control the execution was not good, the error
explanation , online mode’
Visual logic:
‘It good to understand the logic of programming but not for writing code ‘
Task3:Comparison between the tools on solving three kind of activities (
LOOPS- Objects- Passing parameters) (10 minutes)
The discussion will be held for each activity on the effectiveness of the tool

Interviewer:Which tool do you prefer for solving the LOOP activity ?
Describe why?
P20: Jeliot because the loop counter was clear and the change of the body
loop also easy to see the values of variables.

Interviewer:Which tool do you prefer for solving the OBJECT activity ?
Describe why?
 P20: Online python tutor because the hierarchy of inheritance was

285

sequential

Interviewer:Which tool do you prefer for solving the PASSING_PARAMETER
activity ? Describe why?
P20: Both , I think it is clear in both tools and any representation I can
understand it

Table: final coding framework

final coding framework

initial coding framework

Online or offline

Error explanation

Expression evaluation

Programming languages

Control execution

Hierarchy of classes

Saving history

Interface

Tools availability

Debugging and error explanation
Correction suggestion

Expression evaluation preference
Trace the program code
Animation

Programming languages preferences

Execution preferences
Animation
Use of control buttons
Execution speed

Object oriented representation

Save action

Windows preferences
Statement execution indicator
Interface preferences
Code font
Ease of use

286

F-2 Interviews with Experts in the Evaluation Phase

Interview- transcript

Section1:
Q1: Did you teach Programming language(s), if yes proceed to the following questions
How long have you been teaching programming ?

Q2: Which level or course of programming do you teach?

Q:3 Which programming language do you teach?

Q4: What is your experience (if any) on using visualization tools to improve your teaching
for programming courses?(interviewer should explain the nature of visualization tool)

If yes, the following questions will be asked:

Q4-1 What is the tool? (describe how it works and its method)
Q4-2 How often you use it?
Q4-3 What are the tool features?
Q4-4 What the aspects you like/dislike on the tool?
Q4-5 To what extent it was helpful?

Section2:
Q5: What are the strengthen(s) and weakness(es) of the tool?

Q6 :Will you use it if possible? Explain why or why not

Q7: Do you think it is beneficial and may improve programming learning?

Q8: What should other types of improvements be implemented to build on this tool?

Q9: How did you find the method representation ? things you like and dislike

Q10:How did you find the variable representation ? things you like and dislike

Q11:How did you find the expression of evaluation ? things you like and dislike

Q12:How did you find the passing parameters and calling method representation ? things
you like and dislike

Q13: How did you find the class representation ? things you like and dislike

Q14:How did you find the object representation ? things you like and dislike

Q15:How did you find the class inheritance representation ? things you like and dislike

Q16:How did you find the output representation ? things you like and dislike

287

Q17:How did you find the animation? things you like and dislike

Q18:How did you find the control of execution ? things you like and dislike

Table: initial coding framework

Interview transcript Initial coding framework

Expert1:
Interviewer:
Q1: yes, for 7 years
Q2: programming I and II
Q3: Java
Q4: NONE
Q4-1: --
Q4-2:
Q4-3:
Q4-4:
Q4-5:
Q5: The tool is good method for visualisation and tracing the code , it is very
clear and easy to use, I think it will be very helpful
Using different shapes and styles to represent variables, objects, and classes
will help the students to distinguish the difference between them.
The tool not flexible , the students cannot plugged in their own code
It has limited examples
Q6: Yes, It will save time and effort
Q7: yes, I am expecting that it will increase the students’ understanding
Q8: more examples and support error debugging
Q9: Helps to understand that sending and receiving parameters have
different memory location.
Q10: very good
Q11: clear, I like the transition of values of variables and how it represents
the results
Q12: clear, I like the transition of the parameters in and to the methods
Q13: Using different shapes and styles to represent objects, and classes will
help the students to distinguish the difference between them.
Q14: same answer for Q13
Q15: I like using such a diagram similar to UML to show what the objects
belongs to superclass
Q16: similar to reality , as it happen in programming applications
Q17: good but I suggested to control the speed of animation or skip some of
them
Q18: good and suitable

Expert2:
Interviewer:
Q1: yes, for 10 years
Q2: programming I and II
Q3: Java, C, C++
Q4: yes
Q4-1: Jeliot
Q4-2: I Used it once
Q4-3: visualisation

Animation
Ease of use
The three problems
representation
Object oriented
representation

Animation
visualisation

288

Q4-4: the control of execution- visualisation- array examples
Q4-5: good but need some practicing to fully understand it
Q5: The tool is good method for visualisation and tracing the code .
The structure and branching that have been used in the memory frame will
help in understand which item is belong to what method or class , for
example the student can recognise that variable (width) and variable
(length) belongs to the method (main) which belongs to class (
parameterExample) also the objects (test) is an object from class
(MathsLevel1) where object (example) is an object from class
(MathsLevel2).
The tool need more examples such as the use of array, pointers, and
recursion
Q6: I would like to use the visualisation as a supplement in lectures or even
before starting the lab activity to improve the student’s comprehension
Q7: yes, I am expecting that it will increase the students’ understanding
Q8: more examples
Q9: Helpful
Q10: accurate and easy to understand
Q11: helpful
Q12: I like how you spate the variables in the method header and method
calling for two distinct memory places
Q13: I like the different styles to distinguish between classes and objects
Q14: same answer for Q13
Q15: very good, it shows what variables and methods that should be
inherited and not inherited
Q16: very clear because it shows in separate window
Q17: good and easy to use
Q18: I liked the two different mode (options) for animation

Expert3:
Interviewer:
Q1: yes, for 15 years
Q2: programming I and II
Q3: Java, .net
Q4: yes
Q4-1: Jeliot
Q4-2: I read a paper about jeliot and I decided to try it
Q4-3: visualisation
Q4-4: I like the whole idea and the concepts of the tool
Q4-5: good as self- training tool
Q5: The tool is good method for visualisation and tracing the code .
- I like the highlighting of every single statement before, and during the
execution, that will show the flow of the code and give enough time for the
student to understand what happens during execution.
- I like the windows, the colours, the boxes, arrows, and the animation
buttons
The tool need more examples such as the use of array.
Q6: it could be used as extra supplement and tutorial or self-learning
method
Q7: yes
Q8: the user should try his own code
Q9: I like using the lines to represent what method belongs to what class

Ease of use
The three problems
representation
Object oriented
representation

Animation
Ease of use
The three problems
representation
Object oriented
representation

289

Q10: easy to understand and I like the use of boxes
Q11: helpful
Q12: it helps to show how parameter value move and does not changed in
the main method because they are different variable .
Q13: It helps to understand what class and what object
Q14: same answer for Q13
Q15: Drawing the inherited object inside the super-class object was very
clear and meaningful.
Q16: it shows exactly when the output transfer to output window
Q17: it helps to improve the understanding
Q18: suitable
Expert4:
Interviewer:
Q1: yes, for 13 years
Q2: programming I and II
Q3: Java, C,C++,Pascal
Q4: yes
Q4-1: Bluej
Q4-2: I tried Bluej once
Q4-3: visualisation
Q4-4: I like the whole idea and the concepts of the tool
Q4-5: good for describing the objects concepts for the students
Q5: The tool is good method for visualisation the object oriented
programming
- I like the active tracing for the code , and transition of the variables from
and to memory window
The tool need more programming paradigms and error corrections
Q6: yes, because during lectures, I keep on drawing shapes and arrows to
show the variables and their changes, this tool will consume my effort and
time.
Q7: yes
Q8: adding some features like error explanation and corrections
Q9: I like how the tool separate the variables defined in main and in the
method header that will help in understanding the call by values method
Q10: clear and similar to manual tracing
Q11: great, it shows the changing in the values using cross red lines such as
manual tracing
Q12: it helps to show how parameter value move and does not changed in
the main method because they are different variable .
Q13: It helps to understand what class and what object
Q14: great to show that changing happen in objects.
Q15: I like the representation to show the relation between the classes
Q16: good location
Q17: clear and neat
Q18: good but the speed of transition need to be controlled
Expert5:
Interviewer:
Q1: yes, for 9 years
Q2: programming I and II
Q3: Java,Pascal
Q4: none
Q4-1: --
Q4-2

Interface
Expression evaluation
Tracing the program code
Execution speed
Object oriented
programming
Error corrections

Animation
Interface-windows colour
Font size
Error explanation

290

Q4-3:
Q4-4:
Q4-5:
Q5: The tool is good method for tracing the code similar to what we do in
class on board or on paper
- I like the colour of the windows but font need to be larger
The tool need more programming codes and examples
Q6: yes or suggestion to be use at home as self-learning
Q7: yes
Q8: large font
Q9: it is clear what methods belongs to what class
Q10: good
Q11: easy to understand
Q12: Showing how the parameters travel from where it is calling to
memory and finally to their place in the header
Q13: Students now become able to know the difference between object and
class.
Q14: great
Q15: I like the representation and it could be represented like UML
diagrams
Q16: similar to real executions and final output window
Q17: good
Q18: good
Expert 6:
Interviewer:
Q1: yes, for 17 years
Q2: programming I and II
Q3: Java,Pascal ,C,C++, Python
Q4: yes
Q4-1: online python tutor
Q4-2: I used it during my learning python language
Q4-3: tracing, representing linked list and arrays, classes and methods
calling, error findings and explanation
Q4-4: same as the features mentioned above
Q4-5: very helpful
Q5: good tool that can be used during the lecture to explain the lesson , and
It is easy to use and doesn’t need any training sessions so the students can
use it as self-learning
The tool need more programming codes and examples , I prefer
representing recursion, arrays, pointers and control statements
Q6: yes or suggestion to be use at home as self-learning
Q7: yes
Q8: The tool need more programming codes and examples as mentioned in
Q5
Q9: clear
Q10: good and easy to understand
Q11: easy to understand
Q12: help to understand the calling by value
Q13: good
Q14: great
Q15: Showing how the attributes inherited from the superclass by using
drawing and animation will add support for me when teaching the class
inheritance lesson since it always confuses the students

Execution preference
Interface preference

Animation
Interface
Ease of use
Object oriented
programming
(inheritance)

291

Q16: suitable and clear
Q17: I like it
Q18: I like it

292

F-3 Focus Group Discussion with The Students In The Evaluation Phase

Focus Group Transcript

What are the strengthen(s) and weakness (es) of the tool in general?

Discussion include other questions such as

How did you find the output representation ? things you like and dislike ?

How did you find the animation? things you like and dislike ?

How did you find the control of execution ? things you like and dislike ?

Interface – usefulness- control of the execution -animation

A.2.1 “The portions of the window was clear.”

C.3.4 “The position of each window has to make sense.”

C.1.7 “Colors were not distracting me.”

B.1.1 “Better than using the manual trace “

C.1.6 “Prefer the tracing that shows the steps of code flow.”

C.1.2 “Great for tracing and having an application for the tool would be easier for students

to use rather than a website.”

B.5.6 “I would like to use this method after finishing each chapter.”

A.3.2 “Very useful.”

A.5.1 “I like the idea of the tool, and I think it will help me to learn Java.”

B.1.5 “I may use the manual trace and then refer to the tool to make sure that my answer

is correct.”

A.5.2 “Make easier to understand and suggest to add visual examples of how the method

can be used to program certain things like video games.”

B.3.3 “Control buttons were clear and easy to understand.”

C.1.4 “The motion of going step by step was suitable.”

B.2.6 “Prefer to control my tracing.”

How did you find the method representation ? things you like and dislike ?

Animation

293

A.1.2 “Before, I was thinking that changing the values of method’s parameters inside the

method will take effect on the values of variables in the main method.”

A.4.5 “I thought that the variables that have been passed to the method have the same

memory location for the method’s parameters themselves”

A.2.3 “ now I understand why the values not changed in the main”

A.2.1 “ I like how the tool represent each method as part of class using lines and menu”

How did you find the variable representation ? things you like and dislike ?

Interface- Animation

B.5.6 “ I like boxes to represent the name of the variable and the value”

C.2.3 “ the variable representation similar to what we do during the class on board”

How did you find the expression of evaluation ? things you like and dislike ?

Interface - expression evaluation

A.3.4 “Helps me to identify the value of the area “

B.4.5 “Understand the calculated balance.”

How did you find the passing parameters and calling method representation ? things you

like and dislike ?

Animation – interface

A.1.2 “Before, I was thinking that changing the values of method’s parameters inside the

method will take effect on the values of variables in the main method.”

A.4.5 “I thought that the variables that have been passed to the method have the same

memory location for the method’s parameters themselves”

How did you find the class/object representation ? things you like and dislike ?

Animation – interface – class and object representation – class constructor

B.4.1 “It makes me understand the concept of classes and objects because I

misunderstood them.”

294

B.4.4 “I knew the concept of the class as abstract, but now I understand how it works.

Moreover, I understand how we can define more than one object from the same class, but

each object has different memory locations so the changing in one attribute for one object

will not affect the same attribute in the other objects. “

B.2.3 “ I was thinking that class constructor is a method that should be invoked same as

any other method, the step by step tracing for the code makes me understand that class

constructor is automatically invoked when creating the object.”

B.3.1 “Similar to UML representation.”

B.4.6 “Helps me know the difference between class and object.”

B.3.2 “Like the representation of data inside object.”

B.2.1 “Like the referring exists that relate the class to its objects.”

How did you find the class inheritance representation ? things you like and dislike ?

Animation – interface – representation of inhiritance

C.2.1 “Like the transfer of the inherited object to the memory location.”

C.4.3 “Using shapes to represent inheritance with (box) inside (box) makes me

understand what attributes are should be in the subclass.”

C.1.6 “Before, I thought that any change happens inside any inherited variable or method

should be done to every copy exist in any other object for the same variable or method.”

would you use the tool if it’s possible? Explain why or why not

B.4.4 “ yes as self-learning”

C.3.1 “ yes, as practice after the lecture”

A.1.3 “ yes, during the lab activity”

Do you think it is beneficial and may improve programming learning?

A.1.4 “ yes as self-learning”

B.5.1 “ yes, I think my grades will improve”

C.2.3 “ yes, especially if the instructor use it during the lecture”

What should other types of improvements be implemented to build on this tool?

295

A.2.5 “ control the animation speed and have more examples”

B.4.4 “ I need to bulged my own code to test the code correctness and output”

C.1.2 “ more code and examples such as using iteration and pointers ”

	COPYRIGHT STATEMENT
	Author’s Declaration
	Contents
	List of Tables
	Chapter 1 INTODUCTION
	1.1 Introduction
	1.2 Statement of the Problem
	1.3 Purpose of the Study
	1.4 Research Questions
	1.5 Research Hypotheses
	1.6 Thesis Organisation

	1.
	Chapter 2 PROGRAMMING LEARNING SYSTEMS
	2.
	2.1 Introduction
	2.2 The Evolution of Learning to Program from the Perspective of Programming Learning Systems
	2.3 Computer Science in Saudi Arabia
	2.4 Novice Programmers
	2.5 E-Learning or Blended Learning
	2.6 E-learning and Visualisation
	2.7 Strengths of Using Systems and Applications in Learning Programming
	2.8 Weaknesses of using learning systems and applications in learning programming
	2.8.1 The difficulty of choosing the right programming language
	2.8.2 Explain errors to individual novice programmers
	2.8.3 The increased complications of learning
	2.8.4 Tutor preparation
	2.8.5 Information retrieval
	2.8.6 Other systems that require a lot of practice
	2.8.7 Increased number of instructional texts

	2.9 Conclusion

	3. Chapter 3 PEDAGOGICAL THEORY: THRESHOLD CONCEPTS
	3.1 Introduction
	3.2 Characteristics of Threshold Concepts
	3.3 Threshold Concepts in Computer Science
	3.4 Proposed Models for Threshold Concepts
	3.5 Conclusion

	Chapter 4 VISUALISATION IN PROGRAMMING LEARNING
	4.
	4.1 Introduction
	4.2 Memory Reference Visualisation
	4.3 Tools to Support Programming Learning
	4.3.1 The BlueJ tool
	4.3.2 Jeliot 3
	4.3.3 DrJava
	4.3.4 ProfessorJ
	4.3.5 WebTasks
	4.3.6 The Alice tool
	4.3.7 The ANIMAL system
	4.3.8 Visual Logic
	4.3.9 Online Python Tutor
	4.3.10 The Visualiser

	4.4 Visualisation Evaluation
	4.4.1 The methodology used to evaluate the tools
	4.4.2 The measured factors
	4.4.3 Programming topics

	4.5 Conclusion

	Chapter 5 RESEARCH METHODOLOGY
	5.
	5.1 Introduction
	5.2 Research Methodology
	5.2.1 Deductive and inductive approaches
	5.2.2 The worldview (epistemological) consideration
	5.2.1
	5.2.2
	1. Positivism
	2. Constructivism

	5.3 Quantitative Method
	5.3.1 Survey with experiment
	5.3.2 Survey measurements
	5.3.3 Data collection
	5.3.4 Data analysis strategy

	5.4 Qualitative Method
	5.4.1 Grounded Theory
	5.4.2 Semi-structured interviews
	5.4.3 Focus groups
	5.4.4 Data analysis strategy

	5.5 Ethical Issues
	5.6 Conclusion

	Chapter 6 INVESTIGATING THE ROLE OF VISUALISATION IN THE STUDY OF COMPUTER PROGRAMMING
	6.
	6.1 Introduction
	6.2 Data Collection
	6.2.1 Interviews
	6.2.2 Tool selection
	6.2.3 Study tasks (threshold concepts)
	6.1
	6.2
	6.2.1
	6.2.2
	6.2.3

	6.3 Data Analysis
	6.4 Findings
	6.4.1 Controlling the execution of the code
	6.4.2 Availability of the tool
	6.4.3 Error explanation
	6.4.4 Interface/usability of the tool
	6.4.5 Programming languages supported
	6.4.6 Expression evaluation
	6.4.7 Representation of class hierarchy
	6.4.8 Maintaining an event history
	6.4.9 Tool comparison

	6.5 Visual Code Flow Tool
	6.6 Visual Code Flow Components
	6.7 Conclusion

	Chapter 7 EVALUATION OF THE USE OF VISUALISATION IN PROGRAMMING LEARNING
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	7.1 Introduction
	7.2 Objectives
	7.3 Evaluation Method
	7.3.1 Selection of population
	7.3.2 Instrument
	7.3.3 Programming subjects
	7.3.4 Quantitative method
	7.3.5 Experiment preparation
	7.3.6 Experiment procedures
	7.3.7 Focus groups
	1. Focus group preparation
	2. Focus group procedures

	7.3.8 Interviews
	1.1.1
	1. Interview preparation
	2. Interview procedures

	7.4 Findings
	7.4.1 Survey results
	1. Students’ difficulties
	6.1
	6.1.1
	2.
	1.2.1
	2. Students’ satisfaction

	7.4.2 Qualitative findings
	7
	7.4.1
	7.4.2
	1. Focus group data
	2. Interview data

	7.5 Conclusion

	Chapter 8 CONCLUSIONS AND FUTURE WORK
	8.
	8.1 Introduction
	8.2 Contributions and Achievement of the Research
	8.3 The Research Questions
	8.4 Limitations of the Research
	8.5 Future Research
	8.6 The Importance Of Visualisation In Programming Learning
	8.7 Research Dissemination

	References
	Appendices
	Appendix A- Ethical approval letter and form- Consent form- Information sheet (Data collection)
	Appendix B- Questions for Semi-structured interviews - students and novices programmers
	Appendix C- Visual Code Flow
	Appendix D- Ethical approval letter and form- Consent form- Information sheet (Evaluation of Visualisation)
	Appendix E- Evaluation survey- Focus Group questions- Expert interviews questions
	E-1 Pre-survey for control and visualisation group
	E-2 Post-survey for control and visualisation group
	E-3 Questions for Focus Groups
	E-4 Questions for semi-structured interviews- expert interview

	Appendix F- Interviews and focus groups transcript
	F-1 Interviews with programming students in the data collection Phase
	F-2 Interviews with Experts in the Evaluation Phase
	F-3 Focus Group Discussion with The Students In The Evaluation Phase

